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Abstract

If the Standard Model is valid up to a high cutoff scale, then Wilsonian arguments show that the

Higgs mass parameter must be fine tuned, in order to maintain the hierarchy between the cutoff

and the electroweak scale. Traditional solutions to the hierarchy problem, such as supersymmetry,

extra dimensions, and composite Higgs models hence introduce new physics at the TeV scale.

Relaxation is a new approach that typically adds no TeV scale physics. It evades the Wilsonian

arguments by having the tuning occur dynamically. Typical relaxation models introduce a light

scalar particle called the relaxion which scans the Higgs mass parameter, much like how the

axion scans the QCD θ-term. The relaxion uses Hubble friction during inflation to control the

scanning speed and a backreaction mechanism to stop the scanning at the appropriate time.

After reviewing axions, inflation, and naturalness arguments, we introduce the original

GKR relaxation model, which uses a field like the QCD axion as the relaxion. We consider

refinements of the model that solve the strong CP problem, possible UV completions using

the clockwork mechanism, and the challenges of achieving the required duration of inflation.

Finally, we show how these issues are alleviated in more recent models which use alternative

ways to dissipate the relaxion’s energy.
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1 1. Introduction

Chapter 1

Introduction

The purpose of physics is to explain phenomena in Nature. For the past fifty years, our under-

standing of the world has centered around the Standard Model (SM). The simple form of the

SM has explained many previously unrelated observations. For example, the electric charges of

the quarks and leptons, which might once have been considered fundamental constants without

explanation, are the only ones that permit the gauge structure of the SM to hold together.

However, the SM itself has a good deal of unexplained structure, embedded in the approx-

imately twenty-five constants that parametrize it. One particularly important issue is that

these constants appear to conspire to keep the mass of the Higgs boson light. The SM appears

to be tuned to exquisite precision, in the same way that an experimentalist might adjust the

temperature to place a superconductor near its critical point. Just as in condensed matter

physics, this apparent criticality requires an explanation.

Most theories that seek to explain this fact introduce new symmetries and new particles,

whose masses should generally be near the Higgs boson’s mass, and have hence come under

pressure from recent LHC results. Some have taken this as an indication that the intuition

for tuning borrowed from condensed matter does not hold up in particle physics, but I will

argue below that this is incorrect. Others have shifted attention towards theories which ex-

plain the apparent tuning in a different way. Within the field of complex systems, it has long

been known that criticality can emerge automatically from a system’s dynamics [27], and it

is tempting to attempt to realize this in the SM. Such “dynamical tuning” must occur early

in the universe, and is hence bound up with cosmology.

For example, in the N naturalness proposal [95], the universe actually contains N � 1

independent copies of the SM, which are identical except for their Higgs boson mass. For

sufficiently large N , at least one is small by chance, and inflation ends by reheating only this sector,

leading to the SM we see today. In this case, the inflaton plays the role of the external tuner.

The more minimal proposal we consider in this dissertation draws inspiration from an ear-

lier attempt to solve the cosmological constant problem, due to Abbott [24]. In this model,

one considers a scalar field φ with a linear potential and a sinusoidal one which arises from

coupling to a confining gauge theory by φFF̃ ,

V (φ) ∼ gφ

f
− Λ4 cos(φ/f). (1.1)
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When the vacuum energy is large and positive, the de Sitter horizon cuts off the instantons

that yield the second term, so only the linear term is present. As the field φ rolls down the

linear potential, the vacuum energy decreases. If the confinement scale is very low, then the

sinusoidal contribution only reappears once the vacuum energy is very small, trapping the

field and stopping the scanning.

This proposal raises many questions. One could ask about the origin of the unusually coupled

scalar φ, or the very long period in the early universe needed to perform the scanning. One

could also ask how the mechanism could be realized in string theory. Perhaps the most physical

objection is that there is no clear way to incorporate any matter into the model.

The relaxion proposal considered in this dissertation, due to Graham, Kaplan, and Ra-

jendran [92], applies a similar idea to the Higgs mass. It has the same advantage of sim-

plicity and many of the same drawbacks. We will discuss these features from the perspec-

tives of cosmology, effective field theory, and string phenomenology, as well as evaluate pro-

posed resolutions for its issues.

The dissertation is organized into two main parts. Chapter 2 comprises the first half, and

covers the prerequisites for understanding relaxion models beyond those of a standard quantum

field theory course. Since a large number of topics are required, the treatment is necessar-

ily somewhat superficial, focusing on reaching the results that will be used. Chapter 2 also

contains some general discussion of the philosophy of model building and the validity of nat-

uralness and fine-tuning arguments. These discussions are left implicit in many papers, but

are essential to understand their purpose.

In the second half, chapters 3 and 4 review the relaxion and its elaborations, covering

shortcomings of the model and their possible resolutions. We survey a sizable fraction of the

work done on basic variants of the original GKR relaxion model, and list further extensions

in chapter 5. Since this is a rapidly moving field, references throughout the dissertation are

sorted in chronological order. Several references cited in this work appeared while it was being

written, and more are sure to appear by the time it is read.
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Chapter 2

Background

The setup, purpose, and analysis of even the original GKR relaxion model require a good deal

of tacit knowledge that does not seem to be presented, in full, in any expository work. In this

chapter, we fill this gap by giving the background and context necessary to explain what the

relaxion model does, at a level accessible after a Master’s level course in particle physics. The

concrete results presented here are common knowledge among practitioners, while the more

philosophical opinions seem to be held, at least implicitly, by a majority.

After setting up effective field background in section 2.1, we give a careful formulation of

naturalness in section 2.2 followed by some uncareful polemics in section 2.3. We give an

overview of inflation in section 2.4, focusing on the behavior of quantum fields on a quasi-de

Sitter background. The potential for the relaxion is related to the QCD vacuum energy, which

we investigate in section 2.5 using both chiral perturbation theory and instantons. Finally, we

apply all of our collected results to the QCD axion in section 2.6.

2.1 Effective Field Theory

Wilsonian Renormalization

In the Wilsonian framework [5], a quantum field theory is defined by an action

SΛ[Φ] =

∫
ddx

∑
i

Λd−digi(Λ)Oi(Φ(x)) (2.1)

where Φ stands for all of the fields, d is the dimensional of spacetime, the Oi are local op-

erators with dimension di, and the gi are dimensionless couplings. The cutoff scale Λ is the

maximum momentum or energy scale of the degrees of freedom of the theory. For instance,

the partition function is defined as

Z =

∫
k≤Λ
DΦ exp (−SΛ[Φ]) (2.2)

Here we have Wick rotated for convenience, and the measure DΦ integrates over Fourier com-

ponents of Φ with momentum at most Λ.

Referring to Eq. (2.1), a physical theory is specified by the values of the couplings gi(Λ) at a

high cutoff scale. However, these couplings often do not have a simple connection to the couplings
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measured in low-energy experiments, which may obtain large corrections due to quantum effects.

The purpose of renormalization is to express the initial, “bare” parameters of the theory in terms

of “renormalized” parameters which have a more direct connection to experiment.

In the Wilsonian framework, this can be achieved by “integrating out” high-energy degrees

of freedom. For example, we may split the measure into low-momentum and high-momentum

components and write the partition function as

Z =

∫
k≤Λ′

DΦlow

∫
Λ′<k≤Λ

DΦhigh exp (−SΛ[Φ])

≡
∫
k≤Λ′

DΦlow exp (−SΛ′ [Φlow]) . (2.3)

which defines an effective theory with a new set of couplings gi(Λ
′) and a new, lower cutoff

Λ′. Both theories are observationally equivalent, in the sense that all correlation functions

of low-momentum operators match.

In the effective theory, loop integrals are cut off at Λ′ rather than at Λ, while effects associated

with loop momenta in [Λ′,Λ] have been accounted for by the changes in the couplings. In

particular, if we bring Λ′ down to the energy scale of a given experimental process, and the

dimensionless couplings gi(Λ
′) remain small, then the parameters gi(Λ

′) function as renormalized

parameters. They directly map onto experimental results, up to small quantum corrections.

Such a procedure is rarely used in high-energy physics for several reasons. Loop integrals

become much more complicated to perform if the cutoff is not high enough to be regarded as

effectively infinite, and worse, the idea of a cutoff conflicts with gauge invariance and Poincare

symmetry. More practically, the infinitely many couplings generically produced are almost always

unnecessary for the heuristic, less precise estimates used in model building1. However, such a

picture will be useful for intuition in the following sections.

More generally, we do not have to split DΦ as DΦlowDΦhigh. For instance, we could also

completely integrate out heavy fields while keeping others unchanged. In general, suppose we

split the measure as DΦ = DΦIDΦJ . We can decompose the action (2.1) as

SΛ[Φ] = SI0 [ΦI ] + SJ0 [ΦJ ] + Sint[Φ] (2.4)

where Sint contains all interaction terms. Then the effective action is

S′ = SI0 − log

∫
DΦJ exp

(
−SJ0 − Sint

)
= SI0 − log 〈exp (−Sint)〉0 (2.5)

where the expectation is taken with respect to the free theory for the ΦJ . The logarithm ensures

that we sum over only connected diagrams. Note that this procedure is in principle completely

nonperturbative, though in practice we may use a perturbative expansion to make progress. In

terms of the textbook continuum RG picture, SΛ is the bare action, S′ roughly corresponds to

the renormalized action, and their difference corresponds to the counterterms.

1However, Wilsonian renormalization group (RG) flow can be computed exactly. A much more practical setup
is to use a smooth UV cutoff, leading to Polchinski’s RG equation. In this context, the Wilsonian RG is called
the functional or exact RG [79].
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Estimating Loop Corrections

This can be illustrated by a simple example, which will be the prototype for calculations performed

later. Consider a theory of two real scalar fields,

SΛ =

∫
ddx

1

2
(∂µφ)2 − 1

2
m2φ2︸ ︷︷ ︸

SI0

+
1

2
(∂µΦ)2 − 1

2
M2Φ2︸ ︷︷ ︸

SJ0

+
gΛ

2
φΦ2︸ ︷︷ ︸
Sint

(2.6)

where m � M � Λ and g � 1. If we integrate out the Φ field, then at one-loop order,

S′ = SI0 −
1

2

(
gΛ

2

)2 ∫
ddxddy 〈(φ(x)Φ(x)2)(φ(y)Φ(y)2)〉conn

0

= SI0 −
g2Λ2

4

∫
ddxddy φ(x)φ(y)DF (x− y)2. (2.7)

We are primarily interested in the renormalization of the mass term for φ, so we focus on the

momentum-independent part of the integral. Taking a Fourier transform, we have

δm2 =
g2Λ2

2

∫
d4k

(2π)4

1

(k2 +M2)2
=
g2Λ2

(4π)2

∫ Λ

0

k3 dk

(k2 +M2)2
. (2.8)

The result of the integral is

δm2 =
g2Λ2

(4π)2

1

2

(
log

(
1 +

Λ2

M2

)
− 1

1 +M2/Λ2

)
=

1

2

g2

(4π)2

((
log

Λ2

M2
− 1

)
Λ2 + 2M2 + . . .

)
. (2.9)

This illustrates some general principles which we will use below:

• One-loop corrections generally come with a numerical “loop factor” of 1/(4π)2. (In this case,

the extra 1/2 is just a symmetry factor.)

• Generally, the leading corrections to the mass term will dimensionally be of the form

δm2 ∼ g2

(
Λ2 +M2 +

M4

Λ2
+ . . .

)
. (2.10)

• Corrections may be accompanied by “large logarithms” such as log Λ2/M2 if there are two

widely separated scales in the problem. These are generally quite important, but they won’t

be relevant at the accuracy that we will work at.

We will use these rules below to make rough estimates for relaxion models.

If the coupling is sufficiently small, m2 + δm2 is a good approximation for the physical mass-

squared of the φ particle, since other corrections are higher-order in g. For example, integrating

out Φ also induces a g3φ3 interaction. This means that the processes of integrating out high-

momentum modes of φ gives further corrections to m2. However, these start at order g6 and

are hence negligible compared to the O(g2) correction we found above.
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Spurions

One useful fact is that, if a (linearly realized) symmetry is restored in the limit where a coupling

g goes to zero, then corrections to that coupling must be proportional to the coupling itself. This

is simply because the correction itself may be expanded as a Taylor series in g,

δg = f(g) = f0 + f1g + f2g
2 + . . . . (2.11)

When g is zero, we must have δg = 0 because Wilsonian renormalization group flow preserves

the symmetry, so f0 = 0, giving the result. Diagrammatically, every diagram that contributes

to δg must have at least one copy of the vertex corresponding to g.

The toy model above contains an example of this. In the limit g → 0, the two fields are

independent and hence enjoy an enhanced Poincare symmetry where the two fields transform

independently. Accordingly, corrections to g start at order g3. More generally, corrections to

any interaction term must come with at least one power of g, as is clear from diagrammatics.

This reasoning may be extended using the logic of spurion fields [153]. In this case, we

treat the symmetry-breaking coupling g as a new field whose transformation properties are

such that the original symmetry is preserved. Then quantum corrections respect the symmetry,

which constrains the terms that appear in the renormalized Lagrangian. For example, if we

consider a theory with a complex scalar φ,

L = (∂µφ)∗(∂µφ)−m2φ∗φ− gφ3 (2.12)

then if φ has a unit U(1) charge, the interaction term breaks the U(1) symmetry, but can be

restored if we view g as a spurion with a U(1) charge of −3. This tells us, for instance, that

the correction to φ6 is of order g2, while there is no correction to φ5 at all.

Concretely, spurion fields can be realized by letting g be the vacuum expectation value

(vev) of a new, very heavy field, thereby converting an explicitly broken symmetry to a spon-

taneously broken/nonlinearly realized symmetry, but the point is that whatever UV physics

we add here does not matter.

2.2 Bayesian Naturalness

Naturalness is an important and controversial principle in high-energy physics, with no general

agreement on its precise definition. While it is possible to define it through intuitive notions

of “fine-tuning”, this cannot be done for the relaxion because the naturalness of the relaxion

mechanism depends strongly on the definition used. In this section, we will formulate a concrete

definition of naturalness, then discuss how this measure relates to conventional measures of

naturalness, such as the Barbieri-Giudice measure used in supersymmetric model building.
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Quantifying Naturalness

In model building, the “naturalness” of a theory is a proxy for whether we should believe it.

Thus, naturalness is naturally formulated in the language of Bayesian statistics, which explicitly

addresses how beliefs should be updated by evidence. The Bayesian perspective is especially

useful here because it clearly separates subjective and objective aspects of naturalness, which

are often conflated. For further work along these general lines, see Refs. [77, 83, 131, 152].

In Bayesian statistics, the prior probability p(M) is a subjective degree of belief that the model

M is true. There are various ways to argue that degrees of belief should obey the standard pos-

tulates of probability theory to be sensible; for one example in the physics literature, see Ref. [2].

After receiving data d, it follows directly from these postulates that the final, or posterior

probability p(M|d) is given by Bayes’ theorem,

p(M|d) =
p(d|M)p(M)

p(d)
. (2.13)

The right-hand side contains the terms p(M) and p(d), which are subjective and may vary wildly

between physicists. However, the relation between the ratios of probabilities of two models

before and after receiving the data is unambiguous. We have

p(M1|d)

p(M2|d)
= B12

p(M1)

p(M2)
(2.14)

where the Bayesian update factor is the ratio of the likelihoods of the data in each model,

B12 =
p(d|M1)

p(d|M2)
. (2.15)

Two observers cannot disagree on whether a piece of data d favors model M1 or M2, even if

they disagree on which model is more likely to be correct, because only the likelihoods matter.

Specializing to particle physics, a model M comes with a set of parameters g ∈ P and a

prior distribution p(g|M) over those parameters. We may write the likelihood as

p(d|M) =

∫
P
p(d|g,M)p(g|M). (2.16)

The data will take the form of the measurement of several observables Oi, which could be, e.g.

renormalized parameters such as the Higgs mass. Let these observables take values in the space

D. The model defines a mapping f : P → D from parameter values to the values of these

observables, though measurements of the observables always come with some statistical error.

For simplicity, we assume the observables do not overdetermine the parameters, in the sense

that the set P ′ = f−1(Oi) is not empty. (The basic formalism works just as well either way, but

this assumption will allow a more direct description of the likelihood calculation.) The likelihood

p(d|g) is hence a constant L0 for g ∈ P ′ which depends on the amount of data collected, and

which will approximately cancel out of the Bayesian update factor.

We further assume that the statistical errors are small and approximately normal, so that

the prior is slowly varying relative to the likelihood, which in turn can be expanded with the

Laplace approximation [69]. That is, for parameters g near g0 ∈ P ′,

log p(d|g,M) ≈ logL0 +
1

2

∂2 log p(d|g,M)

∂ga∂gb

∣∣∣∣
g=g0

(ga − ga0)(gb − gb0) (2.17)
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where the index a ranges only over coordinates transverse to P ′.
The quadratic term depends both on the precision of the data and the sensitivity of the

observables to the parameters. To explicitly separate these aspects, we rewrite it as

1

2

∂2 log p(d|g,M)

∂Oi∂Oj

∣∣∣∣
g=g0

∂Oi

∂ga
∂Oj

∂gb
(ga − ga0)(gb − gb0) ≡ 1

2
ΣijJ iaJ jb(ga − ga0)(gb − gb0). (2.18)

We have a standard Gaussian integral for the coordinates transverse to P ′, and performing

it reduces the likelihood to an integral over P ′,

p(d|M) =
L0√
|det Σ|

∫
P ′

p(g|M)√
|det JJT |

(2.19)

where

(JJT )ij = J iaJ ja (2.20)

with repeated indices summed. The factor det JJT describes how sensitive the observables are

to the parameter values, as we will see in more detail below.

In the context of Bayesian inference, Σ is called the Fisher information and describes the

uncertainty associated with the measurements of O, and hence the amount of information they

carry. As long as the two models we are comparing are broadly similar (e.g. they are quantum

field theories which reduce to approximately the same effective field theory at low energies), then

the prefactors roughly cancel, leaving the Bayesian update factor

B12 =

∫
P ′
1

p(g|M1)√
|det JJT |

/∫
P ′
2

p(g|M2)√
|det JJT |

(2.21)

The update factor B12 compares how compatible each theory is with the observed data. Our

thesis is that it also reflects whether we should view the model M1 as “more natural” than M2.

Note that this formalism does not give a way to define the naturalness of a single theory. It

would be tempting to just use the likelihood p(d|M), but this does not work because it shrinks

for all theories as measurements are made more precise. One could compare individual theories

to a canonical “black box” theory where the parameters are simply the observables themselves,

as advocated in Ref. [77], but we will not do this here. As we will see, formulating naturalness

only in relative terms resolves some conceptual confusions.

In the examples we will consider, the input parameters g are the “bare”, dimensionless

couplings in a high-cutoff Wilsonian effective field theory, defined in (2.1). The observables

will be quantities such as the Higgs vev or the decay rates or branching fractions of particles,

which are either equal to the “renormalized” couplings in the theory, after integrating out

all heavy degrees of freedom, or directly related to them. Since these observables are often

dimensionful, it will be convenient to work in terms of their logarithms instead, e.g. Oi = logm2
Z .

Since Eq. (2.17) is manifestly independent of the parametrization of the observables, this choice

does not affect the Bayesian update factor.
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Comparison to Standard Measures

Conventional measures of naturalness are most commonly used when addressing the hierarchy

problem, i.e. the smallness of the electroweak scale. For example, if we suppose for concreteness

that the SM is valid up to a cutoff Λ ∼Mpl, then the Higgs mass receives corrections of the form

δm2
H ∼M2

pl (2.22)

by the logic of Eq. (2.10). The electroweak scale set by the Higgs mass can only be small if ex-

tremely precise, fine-tuned cancellations occur among the individually large contributions to δm2
H .

The amount of fine-tuning is often quantified by the Barbieri-Giudice measure,

∆ = max
i

∣∣∣∣∂ logm2
h

∂ log gi

∣∣∣∣, (2.23)

especially in the context of supersymmetric model building. This measure was introduced in

Ref. [25] and was applied by Barbieri and Giudice to bound superpartner masses in a seminal

paper [28]. A model is often identified as “fine-tuned” if ∆ & 10. In this case, for example, a

parameter must be tuned to 1% accuracy if the weak scale is to be fixed to 10% accuracy. For

the Standard Model with a Planck-scale cutoff, ∆ ∼ M2
pl/m

2
h ∼ 1032.

The Barbieri-Giudice measure leaves many aspects to be desired. Its definition is ad hoc,

and its value depends on how the variables are parametrized. It assigns values to single points in

parameter space, while one would like a “global” measure that quantifies the overall naturalness

of an entire model M. It does not coincide with our intuitive notions of naturalness, giving

incorrect answers for the proton mass and the strong CP phase, as we will see below. Finally,

from an experimental perspective, it artificially splits out data relating to the electroweak scale

(which is analyzed using ∆), while all other data is used to evaluate the model using standard

statistics, such as by a χ2 goodness-of-fit metric. (A number of papers have given refinements

of ∆ which address some of these issues, e.g. see Refs. [39, 43, 58, 129], though all appear

ad hoc, with conceptual difficulties in general.)

We claim that B12 reduces to an improved version of ∆ in the situations where ∆ is a good

measure, and generalizes it in a way that fixes all of these problems. To see this, take logm2
h to

be the only observed quantity in Eq. (2.19). The denominator in the integral reduces to

√
| det JJT | =

(∑
a

(
∂ logm2

h

∂ga

)2
)1/2

. (2.24)

In the limit where the Higgs mass is most sensitive to one parameter,∫
P ′

p(g)√
| det JJT |

≈
∫
P ′
p(g) max

i

∣∣∣∣ ∂gi

∂ logm2
h

∣∣∣∣. (2.25)

Finally, assuming that we are working with a logarithmic prior, p(gi) ∝ 1/gi, we have∫
P ′

p(g)√
|det JJT |

≈
∫
P ′

max
i

∣∣∣∣ ∂ log gi

∂ logm2
h

∣∣∣∣ =

∫
P ′

1

∆
. (2.26)
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The Barbieri-Giudice measure appears, with the improvement that it is integrated over P ′ to

give a global measure of naturalness, accounting for the total fractional “volume” of parameter

space that is compatible with the data. The expression becomes more complicated if we account

for further observations, but in principle the electroweak scale is not treated differently from any

other data. One remaining issue is that we had to postulate a logarithmic prior; the justification

for this is discussed in the following section.

Comparing Theories: the Strong CP Problem

The fact that B12 can only properly be used to compare two theories, rather than to evaluate

a single theory, is a feature that sheds light on standard naturalness arguments. For example,

consider the strong CP problem, described in more detail in section 2.5. In this case, the

“unnatural” parameter is the QCD θ term, which is measured to be extremely small, θ < 10−10,

even though we could have θ ∈ [−π, π]. This is not unnatural according to the Barbieri-Giudice

measure because loop corrections to θ are quite small, so ∆ ≈ 1, but we treat the value of

θ as a naturalness problem. Why is this?

The answer is not that a small value of θ is unlikely, for suppose we had instead measured

a precise but nonzero value, θ ∈ [θ0, θ0 + 10−10]. Then given any reasonably smooth prior

p(θ) in the SM, this would also be extremely unlikely; one can always draw a tiny target

around where an arrow lands.

The real answer is that there exist simple extensions of the SM, such as axions or the

Nelson–Barr mechanism [22, 23], that have a high likelihood of producing a tiny θ angle starting

from generic priors. These theories hence receive very favorable Bayesian update factors when

compared to the SM. One would not be able to do the same if θ had some nonzero value θ0 6= 0.

In principle, one could do something artificial, like taking the SM but peaking the prior p(θ)

sharply around [θ0, θ0 + 10−10]. However, absent any additional structure which justifies this

prior, such a model is just a very special case of the SM and should accordingly come with a

much lower prior probability. To do otherwise would be incoherent: if we split the SM into

O(1010) equally complex submodels using priors of this form, then each submodel’s overall prior

must be penalized by a factor of O(1010), or else we have just raised the prior for the SM at

large by doing nothing at all. In other words, model priors should be penalized based on the

number and type of choices one made to construct them2.

In the strictest sense, SM parameters are not “natural” or “unnatural” within the SM in

itself. We think of a parameter as unnatural exactly when we know of simple theories which

yield that parameter’s measured value with much greater likelihood, or suspect that such theories

should exist. The relative simplicity and predictivity of models such as the axion, over models

that explain the flavor structure of the SM, account for why the strong CP phase are typically

listed as a naturalness “problem” while the Yukawa couplings are not.

2One could worry further about exactly how this penalization should be performed, but if we are at the point
where this is the deciding factor, the real solution is to acknowledge that the current data are not decisive, and to
go out and collect more.



11 2. Background

Selection of Priors

So far, we have not said much about how a prior is chosen. This is related to the ideas of

Dirac naturalness and technical naturalness:

• A theory is Dirac natural [1] if all of its dimensionless parameters are of order one. For

example, these parameters could be the coefficients in the effective action in Eq. (2.3).

• A theory is technically natural [18] if its dimensionless couplings are all of order one, or

small, and symmetries are restored when the small couplings are set to zero. Following

the discussion in section 2.1, such couplings receive small corrections under RG flow, which

means bare couplings are small if and only if the corresponding renormalized couplings are3.

These notions enter the Bayesian picture by informing our choice of prior distribution for the

parameters p(g). This is a subtler issue than the choice of prior for models p(M) discussed

above, because it does not cancel out of the Bayesian evidence (2.21).

There has been much discussion in the physics, statistics, and philosophy of science literature

about prior selection. Within the context of supersymmetry (SUSY), a logarithmic prior p(g) ∝
1/g is often used [56], as we saw for the Barbieri-Giudice measure. Sometimes it is claimed

that this prior is the only permissible one because, for a dimensionful coupling m, it is the

only one invariant under a change of units. Equivalently, dp/dm ∝ 1/m is the only expression

we can write down with the correct dimensions. However, this argument is incorrect in the

Wilsonian picture because the dimensionful parameters can always be recast into dimensionless

form, e.g. by working in terms of m/Λ rather than m.

Within statistics, sometimes “objective” priors such as reference priors or the Jeffreys prior

are advocated [53, 68]. These priors are roughly chosen by maximizing the amount of information

conveyed by measurements; the priors thereby contain the minimal possible amount of information

before measurement. However, this means that they depend explicitly on the measurements we

can perform, leading to some strange conclusions. For example, if an experiment can only yield

discrete outcomes, such as a detection or absence of a particular particle, then the objective

prior for either outcome is 1/2. Such priors do not appear to be widely used in particle physics.

In more complete analyses of SUSY models, often a combination of linear and logarithmic

priors are used. Sometimes one gives separate results for both priors, as a measure of sensitivity

to the prior choice, e.g. see Refs. [65, 67]. One common complaint in the philosophical literature

about such priors is that they are not normalizable, and hence do not yield well-defined likelihoods;

we will see another example of this in section 2.4. However, in this case, such priors are acceptable

because we always have bounds on the parameter values inferred from previous experiments or

basic consistency conditions [131]. For example, Ref. [81] emphasizes starting with a “pre-LEP”

linear or logarithmic prior but then updating it using experimental data taken before LHC data.

(On the other hand, this argument does show that angular variables such as θ and the CKM

matrix angles should be taken uniform in [0, 2π].)

3This leads to a more general, though less common usage, where any relation between bare couplings which
receives only weak quantum corrections may be called technically natural.
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The general lesson that I draw from this discussion is that there is no universal prescription

for a prior in particle physics. Instead, priors should be viewed as part of the definition of a

model. The notion of Dirac naturalness corresponds to any relatively smooth prior which favors

O(1) values, while technical naturalness corresponds to additionally allowing priors which favor

small bare couplings, e.g. by taking a logarithmic prior. Both families of priors are simple,

without allowing excessive freedom in their definitions.

If one is used to Dirac naturalness, technical naturalness may appear very strange: where

could such small numbers come from? From this perspective, the benefit of technically natural

theories is that they preserve the smallness of a coupling as we flow upwards in energy. This

allows us to later construct Dirac natural UV completions, as we know of mechanisms that

convert parameters with Dirac natural priors to parameters with priors peaked at small values.

For example, there is a hierarchy between the mass of the proton mp and the Planck mass

Mpl. In effective theories of QCD, the smallness of the proton mass mp is technically natural

because a chiral symmetry is restored when it goes to zero. In the full SM, the proton mass

is on the order of the QCD scale ΛQCD, which is

ΛQCD = Mpl exp (−2π/b0αs(Mpl)) (2.27)

where b0 is an O(1) number, thereby converting O(1) values of αs(Mpl) to extremely small

values of ΛQCD/Mpl. Incidentally, as originally pointed out in Ref. [39], the proton mass is

fine-tuned in the SM according to the Barbieri-Giudice measure, providing another example

of where it does not accord with intuition.

The point here is that, even if one only accepts Dirac natural theories on aesthetic grounds, a

technically natural theory still allows us to defer a Dirac naturalness problem to a higher energy

scale, so that it can be solved by a later generation of physicists4. Even if this is not entirely

satisfying, it is a reasonable way to make progress; to demand an understanding of everything

up to the Planck scale now would be analogous to judging 18th century physicists by how well

their theories explain TeV-scale physics. In both cases, we are separated from the goal by fifteen

orders of magnitude in length, which must be understood one at a time.

2.3 Philosophical Polemics

In this section I briefly indulge in some quasi-philosophical discussion of the validity of naturalness,

which the scientifically minded reader may feel free to skip. While this is uncharacteristic for a

physics work, I find it necessary to clarify the purpose behind the models we will consider below.

4Note that one could resolve the strong CP problem by simply assuming θ to be small in the UV. This is not
technically natural in the strict sense, because no symmetry is restored when θ is zero, but quantum corrections
to θ are still very small because they require weak interactions involving all three generations of quarks, as the
only other source of CP violation in the SM is the CKM matrix. This is not usually described as a solution to
the strong CP problem, because we already know of solutions that are fully Dirac natural, such as axions. On the
other hand, even if one were happy with this “set it and forget it” approach, one would still have to explain why
the QCD θ term behaves so differently from the O(1) CKM matrix phase, even though both are simply angles in
the SM. That is, no matter what aesthetic preferences one takes for priors, there is still something that needs to
be explained in the strong CP problem. In fact, even anthropics cannot answer it, making it perhaps one of the
most robust problems in particle physics.
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LHC Results and Naturalness

Recent experimental measurements have established that if weak-scale SUSY exists, there is at

least a “little hierarchy” of about an order of magnitude between superpartner masses and the

electroweak scale, forcing many supersymmetric models to become fine-tuned. This result has

often been dramatically characterized as a refutation of naturalness which has shattered the

foundations of physics, e.g. see Ref. [123]. However, our formulation of naturalness still stands, as

it is not a statement about physics but rather a direct consequence of the axioms of probability5.

It would be overconfidence indeed to claim the refutation of one’s preferred theory overturns

mathematics itself; a much simpler conclusion is that their particular theory was just not true.

Of course, it is still true that fine-tuned weak-scale SUSY is far more favored than the SM,

though now the Bayesian evidence is perhaps merely 1030 rather than 1032. Some physicists seem

to take this 1030 update factor to mean that weak-scale SUSY remains nearly certain to be true.

In fact, if one is certain of this, the correct conclusion upon accounting for new evidence is to

always predict superpartners “just around the corner” [90], since this minimizes tuning. However,

this is not the entire story, because weak-scale SUSY should not just be compared against the

SM, but also against other models that solve the hierarchy problem. The main message of the

LHC for model building is that theories which are not afflicted by the little hierarchy problem

receive O(100) Bayesian update factors of support relative to those that do, such as weak-scale

SUSY6. The relaxion is just one such model, since it generically predicts no TeV scale physics.

It is perfectly self-consistent to still prefer weak-scale SUSY over other theories if one’s orig-

inal prior favored it strongly enough. Weak-scale SUSY receives favorable Bayesian evidence

though several fairly accurate numerical coincidences, such as the “WIMP miracle” and im-

proved gauge coupling unification. And while SUSY is favored in UV theories, the relaxion

has strange properties which seem challenging to UV complete at all; we will discuss these

concerns further in section 3.3. Disagreements over the weighting of such UV concerns and nu-

merical coincidences lead to diversity in theory choice, which from the Bayesian perspective

is a perfectly healthy state of affairs.

Arguments Against Naturalness

A common objection to naturalness arguments is that they are not mathematically well-founded

because we do not know the correct choice of prior distribution for the model parameters [78].

However, this objection is meaningless in the language we have used above. A prior over

parameters is simply part of the definition of a model.

It is certainly possible to “solve” the hierarchy problem by simply taking the Standard Model

and imposing a prior that forces the Higgs mass to be low. However, there is no simple choice

5Of course, this also implies that naturalness is a common tool in all branches of physics. For example,
naturalness is used constantly and implicitly by condensed matter physicists; nobody ever says that a mode is
gapless just by sheer coincidence, which would be the exact analogue of a low Higgs mass. The main difference
between fields is that particle physics has been more explicit with quantifying naturalness.

6Refined weak-scale SUSY models that avoid the little hierarchy problem generally seem to me to make
sufficiently many arbitrary choices that they should receive an O(100) penalty for their prior, leading to roughly
the same penalty for posterior probability. In general, for many BSM models there appears to be a “conservation
law” between complexity, which penalizes the prior, and tuning, which penalizes the likelihood. What I personally
find exciting about the relaxion is that, despite its problems, it might not suffer from this tradeoff.
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of prior for the Standard Model parameters (such as uniform, logarithmic, normal, etc.) that

achieves this. The only way to accomplish this is to take a sharply peaked prior that enforces

a particular, complicated relationship between the parameters. Concretely, this would look like

setting the right-hand side of a much more complicated variant of Eq. (2.9) to zero at extreme

precision. We are hence forced to choose a prior specified in a very particular way, but in the

absence of additional structure that justifies why we would take this prior, the model as a whole

should be assigned a low prior probability because of the arbitrary choices it makes.

Compare this to the case of weak-scale SUSY, where the likelihood of a weak-scale Higgs

mass is high for a wide variety of simple prior parameter distributions. If we integrate out

all the superpartners, we arrive at precisely the kind of theory we just discussed: a Standard

Model with a sharply distorted prior that favors a weak-scale Higgs. But the latter theory is

worse because it is lacking the structure that explains why that prior is reasonable in the first

place. Ultimately, model building is not about optimizing arbitrary numerical measures; it is

about creating explanations for the structure in our world. Of course, models can and should

be criticized if there are many choices made in their creation; one just can’t forget that the

same must be applied to the model’s parameter prior.

A second, related objection is that we weight prior distributions by their simplicity, but

our notions of simplicity may be incorrect. An equivalent way to phrase this is we could be

parametrizing the problem incorrectly. There are redefinitions of the operators in Eq. (2.1) that

render the SM completely natural. While these redefinitions might look extremely complicated

to us, they might actually be the correct choice under some heretofore unknown additional

structure. Without knowing what this structure is, we cannot objectively evaluate the SM.

The problem with this objection is that it is not actually an objection at all. Model builders

who use naturalness as a guide are in complete agreement with it: the only difference is that

they attempt to find what that structure is. (The contrast between weak-scale SUSY and the

SM with weak-scale SUSY integrated out again serves as an example.) The objection would

only be a genuine one if it were taken as an argument for completely giving up on finding

the structures underlying the SM, perhaps because the task is too difficult given our limited

knowledge. However, I do not think the LHC results warrant such pessimism.

These objections have played out many times in the history of physics. As a mythological

example, consider an ancient society that observes that the length of the day increases and then

decreases with a period of about 365 days. Bob might conjecture that the length changes purely

randomly. Alice could reply that a better theory is that the Sun rotates about the Earth with

that period, but the Earth’s axis is tilted. Bob could reply that the day length in his theory

is simply distributed in a very particular way, which forces the length of the day to behave in

the observed way. However, this is not an explanation. Alice’s theory is better than Bob’s. It

remains better even when later astronomers are forced to add epicycles into Alice’s theory to

account for the motion of the planets. These epicycles do not retroactively make Bob’s theory

a good one; they only hint to us that both might be replaced with something better.

A pessimist might react to the debate by saying that an understanding of the length of the

day simply lies beyond human knowledge. But the pessimist achieves nothing: when Copen-

hagen arrives, he owes a debt to Alice alone. Our goal as effective field theorists is to be
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Alice. Our attempts may appear odd, even laughably naive, to the generations that follow

us, just as Alice’s theory appears to us. But we cannot get to the right theory tomorrow

without trying and possibly failing today.

Finite Naturalness

A more cogent objection to naturalness, as applied to the hierarchy problem, goes under the

name of “finite naturalness” or “physical naturalness” [40, 75]. The idea is that the Λ2 cor-

rections that appear in Eq. (2.10) can be dropped because they are an unphysical artifact of

the regularization scheme, i.e. the Wilsonian cutoff. In dimensional regularization (DR), all

power divergences are simply replaced with zero, leaving only logarithmic divergences. If one

simply uses DR, then corrections to the Higgs mass term from particles of mass m take the

form δm2
h ∼ m2 log(µ2/m2) and are hence not parametrically larger than the other energy

scales in the SM, solving the hierarchy problem.

This miracle can also be stated in terms of symmetries. The Higgs mass term is the only

term in the SM action with dimensions of mass. The action is hence scale-invariant when it

is set to zero, so it is technically natural for it to be small. The Wilsonian cutoff hides this

because it provides another source of scale-invariance breaking.

The subtlety here is that the choice of regularization scheme is not simply arbitrary. Intro-

ductory textbooks often portray regularization as a formal cookbook procedure for removing

infinities, and the choice between DR and a Wilsonian cutoff as one of convenience or personal

taste. However, regularization is really a placeholder for the effects of unknown physics. It

does not matter if one is only interested in known physics (where DR shines for perturbative

calculations), but it has radical implications for how the theory is embedded in a larger one.

The Wilsonian cutoff Λ can stand for a wide variety of effects, such as a lattice cutoff, a

compositeness scale, or the appearance of new particles which interact sufficiently strongly with

the SM. In all these cases, it is straightforward to integrate out the UV physics to arrive at a

Wilsonian effective action. By contrast, the parameters in DR are only sensibly related to those

in a UV theory if none of these effects exist. In order to solve naturalness problems, DR must

hold “all the way up”. This implies that all of the outstanding problems of the SM, not just the

hierarchy problem, must be solved using only light or extremely weakly coupled particles [82].

In particular, the towers of heavy states in string theory would ruin the logic; instead an entirely

new scale-free approach to quantum gravity is needed [85, 91]. While it is certainly possible that

this approach is correct, it must be remembered that finite naturalness is not a textbook switch

of regularization scheme, but a tremendously ambitious proposal that must simultaneously solve

every problem at once to have a chance at being correct. Its philosophy is the opposite of the

Wilsonian approach, which focuses on solving one problem at a time.

2.4 Inflation

Many relaxion models take place during a long inflationary period, and the dynamics of in-

flation play an important role.
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The Inflaton

The scale factor a(t) of the universe is governed by the Friedmann equation,(
ȧ

a

)2

=
8πG

3
ρ. (2.28)

For simplicity, we take the universe to be described by a flat FLRW metric, which in comoving co-

ordinates is

ds2 = dt2 − a2(t)dx2 (2.29)

and the Hubble parameter is H = ȧ/a. In natural units, the reduced Planck mass is Mpl =

1/
√

8πG, giving the energy density

ρ = 3H2M2
pl. (2.30)

In the simplest models of inflation, one adds a scalar field σ called the inflaton, with action

S =

∫
d4x a3(t)

(
1

2
σ̇2 − 1

2

1

a2
(∇σ)2 − V (σ)

)
(2.31)

in comoving coordinates. A straightforward application of the Euler-Lagrange equations yields

the equation of motion

σ̈ + 3Hσ̇ − 1

a2
∇2σ + V ′ = 0 (2.32)

where V ′ = ∂V/∂σ. We see the expansion of the universe adds a “Hubble friction” term,

which intuitively occurs because it is diluting the field’s canonical momentum. We will assume

below that the inflaton field is homogeneous.

In the slow-roll approximation, the potential energy of the inflaton is much greater than the

kinetic energy. Assuming this potential energy dominates the total energy density, the Friedmann

equation gives

H2 =
V

3M2
pl

. (2.33)

Furthermore, assuming that V varies slowly compared to a Hubble time, the σ̈ term may be

neglected in the inflaton’s equation of motion, giving

σ̇ = − V
′

3H
. (2.34)

More precisely, this holds when the slow roll conditions are satisfied [52],

M2
pl

(
V ′

V

)2

� 1, M2
pl

|V ′′|
V
� 1. (2.35)

During inflation, H is approximately constant as the inflaton slowly rolls, so a(t) ≈ eHt

and the universe is approximately de Sitter. The rolling of the inflaton field serves as a

“clock” for the amount of inflation that has occurred. Other scalar fields φ behave like the

inflaton, obeying the equation of motion

φ̈+ 3Hφ̇− 1

a2
∇2φ+ V ′ = 0 (2.36)

where V ′ = ∂V/∂φ.
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Fields in de Sitter Space

Because de Sitter space has a cosmological horizon, it has an inherent temperature

T =
H

2π
(2.37)

by the same mechanism as for Hawking radiation. A comoving observer will see thermal radiation

coming from the horizon with this temperature [10]. This radiation is a bit subtle to interpret.

It is tempting to imagine it as a stream of localized particles with energy density of order T 4,

in analogy with Hawking radiation. However, the Hubble sphere has radius of order 1/H, so

particles can only be localized within if it they have energy of order H, which is significantly

greater than the temperature T . This means that a particle-like picture of the radiation is not very

useful. Furthermore, as usual in curved spacetime, the very definition of a particle is ambiguous.

In this section, we will describe the de Sitter temperature in terms of the quantum fluctuations

of fields, rather than particles. Specifically, we will use the framework of stochastic inflation [31,

38], which treats the vev of the inflaton as a stochastic classical variable, but apply it to a generic

quantum scalar field φ. We will then show that these stochastic fluctuations cause the vev to

behave just as a thermal degree of freedom at temperature T = H/2π.

For concreteness, we restrict consideration to the Hubble patch centered around some time-

like geodesic, e.g. x = 0 in comoving coordinates. We separate out the vev of a scalar field

φ in this Hubble patch, writing

φ(x) = φ(t) + δφ(x) (2.38)

where δφ has zero vacuum expectation value. Now, the vacuum expectation value φ(t) is in

principle a quantum operator, and it is worth taking a moment to recall why it can be treated

classically. In general, a quantum field could always be in a superposition of different vacua, say

|Ω〉 and |Ω′〉. However, if there is no attainable time evolution U so that

〈Ω′|U |Ω〉 6= 0 (2.39)

then interference between different branches of the wavefunction is impossible, so no observable

results change if the quantum superposition is replaced by a classical probabilistic mixture.

For example, in a laboratory setting, the vacua could indicate different directions of mag-

netization for a magnet. Immediately after the magnetization appears, two different direc-

tions |Ω〉 and |Ω′〉 develop entanglement with the environment in different ways. In order to

implement U , one would have to locate and undo this entanglement, which is extravagantly

impossible; we say the superposition has decohered.

In the setting of de Sitter space, the vev in a Hubble patch is due to modes of the field with

wavelengths much greater than the Hubble scale. Even in a setting with no matter, decoherence

can occur due to the interaction of the scalar field with gravitational degrees of freedom [112].

However, since we will focus on only a single Hubble patch, we don’t even need this mechanism:
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we simply note that one cannot affect anything outside of one’s Hubble sphere, and the vevs

extend outside it7. Hence the vev can be treated classically.

Classically, the field δφ(x) can be written in terms of a mode expansion,

δφ(x) =

∫
dk

(2π)3

(
δφk(t)e

ik·x + δφ∗k(t)e
−ik·x

)
. (2.40)

Upon plugging this into the scalar field action (2.31) and expanding to quadratic order, we

find the classical equation of motion

δφ̈k + 3Hδφ̇k +

(
V ′′ +

k2

a2

)
δφk = 0 (2.41)

where V ′′ = ∂2V/∂φ|φ=φ0 . The amplitudes for each mode evidently evolve independently when

we work in comoving coordinates; intuitively this is because the spatial effect of the expansion

is to simply stretch the modes uniformly, without mixing them.

At the quantum level, the state at any given time is a wavefunctional over the classical

configuration space. However, since the modes evolve independently, finding the time evolution

of this state simply reduces to a series of one-dimensional quantum mechanics problems. To

solve these simultaneously, we write the quantum field operator in Heisenberg picture as

δφ(x) =

∫
dk

(2π)3

(
δφk(t)ake

ik·x + δφ∗k(t)a
†
ke
−ik·x

)
. (2.42)

The Heisenberg equations of motion imply that the mode functions δφk(t) above satisfy Eq. (2.41).

However, there is still freedom to choose initial conditions for mode functions, and the ak and

a†k operators do not have physical meanings until we do this. Moreover, expectation values

are not defined until we specify the state |Ω〉.
To do the former, we note that for sufficiently small t, any given mode will have wavelength

much smaller than the horizon, and hence will not “feel” the curvature. Then there is a preferred

mode function, namely that which matches on to the standard mode functions for flat spacetime

at small t. This is equivalent to a preferred definition of particles; with this choice, the operators

ak and a†k acquire the physical meaning of creating and destroying particles at small t. Upon

solving Eq. (2.41) and performing the matching, one finds the solution [60]

δφk(t) =

√
π

2

1√
a3H

H(1)
ν (k/aH) (2.43)

where H
(1)
ν (x) is the Hankel function and

ν =

√
9

4
− V ′′

H
. (2.44)

By making an analogy between Eq. (2.41) and the equation of motion for a damped harmonic

oscillator, one sees that the δφk(t) begin by rapidly oscillating at small t, then slowing down and

7Note that fluctuations from the last 60 e-folds of inflationary expansion subsequently re-enter the Hubble
sphere, so this argument does not apply to them. However, in the context of relaxion models, we focus on inflation
scenarios with substantially more than 60 e-folds of inflation.
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ultimately freezing in place for k � aH, when the mode extends beyond the horizon. Assuming

that V ′′ � H, which will be true in all models we consider below, we have the asymptotic value

lim
t→∞
|δφk(t)|2 =

H2

2k3
. (2.45)

Finally, we define the vacuum state to simply be the one with no particles at early times,

ak|Ω〉 = 0. (2.46)

This is known as the Bunch-Davies vacuum. In principle, one could have alternative ini-

tial conditions, but if inflation lasts long enough, then they will get “washed out” by being

stretched beyond the horizon [52].

We can now understand how the vacuum expectation value of the field φ thermalizes. Once a

mode δφk exits the horizon, it effectively behaves like a classical but stochastic contribution to φ,

for the same reason that φ can be treated classically. In principle, one could find the probability

distribution explicitly by solving the one-dimensional Schrodinger equation associated with

the mode δφk. However, this is not necessary because many modes are constantly passing

beyond the horizon, and their independent contributions combine to a Gaussian. The total

variance contributed during one e-folding is∫
dk

(2π)3
|δφk(t)|2 =

H2

4π2

∫
d log k =

(
H

2π

)2

. (2.47)

Over many e-foldings, we can roughly think of this effect as causing all scalar fields to perform a

random walk with step size H/2π once every e-folding. One can go further with this formalism;

for example, in the original formulation of stochastic inflation, all modes below a finite infrared

cutoff were treated classically. However, for our purposes it will suffice to consider the vev alone.

Using standard results from stochastic processes, we can write a Fokker-Planck equation for

the evolution of the probability distribution ρ(φ, t). Dropping the bar on φ, we have

ρ̇ =
1

3H
∂φ(V ′ρ) +

H3

8π2
∂2
φρ (2.48)

where the first term accounts for slow-rolling down the potential, and the second term is a

diffusion term due to the stochastic fluctuations. The steady state solution is

ρ ∝ exp

(
−8π2V

3H4

)
(2.49)

This is the promised result: it is precisely of the form e−E/T for T = H/2π if we take the volume

to be that of the Hubble sphere, which has radius 1/H.

Measure Problems

In the previous section, we focused on the probability distribution of vacuum expectation values

of scalars within the apparent horizon associated with a geodesic. The notion of probability

used in this case comes directly from the Born rule of quantum mechanics; there is no ambiguity
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in its definition. However, one might consider this to be an arbitrary restriction, because the

universe in principle extends far beyond our current Hubble patch. If one tries to consider this

larger universe, one encounters the infamous measure problem of eternal inflation [26, 59].

Consider a single Hubble patch with vev φ. During one e-folding, this patch expands in vol-

ume by a factor of e2 ≈ 20 and hence gives rise to approximately 20 new Hubble patches.

Within each patch i, the new vev is

φi = φ− V ′

3H2
+ ∆φi (2.50)

where ∆φi is a stochastic kick of order H. If V ′ . H3, then at least one of the new patches

will have a vev that is further up the potential. This implies that inflation never ends; at any

time there will be Hubble patches in the inflationary phase.

Eternal inflation makes it difficult to compute probabilities because we must assign a proba-

bility to each Hubble patch, but the number of separate Hubble patches is infinite and constantly

growing. This notion of probability is independent from the Born rule probability: by treating

the ∆φi as stochastic, we have already implicitly restricted to a single branch of the wavefunc-

tion. We need a further rule to assign probabilities to occupying individual Hubble patches

in that branch, if the theory is to make predictions.

There are two steps to specifying such a measure in eternal inflation. First, since generically

all quantities in an eternally inflating universe are infinite, we must regularize by imposing a

cutoff. Second, we must specify a measure over Hubble patches in this subset. (This could, e.g. be

uniform over Hubble patches, or weighted by their volume or entropy.) Finally, we take the limit

as the cutoff is removed. Note that the second step must be done regardless of whether inflation

is eternal; it appears as soon as we extend consideration to more than just our final Hubble patch.

In principle, specifying the measure in eternal inflation is not any different from specifying a

prior distribution for parameters in a generic Lagrangian. However, many prescriptions appear

either arbitrary or give unphysical results [74]. For example, one can regularize by specifying

a time slicing and considering only Hubble patches formed before a fixed time t, then take the

limit t → ∞. However, since the Hubble patches are spacelike separated, any result can be

achieved by some time slicing. Alternatively, one could use a proper time cutoff, but this leads to

the “youngness paradox”. The number of Hubble patches increases exponentially, which implies

that for any cutoff, the vast majority of Hubble patches that have exited inflation must have

done so very recently. A more recently proposed option that avoids the youngness paradox is

a scale factor cutoff [63], which equivalently cuts on the total number of e-folds of expansion.

However this approach also has technical difficulties [74].

An alternative approach, implicitly used in the previous section, is to simply restrict consid-

eration to the finite region near a given worldline. In contrast to the “global” or “volume-based”

approaches mentioned above, such a “local” or “worldline-based” measure renders eternal inflation

no more confusing than noneternal inflation. Furthermore, such a prescription may be motivated

from studies of quantum black holes; for example, Ref. [54] uses the principle of black hole

complementarity to advocate for restricting to the causal diamond associated with a worldline.

However, detractors argue that if inflation is sufficiently short on average, local measures

depend on the initial conditions. By contrast, global measures do not because the many universes
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created at late times are insensitive to the initial conditions, fulfilling a dream of understanding

the universe without even knowing what the initial conditions are. Furthermore, global measures

allow one to give concrete realization to the sublime beauty of the anthropic landscape.

Another issue is that all the prescriptions we have discussed so far imply that there is a finite

probability for observers to run into the cutoff, even in the limit as the cutoff is taken to infinity,

because growth is generically exponential. It has been argued that this implies, rather alarmingly,

that “time will end” [72], and there appears to be no consensus over what this actually means. As

such, the measure problem remains an unresolved and hotly debated issue which appears to be

inseparable from issues in philosophy and quantum gravity. For recent reviews, see Refs. [66, 74].

For the purposes of the relaxion, we would like to sidestep this discussion by avoiding eternal

inflation entirely. As indicated above, eternal inflation is avoided if φ̇ & H2. A more detailed

analysis [62] shows that the condition is

φ̇ >

√
3

2π2
H2. (2.51)

If this bound is satisfied, then the final volume of the initial Hubble patch is finite with probability

one. Following Ref. [138], we can convert this to a bound on the typical number of total

e-foldings. Taking φ̇ to be its average value, we have

−V̇ = −φ̇V ′ ≈ 3Hφ̇2 >
9

2π2
H5. (2.52)

This gives a bound on Ḣ of

−Ḣ = − V̇

6HM2
pl

>
3H4

4π2M2
pl

. (2.53)

Supposing that H varies from Hi to Hf during slow roll, the number of e-folds is bounded by

N <

∫ Hi

Hf

4π2M2
pl

3H3
dH =

2π2M2
pl

3H2

∣∣∣∣Hi
Hf

<
2π2M2

pl

3H2
f

. (2.54)

This is only a rough bound on the typical number of e-folds, since we set φ̇ to its classical

value in Eq. (2.52), but it will be sufficient. In fact, as we will see in section 3.2, measure

problems persist in the original relaxion model even when eternal inflation does not occur, but

refinements of the theory can remove them.

2.5 QCD Vacuum Energy

QCD Lagrangian

In order to introduce axions, we begin with a quick overview of QCD. The QCD Lagrangian

for N quark flavors takes the form

L = −1

2
trGµνGµν +

∑
i

qi(i /D −Mij)qj +
θg2
s

16π2
trGµνG̃µν (2.55)
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where Gµν is the gluon field strength, G̃µν = εµνρσGρσ/2 is the dual field strength, M is the

quark mass matrix, and gs is the strong coupling. Momentarily ignoring the quark masses,

the theory has a global symmetry

G = U(1)L × U(1)R × SU(N)L × SU(N)R (2.56)

corresponding to independent unitary transformations on the left-chiral and right-chiral quark

fields. However, at low energies, the vacuum develops a quark condensate

〈Ω|qRiqLj |Ω〉 = −v3δij (2.57)

which spontaneously breaks the symmetry down to

G̃ = U(1)V × SU(N)V (2.58)

consisting of the subgroup of G that transforms the left-chiral and right-chiral fields in the same

way. It is conventional to formally write the coset space as

G/G̃ = U(1)A × SU(N)A. (2.59)

We hence expect N2 Goldstone bosons to appear; accounting for the finite quark masses, we

actually expect N2 pseudo-Goldstone bosons with small masses. However, when we account

for only the two lightest quarks, we only find three light pions, while when we account for the

three lightest quarks, we only find a light meson octet.

The reason that a Goldstone boson is apparently missing is that there is a U(1)ASU(3)2
C

anomaly, which allows the meson corresponding to U(1)A to couple to QCD instantons and

pick up a large mass correction. The existence of the anomaly also implies that a redefini-

tion of the quark fields by a U(1)A transformation produces a shift in the θ term; in the

path integral formalism this comes from the Jacobian factor for the measure. As a result, the

true physical quantity is the combination

θ = θ + arg detM. (2.60)

A nonzero value for θ leads to CP-violating physical effects, but measurements of the CP-

violating neutron electric dipole moment indicate θ < 10−10, producing the strong CP prob-

lem as introduced above. The parameter θ also has an effect on the QCD vacuum energy,

which is important for axion physics.

Chiral Perturbation Theory

To compute the QCD vacuum energy, we will use chiral perturbation theory, a low-energy

effective theory of QCD, following the discussion in Ref. [61]. For simplicity, we will restrict to

the lightest two quark flavors, describing the pions. Since they are Goldstone bosons, we expect

they can be described by long-wavelength variations of the quark condensate,

〈Ω|qRiqLj |Ω〉 = −v3Uij(x), Uij(x) = exp

(
2iπa(x)σa

fπ

)
. (2.61)
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Here the σa are the Pauli matrices, and fπ ' 93 MeV is a mass parameter called the pion decay

constant8. The effective theory for the pions should be written in terms of U(x) alone, and

the Lagrangian should be SU(2)L × SU(2)R invariant, where

U(x)→ LU(x)R† (2.62)

under this symmetry. The most relevant term we can write is

L =
f2
π

4
tr(∂µU

†∂µU) (2.63)

with higher terms suppressed by powers of fπ. Upon Taylor expansion, this leading term gives

rise to the standard kinetic term for the pions.

Next, we introduce the quark masses. These appear in the QCD Lagrangian as

L ⊃ −qLMqR + h.c. (2.64)

and hence the leading effect in chiral perturbation theory is found by replacing the quark bilinear

with its vev,

L ⊃ v3 tr(MU +M †U †). (2.65)

Within the effective theory itself, we can determine the form of higher-order terms by treating

M as a spurion which transforms as M → LMR†. However, it suffices for our purposes to

expand just the leading term, giving

L ⊃ −4v3

f2
π

tr(Mσaσb)πaπb = −2v3

f2
π

tr(M{σa, σb})πaπb. (2.66)

Using {σa, σb} = δab/2 gives the pion mass,

m2
πf

2
π = 2(mu +md)v

3. (2.67)

This is the Gell-Mann–Oakes–Renner equation.

Now suppose we have performed chiral field redefinitions so that θ = 0. The dependence of

the vacuum energy on θ then enters solely through the mass matrix M , which can be taken to be

M =

(
mu 0

0 mde
−iθ

)
(2.68)

without loss of generality. The vacuum energy can be found by straightforwardly minimizing the

mass term. Taking U(x) to be diagonal without loss of generality, U(x) = diag(eiϕ, e−iϕ), we have

L ⊃ 2v3(mu cosϕ+md cos(ϕ− θ)) (2.69)

which is to be minimized with respect to ϕ. Setting the derivative to zero gives

mu sinϕ = md sin(θ − ϕ) (2.70)

8This definition of fπ fixes a definition for the axial current, which in turn fixes the strength of interactions
that couple to the axial current. In particular, it is proportional to the pion decay rate via weak interactions,
explaining the name.
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and using trigonometric identities gives a standard result for the vacuum energy,

V (θ) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2 θ

2
≈ 1

2
m2
πf

2
π

mumd

(mu +md)2
θ

2
. (2.71)

Accounting for other quarks does not change this result significantly: corrections due to the

strange quark come in a power series in mu,d/ms, while heavier quarks are above the chiral

symmetry breaking scale and hence outside the scale of chiral perturbation theory. From

this point on we rename θ to θ.

Instantons

In model-building work, one often takes the potential V (θ) to be a sinusoid. This form is

motivated by an alternative derivation of the potential using instantons, which we roughly

outline now, following the discussion in Refs. [80, 141].

In this picture, the effect of the θ term arises from the vacuum structure of QCD. We

begin by setting θ to zero and neglecting matter. A vacuum state is classically one with zero

energy. In the temporal gauge A0 = 0, this is equivalent to having the connection Aµ be

gauge-equivalent to zero, which implies that

Aµ =
i

gs
Λ−1∂µΛ (2.72)

where Λ(x) ∈ SU(3) is an element of the gauge group. As usual for gauge transformations,

we require that Λ(x) approaches the identity at spatial infinity. This implies that we can

compactify R3 to S3 by adding the point at infinity. A vacuum state is therefore specified

by a map Λ: R3 → SU(3).

At this point it is useful to make a distinction between two types of gauge transformations.

A small gauge transformation is characterized by a function α : R3 → SU(3) which can be

continuously connected to the identity, while a large gauge transformation cannot. When

formulating a gauge theory in the Hamiltonian formalism, one is only required to treat generators

of gauge transformations as redundancies, which implies that only small gauge transformations

are necessarily redundancies; whether or not large gauge transformations are is a free choice of

the quantization procedure [35]. We will take large gauge transformations to not be redundancies,

but both choices can be seen in the literature, and both lead to the same physical results.

Applying infinitesimal gauge transformations corresponds to continuously deforming the

map Λ. Therefore, the physically distinct vacua correspond to elements of the homotopy group

π3(SU(3)). It can be shown [3] that for any simple Lie group G, π3(G) = Z, so the classical

vacua are categorized by integers |n〉 called winding numbers.

Since the Hamiltonian is invariant under large gauge transformations, if it were impossible

to transition between these vacua, it would be sufficient to simply postulate that we live in some

arbitrarily chosen one and forget about the rest, by the same logic as in section 2.4. However, it

turns out there exist finite-action configurations that interpolate between vacua, and hence yield a

finite tunneling rate. For the sake of space, we simply list the relevant facts without justification:
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• Configurations of gauge fields over spacetime have

N =
g2
s

16π2

∫
d4x trGµνG̃

µν (2.73)

with N ∈ Z.

• Such gauge field configurations interpolate between vacua |n〉 and |n + N〉. To show this

concretely, we can place such a configuration in a cylinder bounded by two timeslices. The

integrand above is a total derivative and reduces to a surface integral over the two timeslices,

which turns out to precisely count the winding number on each. (The contribution from the

curved sides of the cylinder goes to zero in the limit r →∞ in temporal gauge.)

• For each N , there exist configurations of minimum, finite Euclidean action

Sinst =
8π2

g2
s

|N |. (2.74)

These configurations are known as instantons.

• At a deeper level, the fact that the right-hand side of Eq. (2.73) is an integer follows from

topology. We can view the gauge field Aµ(x) as a connection on a principal SU(3)-bundle

over R4. This is not mathematically useful because all bundles over the contractible space

R4 are trivial, but we can compactify R4 to S4. This change does not affect observable

results, for the same reason that placing a field theory “in a box” with periodic boundary

conditions doesn’t: the physics is not affected by our IR regulator.

• The principal SU(3)-bundles over S4 can be classified by covering S4 with two hemispherical

patches and considering the transition function linking the two hemispheres, defined on their

intersection S3. These are hence classified by integer winding numbers π3(SU(3)). This

quantity is known as the second Chern number of the bundle, and is precisely equal to N

as defined above.

One might naively expect from the Euclidean path integral that the transition amplitude

between vacua |n〉 and |n±1〉 would be roughly e−8π2/g2s . This is clearly incorrect because it does

not depend on the time elapsed: we must integrate over the times over which the instanton can

be centered. Furthermore, instantons are also local in space, so we must integrate over spatial

positions. It turns out that instantons can also vary in their scale ρ, giving a total amplitude like

A ∼ V T
∫ ∞

0
dρK(ρ)e−8π2/g2s . (2.75)

Unfortunately, the integral above is formally infinite due to large instantons. Even with an

infrared cutoff, the integral is dominated by its upper bound. In this regime, the strong coupling

is strong and the suppression factor e−8π2/g2s is not small. To get an accurate result, one should

sum over multi-instanton configurations, count instantons with |N | > 1, and account for the fact

that the actions of nearby instantons don’t simply add, making the calculation intractable.
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Despite the issues above, one thing is for certain: the transition amplitude from |n〉 to |m〉
is equal to that from |n+ r〉 to |m+ r〉, because these transitions are related by a large gauge

transformation. Therefore, the Hamiltonian commutes with the operator T where

T |n〉 = |n+ 1〉. (2.76)

The eigenstates of the Hamiltonian also diagonalize T and are hence the discrete analogues

of plane waves. They are the θ-vacua,

|θ〉 =
∑
n

einθ|n〉. (2.77)

In real QCD, the classical vacua |n〉 are not a good approximation to the ground state; these

are instead complicated wavefunctionals |Ψn〉. These states are related by the same large gauge

transformations as the |n〉 vacua, so the arguments above still hold, and the eigenstates of the

Hamiltonian are still the θ-vacua, |θ〉 =
∑

n e
inθ|Ψn〉.

So far we have not explained what the parameter θ has to do with the θ term of QCD. This

can be seen by computing vacuum expectation values in the θ-vacuum,

〈θ|O|θ〉 =
∑
m,n

eiθ(m−n)〈m|O|n〉 =
∑
n,N

eiNθ〈n+N |O|n〉. (2.78)

Therefore in the path integral formalism in Lorentzian signature,

〈θ|O|θ〉 ∝
∑
N

∫
DAN OeiNθeiS =

∫
DAOeiS exp

(
i

∫
d4x

θg2
s

16π2
trGµνG̃

µν

)
(2.79)

where the measure DAN contains only configurations with instanton number N . In other words,

working in the |θ〉 vacuum is equivalent to working in the |θ = 0〉 vacuum but adding the θ term

to the Lagrangian. The fact that the vacuum choice can have such an effect makes sense, since

vacua specify boundary conditions on the path integral, and the θ term is a boundary term.

Now we return to the single instanton approximation. In this case, we can only consider

transitions from |n〉 to |n±1〉 for small times. If the transition amplitude per unit time is A, then

H|θ〉 =
∑
n

einθH|n〉 = A
∑
n

einθ(|n− 1〉+ |n+ 1〉) = 2A cos θ|θ〉. (2.80)

This gives rise to a sinusoidally θ-dependent vacuum energy. To find the sign of A, note that in

Euclidean signature, the vacuum-to-vacuum transition amplitude is proportional to

〈θ|θ〉 ∝
∫
DAe−SE exp

(
i

∫
d4x

θg2
s

16π2
trGµνG̃

µν

)
(2.81)

where SE is real. Here the phase of the θ term is unchanged by the Wick rotation, because there

is a compensating factor of i from the single time derivative in trGµνG̃
µν . Hence the result of the

path integral is largest when θ = 0, implying that the vacuum energy is minimized at θ = 0. We

also saw this in the context of chiral perturbation theory, and here it shows that A is negative.

As explained above, the sinusoidal instanton potential is not a particularly accurate re-

sult. In general, the predictions of chiral perturbation theory are more reliable [98]. However,

for the rough estimates made for the models below, the two results are close enough, so it

is customary to use the sinusoidal form.
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2.6 Axions

Peccei–Quinn Symmetry and Axions

The axion is an elegant solution to the strong CP problem which also provides a dark matter candi-

date [11–14]. At the most naive level, one can say that the axion is the result when one “promotes

θ to a dynamical field”. That is, we introduce a new scalar field a(x) and mass scale fa so that

L ⊃ g2
s

16π2

(
θ +

a

fa

)
trGµνG̃

µν . (2.82)

If the axion field acquires a vacuum expectation value, then all the arguments involving θ

in section 2.5 go through with the replacement θ → θeff = θ + a/fa. The vacuum energy

is minimized when θeff = 0 and CP symmetry holds, so the strong CP problem is solved if

the axion field can relax to its minimum. Residual oscillations of the field about this mini-

mum could constitute dark matter.

The UV motivation for such a theory comes from a simpler solution to the strong CP problem.

If a single quark were massless, then chiral redefinitions of that field alone would have no effect

on the Lagrangian except for a shift of the θ term. As a result, all values of θ would be equivalent

and the θ term would have no observable consequences. For example, one can see that the

vacuum energy in Eq. (2.71) is proportional to mu and md and vanishes if either mass does.

Such a solution is not viable, since lattice QCD simulations have shown the quark masses are

nonzero [115]. One cannot introduce new massless color charged particles, as these would have

long since been detected. The axion solution comes from the next-best option: introducing a new

exact, chiral U(1)PQ symmetry but having it be spontaneously broken. There will generically

exist a U(1)PQSU(3)2
C anomaly, so that performing a U(1)PQ transformation will shift the value

of the θ term. If U(1)PQ is spontaneously broken at a scale fa, then there exists a Goldstone

boson a, which also transforms by a shift. The net result of both of these is that U(1)PQ

symmetry can be thought of as a true symmetry, though nonlinearly realized, if we take the

θ term to be a spurion with transformation

θ → θ + α, a→ a− αfa. (2.83)

This forces the coupling in Eq. (2.82) to appear.

If V (θ) is the QCD vacuum energy, the axion field experiences a potential V (θ + Ca/fa),

where C is a model-dependent number which we will set to one for simplicity. Taking the

amplitude of the potential from Eq. (2.71), and using mu ≈ md, expanding the potential for

the axion field near θeff = 0 gives a mass

ma ≈ 0.5
mπfπ
fa

∼ 10−5 eV

(
1012 GeV

fa

)
. (2.84)

A more accurate result derived with a mix of chiral perturbation theory and lattice methods is [98]

ma ≈ 5.70µeV

(
1012 GeV

fa

)
. (2.85)
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The simplest way to realize a Peccei–Quinn symmetry is to link it to electroweak symmetry

breaking. The Weinberg–Wilczek axion [13, 14] achieves this by using a two Higgs doublet

model where the Higgs fields have U(1)PQ charges, chosen so the Yukawa couplings are U(1)PQ

invariant. Upon electroweak symmetry breaking, the axion is simply the relative phase of the

two Higgs fields. This sets fa around the electroweak scale and yields a heavy axion which was

ruled out by collider experiments by the early 1980s [16].

However, it is straightforward to construct theories where fa is much higher, yielding a

lighter axion. In fact, this is even more compelling because axion masses in the µeV scale

automatically yield the observed dark matter density via the misalignment mechanism [20, 21].

One simple example of such a theory is the KSVZ model [15, 19], where one introduces additional

fermions Ψ charged under only the gauge group SU(3)C , along with a singlet complex scalar

Φ. One can construct a U(1)PQ-invariant interaction

L ⊃ ΦΨLΨR + h.c. (2.86)

and U(1)PQ is spontaneously broken by Φ acquiring a vev,

Φ = (fa + σ(x))eia(x)/
√

2fa . (2.87)

For fa large, the fermions and σ field are too heavy to observe, leaving only the axion.

Searches for the axion typically use its additional couplings. In general the symmetries also

permit couplings to the electromagnetic and weak theta terms,

L ⊃ e2

32π2

a

fa
FµνF̃

µν +
g2
w

16π2

a

fa
trWµνW̃

µν (2.88)

where we suppress model-dependent dimensionless coefficients; the coefficients in the UV can

be computed explicitly by the U(1)PQU(1)2
EM and U(1)PQSU(2)2

L anomalies. Also note that

different sources may absorb a factor of the gauge coupling into the field strength, remov-

ing the coefficients e2 and g2
w.

Upon RG flow, contributions to the axion-photon coupling also arise from mixing between

the axion and other particles. Mixing effects are constrained by symmetries and suppressed by

mass differences. The axion is electrically neutral and a pseudoscalar, because it is the pseudo-

Goldstone boson of a chiral symmetry, and hence CP odd. The largest mixing effect is with

the neutral pion π0, which is also CP odd9. This induces an axion-photon coupling because

the π0 couples to photons by the SU(3)AU(1)2
EM axial anomaly.

Since the axion is a pseudoscalar and a pseudo-Goldstone boson, couplings to matter take the

form

L ⊃ ∂µa

fa
ψγµγ5ψ (2.89)

for a generic fermion field ψ, again with a model-dependent coefficient.

9Technically, the axion can mix with CP even particles as well, because the SM as a whole does not conserve
CP. However, strong CP violation effects come with a power of θ � 1, while CP violation through the weak sector
is a higher-order effect. Of course, this story may be different for other axion-like particles, as we will see for the
relaxion.
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Temperature and Hubble Dependence

We can consider the axion as a classical field by focusing on the behavior of its vacuum expectation

value. However, the potential this field experiences depends on the temperature and the Hubble

parameter, and this dependence is essential for making relaxion models work.

The axion is somewhat subtle because its potential is sourced by topological effects, so we

begin with a generic scalar field φ with a given potential V (φ), cutoff Λ, and action

SΛ[φ] =

∫
d4x

1

2
(∂µφ)2 − V (φ). (2.90)

Such an analysis will be relevant to fields such as the Higgs and the inflaton. As for the

axion and relaxion, we will focus on the dynamics of the vacuum expectation value φ. In

section 2.4, we did this by applying the slow roll approximation, treating the field as classical,

and then overlaid quantum fluctuations due to modes exiting the horizon. However, there is

a further, independent and important effect: the potential Veff(φ) that the vev rolls in is not

generally equal to the potential V (φ) that appears in the action SΛ. It instead receives quantum

corrections. We will discuss these corrections from a Wilsonian perspective; the treatments

of Refs. [30, 52] lead to the same conclusions.

Following the discussion of section 2.1, the systematic way to account for these corrections

is to integrate out all quantum degrees of freedom of the field φ. Splitting out the vev by

defining φ = φ + ϕ, we define the modified action S0 by

e−S0[φ] =

∫
Dϕ exp(−SΛ[φ+ ϕ]) (2.91)

where the path integral ranges over all degrees of freedom but the zero mode. The remaining

action S0 describes only the classical vev of the field,

S0[φ] =

∫
d4x

1

2
(∂tφ)2 − Veff(φ) = − log

∫
k>0
Dϕ exp(−SΛ[φ+ ϕ]). (2.92)

The quantity S0 is sometimes called the quantum effective action, or the 1PI effective action10.

From a direct evaluation of Eq. (2.92), we find∫
d4xVeff(φ) = log

〈
exp

(∫
d4xV (φ+ ϕ)

)〉
0

(2.93)

where the expectation value is taken over the free (Gaussian) ensemble for ϕ. The logarithm

and exponential serve to restrict the sum to connected diagrams, as can be seen by expanding

in a Taylor series in U =
∫
d4xV (φ + ϕ),∫

d4xVeff(φ) = 〈U〉0 +
1

2

(
〈U2〉0 − 〈U〉20

)
+ . . . . (2.94)

For concreteness, suppose the potential is small, so that we can keep only the first term. We

perform a further Taylor expansion of U to find

Veff(φ) = V (φ) + V ′(φ)〈ϕ〉0 +
1

2
V ′′(φ)〈ϕ2〉0 + . . . (2.95)

10Note that the 1PI effective action Γ is usually defined in textbooks with an additional coupling to an external
current, Γ = S0 − φJ , but the main idea is the same.
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where we have dropped spacetime integrals on both sides. The 〈ϕ〉0 term vanishes by Wick’s

theorem, so the leading quantum correction to the potential is

Veff(φ) = V (φ) +
1

2
V ′′(φ)〈ϕ2〉0 + . . . . (2.96)

For example, in the case where φ is a free massive field, the correction term above is just a vacuum

energy contribution m2〈ϕ2〉0. If there is additionally a λφ4 interaction, then the correction term

above also includes a mass renormalization δm2 ∼ λ〈ϕ2〉0. Diagrammatically, the contribution

we have kept is simply the one-loop correction to the potential.

We now consider how this leading correction depends on the temperature and the Hubble

parameter. In the case where both are zero, we simply apply the usual mode expansion,

ϕ =

∫
dk

(2π)3
√

2k

(
e−ik·xak + eik·xa†k

)
(2.97)

and apply the oscillator commutation relations to find

〈ϕ2〉0 =

∫
dk

(2π)3(2k)
(2nk + 1) =

1

2π2

∫ Λ

0

k2 dk

k

(
nk +

1

2

)
. (2.98)

The second term gives a temperature-independent contribution of order Λ2, as expected. The

first term depends on the temperature; here nk obeys the Bose-Einstein distribution

nk =
1

ek/T − 1
. (2.99)

We can crudely approximate this as

nk =

{
T/k k � T,

0 k � T.
(2.100)

Since we must have T � Λ for the effective field theory to make sense, we can approximate

the thermal contribution as ∫ Λ

0

k2 dk

k
nk ∼

∫ T

0
T dk ∼ T 2. (2.101)

We could also compute 〈ϕ2〉0 with the path integral, which we used in section 2.1. In this case,

the temperature enters because a temperature T is equivalent, in Euclidean signature, to making

time periodic with period 1/T [46]. The integration over modes in the time direction turns

into a discrete sum, which ultimately reproduces the Bose-Einstein distribution we used above.

In any case, the point is that thermal corrections largely have the same form as the quantum

corrections, with their order of magnitude estimated by replacing the scale Λ with T .

We now consider the effect of a nonzero Hubble constant with the path integral. Upon Wick

rotating to Euclidean signature, de Sitter space turns into a maximally symmetric space with

positive curvature, i.e. a sphere S4 of radius 1/H. The time direction is hence periodic with period

2π/H, giving another, more synthetic derivation of the de Sitter temperature (2.37). The integral

over plane wave momenta hence becomes a sum over four-dimensional spherical harmonics.
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We will not perform any detailed calculations, but will simply note that both finite tem-

perature and finite Hubble constant roughly give an infrared cutoff on the path integral, with

characteristic lengths 1/T and 1/H respectively. Hence the effect of a finite Hubble constant on

effective potentials can be approximated as a finite temperature T ∼ H to within one or two

orders of magnitude. This very rough approximation is used in several papers on the relaxion,

and is sufficient as long as we restrict ourselves to order-of-magnitude estimates.

Such reasoning can also be applied to the Higgs field, which will be useful in the following

chapters. In principle, the corrections should come with powers of couplings, e.g. we would have

corrections of the form y2T 2 where y is a Yukawa coupling. However, these are dominated by

the top quark, which has yt ≈ 1, so we will suppress such factors.

Next, we turn to the QCD axion; for a recent review of this subject, see Ref. [98]. The logic

above does not quite apply, because the axion potential is due to nonperturbative effects. We

also cannot use chiral perturbation theory, because it breaks down at the high temperatures we

are considering; instead we use the instanton approach. For temperatures T & Tc ≈ 130 MeV,

the axion potential is reduced in height because the temperature cuts off large instantons in

Eq. (2.75). For very large temperature T & 106 GeV, the instanton expansion is under control

and the potential is approximately sinusoidal.

We will be interested in intermediate temperatures, in which case lattice simulations can be

used. This is technically challenging because the θ term produces a sign problem; as seen in

Eq. (2.81), different configurations will contribute with different phases, making it difficult to

get a numerically accurate result. However, recent lattice simulations [114] give the result

ma(T ) ' ma(T = 0)

(
Tc
T

)n
(2.102)

where n ' 4.08. As for a generic scalar field, we will treat a finite Hubble constant as

roughly equivalent to a finite temperature. Finally, we note that the axion field is not well-

defined at temperatures above the scale of Peccei–Quinn symmetry breaking, which we will

always assume is very high.



32 3. The GKR Model

Chapter 3

The GKR Model

In this chapter, we discuss the relaxion model given by Graham, Kaplan, and Rajendran in their

original paper [92]. Related ideas in string theory were proposed in Refs. [48, 55]. In section 3.1,

we describe the GKR model, explain how it solves the hierarchy problem, and find the constraints

on its parameter space. While the model is elegant and minimal, it comes with many evident

issues. Naively, the relaxion solves the hierarchy problem at the cost of recreating the strong CP

problem; in section 3.2 we give some models which avoid this. Several features of the relaxion are

also puzzling to UV complete, and we discuss possibilities in section 3.3. Finally, in section 3.4

we assess the overall naturalness of the GKR model and its prospective experimental signatures.

3.1 Relaxation Mechanism

Model Definition

In this section, we present the toy relaxion model discussed by Graham, Kaplan, and Ra-

jendran in their original paper [92]. (For a pedagogical introduction, see Ref. [153].) We

take the SM Lagrangian and add an axion-like particle φ, called the relaxion, which cou-

ples to QCD like the QCD axion,

L ⊃ 1

16π2

φ

f
tr G̃µνGµν . (3.1)

As shown in section 2.6, instanton effects yield a potential for the axion, which is invariant under

the shift φ→ φ+2πf . For a standard QCD axion, such as the KSVZ axion, this discrete symmetry

simply follows because shifting the axion field by 2πf returns the exact same physical configura-

tion; in other words, the symmetry is gauged. However, if we assume that the relaxion has a much

larger field range, then the discrete symmetry is a genuine one, and it makes sense to break it.

We break the shift symmetry by coupling the relaxion to the Higgs,

L ⊃ gMφh2. (3.2)

Here g is a small, technically natural dimensionless coupling and M is the cutoff of the theory.

Viewing g as a spurion, corrections to other symmetry-breaking terms must appear as powers of
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gMφ. For example, closing the Higgs loop in the gMφh2 vertex generates a term gM3φ, where

we are suppressing all dimensionless factors. The Lagrangian takes the form

L ⊃ (−M2 + gMφ)h2 +M4V (gφ/M) +
1

16π2

φ

f
tr G̃µνGµν . (3.3)

It is fully Dirac natural except for g � 1, which is technically natural.

For simplicity, suppose we linearize the potential, giving

L ⊃ (−M2 + gMφ)h2 + gM3φ+
1

16π2

φ

f
tr G̃µνGµν . (3.4)

The relaxion field φ will roll down the linear potential. As it rolls, it scans the bare Higgs

mass parameter, M2 − gMφ, and hence also scans the effective Higgs mass parameter, i.e. the

coefficient of h2 in the effective action (2.92). If this effective parameter begins negative, then

electroweak symmetry breaking occurs when it crosses zero.

The rolling of the relaxion field is assumed to occur during inflation, so that Hubble friction

keeps it from accumulating momentum; this also has the benefit of making the result insensitive

to the initial velocity of the relaxion. After electroweak symmetry breaking occurs, the relaxion

experiences a periodic potential that grows with the Higgs vev. Using Eq. (2.67), we have

V (φ) ∼ m2
πf

2
π cos(φ/f) ∼ mqv

3 cos(φ/f) ∼ y|h|v3 cos(φ/f) (3.5)

where mq is a light quark mass and y is the corresponding Yukawa coupling. We see the

potential increases linearly with the Higgs vev1. The hierarchy problem is solved if the relax-

ion becomes trapped in one of the valleys of the periodic potential when |h| ∼ mW, where

mW is the electroweak scale.

Constraints

We now consider the conditions the parameters must satisfy for this story to work. Note

that we defined g to be dimensionless; in the original paper g is dimensionful and can be

found by multiplying our g by M .

• The effective Higgs mass parameter is M2 − gMφ plus an O(M2) quantum correction, so

for it to cross zero for generic initial conditions, the relaxion field range must satisfy

∆φ &
M

g
. (3.6)

• During slow roll, the relaxion field velocity is φ̇ ∼ gM3/H, so during one e-fold ∆φ ∼
gM3/H2. For inflation to last long enough for the effective Higgs mass parameter to generi-

cally cross zero, the number of e-folds must obey

N &
H2

M2g2
(3.7)

There are no further assumptions on the inflation sector, except that the inflaton is assumed

to be classically slow rolling.

1More precisely, the chiral condensate v also depends weakly on the Higgs vev, because h affects the RG flow
of the strong coupling due to its effect on the quark masses, and hence affects ΛQCD and thereby v. Furthermore,
a small potential is present even when h = 0 by the effect discussed in the first model in section 3.2. However, for
the GKR model, these effects are negligible.
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• When the Higgs vev is near the desired electroweak scale, |h| ∼ mW, the amplitude of the

relaxion potential is m2
πf

2
π ∼ Λ4

QCD. The rolling of the relaxion stops here if

gM3 ∼
Λ4

QCD

f
(3.8)

where ΛQCD ∼ 10−1 GeV. Our goal is to set M far above the weak scale, so this forces g to

be extremely small.

• We are treating the relaxion classically, neglecting the de Sitter fluctuations discussed in

section 2.4. Since these amount to a field fluctuation H per time 1/H, the classical rolling

dominates over a Hubble time if

H2 . φ̇ (3.9)

which leads to

H . g1/3M. (3.10)

• There are other, weaker upper bounds on H. Following the discussion in section 2.6, the

potential (3.5) is strongly suppressed unless

H . ΛQCD. (3.11)

• Furthermore, we require the weaker condition

H . mW ∼ 102 GeV (3.12)

for two separate reasons. First, the relaxion is sensitive to the effective value of the Higgs

mass parameter, but by the logic of section 2.6, this receives O(H2) corrections due to the

curvature of de Sitter space. After inflation ends, the Hubble constant decreases, changing

the effective Higgs mass parameter by an O(H2) term. To avoid a large additional correction

that produces an incorrect Higgs mass, we require H . mW. Furthermore, we have tacitly

assumed that the Higgs vev classically tracks its minimum. For this to hold, the O(H) de

Sitter fluctuations in h must be smaller than its vev.

• In order to avoid inflationary backreaction effects, the vacuum energy should be dominated

by the energy of the inflaton. Referring to Eq. (2.30) and noting that the total vacuum

energy change due to the relaxion scanning is O(M4), we require

H &
M2

Mpl
(3.13)

where we take Mpl ∼ 1018 GeV below.

• One might worry about the effects of higher-order terms in the potential V (gφ/M). This is

not a problem, because the only thing we need for the relaxion mechanism to work is that

V (gφ/M) have a positive slope on the order of g/M , which does not change sign over field
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ranges ∆φ ∼M/g. This holds generically, in the sense that we don’t need specific relations

among the parameters to achieve this. For instance, if we expand to quadratic order,

M4V (gφ/M) = gM3φ+ g2M2φ2 + . . . (3.14)

then both of these statements hold as long as both coefficients are O(1) and the linear

coefficient is positive. Equivalently, one can say the higher-order terms can generically be

made negligible by a field redefinition. In the spirit of effective field theory, we won’t say

more here, because it is the job of a UV completion to specify V (gφ/M).

• If the relaxion couples to electromagnetism like the QCD axion, we must have

f & 109 GeV. (3.15)

Otherwise, (rel)axion production in stars accelerates their cooling and shortens their lifetimes,

in conflict with astrophysical observations [33]. A weaker bound is f & M , as generically

new particles appear at scale f , invalidating the effective field theory.

• The spacing between the barriers must be less than the weak scale,

gfM . m2
W. (3.16)

This will be easily satisfied because g will be extremely small.

• There are also weaker constraints on the dynamics. The relaxion slow roll conditions (2.35)

are gM . H and gM2 . H2M2
pl, both of which are easily satisfied. We also assume the Higgs

tracks its minimum, which means that it should reach its weak-scale minimum in a much

shorter time than it takes the relaxion to cross a bump. This implies H/m2
W � Hf/gM3,

which is also easily satisfied.

By combining the constraints (3.10) and (3.13), we find

M2

Mpl
. H . g1/3M. (3.17)

This gives an upper bound on the cutoff; using Eq. (3.8) we have

M . g1/3Mpl ∼

(
Λ4

QCDM
2
pl

f

)1/6

∼ 107 GeV

(
109 GeV

f

)1/6

(3.18)

When this bound is saturated, the bounds in Eq. (3.17) are saturated, giving the values

M ∼ 107 GeV, f ∼ 109 GeV, H ∼ 10−4 GeV, g ∼ 10−33. (3.19)

The constraints on the scanning time give

N & 1044, ∆φ & 1040 GeV. (3.20)

We only barely manage to avoid eternal inflation: by saturating the above bounds we can satisfy

the bound (2.54) with only an O(1) factor to spare. Indeed, many of these numbers are quite

unusual, and we will discuss them in greater detail below.
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3.2 The Strong CP Problem

One immediate problem with the GKR model is that if we simply replace the QCD axion with the

relaxion, then the strong CP problem is no longer solved. When the relaxion stops rolling, the ex-

tra gM3φ term provides a tilt to the sinusoidal potential, causing an O(1) strong CP phase. In this

section we consider some models without this feature, but find that all of them have drawbacks.

Non-QCD Model

A simple option, described in the original GKR paper, is to keep the QCD axion and instead

associate the relaxion with a new confining gauge group, which we take to be SU(3)N for

concreteness. We would like to add new fermions charged under this gauge group which gain

mass from electroweak symmetry breaking. However, introducing new chiral fermions would

upset the delicate SM anomaly cancellation. A more straightforward option is to introduce

vector-like fermions2. We note that the barrier height vanishes if any of the fermion masses

does, so electroweak symmetry breaking can have a large effect on the barriers if one of the

fermions otherwise has a small mass. This can be consistent with collider bounds if that fermion

is not charged under the SM gauge group.

With this in mind, we introduce two Dirac spinors L and N with the following charges,

suppressing trivial representations.

SU(3)N SU(3)C SU(2)L U(1)Y
L 3 2 −1/2
N 3

The Lagrangian contains all singlet terms involving L, N , the Higgs doublet H, and their

complex conjugates (indicated in all cases with a bar),

L ⊃ mLLL+mNNN + y(NHL+ LHN). (3.21)

Here, N has the same electroweak charges as a sterile neutrino. We let the pion decay constant

associated with SU(3)N be f ′π, and assume

mL � f ′π � mN (3.22)

as a UV boundary condition. The mass term mN will receive quantum corrections, so that its ef-

fective value ism′N = mN+δmN . Comparing with Eq. (2.71), the barrier height is linear in m′N , as

Λ4 ∼ f ′3π m′N (3.23)

2Here, “vector-like” refers to Weyl spinor fields carrying an overall real gauge representation, as these do not
introduce gauge anomalies. One way this can be achieved, which we will use in all examples in this dissertation,
is by only introducing Dirac spinor fields. A Dirac spinor in a representation R consists of a left-handed and
right-handed Weyl spinor, both transforming in R. A right-handed Weyl spinor field in representation R is
associated with the same particle content as a left-handed Weyl spinor field in the conjugate representation R. So
introducing the Dirac spinor is equivalent to introducing a Weyl spinor in representation R+R, which is real.
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up to O(1) dimensionless factors. When the Higgs field h acquires a vev, the N receives a mass

by mixing with the L, and integrating out the L yields

δmN ⊃
y2〈h〉2

mL
. (3.24)

The inverse power of mL is due to the L propagator in the leading diagram; equivalently, it is

due to the seesaw mechanism. This contribution is what stops the relaxion from rolling when

electroweak symmetry breaking occurs. However, we should also account for other contributions

to δmN . Starting from the Lagrangian, one generates a correction of the form

δmN ⊃
y2

(4π)2
mL log(M/mL) (3.25)

at one-loop order, where we used the estimates in section 2.1. Furthermore, chiral symmetry

breaking for SU(3)N directly breaks electroweak symmetry in the same way that a Higgs vev

does, because the chiral condensate has the same quantum numbers as the Higgs doublet.

This generates an additional contribution

δmN ⊃
y2f ′2π
mL

(3.26)

by the same logic.

Both of these contributions must be smaller than the contribution (3.24) for it to have a

significant effect. (We could also assume they are cancelled by mN , but this would require a

tuning, defeating the point.) This gives the constraints

f ′π . 〈h〉, mL .
4π〈h〉√

logM/mL

(3.27)

which place new fermions at most an order of magnitude above the weak scale, which could be

detected at colliders. The N is much lighter, but this does not contradict observation because

it is sterile. The model can accommodate a high cutoff M , but there is an unexplained though

technically natural “coincidence of scales” between mW and fπ. Furthermore, this model defeats

one of the key motivations behind the relaxion idea, which is that solutions to the hierarchy

problem can be decoupled from weak-scale physics.

More generally, the small distance between the electroweak scale and the scale mL of new

physics holds for any GKR-like model whose barrier height depends quadratically on 〈h〉, as in

Eq. (3.24). This is because such theories always generate a constant contribution to the barrier

height of the form (3.25) by “closing the Higgs loop”. Having the relaxion not be prematurely

stopped requires either tuning or weak-scale physics.

Double Scanner Mechanism

Shortly after the original GKR paper, Ref. [89] proposed a refinement that also solves the

strong CP problem. We recall that the strong CP problem appears because the relaxion couples

like the QCD axion. However, we can make the relaxion sensitive to electroweak symmetry
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breaking in another way. We start with a free scalar field and break the continuous and discrete

shift symmetries by adding potential terms

L ⊃ gMφh2 + gM3φ+ εM2 cos(φ/f)h2. (3.28)

The problem with this setup is that we cannot avoid an additional Higgs-independent contri-

bution to the barrier height, from the operator cos(φ/f). Even if we set the coefficient of

this operator to zero at a high scale, we automatically generate the term εM4 cos(φ/f)/(4π)2

by closing the Higgs loop. The resulting barrier height εM4/(4π)2 is much larger than the

barrier height εM2m2
W created during electroweak symmetry breaking unless we have a low

cutoff, M . 4πmW, or accept tuning.

The idea of Ref. [89] is to add a second relaxion field that scans the barrier height, keep-

ing it small while the Higgs mass term is scanned. More precisely, we introduce a new

scalar field ϕ and take potential

L ⊃ gMφh2 + gM3φ+ g′M3ϕ+ ε cos(φ/f)
(
M4 − gM3φ+ g′M3ϕ+M2h2

)
(3.29)

with O(1) positive dimensionless coefficients. Note that every term here is parametrically as

large as its quantum corrections. For example, we can generate the term φ cos(φ/f), but since

it requires contributions from both the spurions g and ε, it is proportional to gε. There are

further terms generated that are higher-order in g and ε, but they are negligible as long as

both g and ε are very small, as we will see below.

The barrier height in this model is

A(φ, ϕ, h) = ε
(
M4 − gM3φ+ g′M3ϕ+M2h2

)
. (3.30)

We suppose that initially electroweak symmetry is unbroken and A is large and positive, so the

relaxion φ is trapped. Then ϕ experiences a linear potential and begins to slow roll, with ϕ̇ > 0.

This gradually decreases A, scanning the barrier height. Once A is small enough, φ can begin

to slow roll as well. Assuming g′ . g, its rolling tracks that of ϕ,

φ̇ ' g′

g
ϕ̇ (3.31)

because rolling faster would increase the barrier height, momentarily stopping φ until ϕ caught up.

When electroweak symmetry breaking occurs, the final term in Eq. (3.30) turns into a

linear contribution to dA/dφ of order +εgM3. If this is enough to cancel out or overwhelm

the initial negative slope from the −εgM3φ term, then there is no way for the relaxion to

continue rolling while keeping the barrier height zero. Instead, it soon becomes trapped in

a minimum, whose height continues to grow as ϕ slow rolls. Eventually ϕ comes to rest in

some minimum, not specified in this model.

The relevant constraints are similar to those of the GKR model:

• Further quantum corrections must be negligible. For example, we can generate a term

ε2M4 cos2(φ/f). This is negligible as long as

ε .
m2

W

M2
. (3.32)

This also ensures that the term εM2h2 cos(φ/f) does not cause large changes to the Higgs

mass as φ rolls over each barrier.
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• The Higgs barrier must be sufficient to trap φ, so

m2
W '

gMf

ε
(3.33)

which determines ε in terms of the other parameters.

• To make inflationary backreaction negligible, we again have the constraint (3.13).

• For φ and ϕ to both be classically rolling, we have

H . (g′)1/3M (3.34)

since we have assumed g′ < g above.

Combining the last two constraints, we have

M3

M3
pl

. g′ < g .
m4

W

fM3
(3.35)

and taking f ∼ M gives an upper bound on the cutoff of

M . (m4
WM

3
pl)

1/7 ' 109 GeV. (3.36)

In most of the allowed parameter space, both φ and ϕ are light, though ϕ can serve as a dark

matter candidate. The theory can be UV completed by coupling φ to the θ term of a new

confining gauge group, much like the model of the previous section. However, in this case the

cutoff can be raised because a large radiatively generated barrier height can be scanned away.

The main disadvantage is the additional complication of having two scanning fields.

Landscape Relaxion

Another idea, proposed in Ref. [125], is to abandon the classical rolling constraint and raise H

to between the QCD scale and the weak scale. Since the Hubble constant is above the QCD

scale, the periodic potential is strongly suppressed. Referring to Eq. (2.102) and estimating the

effect of the Hubble constant by H ∼ T , the suppression factor can be exponentially high for

H still below the weak scale. After inflation ends and the Hubble constant drops, the periodic

potential becomes much higher and the linear potential is negligible. From this point onward

the relaxion behaves like an ordinary axion, solving the strong CP problem.

Concretely, for compatibility with the measured value of the strong CP phase, we need

the suppression to be at least 1010, so

gM3 &
Λ4

QCD

1010 f
(3.37)

and a set of parameters that satisfies all remaining constraints is

M ∼ f ∼ 109 GeV, H ∼ 10 GeV, g ∼ 10−25. (3.38)

Note that we can avoid eternal inflation; for these parameters, the bound (2.54) is satisfied.
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As discussed in Refs. [125, 139], this “landscape relaxion” forces us to think about the effect

of quantum fluctuations, since we cannot simply use classical rolling. In fact, quantum effects

are enough to introduce measure problems even in the original GKR model, as we will now show.

After inflation ends, a single Hubble patch is converted to

Npatch = eN ∼ eH2/g2M2
(3.39)

Hubble patches. Following the discussion in section 2.4, we can treat the relaxion as having a

definite but stochastic value as long as we restrict to a single branch of the wavefunction. During

relaxation, the relaxion evolves as a random walk overlaid on a uniform rolling. After N e-folds

of inflation, the standard deviation in the relaxion field value is

σφ ∼
√
NH ∼ H2

gM
. (3.40)

The mean field value is now at the correct position. For relaxion field values a distance ∆φ

above this mean value, the probability distribution is approximately Gaussian,

P (∆φ) ∼ e−(∆φ)2/2σ2
φ . (3.41)

The relaxion field range that yields roughly the correct electroweak scale has width (∆φ)W =

m2
W/gM , so most Hubble patches reach this scale if σφ � (∆φ)W, which is equivalent to

H � mW. This is true for both the original and landscape relaxion models.

On the other hand, the typical number of patches that will end up with the incorrect elec-

troweak scale is

NpatchP ((∆φ)W) ∼ eH2/M2g2e−m
4
W/H4

. (3.42)

Hence all patches are likely to reach the correct electroweak scale if this is much less than

one, which is equivalent to

H3 � gMm2
W. (3.43)

The constraint (3.43) is quite strong and generally forces the cutoff M to be very low. It is false

for both the original and landscape relaxion models, using the parameters given above; there

will almost always be patches with a dramatically wrong electroweak scale.

The reason that we have a measure problem in both cases is that the results actually depend

on the measure. Referring to the options introduced in section 2.4, the proper time cutoff very

roughly corresponds to weighting Hubble patches after inflation ends by volume, while the scale

factor cutoff roughly corresponds to weighting final patches equally. If we use the latter, both mod-

els are acceptable. However, if we weight by volume, then patches with the incorrect electroweak

scale have higher vacuum energy and hence expand faster, eventually dominating the weight.

Thus, avoiding eternal inflation has not completely avoided the requirement of choosing a measure.

To show that the choice of measure is not obvious, we consider Ref. [148], which presents an

interesting variation on relaxation which explicitly uses inflationary backreaction. The model

is set up so that a relaxion-like field whose quantum fluctuations dominate its classical rolling
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will fluctuate up its potential, increasing the vacuum energy and decreasing the Higgs vev. A

secondary field is added in a way so that the total potential has a sharp cliff when the Higgs vev

is around the electroweak scale, so that the potential is maximized at this point. Because Hubble

patches at the top of the cliff inflate the fastest, this model solves the hierarchy problem only

if we weight by volume, the opposite of what we found for the GKR model. The vast majority

of Hubble patches don’t climb up to the cliff, and the vast majority of those that do will fall

off. Only the patches that manage to balance on the cliff edge throughout inflation, and hence

have the correct Higgs vev, will eventually dominate in volume.

In fact, a measure problem remains even if we restrict to a single final Hubble patch. As

originally pointed out in Ref. [92], after the barriers turn on but before the relaxion is trapped,

there is a regime where the relaxion is classically trapped but still makes progress due to quantum

tunneling. (The tunneling rate can be calculated by instanton techniques, as shown in Ref. [9],

but we will not do this in detail here.) The minimum in which the relaxion is trapped is really

the first one whose lifetime exceeds the observed age of the universe. However, after an extremely

long time the relaxion can tunnel into its next vacuum, creating a new universe with a slightly

different Higgs mass. Since there are many minima, the vast majority of the universes in the

history of a worldline will have Higgs masses that are too large, and it is unclear if we can,

or should exclude them from the measure.

The dependence on measures is unappealing, because it is philosophically difficult to allow

discussion of measures without falling headfirst into the anthropic landscape. But contrary to

first expectations, it seems to be quite difficult to avoid such discussions in the GKR model.

Luckily, there exist models that avoid them by having the relaxation take place after inflation

ends. We will put these problems aside for now, but consider such models in chapter 4.

3.3 UV Completion

In this section we discuss some challenges associated with UV completing the GKR model.

Relaxion Field Range

As noted above and emphasized in Ref. [103], the relaxion is not an axion. A typical axion has a

field range of about 2πf , and shifts by this field range are gauge symmetries, yielding precisely

the same physical state. For example, in the KSVZ model described in section 2.6, a/f is (up

to an O(1) constant) the phase angle of a complex scalar field. For the GKR model to make

sense, the relaxion must have a much larger field range; we require many minima if we want

to have some of them generically yield the correct weak scale.

Since the usual UV completions of the axion will not work, it is not clear how to UV

complete the relaxion. For example, suppose the relaxion has an infinite field range. This

is problematic because, according to Ref. [103], in unitary QFTs all linearly realized global

symmetries must be compact, which implies that the relaxion cannot be a (pseudo)-Nambu–

Goldstone boson. If the relaxion if indeed not, then it is unclear where it would come form.

There are generically light non-compact moduli fields in supersymmetric models, but one would

not expect them to have periodic potentials.



42 3. The GKR Model

We could instead suppose the relaxion field range is 2πF = 2πnf for some integer n.

However, n must be extremely high for a high cutoff. For example, using nf ∼ ∆φ &

M/g and Eq. (3.8), we find

M . n1/4ΛQCD (3.44)

for the GKR model, where n ∼ 1031 for the cutoff-maximizing parameters in Eq. (3.19). While

we know of ways to produce large hierarchies in mass scales, such as mp/Mpl � 1, it is not

clear how such a large integer can emerge from a UV theory without essentially putting it in

by hand. Depending on one’s aesthetic preferences, one could argue that this is just as bad

as the tuning the GKR model was meant to prevent.

A more objective problem is the super-Planckian field excursion required for the relaxion.

This does not automatically invalidate the effective field theory, because we only need the energy

density to be less than M4. However, such large field ranges are suspect in the light of quantum

gravity. For example, Giddings and Strominger [29] argued on general grounds that a free scalar

with period f has gravitational instantons with action S ∼ Mpl/f , which ruin the relaxion

potential. It has also been argued that such super-Planckian field excursions are in contradiction

with de Sitter entropy bounds [76]. Circumstantial evidence is provided by the difficulty of

constructing such fields in specific string-theoretic models [47].

More recently, some intuition along these lines has been formalized in terms of the weak

gravity conjecture [57], which roughly states that gravity is the weakest force. This prominent

component of the swampland programme would, if true, imply that a large range of effective

field theories, including the GKR relaxion, do not allow a consistent UV completion in quan-

tum gravity. More precisely, one formulation of the weak gravity conjecture states that for

any p-form gauge field in d-dimensions with coupling g, there exists an electrically charged

object of dimension p − 1 with tension

T .
g√
GN

. (3.45)

In the case of an ordinary U(1) gauge field, this reduces to the requirement that there is a

state with charge greater than its mass in Planck units, Q > M . The weak gravity conjec-

ture can be extended to apply to axion-like particles, which are formally 0-form gauge fields,

where it implies f < Mpl [88]. Support for the weak gravity conjecture comes from general

arguments in black hole thermodynamics, which suggest that extremal black holes must be able

to decay [41], and specific examples in string theory.

The effects of gravitational instantons mentioned above are an instance of the idea that

quantum gravity breaks all continuous global symmetries [71]. That leads to a more general issue

for axion-like particles, the axion quality problem. For example, for the KSVZ axion introduced

in section 2.6, we expect corrections such as [34, 36]

L ⊃ Φn

Mn−4
pl

(3.46)

which yields a sinusoidal contribution to the axion potential, which is generically not minimized at

the strong CP conserving point. Assuming the dimensionless couplings are O(1), this reintroduces
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the strong CP problem unless such contributions are forbidden for n & 14. Further model building

is required to solve the axion quality problem for the QCD axion; for example, see Refs. [73,

141]. The relaxion quality problem might be solved similarly. However, it is arguably less of

an issue if we couple it to a new confining gauge group, as done in section 3.2, because its

θ-angle is not constrained. In this case, we only need the extra contributions to the potential

to be small enough to not stop the relaxion rolling prematurely. As such, we will focus on

the construction of a large field range instead.

Inflation Sector

Inflation in the GKR model requires an extremely low Hubble scale and must last for many

e-folds. While neither of these requirements necessarily contradict experimental constraints

such as CMB data, it is difficult to construct concrete theories of inflation that satisfy these

properties without fine tuning. Furthermore, as we noted above, the GKR model is generically

on the brink of eternal inflation, making it tricky to avoid.

As a first example, we will consider the model of Ref. [99], one of the earliest attempts to

realize inflation in the GKR model. In Ref. [99], a theory of inflation is constructed by allowing

all renormalizable interactions between φ and the inflaton σ,

V ⊃
(
µ3

1σ + µ2
2σ

2 + µ3σ
3 + λ1σ

4
)

+ λ2σ
2h2 + µ4σh

2 + λ3σ
2φ2 + . . . . (3.47)

The dynamics are then similar to those of hybrid inflation [37]. The parameter µ2 is chosen

so that the inflaton σ is stuck in a minimum while the relaxion rolls, explaining the long

duration of inflation. The moment the relaxion reaches its final position, its vev and the

Higgs vev cause the inflaton minimum to become unstable. A second phase of inflation then

begins, and since the relaxion is now stuck, the remaining parameters can be adjusted freely to

reproduce the observed spectral amplitude As and spectral tilt ns. (Note that in both phases,

the Hubble constant must be below ΛQCD.) However, this model requires a severe tuning of

the inflaton mass term µ2
2, to about one part in 1014. That is, it simply transfers the tuning

of the Higgs mass term to the inflaton mass term.

Incidentally, we note that there is also a tuning necessary to get the correct cosmological

constant. This is similar in magnitude to the kind of tuning that appears in the SM, and in

principle simply cancels out of the Bayesian evidence. However, it is slightly more puzzling

because, while one can simply tune the SM vacuum energy at a high scale, the relaxion gener-

ically can end up in a range of vacua, each of which have different vacuum energies. If we

forbid anthropics, this suggests the vacuum energy should be relaxed as well, but that now

takes us into seriously speculative territory.

Another early attempt was that of Ref. [113], which emphasized the role of “spontaneously

broken de Sitter symmetry” during inflation. This is simply the fact that the slow roll parameters

are nonzero, so the Hubble constant changes over time. In other words, the relaxion field

velocity is really φ̇ ∼ gM3/H(t), where H(t) is decreasing over time. If H(t) decreases by

many orders of magnitude, the relaxion rolling speeds up and the number of e-folds may be

decreased, partially alleviating the problem.
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While this is true, and may help point the way towards a workable inflation sector, it ends up

not being compelling from the particle physics point of view. The point is that the relaxion can

alleviate a large fine-tuning M2/m2
W if the cutoff is large, and the problem is that the fine-tuning

appears to be simply transferred to the inflation sector. If one takes the approach of Ref. [113],

then the cutoff is forced to be barely above the weak scale. This solves only some of the problems

in the inflation sector, at the cost of defeating the original point of the model.

To see this, note that for constant slow roll parameter ε, many of the bounds in section 3.1

apply to the value of the Hubble constant just before relaxation ends. Even if the Hubble

constant varies over many orders of magnitude, the final value Hf is often what matters because

the majority of the scanning occurs around an order of magnitude of it, since φ̇ ∝ 1/H(t).

Allowing at most N e-folds of inflation, and applying the constraints (3.7) and (3.13), we have

M2

Mpl
. Hf .

√
NMg. (3.48)

Next, we apply the identity (3.8) to the right-hand side. Assuming the relaxion does not couple

to electromagnetism, the strongest bound on f is f & M , which gives

M2

Mpl
.
√
NMg .

10−3 GeV4

M3

(
N

100

)1/2

(3.49)

and leads to a bound on the cutoff of

M . 103 GeV

(
N

100

)1/10

. (3.50)

Taking N ∼ 100 gives a cutoff near the weak scale, with parameters

M ∼ f ∼ 103 GeV, Hf ∼ 10−12 GeV, g ∼ 10−16. (3.51)

It is true that allowing H to vary relaxes some constraints, but there are enough that still hold to

prevent a high cutoff. The relaxion is now only able to relax a “little hierarchy”, and in exchange

we retain the disadvantages of an even lower Hubble scale. It remains difficult to reconcile this

with cosmological observations, though it is possible with further inflationary model building.

Another reasons that relaxion inflation is unusual is that the small Hubble constant during

inflation implies a small reheating temperature, Trh .
√
HMpl, which renders most schemes

for baryogenesis inapplicable. For example, for the parameters (3.51), we have Trh . 1 TeV.

However, it is still possible to accommodate baryogenesis using, e.g. meson oscillations.

Finally, we note that the relaxion has been linked with natural inflation [32], in which the

inflaton is an axion-like particle with a sinusoidal potential. For example, in Ref. [111], an

inflation model was formulated with the relaxion as the inflaton. Many of the UV objections

noted in the previous section also apply to large field inflation models like natural inflation, and

in the next section we will describe a proposed fix which originated there [51, 84].
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Clockwork

One way to realize the relaxion potential is to make it a periodic scalar with a potential of the form

V (φ) ∼ Λ4
F cos

φ

F
+ Λ4

f cos
φ

f
(3.52)

where F = nf � f . Upon Taylor expanding the first term, we recover the linear potential used

in the GKR model. As discussed above, the challenges of this approach include explaining why

n� 1 and protecting the large field range 2πF �Mpl from quantum gravitational corrections.

The clockwork mechanism solves these problems, producing a relaxion from the low-energy limit

of O(log n) fields with O(f) field ranges. It was developed simultaneously in Refs. [97, 109].

In this section, we will follow the treatment of Ref. [109]. We start with N + 1 complex

scalars with renormalizable potential

V (Φ) =

N∑
j=0

(
−m2Φ†jΦj +

λ

4
(Φ†jΦj)

2

)
− ε

N−1∑
j=0

(
Φ†jΦ

3
j+1 + h.c.

)
. (3.53)

The first term has an independent Poincare symmetry for each field, so all interactions between

fields are proportional to the spurion ε. Furthermore, the first term has an internal global

symmetry U(1)N+1, which is explicitly broken to U(1) by the interaction.

Ignoring ε for now, we note that U(1)N+1 is completely spontaneously broken. We can take the

low-energy limit by expanding about the vev for each scalar. Defining f = m
√

2/λ and writing

Φj = feiφj/
√

2f (3.54)

we of course have a theory of N + 1 independent Goldstone bosons,

L =
1

2

N∑
j=0

∂µφj∂
µφj . (3.55)

Now we consider the interaction. Assuming ε � λ, the explicit symmetry breaking gives N

pseudo-Goldstone bosons and leaves one Goldstone boson. The potential has the form

V (φ) = −εf4
N−1∑
j=0

ei(3φj+1−φj)/
√

2f + h.c. =
1

2
εf2

N−1∑
j=0

(qφj+1 − φj)2 + . . . (3.56)

where q = 3. It is straightforward to diagonalize the mass matrix, because it is tridiagonal. The

intuition behind the solution can be found by using a condensed matter analogy. We have

V (φ)

εf2
=
q2 + 1

2

N∑
j=0

φ2
j − q

N−1∑
j=0

φjφj+1 (3.57)

which is simply a tight binding model on N + 1 sites with hopping amplitude proportional

to q, and reflective boundary conditions. We know that in the case of periodic boundary

conditions, the eigenmodes are the Fourier modes,

φθj ∼ eijθ (3.58)
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which hence have mass-squared

m2
θ = εf2(1 + q2 − 2q cos θ) ∈ εf2[(q − 1)2, (q + 1)2]. (3.59)

In particular, the minimum mass-squared is 4εf2, so a large gap exists. This remains true if

we switch to reflective boundary conditions, assuming that N is large, with the exception that

we pick up the Goldstone mode a, corresponding to

φj ∼
1

qj
. (3.60)

The Goldstone mode has a field range of order qNf , even though it arises from fields with ranges

of order f . The fields act like a set of gears, giving the reason behind the model’s name.

Now it is straightforward to realize the potential (3.52). We introduce couplings to fermions at

the first and last sites,

L ⊃ yφNψψ + y′φ0ψ
′
ψ′ (3.61)

where ψ and ψ′ are charged under two new gauge groups with field strengths H and H ′. This

gives the Goldstone mode anomalous couplings of the form

L ⊃ a

32π2(3nf)
HH̃ +

a

32π2f
H ′H̃ ′ (3.62)

which gives the desired potential upon confinement.

It is also interesting to consider the continuum limit N →∞, in which case the scalars could

be interpreted as spaced along an extra dimension. However, in the above model the spacing

in the extra dimension is 1/(
√
εf), while the band of massive modes begins at energy of order

√
εf . Since the Compton wavelengths of most modes are comparable to the lattice spacing, we

cannot take a meaningful continuum limit. On the other hand, it would be possible if we took

N →∞ with both N/
√
εf and qN simultaneously fixed, which would fix both the exponential

suppression in the Goldstone mode and the band gap. This does not make sense in this context

because q must be an integer, but it could be sensible in effective field theory.

Evaluating Clockwork

Clockwork has been criticized on aesthetic grounds. If one penalizes models by complexity and

adds a multiplicative cost for each additional independent field added to a theory, then adding

O(N) fields should yield an exponential penalty, making it not much better than just putting in

n by hand. In principle, the fields are not actually independent because they are related by a

symmetry, but it is also unclear where that symmetry comes from. Clockwork requires a large

number of U(1) global symmetries, which are suspect in the light of quantum gravity, and a

particular coupling structure which only relates “neighboring” sites.

These complaints could be addressed by giving clockwork, or refinements thereof, a sensible

UV completion. For example, in Ref. [101], a modification of the above model is presented which

admits a continuum limit, reducing it to a variant of a warped extra dimension where the coupling

structure follows from locality. In fact, one can generate large F/f directly from a warped extra



47 3. The GKR Model

dimension, as done in Ref. [136]. Further investigation of continuum clockwork is done in

Ref. [132]. Along a different route, Ref. [117] constructs clockwork from a set of N + 1 confining

gauge groups augmented by a discrete gauge symmetry, removing the need for global symmetries.

On the model-building side, clockwork has been employed as a general tool to generate

small couplings [122] (but see also Ref. [118], which argues that clockwork cannot be applied

to non-Abelian symmetries). This has led to a number of proposals that use it to explain a

variety of hierarchies and enlarge the parameter space of existing models, independent of the

relaxion; for a small selection, see Refs. [120, 124, 126, 143, 145].

The results above apparently violate the weak gravity conjecture as applied to axion-like

particles. Indeed, they are examples of how the simplest forms of the weak gravity conjecture do

not appear to be preserved under Higgsing [127], the addition of warped extra dimensions [110],

or even dimensional reduction [105]. It has been argued that this severely reduces its appli-

cability to effective field theory. On the other hand, one could argue the real lesson is that

theories which permit clockwork are themselves inconsistent with quantum gravity, by show-

ing obstructions to an embedding in string theory [142]. At the time of this writing, there

is no apparent consensus on this issue3.

3.4 Assessment

Experimental Detection

The generic prediction of a GKR-like model is a new, light, weakly coupled boson. Searches

for the relaxion would then, in principle, be quire similar to searches for general axion-like

particles. However, there are some important differences. As we have seen in section 3.3, the

relaxion is not a standard QCD axion. As we saw in section 3.2, a generic way to avoid the

strong CP problem is to couple the relaxion to a hidden sector, in which case it need not

have direct couplings to the SM gauge groups.

For a more model-independent route, we note that all relaxion models must have a coupling

between the relaxion and the Higgs, since otherwise the Higgs mass term cannot be relaxed; for

some relaxion models this may be the only coupling to the SM. As discussed in section 2.6,

generally axion-like particles can mix with the Higgs, but we could ignore this for the QCD

axion because the Higgs field is CP even and the QCD axion is CP odd, so axion-Higgs mixing

is less important than other axion couplings. We focus on relaxion-Higgs mixing because it

may be the leading interaction of the relaxion with the SM.

Experimental constraints on relaxion-Higgs mixing are comprehensively reviewed in Refs. [96,

121]. The small mixing angle can be computed by expanding to quadratic order about the

minimum V (φ, h), which gives

θmix ≈
∂2V/∂h∂φ

∂2V/∂h∂h
≈ Λ4

m3
Wf

sin
φ

f
(3.63)

3For completeness, we should note that relaxions have also been UV completed in string theory using axion
monodromy [104, 107]. However, it has more recently been argued that such constructions cause a backreaction
that erases the periodic barriers, ruining the mechanism [144].
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where Λ is the height of the barriers when relaxation ends. The relaxion hence inherits all

couplings of the Higgs, suppressed by a factor of θmix, which is small because of the large

mass difference between the relaxion and Higgs. The constraints are then similar to Higgs

portal models, with the exception that CP violating interactions are possible. A wide variety

of experimental searches are possible, and we list a few below.

• For a relaxion mass in the GeV range, the strongest constraints come from LEP and LHC

results. For a review of how future colliders could probe this region, see Ref. [137].

• For the MeV to GeV range, the strongest constraints come from rare meson decays and

beam dump experiments such as SHiP. There are further cosmological constraints in this

range which we do not mention, because they are modified if relaxation occurs after inflation

ends. In this regime, the relaxion lifetime is too long to be seen by collider detectors, but

could be seen by the MATHUSLA surface detector.

• For the eV to MeV range, the strongest constraints come from astrophysical observations,

such as star cooling; many of these are similar to bounds on axion-like particles in general.

• Well below the eV range, the strongest constraints come from fifth force experiments. The

relaxion mediates a new long-range force proportional to the Higgs Yukawa coupling, can

be detected in equivalence principle tests.

However, we note that the constraints are quite weak below the keV range, and most models

yield relaxion masses that are far below the eV range. At present, relaxion models are generally

not constrained by experiment at the parameters that maximize their cutoffs, which correspond

to very light relaxions with very weak couplings, which may be further suppressed relative

to typical QCD axions by powers of θmix.

Naturalness of the Relaxion

Whether or not the relaxion model is more “natural” than the SM depends on the notion of

naturalness used. For example, in Ref. [108] it is pointed out that for a cutoff M , the Higgs

mass only needs to be tuned to a quadratic precision m2
W/M

2. By comparison, referring to

Eq. (3.8) and fixing f and ΛQCD, we have g ∼ 1/M3. Hence the coupling g must be “tuned to

zero” cubically in the UV, which is worse than the tuning of the Higgs mass.

As argued in section 2.2, this notion of tuning implicitly uses a uniform prior on parameter

space, but there is no requirement to do this. It would be equally simple to pick a logarithmic prior,

in which case the small coupling g is not penalized. From a UV perspective, this is reasonable

because we know of simple ways to produce small real numbers, as we saw for the proton mass.

A careful calculation of the Bayesian evidence (2.15) was performed in Ref. [102] using

the inflation sector of Ref. [99] and a logarithmic prior for g. Consistent with the intuitive

arguments above, this analysis concluded that the Bayesian evidence strongly favors the GKR

model relative to the SM if inflation is ignored, and is O(1) if inflation is included. (The Bayesian

evidence is against the GKR model if one accounts for the strong CP problem, so one must

assume a refinement without this issue is used.)
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In summary, the UV issues with the GKR model stem from its connection with inflation and

from the extreme smallness of g, which leads to a super-Planckian field range. On one hand, one

could simply ignore these issues. After all, it is apparent now that we know much less then we

thought about the TeV scale, merely one order of magnitude away from known physics. A glib

effective field theorist could propose to simply ignore physics that is many orders of magnitude

away, whose experimental investigation is a job for 22nd century physicists. On the other hand,

it is possible to get the best of both worlds: we can fix many of the UV problems with only a

little additional work. In the next chapter, we consider some models that achieve this.
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Chapter 4

Alternative Scanning Methods

In this chapter we consider some relaxation models that are largely decoupled from inflation.

Before starting, we note that a relaxation model has several basic requirements:

1. A scalar relaxion field φ whose vev affects the Higgs mass term

2. A driving term for the relaxion which causes it to scan

3. A way for the system to detect a small Higgs vev

4. A dissipation mechanism that allows the relaxion to stop shortly afterward

5. Sufficient time for the scanning to occur

In the original GKR model, inflation provides the last two requirements. Without a long in-

flationary period, these conditions are puzzling because we must complete the scanning in less

than 60 e-folds. This seemingly forces the relaxion to pick up a high kinetic energy, which

must be dissipated extremely rapidly.

In section 4.1, we consider a model which uses adiabatic suppression; the key idea is that if the

relaxion begins in a minimum of a time-dependent potential, it can follow the minimum without

picking up excess kinetic energy. In section 4.2, we introduce a dissipation mechanism which turns

on when the Higgs vev becomes small, removing the relaxion’s kinetic energy exponentially quickly

by a tachyonic instability. Finally, in section 4.3, we consider a model where the dissipation is

due to parametric resonance with the Higgs field, in analogy with preheating in inflation.

4.1 Adiabatic Thermal Scanning

Adiabatic Suppression

In this section, we discuss the model of Ref. [93], one of the first refinements of the GKR model

that allowed the relaxation to take place after inflation. A natural question to ask, which helps

motivate the model, is how the relaxation can take place so quickly, and keep the relaxion at the

desired value without the dissipation provided by Hubble friction. In this model, this is achieved

using “adiabatic suppression”, an idea first applied to cosmological moduli in Ref. [42].
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To understand this, consider a spatially homogeneous scalar field near a minimum of a

potential V (φ), where the curvature of the minimum is V ′′ ∼ m2. From the equation of motion

Eq. (2.36), the scalar field is underdamped if m2 � H2. For appropriate initial conditions, the

field performs small oscillations with characteristic time 1/m.

Now suppose that the potential V (φ) is gradually deformed on a timescale much greater

than 1/m, so that the minimum of the potential moves while preserving its positive curvature

V ′′ � H2. By the classical adiabatic theorem [8], the oscillations of the field will track the

minimum, with amplitude A ∝ (V ′′)−1/4. This is a perfectly intuitive fact, which is used every

time one carries a nearly full cup of coffee. The potential energy of the field and coffee may

change by huge amounts without imparting a large kinetic energy to the oscillations.

We can apply this idea to the relaxion model by supposing that the relaxion settles into

a minimum after inflation ends, but this minimum subsequently moves over an O(M/g) field

range. As in the original GKR model, additional barriers appear at the point where electroweak

symmetry is broken, stopping the motion. The underdamping and adiabatic conditions are easily

satisfied, since the Hubble scale drops rapidly after inflation ends.

In order to make the minimum move, Ref. [93] uses temperature-dependent potentials and the

usual steady decrease in temperature that begins after reheating ends. However, this immediately

creates other issues. The temperature contributes to the Higgs potential, so by the same logic

as Eq. (3.12), the wrong final Higgs vev is attained if T & mW. The temperature also causes

the relaxion to fluctuate, which can allow it to jump over the barriers. The resolution used

in Ref. [93] is to assume that the visible sector always has a low temperature, but there is a

hidden sector that is reheated to a much higher temperature.

Model Definition

Concretely, the relaxion potential contains the terms

L ⊃ gMφh2 +M4V (gφ/M) + Λ3|h| cos(φ/f) + Λ′
4
(T ′) cos(φ/f ′ + θ′) (4.1)

where the cos(φ/f) term is due to a new confining gauge group, as used in the first model

in section 3.2, and the cos(φ/f ′) term is due to another confining gauge group in the hidden

sector. By the same logic as for QCD, the barrier height due to the hidden sector depends

on its temperature roughly as

Λ′(T ′) '

{
Λ′(Λ′/T ′)n T ′ > Λ′,

Λ′ otherwise
(4.2)

for some n & 1 whose precise value will not be important.

After inflation ends, we assume that the visible sector reheats to T . mW, but the hidden

sector reheats to T ′ � Λ′. These unequal temperatures may look unusual, but are allowed in

principle, with implications for dark matter reviewed in Ref. [64]. For example, they may arise

if the inflaton couples to the hidden sector much more strongly.
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As the hidden sector’s temperature decreases, it deforms the relaxion potential. We would

like this to cause the existing minima of the relaxion potential M4V (gφ/M) to move across a

field range ∆φ ∼ M/g. To do this, we require a large value of f ′,

f ′ &
M

g
. (4.3)

Otherwise, the hidden sector will produce many new minima in the desired field range, rather

than moving a single minimum. For the hidden sector contribution to be significant com-

pared to the existing potential, we require

Λ′ &M. (4.4)

Note that this implies T ′ & M . This is allowed because it is consistent for the hidden sector

to have a higher cutoff than the visible sector cutoff M . This higher cutoff does not create

additional contributions to the relaxion potential because at scales above Λ′, the hidden sector

has only shift-symmetric couplings to φ.

To show how the minima move more concretely, assume for the sake of demonstration

that V (gφ/M) happens to be even,

M4V (gφ/M) = g2M2φ2 + g4φ4 (4.5)

so there is a single minimum at φ = 0. As the hidden sector temperature lowers, its contribution

rises, until at T ′ � Λ′ the potential becomes

g2M2φ2 + g4φ4 − Λ′
4 φ

2

f ′2
(4.6)

where we have Taylor expanded the cosine, consistent with Eq. (4.3), and set θ = π for con-

creteness. This now has minima at field values φ & M/g. Therefore, a sufficiently large field

range is scanned as the temperature decreases.

For the scenario to work, we must assume that the relaxion couples strongly enough to the

visible sector to settle into its minimum by thermalization before this story begins, and that it

couples weakly enough to the hidden sector to avoid picking up its temperature. Furthermore,

by the same logic as in the first model of section 3.2, we have

Λ .M . 4πmW. (4.7)

Note that we have Λ . Λ′, but the barriers due to Λ can still stop the relaxion if f � f ′. A

more complete accounting for the constraints, performed in Ref. [93], shows that the point

M ∼ 103 GeV, g ∼ 10−8, f ∼ 104 GeV, f ′ ∼ 1012 GeV, Λ ∼ 102 GeV (4.8)

satisfies all of them.

The model of Ref. [93] has several advantages over the models considered in the previous

chapter. Though the model requires some assumptions about inflation to work, the dynamics are

decoupled from inflation itself, avoiding both tuning issues in the inflation sector and measure

problems. The relaxion field excursion is also now sub-Planckian. However, the cutoffs are low,

and the theory requires at least two new confining gauge groups. In addition to the coincidence

of scales Λ ∼ mW, we have an unexplained hierarchy f ′ � f . While this does not present a

fine-tuning problem, it again poses a puzzle for a UV completion.
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4.2 Tachyonic Instability

Gauge Field Instability

In Ref. [106], an alternative dissipation mechanism was proposed which uses particle produc-

tion. Later, Ref. [135] investigated variations on this model and carefully accounted for all

phenomenological and cosmological constraints. In this model, the dissipation rather than the

periodic potential is sensitive to the electroweak scale.

An abelian gauge field coupled to an axion-like particle has a tachyonic instability which

leads to gauge particle production, draining the kinetic energy of the axion-like particle ex-

ponentially quickly. When the gauge field is Higgsed, the instability only occurs when the

gauge boson mass is sufficiently small, so it may be switched on as the Higgs mass term is

scanned. We assume the relaxion has an additional coupling to another gauge field so that

there is an omnipresent periodic potential. Once the instability occurs, the relaxion simply

stops and becomes trapped in the nearest potential minimum.

To see the instability more concretely, consider an axion-like particle φ coupled to a U(1)

gauge field. Assuming that global U(1) symmetry is broken by the Higgs mechanism, replacing

the Higgs field with its vev, and going to unitary gauge, we have

L = −1

4
FµνF

µν +
1

2
m2AµA

µ +
1

2
(∂µφ)(∂µφ) +

φ

4f
FµνF̃

µν (4.9)

where the coefficient 1/4f is chosen to simplify the equations below. The Euler-Lagrange

equations for the gauge field are

− ∂µFµν +
1

f
εµνρσ∂µ(φ∂ρAσ) = m2Aν . (4.10)

Note that this automatically enforces ∂µA
µ = 0. Furthermore, the extra term vanishes unless

the derivative ∂µ acts on φ, which we assume is spatially uniform. This gives

− ∂2Aν +
φ̇

f
ε0νρσ∂ρAσ = m2Aν . (4.11)

Taking the Fourier transform, the circularly polarized transverse components A± hence obey

kµkµA
± ∓ φ̇

f
|k|A± = m2A± (4.12)

and splitting kµ = (ω,k) gives the dispersion relation

ω2
± = k2 +m2

A ±
kφ̇

f
. (4.13)

There are tachyonic growing modes when the right-hand side can be negative, which occurs when

|φ̇| > 2fmA. (4.14)

In particular, the maximum imaginary frequency Ω = iω is

Ω ∼ φ̇

f
. (4.15)
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At the quantum level, this growing mode corresponds to exponentially fast particle production.

Because the coupling only involves φ̇, the energy must be sourced by the axion-like particle’s

kinetic energy rather than its potential, slowing it down. A more detailed treatment of the

equations of motion, also including the Higgs field dynamics, is given in Ref. [135].

As long as one is thinking about using particle production, a nice and minimal possibility

would be to use the production of Higgs particles. However, it was found in Ref. [135] that this

does not work. If one assumes the Higgs tracks its minimum while the relaxion modifies the

Higgs potential, then the adiabatic approximation holds, preventing efficient Higgs production.

This damping mechanism has been used in other contexts. In Ref. [128] it is used to deplete

the abundance of the QCD axion, increasing its parameter space. In cosmology, it was used

in Ref. [70] to provide an additional source of dissipation during natural inflation, and later in

Ref. [146] this was extended by identifying the relaxion with the inflaton.

Standard Model Couplings

Now we consider how such a setup could be realized in the SM. First, we would like the

periodic barriers to be omnipresent, so we couple the relaxion to an new confining gauge

group. The relaxion cannot be coupled to the photon, as otherwise the tachyonic instabil-

ity would always be present, so it must couple to the combination of SU(2)L and U(1)Y

gauge fields without the photon,

L ⊃ (−M2 + gMφ)h2 + gM3φ+ Λ′
4

cos
φ

f ′
− φ

4f

(
g2

2W
a
µνW̃

aµν − g2
1BµνB̃

µν
)

(4.16)

whereWµν andBµν are the SU(2)L andU(1)Y gauge field strengths, with corresponding couplings

g2 and g1. Such relaxion couplings can be enforced without tuning by using a symmetry. As

shown in Ref. [106], this can be achieved within a left-right symmetric model.

To demonstrate this, we follow Ref. [133], which covers photophobic axion-like particles in

general. Left-right (LR) symmetric models [6, 7] were originally motivated by certain grand

unified theories [4], and replace the SM gauge group SU(2)L with SU(2)L × SU(2)R. They are

symmetric under a variant of parity, which we call LR symmetry, which exchanges these gauge

groups. Parity violation at low energies then arises from spontaneous symmetry breaking.

In the minimal left-right symmetric model, the matter content is as follows:

SU(3)C SU(2)L SU(2)R U(1)B−L
QL 3 2 1/6
QR 3 2 1/6
LL 2 −1/2
LR 2 −1/2

Here, we have suppressed trivial representations, and QL/R and LL/R are left/right-handed Weyl

spinors representing the SM quarks/leptons, with the addition of a right-handed neutrino. We

leave the Higgs sector unspecified, but it spontaneously breaks SU(2)R × U(1)B−L to U(1)Y .

In order to UV complete the relaxion, we add two Dirac spinors qL and qR charged under

a confining gauge group, which for concreteness we take to be SU(3)N , and charged under

a chiral U(1)PQ symmetry as follows:
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SU(3)N SU(2)L SU(2)R U(1)PQ
qL 3 2 1
qR 3 2 −1

The relaxion could then be constructed as a Goldstone boson of spontaneous U(1)PQ breaking,

similarly to the KSVZ axion described in section 2.6, except that it must be done so in a way

that produces f ′ � f (e.g. by clockwork) which we leave unspecified. The fact that qL and qR

have exactly opposite U(1)PQ choices is crucial, and is enforced by LR symmetry.

Now, the theta terms for the SU(2)L and SU(2)R gauge fields are

L ⊃ g2

32π2

(
θLWLW̃L + θRWRW̃R

)
(4.17)

Due to anomalies, the shift symmetry of the relaxion φ → φ + α/f becomes

φ→ φ+ α/f, θL → θL + α, θR → θR − α (4.18)

by the same reasoning as in Eq. (2.83). This forces the relaxion coupling to gauge bosons to be

L ⊃ g2

32π2

φ

f
(WRW̃R −WLW̃L). (4.19)

After LR symmetry breaking and a rescaling of f , we arrive at the couplings in Eq. (4.16).

Under RG evolution, no further couplings to gauge bosons are generated in perturbation theory,

because the θ-angles multiply total derivative terms.

Finite Temperature

At finite temperature, thermal effects correct the dispersion relation (4.13) to

ω2
± = k2 +m2

A ±
kφ̇

f
+ ΠT (ω, k) (4.20)

where ΠT is the thermal self-energy. A thermal field theory calculation, outlined in Ref. [106],

shows that for an abelian gauge field, this corrects the maximum tachyon growth rate (4.15) to

Ω ∼ 1

m2
D

(
φ̇

f

)3

(4.21)

where mD ∼ eT is the Debye mass of the plasma and e is the gauge coupling. On the other

hand, one can show that for a nonabelian gauge field, there are no tachyonic modes at high

temperature, so the mechanism does not work. It would seem that this ruins the mechanism

because the relaxion does not couple to the photon, but at these temperatures, we should instead

work in the gauge basis, where the relaxion couples to the abelian U(1)Y field.
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Constraints

We now list the constraints that must be obeyed to achieve relaxation after inflation.

• We suppose the initial conditions are

φ̇0 & Λ′
2
, φ0 ∼

M

g
(4.22)

so that the Higgs vev begins nonzero, and the relaxion can fly over the bumps. One constraint

on inflation is that it can produce this kind of initial condition.

• Because of the relaxion’s potential energy alone, we have

H &
M2

Mpl
(4.23)

by the Friedmann equation (2.33).

• The spacing between minima must be smaller than the electroweak scale,

gMf ′ . m2
W. (4.24)

• Particle production must start when the Higgs vev is at the right value,

f ∼ φ̇s
mW

(4.25)

where φ̇s is the field velocity as particle production starts, and we know φ̇s .M2.

• The relaxion stops rolling once φ̇ ∼ Λ′2. The timescale for particle production must be

less than a Hubble time, or else it will be significantly slowed down by expansion. We note

from Eq. (4.21) that the growth rate is smallest when φ̇ is small, so the time for φ̇ to fall is

determined by the lowest velocity,

tdis ∼
T 2f3

Λ′6
.

1

H
(4.26)

where we took e ∼ 1.

• The relaxion must lose energy faster than it gains it by rolling,

gM3φ̇s .
φ̇2
s

tdis
. (4.27)

In addition, the relaxion must not overshoot the correct Higgs mass during dissipation.

These constraints are covered in more detail in Refs. [106, 135]. A point satisfying all con-

straints, which gives the relaxion a keV scale mass and a comfortably sub-Planckian field range, is

M ∼ 104 GeV, g ∼ 10−12, f ∼ 106 GeV, Λ′ ∼ 103 GeV, f ′ ∼ 1012 GeV. (4.28)
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Since the relaxion in this model is significantly heavier than usual, there are many new

constraints. To name a few, the relaxion must not end up producing too much warm dark

matter1, must evade collider and astrophysical bounds. The results are somewhat different from

the usual bounds for axion-like particles because the relaxion has no coupling to photons or even

SM fermions in the UV; all these couplings are induced at one loop. In particular, the largest

coupling to the photon is induced by a two-loop effect, involving a loop of weak bosons coupled

to a loop of electrons [133]. Unfortunately, the allowed values of f slightly violate astrophysical

constraints, though this could potentially be alleviated by accounting more carefully for O(1)

factors or accepting some degree of tuning. Overall, particle production is an elegant and

minimal mechanism, but it ends up being more constrained than others.

4.3 Parametric Resonance

Recently, Ref. [151] proposed a new mechanism where the sudden damping is due to parametric

resonance with the Higgs field. Such an effect had been previously applied to the QCD axion in

Ref. [140], and is also commonly used in inflation as a mechanism for preheating [44, 45]. Unlike

the other mechanisms here, the scanning occurs during inflation, but the inflation sector has

much more standard parameters because the relaxion spends most of its time rolling quickly.

Parametric Resonance

An oscillator displays resonance when the frequency of its driving force matches its natu-

ral frequency. Parametric resonance is a more subtle phenomenon due to the periodic driv-

ing of the parameters of the oscillator itself. For example, one might periodically vary the

length of a pendulum. We begin by giving a classical account of parametric resonance, fol-

lowing the treatment in Ref. [17].

Generically, a parametric oscillator satisfies the equation

ẍ+ (ω2
0 + k(t))x = 0. (4.29)

Taking the case of a sinusoidal k(t), we have the Mathieu equation

ẍ+ ω2
0x = hx cosωt. (4.30)

We know from the adiabatic theorem that the oscillation is not significantly affected if ω � ω0.

However, parametric resonance can occur in the regime ω & ω0. To find the solutions to this linear

differential equation, a natural step is to expand x in a Fourier series with complex frequencies.

The term cosωt has Fourier components of frequency ±ω. Therefore, we can take solutions

for x(t) to have frequencies which differ by multiples of ω, and the general solution will be a

superposition of such solutions; this is a simple form of Floquet’s theorem.

Since x(t) must be real, the real parts of the frequencies must be symmetric about zero, so

x(t) = eλt
∑
n

ane
inωt (4.31)

1For more about bounds on relaxion dark matter, see Ref. [130].
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or

x(t) = eλt
∑
n

ane
i(n+1/2)ωt (4.32)

where λ is the common imaginary part of the frequency and the sum ranges over integer n.

The dominant parametric resonance occurs when ω ' 2ω0 and x(t) contains the approximate

frequencies ±ω0. (The classical intuition for this comes from how a child can pump a swing

by standing up and down, with two cycles per cycle of the swing.) Assuming h is small, we

can approximate the infinite sum as

x(t) ' eλt(ae−iωt/2 + beiωt/2). (4.33)

Plugging this into Eq. (4.30) and dropping higher-frequency and O(λ2) terms yields(
ω2

0 − ω2/4− iλω −h/2
−h/2 ω2

0 − ω2/4 + iλω

)(
a
b

)
= 0. (4.34)

Exponential growth occurs when there is a positive solution for λ. Setting the determinant to zero,

λ2ω2 =
h2

4
− (ω2

0 − ω2/4)2 (4.35)

which hence gives exponential growth when

ω ∈ 2ω0

(√
1− h/2ω2

0,
√

1 + h/2ω2
0

)
. (4.36)

In field theory, parametric resonance can occur when two fields are coupled. For example,

consider two scalar fields in Minkowski space with

L = |∂µφ|2 + |∂µϕ|2 −m2
φ|φ|2 −m2

ϕ|ϕ|2 − λφ2ϕ2 (4.37)

where one field is homogeneous and oscillates as

φ(t) ' eimφt (4.38)

while the other starts in the vacuum state. Taking the coupling λ to be weak, it is useful to

expand the other field in Fourier modes, giving

ϕ̈k ' (k2 +m2
ϕ + λe2imφt)ϕk. (4.39)

This is of the same form as Eq. (4.30), so using the result of Eq. (4.36), the mode ϕk can exponen-

tially grow if

mφ '
√
k2 +m2

ϕ. (4.40)

This result can also be understood using the language of quantum field theory. In this case,

Eq. (4.38) indicates that we begin with a condensate of zero-momentum φ particles, which can de-

cay by the process φφ→ ϕϕ. The created ϕ particles come in pairs with momenta ±k. The decay

accelerates exponentially because of the Bose enhancement of creating ϕ particles in modes that

are already occupied. Quantum field theory also indicates that the resonance does not need an ex-

ternal perturbation to start, since it is impossible to have ϕk exactly zero at all times to begin with.
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Relaxion-Higgs Dynamics

In the model of Ref. [151], we begin with the usual relaxion-Higgs potential,

V (φ, h) = (M2 − gMφ)h2 − gM3φ+ Λ4(h) cos
φ

f
+
λ

4
h4 (4.41)

where it is now important that we account for the Higgs quartic coupling. We use a backre-

action sector so that the barrier height is

Λ4(h) =
Λ4

0

2
+ Λ2

hh
2 (4.42)

which could, e.g. arise from the first model in section 3.2.

The Higgs mass term begins large and positive, and the relaxion is assumed to roll quickly,

flying over the existing periodic bumps; the initial velocity for the relaxion is determined by

pre-inflationary physics which we do not specify. The parts of the potential above relevant for the

Higgs are

V (h) = (M2 − gMφ)h2 + Λ2
hh

2 cos
φ

f
+
λ

4
h4. (4.43)

The φh2 term merely slowly scans the Higgs mass, while the h2 cos(φ/f) term allows the

possibility of parametric resonance. This begins when the lowest frequency (i.e. homoge-

neous) mode of the Higgs field enters the resonance window (4.36). The subsequent dynam-

ics are somewhat complicated:

• The Higgs oscillation begins to grow exponentially, but the growth is stopped prematurely

because of the nonlinear λh4 term, which raises the frequency of oscillation and pushes it

out of the resonance window. Instead, the oscillation grows gradually as the relaxion rolls.

• The Higgs field backreacts on the relaxion by both removing some of its kinetic energy and

causing the barrier height (4.42) to oscillate.

• At some point, this causes the relaxion to become trapped, hitting a bump and bouncing

back. This stops the parametric resonance, allowing the Higgs field oscillations to decay by

Hubble friction. At this point, if the Higgs mass squared is negative, it settles to a nonzero

vev, trapping the relaxion as well.

The constraints are also quite complicated, and considered in greater detail in Ref. [151]. However,

one result is that the relaxion and Higgs masses must be comparable, leading to a sizable mixing

angle θmix. This leads to a collider-observable relaxion, which is not far from current bounds.

Inflation can have a reasonable number of e-foldings, but again we must have weak-scale physics.
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Chapter 5

Conclusion

Though the relaxion is only three years old, it has inspired intense discussion across many

subfields of particle physics and cosmology. In this short review, we have only been able to

describe a fraction of the work done on the relaxion, focusing on the most minimal and generic

mechanisms. We investigated the GKR model and its variants in chapter 3, and considered

alternative relaxation mechanisms taking place after inflation in chapter 4. In all cases we ran into

problems: it is difficult to make a minimal model that resolves the relaxion’s UV concerns, allows a

high cutoff with no new weak-scale physics, and avoids all astrophysical and cosmological bounds.

However, given how new the mechanism is, future work could certainly improve on these aspects.

Even more opportunities present themselves when the relaxion idea is combined with others.

Relaxation can remove the tuning in other solutions to the hierarchy problem, by relaxing away

the so-called “little hierarchy” introduced in section 2.3. For example, Ref. [87] uses relaxation

in a supersymmetric model to make particles lighter than their superpartners, providing a

realization of split supersymmetry [49, 50]. Later, Ref. [100] refined this theory to avoid the

strong CP problem using a supersymmetric version of the double scanner mechanism, with

Ref. [119] additionally accounting for inflation by identifying the second scanning field as the

inflaton. Outside of supersymmetry, Refs. [86, 116] applied relaxation to composite Higgs

models. Renewed efforts have also been made to construct theories which relax the cosmological

constant [94, 149]. Recently, it has been proposed that a combination of the Nelson–Barr

mechanism, the relaxion, and some virtuosic model building can minimally solve the hierarchy

problem and the strong CP problem, while simultaneously providing a dark matter candidate,

neutrino masses, and a mechanism for baryogenesis [134, 147, 150].

The review given in this dissertation is sure to become out of date the second it is finished.

Indeed, several of the papers discussed above were released while this dissertation was being

prepared. In the long run, whether or not the original goal of the GKR model is ever realized, re-

laxation will remain a useful tool for building theories of nature. What excites me the most is the

simplicity of the mechanism, which suggests that there should be more simple ideas yet to be dis-

covered. Perhaps one of them could shine light on the structure and origin of the Standard Model.
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