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Electromagnetism I: Electrostatics
The material here is covered at the right level in chapters 1–3 of Purcell. For a separate introduction

to vector calculus, see the resources mentioned in the syllabus, or chapter 1 of Griffiths. Electrostatics

is covered in more mathematical detail in chapter 2 of Griffiths. For interesting general discussion,

see chapters II-1 through II-5 of the Feynman lectures. There is a total of 80 points.

1 Coulomb’s Law and Gauss’s Law

We’ll begin with some basic problems which can be solved with symmetry arguments.

Idea 1

Gauss’s law is written in integral form as∮
E · dS =

Q

ϵ0
.

In practice, you will only apply this form to situations with high symmetry, where

E =


Q/4πϵ0r

2 spherical symmetry,

λ/2πϵ0r cylindrical symmetry,

σ/2ϵ0 infinite plane.

Example 1

Consider a spherical shell of uniform surface charge density σ. A small hole is cut out of the

surface of the shell. What is the electric field at the center of this hole?

Solution

We use the principle of superposition. First, consider the entire spherical shell, without a hole.

By Gauss’s law and spherical symmetry, the radial electric field at a point P infinitesimally

outside the sphere is σ/ϵ0, while the electric field at a nearby point P ′ infinitesimally inside

is zero.

This field is the superposition of the fields of the charges near P and P ′, and charges from

the entire rest of the sphere. Consider the effect of a small piece of the surface, near P and

P ′. From the perspective of these points, this piece looks like an infinite plane, so its radial

electric field is σ/2ϵ0 at P , and −σ/2ϵ0 at P ′. Therefore, the entire rest of the sphere must

contribute a radial electric field of σ/2ϵ0, at both P and P ′. Therefore, when one cuts out a

hole, this is the only contribution that remains, so the field is just σ/2ϵ0.

[2] Problem 1 (Griffiths 2.18). Some questions about uniformly charged spheres.

(a) Consider a sphere of radius R and uniform charge density ρ. Find the electric field everywhere.

(b) Now two spheres, each of radius R and carrying uniform charge densities ρ and −ρ, are placed

so that they partially overlap. Call the vector from the positive center to the negative center

d. Find the electric field in the overlap region.
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Solution. (a) The field inside a uniform sphere of density ρ and center a is

E =
ρ

3ϵ0
(r− a).

Outside the sphere, the field falls off as an inverse square,

E =
ρ

3ϵ0

R3

|r− a|3
(r− a).

(b) If the two centers are a1 and a2, then by superposition,

E =
ρ

3ϵ0
((r− a1)− (r− a2)) =

ρ

3ϵ0
d

which is a constant.

[2] Problem 2. Consider a cube with a corner at the origin, and sides parallel to the x, y, and z axes.

If a charge q is placed at (ϵ, ϵ, ϵ) for some tiny ϵ, what’s the flux through each face of the cube?

Solution. There are three “opposite” faces with the same flux, and three “adjacent” faces with

the same flux. Now consider adding seven more cubes, so that the charge is now at the center of

a 2× 2× 2 cube. The total flux through the outer faces of the cube is q/ϵ0, and there are 24 unit

faces, so the flux out of each “opposite” face is q/24ϵ0. Now consider the original cube. By Gauss’s

law the total flux out must be q/ϵ0, which means the flux out of each “adjacent” face is 7q/24ϵ0.

(Note that if the charge were instead exactly at one of the corners, the fluxes through the opposite

faces would still be q/24ϵ0, while the fluxes though the adjacent faces would technically be undefined,

since the electric field blows up on the face. But roughly speaking, the flux ought to be zero. Then

the total flux out of the cube is only q/8ϵ0, and that’s because the corner cuts out one “octant” of

the point charge’s field.)

Here’s a followup question, proposed by Mike Winer and first solved by Jason Youm. If a charge

q is at the corner of a regular tetrahedron, what fraction of its flux goes through the tetrahedron’s

far face? You can’t solve it with the same trick as the cube, but it’s possible to get the answer

without any explicit integration by cleverly considering the flux through combinations of simpler

surfaces, and using a little three-dimensional geometry. The answer is

1

2
− 3 arctan

√
2

2π
≈ 0.044.

You can try deriving this for yourself, but it’s quite tricky; roughly 4 points by the standards of

this problem set. In fact, it turns out that it’s possible to generalize these kinds of arguments even

further, to solve the more general case where the charge is displaced from a vertex of a cube in an

arbitrary direction! For a deep dive, see this paper.

[2] Problem 3 (BAUPC). In both parts below, take the potential to be zero at infinity.

(a) Consider a solid sphere of uniform charge density. Find the ratio of the electrostatic potential

at the surface to that at the center.

(b) Consider a solid cube of uniform charge density. Find the ratio of the electrostatic potential

at a corner to that at the center. (Hint: use symmetry.)
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Solution. (a) Let the uniform charge density be ρ and the sphere have radius R, so the total

charge is Q = 4
3πρR

3. We can treat the field outside the sphere to be like a point charge, so

the potential at the surface relative to infinity is U0 = Q/4πϵ0R.

To go from the surface to the center, we need to go against the field lines and change the

potential by ∆U = −
∫ 0
R E(r) dr. The electric field inside the sphere can be found with Gauss’s

law inside the sphere: E = 4
3πρr

3/4πϵ0r
2.

∆U =

∫ R

0

kQr

R3
dr =

1

2
U0

Thus the potential at the center of the sphere is U0 +
1
2U0 = 3

2U0, so the ratio of the potential

at the surface to that at the center is 2
3 .

(b) Being at the center of the cube is like being at the corner of 8 identical cubes with half the

length. From U ∼ kQ/r ∼ kρr2, we see that the potential is proportional to the square of the

length scale. Let the potential at the corner be U0. For each cube with half the length, the

potential from that cube is 1
4U0. With eight of those half cubes at the center, the potential

at the center of the cube is 2U0. So the ratio of the potentials at corner to center is 1
2 .

Idea 2

If you follow an electric field line, the potential monotonically decreases along it.

[2] Problem 4. Two questions about electrostatic equilibrium.

(a) Prove that when a system of point charges is in equilibrium (i.e. the net force on each of the

charges due to the others vanishes), the total potential energy of the system is zero.

(b) Show that for a positive point charge in the electric fields of fixed, positive point charges,

there is a path along which the charge can be moved to infinity without ever needing positive

external work, i.e. a path along which the potential only decreases.

Solution. (a) Fix some point O not on any of the charges, and scale the system up about O

continuously, to send all the charges to infinity. At all points in time, there are no forces

on any of the charges, so no work is done. The final potential energy is zero, so the initial

potential energy must also have been zero.

(b) Consider the field line going through the test charge. It can’t end on a negative charge, since

there are none, so it must end at infinity. Moving the charge along this field line gives the

desired path.

Idea 3

Gauss’s law is written in differential form as

∇ ·E =
ρ

ϵ0
.

The divergence of a vector field F = Fxx̂+ Fyŷ + Fzẑ is

∇ · F = ∂xFx + ∂yFy + ∂zFz

in Cartesian coordinates, where ∂x stands for ∂/∂x, and so on.
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Example 2

Show that the two forms of Gauss’s law are equivalent.

Solution

To do this, we need to establish the geometric meaning of the divergence. For simplicity we

consider two dimensions; the proof for three dimensions is similar. Consider a small rectangle

prism with one corner at the origin, with axes aligned with the Cartesian coordinate axes

and side lengths ∆x and ∆y. To apply Gauss’s law in integral form, we need to compute the

flux through each side. The flux going out the top side is∫ ∆x

0
Ey(x,∆y) dx

while the flux going out the bottom side is

−
∫ ∆x

0
Ey(x, 0) dx.

The sum of these two terms is∫ ∆x

0
(Ey(x,∆y)− Ey(x, 0)) dx ≈ ∆y

∫ ∆x

0
(∂yEy)|(x,0) dx

where we applied a tangent line approximation, and the subscript indicates where the

function ∂yEy is evaluated. Higher-order terms in the Taylor series would be proportional to

higher powers of ∆y, which is small, so we can ignore them.

The integrand is still a function of x, but we can Taylor expand it about the origin as

(∂yEy)|(x,0,0) = (∂yEy)|(0,0,0) +∆x(. . .) + . . . .

These extra terms are again higher-order in ∆x and ∆y, so we ignore them. The net flux

through the top and bottom faces is hence, to lowest order,

∆y

∫ ∆x

0
(∂yEy)|(0,0,0) dx = ∆x∆y (∂yEy)|(0,0,0).

By similar reasoning, pairing up the left and right faces gives

flux = ∆x∆y (∂xEx + ∂yEy)|(0,0,0) = ∆x∆y (∇ ·E)|(0,0,0).

Thus the divergence is the outgoing flux per unit area, or volume in three dimensions.

This shows us why the two forms of Gauss’s law area equivalent. For example, starting from

the differential form, the left-hand side is the flux per volume, while the right-hand side is

the charge per volume, divided by ϵ0. Integrating both sides over some volume relates the

total flux to the total charge divided by ϵ0, which is Gauss’s law in integral form.
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If the above derivation was a bit abstract, we can also show the idea using specific examples.

Example 3

Suppose the region 0 < x < d has charge density −ρ, and the region −d < x < 0 has charge

density ρ. Find the electric field everywhere.

Solution

By translational symmetry, the field always points along x̂ and only depends on x, E(r) =

E(x) x̂. By applying the integral form of Gauss’s law to a rectangular prism, with one side

at xl and another at xr, we have

E(xr)− E(xl) =
1

ϵ0

∫ xr

xl

ρ(x) dx, E(x) =
1

ϵ0

∫ x

0
ρ(x) dx+ E0.

Since the divergence of E(r) is just ∂E(x)/∂x, this clearly satisfies the differential form of

Gauss’s law. To fix the undetermined constant E0, we could demand the field be zero on

both sides of the charge distribution, motivated by symmetry. Then we have

E(x) =
ρ

ϵ0
×


d− x 0 < x < d,

d+ x −d < x < 0,

0 elsewhere.

Example 4

Find the electric field of a spherically symmetric charge density ρ(r).

Solution

By spherical symmetry, the field always points radially and only depends on r, E(r) = E(r) r̂.

By applying the integral form of Gauss’s law to a sphere of radius r,

4πr2E(r) =
1

ϵ0

∫ r

0
dr′ 4πr′2ρ(r′), E(r) =

1

ϵ0

1

r2

∫ r

0
dr′ r′2ρ(r′).

Let’s check that this indeed satisfies the differential form of Gauss’s law, using the divergence

in spherical coordinates. For any vector field F = Frr̂+ Fθθ̂+ Fφφ̂, the divergence is

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂

∂θ
(Fθ sin θ) +

1

r sin θ

∂Fφ

∂φ
.

This looks complicated, but things turn out simple because E only has a radial component,

Er = E(r), which gives

∇ ·E =
1

r2
∂(r2E(r))

∂r
=

1

r2ϵ0

∂

∂r

∫ r

0
dr′ r′2ρ(r′) =

r2ρ(r)

r2ϵ0
=

ρ(r)

ϵ0

just as desired.
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[3] Problem 5. Consider a vector field expressed in polar coordinates, F = Frr̂+ Fθθ̂ where r̂ and θ̂

are unit vectors in the radial and tangential directions. Gauss’s law in differential form still works

in these coordinates, but the form of the divergence is different.

By considering the flux per unit area out of a small region bounded by r and r + dr, and θ and

θ+dθ, and applying Gauss’s law in integral form, find what the divergence in polar coordinates must

be for Gauss’s law in differential form to hold. (Optional: try generalizing to spherical coordinates.)

Solution. By summing up contributions from each of the four sides, and letting (Fr, Fθ) be the

vector field at one of the corners, the flux through the region is

dΦ = (Fr + dFr)((r + dr)dθ)− Fr(rdθ) + (Fθ + dFθ)dr − Fθdr.

In two dimensions, the divergence is the flux per area, dA = r dr dθ, so

∇ · F =
dΦ

dA
=

1

r

∂(rFr)

∂r
+

1

r

∂Fθ

∂θ
.

[4] Problem 6. This problem is quite subtle, but will enhance your understanding of electromagnetism.

Suppose that all of space is filled with uniform charge density ρ.

(a) Show that E = (ρ/ϵ0)xx̂ obeys the differential form of Gauss’s law.

(b) Show that E = (ρ/3ϵ0)rr̂ also obeys Gauss’s law.

(c) Argue that by symmetry, E = 0. Show that this does not obey Gauss’s law.

(d) ⋆ What’s going on? Which, if any, is the actual field? If you think there’s more than one

possible field, how could that be consistent with Coulomb’s law, which gives the answer

explicitly? For that matter, what does Coulomb’s law say about this setup, anyway?

Solution. (a) We see that ∇ ·E = ∂x((ρ/ϵ0)x) = ρ/ϵ0, as desired.

(b) In Cartesian coordinates, this field is

E =
ρ

3ϵ0
(xx̂+ yŷ + zẑ)

whose divergence is ρ/ϵ0, as desired.

(c) This has to hold by symmetry because the electric field can’t point in any particular direction,

by rotational symmetry. It also can’t just point radially, because that breaks translational

symmetry; the center is a special point. So the only option is E = 0, but ∇·E = 0, so Gauss’s

law is not obeyed.

(d) The issue is boundary conditions. Just like any differential equation, the solution for the

electric field is not defined without boundary conditions (or initial conditions, as we called

them in mechanics). Usually, we get a unique solution by demanding the fields go to zero at

infinity. (Though in some cases, this might not be the right physical answer. For example,

the electric field of a capacitor in the lab doesn’t have to be zero outside, because it might

be inside some bigger capacitor.) However, we can’t do this here because the charge density

extends out to infinity too. By taking different choices of boundary conditions, we can get

(a), (b), or many other answers. The symmetry argument in (c) fails, because any choice of

boundary conditions will break the perfect translational symmetry.
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At first glance, it could seem that Coulomb’s law could give us a unique answer. Coulomb’s

law for a point charge is itself derived by implicitly assuming that there are no “extra” fields

flying around, just the spherically symmetric field of the point charge itself. This looks very

reasonable, so what stops us from just saying that each charge in this problem has such a field,

and then integrating over the charges? Well, if you write down the integral, you’ll find that it’s

divergent, analogous to the integral
∫∞
−∞ x dx. By itself, the integral is not even well-defined.

In order to get an answer, you have to “regulate” the integral (i.e. change it in a way that makes

it well-defined). One possible regulator, for example, is to just chop off the limits of integration

at finite values, like
∫ L
−L x dx. But that particular regulator is equivalent to just replacing

the charge distribution with a finite one centered at the origin! In other words, Coulomb’s

law also fails to give a unique answer, because it requires a regulator to give a well-defined

answer, and there are many possible regulators. If you treat the charge distribution as a giant

ball with center at the origin, you get the result of part (b). If you treat it as a thick, huge

slab along the yz plane centered at the origin, you get the result of part (a). The symmetry

argument fails once again, because all the regulators break translational symmetry. This is a

simple example of an “anomalous symmetry”, an important idea in theoretical physics.

The exact same problem appears in Newtonian cosmology, where charge density is replaced

with mass density, and this problem confused Newton himself, who incorrectly thought that

g = 0 by symmetry. In this context, all regulators/boundary conditions are unsatisfactory.

Of course, we want a rotationally symmetric universe to match experiment, so we have to put

that in by hand. But then every solution has a center towards which everything collapses, so

to keep the solar system an inertial frame, we’d have to put it at the center of the universe!

Surely, this would make Copernicus roll in his grave.

Some of these problems are fixed in general relativity. You still have to postulate rotational

symmetry (again, on the basis of experimental data), but once you do that, there are no

further problems. That’s because in general relativity, acceleration is not absolute in the

way it is in Newtonian mechanics. Instead, there is no center; everything just gets closer to

everything else. For further discussion and references, see this paper.

Idea 4

A tricky, occasionally useful idea is to use Newton’s third law: it may be easier to calculate

the force of A on B than the force of B on A.

Example 5: Purcell 1.28

Consider a point charge q. Draw any imaginary sphere of radius R around the charge. Show

that the average of the electric field over the surface of the sphere is zero.

Solution

Imagine placing a uniform surface charge σ on the sphere. Then the average of the point

charge’s electric field over the sphere times 4πR2σ is the total force of the point charge on

the charged sphere. But this is equal in magnitude to the force of the charged sphere on

the point charge, which must be zero by the shell theorem. Thus the average field over the

sphere has to vanish.
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Example 6

Consider two spherical balls of charge q and radii ai, with their centers separated by a distance

r > a1 + a2. What is the net force of the first on the second?

Solution

It might seem obvious that the answer is q2/4πϵ0r
2, with no dependence on a1 and a2. In

fact, if you’ve done any orbital mechanics, you’ve almost certainly assumed that the force

between two spherical bodies (such as the Earth and Sun) is Gm1m2/r
2, which is equivalent.

This has a simple but slightly tricky proof. By the shell theorem, we can set a1 = 0, replacing

the first ball with a point charge, because this produces the same field at the second ball.

But the force on the second ball depends on the electric field at every point on it, which

seems to require doing an integral. To avoid this, we use Newton’s third law, which tells us

it’s equivalent to compute the force on the first ball. To compute that, we may set a2 = 0 by

the shell theorem again. This reduces us to the case of two point charges, giving the answer.

[3] Problem 7 (Purcell 1.28). Some extensions of the previous example.

(a) Show that if the charge q is instead outside the sphere, a distance r > R from its center, the

average electric field over the surface of the sphere is the same as the electric field at the center

of the sphere.

(b) Show that for any overall neutral charge distribution contained within a sphere of radius R,

the average electric field over the interior of the sphere is −p/4πϵ0R
3 where p is the total

dipole moment.

Solution. The same Newton’s third law trick will work for both parts.

(a) Let the desired answer be Eavg and let the charge q be at r. Now imagine a charge Q

is uniformly distributed over the surface of the sphere. The force of the charge q on the

distributed charge Q is precisely FqQ = QEavg. But we also know that

FqQ = −FQq = −kQq

r2
r̂

by Newton’s third law and the shell theorem. Therefore we have

Eavg = −kq

r2
r̂

which is precisely the electric field at the center of the sphere due to q. (Note that r̂ points

from the center of the sphere to the charge q.)

(b) Let the desired answer be Eavg. Now imagine a charge Q is uniformly distributed over the

volume of the sphere. The force of the charge distribution (with charge density ρ(x)) on the

distributed charge Q is precisely FqQ = QEavg. But we also know that

FqQ = −FQq = −
∫

ρ(r)EQ(r) d
3r
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where EQ is the field due to Q. Now, this field is easy to find, as it is just the field of a

uniformly charged sphere, so

EQ =
kQ

R3
r

as shown in problem 1. Putting this in the integral, we have

QEavg = −kQ

R3

∫
ρ(r)r d3r

so by the definition of the dipole moment,

Eavg = − k

R3

∫
ρ(r)r d3r = −kp

R3

as desired.

[3] Problem 8. There are two point charges, q1 > 0 and q2 < 0, in empty space. An electric field line

leaves q1 at an angle α from the line connecting the two charges. Determine whether this field line

hits q2, and if so, at what angle β from the line connecting the two charges. (Hint: this can be done

without solving any differential equations.)

Solution. Suppose the field line does hit q2. Rotate the field line about the line connecting the two

charges, to form a Gaussian surface. Because no electric field lines go across this surface, the total

charge inside must be zero. Now, this surface envelopes “slices” of each point charge. (If you’re

not happy with “slicing a point charge”, just replace the point charges with tiny uniformly charged

spheres; everything stays the same.) The solid angle of the first point charge enveloped is∫
dΩ =

∫ 2π

0
dϕ

∫ α

0
sin θ dθ = 2π(1− cosα)

so the amount of charge enclosed is

Ω

4π
q1 =

1− cosα

2
q1 = q1 sin

2 α

2
.

Reasoning similarly for the other surface, we have

q1 sin
2 α

2
= |q2| sin2

β

2

and the field line hits q2 if there is a solution for β, i.e. when |q1/q2| sin2(α/2) < 1.

Idea 5

The integral
∫
dS over a surface with a fixed boundary is independent of the surface.

We proved this in a mechanical way in M2. If you want to see a proof using vector calculus,

see problem 1.62 of Griffiths.

[3] Problem 9. A hemispherical shell of radius R has uniform charge density σ and is centered at the

origin. Find the electric field at the origin. (Hint: combine the previous two ideas.)
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Solution. Place a point charge q at the origin. To find the magnitude of the field, we will compute

the force on the hemisphere divided by q. The force on the hemisphere is∫
q

4πϵ0R2
σ dS =

qσ

4πϵ0R2

∫
dS.

By idea 5, we can replace the surface of integration with a flat disk, so |
∫
dS| = πR2. Thus, the

force is F = qσ/4ϵ0, so the field is

E =
σ

4ϵ0
.

[3] Problem 10. A point charge q is placed a distance a/2 above the center of a square of charge

density σ and side length a. Find the force of the square on the point charge.

Solution. This is a tricky problem, whose solution uses a one-time trick. It’s equivalent to find the

force of the point charge on the square. Set up coordinates so that the square is in the xy plane,

and its center is the origin. Then we have

F = σ

∫
E dS

where the surface integral is over the square. On the other hand, we know that F is along the ẑ

direction by symmetry, so

F = F · ẑ = σ

∫
Ez dS.

Now, since dS is parallel to ẑ, this is in fact the same thing as

F = σ

∫
E · dS

where the integral is just the electric flux through the square! By symmetry, this flux is q/6ϵ0, so

F =
σq

6ϵ0
.

[4] Problem 11 (Griffiths 2.47, PPP 113, MPPP 140). Consider a uniformly charged spherical shell

of radius R and total charge Q.

(a) Find the net electrostatic force that the southern hemisphere exerts on the northern hemi-

sphere.

(b) Generalize part (a) to the case where the sphere is split into two parts by a plane whose

minimum distance to the sphere’s center is h.

(c) Generalize part (a) to the case where the two hemispherical shells have uniform charge density,

opposite orientation, and the same center, but have different total charges q and Q, and

different radii r and R, where r < R.

Hint: see example 10, and use superposition and symmetry when applicable.

Solution. (a) The net force that the northern hemisphere exerts on itself is 0, so it is equivalent

to find the force on the north due to the entire sphere. The surface charge density is σ =
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Q/(4πR2). By the result of example 10, the outward pressure on the northern hemisphere is

σ2/2ϵ0. Therefore, the total force is

F =

∣∣∣∣ σ2

2ϵ0

∫
N
dS

∣∣∣∣ = σ2

2ϵ0
(πR2) =

Q2

32πϵ0R2

where N refers to the northern hemisphere, and the surface integral was done as in problem 9.

(b) This is exactly the same as in part (a), except that now the integral over the piece is∣∣∣∣ ∫ dS

∣∣∣∣ = π(R2 − h2)

which gives the result

F = (σ2/2ϵ0)π(R
2 − h2) =

Q2

32πϵ0R2
(1− h2/R2).

(c) This can be solved using an ingenious superposition and symmetry argument.

The force we want to compute is shown in (a). Now consider superposing a uniformly negatively

charged sphere with radius just larger than R, as shown in (b). By the shell theorem, this

doesn’t change the force on the hemisphere of radius r. The result of the superposition is (c).

Flipping the charge of one of the hemispheres in (c) flips the force, leading to (d). Finally,

reflecting (d) gives (e).

This has all been preamble to the ingenious step: superpose (a) and (e) to get (f), which

involves the force on a complete sphere of radius r. Using Newton’s third law, 2F can now

be computed by finding the force on the hemisphere. But that is easy because of the shell

theorem, which tells us that F is the net force on the hemisphere shown in (g). Using the

method of problem 9 again, we conclude

F =
q

4πϵ0R2
(πR2)

Q

2πR2
=

Qq

8πϵ0R2

which is independent of r! (Setting r = 0 and r = R recovers the answers to two previous

problems.) By the way, this problem illustrates why you can’t trust online solutions. If you
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google it, you’ll find mostly incorrect answers which are in turn copied from an incorrect

solution in a JEE book.

Example 7: IdPhO 2020.1A

A point charge of mass m and charge −q is placed at the center of a cube with side length a,

whose volume has uniform charge density ρ. The point charge is allowed to slide along a

straight line, which has an arbitrary orientation, so that the distance along the line from the

center to one of the cube’s faces is L.

Find the frequency of small oscillations.

Solution

The official solution goes as follows: consider displacing the point charge by some small

amount ∆r. The cube of charge can then be decomposed into (1) a slightly smaller cube of

charge centered around the point charge’s new position, and (2) three thin plates of charge

on the faces opposite to the charge’s motion. By symmetry, (1) contributes nothing, and we

know what (2) contributes from the answer to problem 10. The result is a restoring force

proportional to −∆r, whose magnitude has no dependence on the orientation of ∆r, so the

oscillation frequency doesn’t depend on L. Once you know this, you can orient the line any

way you want, so the problem is simple to finish.

Personally, I don’t like this problem because the intended solution requires knowing the

answer to problem 10, which itself is pretty tricky. That is, the difficulty of the problem

depends mostly on whether you’ve seen that tough, but standard problem elsewhere.

However, I’m including it as an example because there’s another way to solve it, which is a

bit more advanced, but quite illustrative.

Since this is a question about small oscillations, it suffices to expand the potential energy to

second order about the center of the cube. The most general possible expression is

V (x, y, z) = a+ b1x+ b2y + b3z + c1x
2 + c2y

2 + c3z
2 + c4xy + c5yz + c6xz +O(r3).

The constant a doesn’t matter, so we can just ignore it. And since E vanishes at the center,

the linear terms bi are all zero as well. Because the x, y, and z axes are all equivalent by

cubical symmetry (e.g. we can rotate them into each other, while keeping the cube the same),

c = c1 = c2 = c3, c′ = c4 = c5 = c6.

12
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Thus, our complicated Taylor series boils all the way down to

V (x, y, z) = c(x2 + y2 + z2) + c′(xy + yz + xz) +O(r3)

without even having to do any work! Finally, notice that the cube is symmetric under

reflections x → −x, y → −y, or z → −z. These reflections keep the c term the same, but flip

the c′ term. Therefore, we must have c′ = 0, so

V (r) = cr2 +O(r3)

which is remarkably simple. The potential near the origin is spherically symmetric, even

though the setup as a whole isn’t! It’s not automatic: it wouldn’t be this simple if we had a

slightly more complex shape. This “accidental” spherical symmetry is a consequence of the

combination of cubical symmetry and the simplicity of Taylor series.

Therefore, to finish the problem we only need to find the coefficient c. While there are simpler

ways to do this, I’ll do it in a way that introduces some useful facts. Combining the definition

of V and Gauss’s law, we have

∇ · (∇V ) = −∇ ·E = − ρ

ϵ0
.

This is a standard and fundamental result in electrostatics, called Poisson’s equation, which

we will see again later. The divergence of a gradient is also called a Laplacian, and written as

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= − ρ

ϵ0
.

Using this, we can easily compute the value of c, giving

V (r) = −ρr2

6ϵ0
+O(r3).

Therefore, for a displacement ∆r in any direction, the restoring force is ρqr/3ϵ0 in the

opposite direction, which means

ω =

√
ρq

3ϵ0m

independent of the orientation of the line.

Remark

Accidental symmetry is important in modern physics. For example, protons are stable because

of an accidental symmetry in the Standard Model, which ensures that baryon number is

conserved. That explains why we often expect proton decay to occur in extensions of the

Standard Model, such as grand unified theories, as explained in this nice article.
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2 Continuous Charge Distributions

Idea 6

In almost all cases in Olympiad physics, there will be sufficient symmetry to reduce any

multiple integral to a single integral. Remember that when using Gauss’s law, the Gaussian

surface may be freely deformed as long as it doesn’t pass through any charges.

[2] Problem 12 (Purcell 1.15). A point charge q is located at the origin. Compute the electric flux

that passes through a circle a distance ℓ from q, subtending an angle 2θ as shown below.

Solution. Let ℓ = R cos θ, and deform the disk into a spherical cap with radius R. Then the answer

is then just kq/ϵ0, where k is the ratio of the area of the cap to the total area of the sphere. In

spherical coordinates,

k =
1

4π

∫ θ

0
2π sin θ dθ =

1− cos θ

2

so the answer is
1− cos θ

2

q

ϵ0
.

You can also show this using the original flat Gaussian surface, though that takes more work.

[3] Problem 13 (Purcell 1.8). A ring with radius R has uniform positive charge density λ. A particle

with positive charge q and mass m is initially located in the center of the ring and given a tiny kick.

If the particle is constrained to move in the plane of the ring, show that it exhibits simple harmonic

motion and find the frequency.

Solution. Suppose it is moved by r ≪ R in the x direction. Set up polar coordinates with θ = 0

being the positive x axis. By the law of cosines, we have

U(r) = 2

∫ π

0

1

4πϵ0

q(λRdθ)√
R2 + r2 − 2Rr cos θ

=
qλ

2πϵ0

∫ π

0

dθ√
1 + (r2/R2)− 2(r/R) cos θ

.

Next, we can expand the square root using a Taylor series. If we expand to first order in r/R, then

the result will be proportional to the integral of cos θ, which vanishes. Thus, to get the leading

contribution we must expand to second order, giving

U(r) =
qλ

2πϵ0

∫ π

0

[
1− 1

2

r2

R2
+

3

8

(
−2r

R
cos θ

)2
]
dθ

=
qλ

2πϵ0

∫ π

0

r2

2R2
(3 cos2 θ − 1) dθ + const

=
qλr2

8ϵ0R2
+ const.
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Therefore, the effective spring constant is k = qλ/4ϵ0R
2, so

ω =

√
qλ

4mϵ0R2
.

[3] Problem 14 (Purcell 1.12). Consider the setup of problem 9. If the hemisphere is centered at the

origin and lies entirely above the xy plane, find the electric field at an arbitrary point on the z-axis.

(This is a bit complicated, and is representative of the most difficult kinds of integrals you might

have to set up in an Olympiad. For a useful table of integrals, see Appendix K of Purcell.)

Solution. Set up spherical coordinates with the hemisphere being the equation of r = R and

θ ∈ [0, π/2]. Suppose our location is (0, 0, z). The hemisphere has surface charge σ. We see that

the field points in the z-direction by symmetry, so we’ll only worry about that piece. The ring at

angle θ with width dθ provides fields at an angle, and some geometry shows that we have to correct

by a factor of R cos θ−z
r where r ≡

√
R2 + r2 − 2Rz cos θ. We then have

dEz = −σ(2πR2 sin θ dθ)

4πϵ0r2
· R cos θ − z

r
,

so

E(z) = −σR2

2ϵ0

∫ π/2

0

(R cos θ − z) sin θ dθ

(R2 + r2 − 2Rz cos θ)3/2
.

Consulting Appendix K tells us that

E(z) =
σR2

2ϵ0z2

(
R√

R2 + z2
− R− z√

(R− z)2

)
.

Taking some care with the square root, we conclude

E(z) =
σR2

2ϵ0z2
×


1√

1+z2/R2
− 1 z < R

1√
1+z2/R2

+ 1 z > R
.

[3] Problem 15. �̂10 USAPhO 2018, problem B1.

Idea 7: Electric Dipoles

The dipole moment of two charges q and −q separated by d is p = qd. More generally, the

dipole moment of a charge configuration is defined as

p =

∫
ρ(r)r d3r.

For an overall neutral charge configuration, the leading contribution to its electric potential

far away is the dipole potential,

ϕ(r, θ) =
p cos θ

4πϵ0r2

where θ is the angle of r to p.

15

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Remark

Here’s a trick to remember the dipole potential. Let ϕ0(r) = k/r be the potential for a unit

charge at the origin. An ideal point dipole of dipole moment p consists of charges ±p/d

separated by d, in the limit d → 0. So the potential is

p lim
d→0

ϕ0(r)− ϕ0(r+ d)

d
.

But this is precisely the (negative) derivative, so you can get the dipole potential by differen-

tiating the ordinary potential! Indeed, for a dipole aligned along the ẑ axis,

− d

dz

kp

r
=

kp

r2
dr

dz
=

kp

r2
z

r
=

kp cos θ

r2

which matches the above result. You can use the same trick for quadrupoles and higher

multipoles, which we’ll see in E8.

[3] Problem 16. In this problem we’ll derive essential results about dipoles, which will be used later.

(a) Using the binomial theorem, derive the dipole potential given above, for a dipole made of a

pair of point charges ±q separated by distance d, oriented along the z-axis.

(b) Differentiate this result to find the dipole field,

E(r) =
p

4πϵ0r3
(2 cos θ r̂+ sin θ θ̂)

where the expression above is in spherical coordinates. (Hint: feel free to use the expression

for the gradient in spherical coordinates.)

(c) Show that this may also be written as

E(r) =
1

4πϵ0r3
(3(p · r̂)r̂− p).

You don’t need to memorize these expressions, but it’s useful to remember what a dipole field

looks like, the fact that its magnitude is roughly p/4πϵ0r
3, and the fact that the numeric

prefactor is 2 along the dipole’s axis and 1 perpendicular to it.

Solution. (a) Let the charges be at (0, 0, 0) and (0, 0, d). Then

V (r, θ) =
q

4πϵ0r

(
−1 +

1√
1− 2(d/r) cos θ + (d/r)2

)
≈ qd cos θ

4πϵ0r2
.

(b) We use the definition E = −∇V , along with the gradient in spherical coordinates. Then

Er = −∂V

∂r
=

p

4πϵ0r3
· 2 cos θ

and

Eθ = −1

r

∂V

∂θ
=

p

4πϵ0r3
· sin θ,

as desired.
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(c) We see that p · r̂ = p cos θ and p = pẑ = p(r̂ cos θ − θ̂ sin θ). Thus,

3(p · r̂) r̂− p = 3p cos θ r̂− p(r̂ cos θ − θ̂ sin θ) = p(2 cos θ r̂+ sin θ θ̂),

as desired.

[3] Problem 17. �m10 USAPhO 2002, problem B2.

[3] Problem 18. �m10 USAPhO 2009, problem B2. This essential problem introduces useful facts

about dipole-dipole interactions.

Idea 8

The potential energy of a set of point charges is

U =
1

4πϵ0

∑
i ̸=j

qiqj
|ri − rj |

=
1

2

∑
i

qiV (ri).

We sum over i ≠ j to avoid computing the energy of a single point charge due to its interaction

with itself, which would be infinite. For a continuous distribution of charge, we don’t have

this problem, and instead find

U =
1

2

∫
ρ(r)V (r) d3r =

ϵ0
2

∫
|E(r)|2 d3r.

Unlike the other quantities we’ve considered, energy doesn’t obey the superposition principle.

[3] Problem 19. In this problem we’ll apply the above results to balls of charge.

(a) Compute the potential energy of a uniformly charged ball of total charge Q and radius R.

(b) Show that the potential energy of two point charges of charge Q/2 separated by radius R is

lower than the result of part (a).

(c) Hence it appears that it is energetically favorable to compress a ball of charge into two point

charges. Is this correct?

Solution. (a) We can find the potential by building up the ball by placing charges from infinity.

Consider a shell of charge at radius r, and let the charge density by ρ = Q/(43πR
3). The

energy needed to put the shell there is dU = kQenc dQ/r, where Qenc =
4
3ρπr

3 is the charge

inside and dQ = 4ρπr2 dr is the charge in the shell added to the sphere. Then the energy

needed to build the ball, which is the potential energy of the ball, is

Ua =

∫ R

0
kQ

r3

R3
(3Qr2 dr/R3)/r =

3kQ2

R6

∫ R

0
r4d r =

3kQ2

5R
=

3Q2

20πϵ0R
.

(b) From U = kq1q2/r, we find that for two point charges the potential energy is

Ub =
kQ2

4R
=

Q2

16πϵ0R

which is less than Ua.

17

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

(c) It’s wrong because in part (b), the energy needed to create the point charges, by squeezing

the two halves of the ball down, is not included. Plugging in a radius of zero into part (a), we

see that this energy is actually infinite. (Of course, in reality it doesn’t take infinite energy

to produce electrons, which are point charges. Classical electrodynamics breaks down when

describing such a process, which can only be properly understood within relativistic quantum

field theory.)

[3] Problem 20. An insulating circular disc of radius R has uniform surface charge density σ.

(a) Find the electric potential on the rim of the disc.

(b) Find the total electric potential energy stored in the disc.

Solution. (a) Place the origin at a point on the rim and use polar coordinates. Because the

polar equation of a circle is r = 2R cos θ, we have

V =

∫ π/2

−π/2
dθ

∫ 2R cos θ

0

σ

4πϵ0
dr =

∫ π/2

−π/2

σR

2πϵ0
cos θ dθ =

σR

πϵ0
.

(b) Consider building up the ring outward in radius. When we add charges to bring the radius

from r to r + dr, we do work

dW = V dq =
σr

πϵ0
(2πrσ dr) =

2σ2r2

ϵ0
dr

which means

W =

∫ R

0

2σ2r2

ϵ0
dr =

2σ2R3

3ϵ0
.

[3] Problem 21. Consider a uniformly charged ball of total charge Q and radius R. Decompose this

ball into two parts, A and B, where B is a ball of radius R/2 whose center is a distance R/2 of the

ball’s center, and A is everything else. Find the potential energy due to the interaction of A and B,

i.e. the work necessary to bring in B from infinity, against the field of A.

Solution. If we tried to compute the potential energy directly, by integrating over A and B, we

would get messy integrals. Instead, let’s consider bringing in B in three steps:

1. At infinity, compress B into a point charge Q/8.

2. Move this point charge to the center of the B-shaped hole in A.

3. Expand the point charge back into the original shape of B.

Our first claim is that the total work needed to do steps (1) and (3) is zero. These two steps are very

close to being opposites; the only difference in that in step (3), the expansion takes place within

the field of A. By the same reasoning as in problem 1, the field of A within the B-shaped hole is

constant, with magnitude

E =
k(Q/8)

(R/2)2
=

kQ

2R2

This constant field does no net work when B is expanded, because the positive work done on one

half of B is cancelled by the negative work on the other half.
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Therefore, we only have to calculate the work done for step (2), which is easy. Applying

superposition and the shell theorem, the work needed to bring the point charge to the point where

the surface of A meets the surface of the B-shaped hole is

W1 =
Q

8

(
kQ

R
− k(Q/8)

R/2

)
.

Next, moving the point charge from this point to the center of the B-shaped hole takes work

W2 =
R

2

Q

8
E =

kQ2

32R
.

The total work is

W1 +W2 =
kQ2

8R
.

[2] Problem 22 (PPP 149). A distant planet is at a very high electric potential compared with Earth,

say 106V higher. A metal space ship is sent from Earth for the purpose of making a landing on the

planet. Is the mission dangerous? What happens when the astronauts open the door on the space

ship and step onto the surface of the planet?

Solution. As the space ship approaches the planet, its potential gradually increases from that of

the Earth, to that of the distant planet. Meanwhile, all the astronauts inside are doing just fine

since the ship acts like a Faraday cage. Once the ship lands, it’s already at the same potential as

the planet, and when the astronauts step out, nothing happens. In other words, it’s electric field

that’s dangerous, not potential, and the electric fields in this problem are always small.

Another way to see that there’s no danger is to replace electric fields with gravitational fields,

and thus electric potential with gravitational potential. An elevator in a skyscraper takes you from

a low to a very high gravitational potential. But nothing violent happens when you get off!

Example 8

Since Newton’s law of gravity is so similar to Coulomb’s law, the results we’ve seen so far

should have analogues in Newtonian gravity. What are they? For example, what’s the

gravitational Gauss’s law?

Solution

The fundamental results to compare are

F = −Gm1m2

r2
, F =

q1q2
4πϵ0r2

where the minus sign indicates that the gravitational force is attractive, while the electrostatic

force between like charges is repulsive. Then we can transform a question involving (only

positive) electric charges to one involving masses if we map

q → m,
1

4πϵ0
→ −G, E → g.

Thus, while electrostatics is described by

∇×E = 0, ∇ ·E =
ρ

ϵ0
,

∮
E · dS =

Q

ϵ0
,
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the gravitational field is described by

∇× g = 0, ∇ · g = −4πGρm,

∮
g · dS = −4πGM

where ρm is the mass density. Similarly, the potential energy can be written in two ways,

U =
1

2

∫
ρm(r)ϕ(r) d3r = − 1

8πG

∫
|g(r)|2 d3r

where ϕ(x) is the gravitational potential. This result was first written down by Maxwell.

Remark

Here’s a philosophical question: is potential energy “real”? You likely think the answer

is obvious, but about half of your friends probably think the opposite answer is obviously

correct! In fact, in the 1700s, there was a lively debate over whether the ideas of kinetic

energy and momentum, which at the time were given various other names, were worthwhile.

Which one of the two was the true measure of motion? In our modern language, proponents

of energy pointed out that the momentum always vanished in the center of mass frame,

which made it “trivial”, while supporters of momentum replied that kinetic energy was

clearly not conserved in even the simplest of cases, like inelastic collisions.

In the 1800s, thermodynamics was developed, allowing the energy seemingly lost in inelastic

collisions to be accounted for as internal energy. But there still remained the problem that

kinetic energy was lost in simple situations, such as when balls are thrown upward. By the

mid-1800s, the modern language that “kinetic energy is converted to potential energy” was

finally standardized, but it was still common to read in textbooks that potential energy was

fake, a mathematical trick used to patch up energy conservation. After all, potential energy

has some suspicious qualities. If a ball has lots of potential energy, you can’t see or feel it, or

even know it’s there by considering the ball alone. It doesn’t seem to be located anywhere

in space, and its amount is arbitrary, as a constant can always be added.

In the late 1800s, a revolution on physics answered some of these questions. Maxwell and his

successors recast electromagnetism as a theory of fields, and showed that the dynamics of

charges and currents were best understood by allowing the fields themselves to carry energy

and momentum. We’ll cover this in detail in E7, but for now, it implies that electrostatic

potential energy is fundamentally stored in the field, with a density of ϵ0E
2/2. This implies

that its location and total amount are directly measurable.

Maxwell believed that the dynamics of fields emerged from the microscopic motions

and elastic deformations of an all-pervading ether, in the same way that, say, a fluid’s

velocity field emerges from the average motion of fluid molecules. This makes it manifestly

positive, so he was disturbed to find that the energy density of a gravitational field is negative!

A few decades later, the arrival of special relativity answered some questions and reopened

others. On one hand, it demolished Maxwell’s vision of the ether. On the other hand, it finally
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answered the question of whether all kinds of potential energy are “real”, and it got rid of

the freedom to add arbitrary constants. That’s because in special relativity, the total energy

of a system at rest is related to its mass by E = mc2, and the mass is directly measurable.

This finally puts thermal energy, elastic potential energy, and field energy on an equal footing.

Here’s the most modern view of energy conservation. All particles and their interactions are

fundamentally described by relativistic quantum fields. A famous result called Noether’s

theorem implies that whenever such a theory is time-translationally symmetric, there

is a conserved quantity which we call the energy. (The distinction between kinetic and

potential energy becomes irrelevant; it’s all just energy.) The density of energy in space

can be computed from the state of the fields, but it doesn’t need to be explained, as

Maxwell imagined, by the internal motion of whatever the fields are made of. The fields are

fundamental: they aren’t made of anything; instead, they make up everything!

What happens when we throw gravity into the mix? As we’ll discuss further in R3, it turns

out that at nonrelativistic velocities, the dynamics of gravitating particles can be described

by “gravitoelectromagnetism”, a theory closely analogous to electromagnetism, where moving

masses also source “gravitomagnetic” fields Bg, which result in mv × Bg forces. But the

situation gets much more subtle when we upgrade to full general relativity. Here, the notion

of a gravitational field disappears completely, and is replaced by the curvature of spacetime,

making it hard to define an energy density for it at all. For an accessible overview of the

debate, see this paper. Ultimately, though, it doesn’t matter that much, since it doesn’t

impair our ability to use either Newtonian gravity or general relativity.

Example 9

For an infinite line of linear charge density λ, find the potential V (r) by dimensional analysis.

Solution

This example illustrates a famous subtlety of dimensional analysis. The only quantities in

the problem with dimensions are λ, ϵ0, and r. To get the electrical units to balance, we have

V (r) =
λ

2πϵ0
f(r)

where f(r) is a dimensionless function. But there are no nontrivial dimensionless functions

of a dimensionful quantity r. The only possibilities are that f(r) is a dimensionless constant,

or that f(r) is infinite. In the first case, the electric field would vanish, which can’t be right.

In the second case, it is unclear how to calculate the electric field at all.

In fact, the electric potential is infinite, if you insist on the usual convention of setting

V (∞) = 0. In that case, we have

V (r) =

∫ ∞

r

λ

2πϵ0

dr

r
= ∞

independent of r. But this is useless; to get a finite result we can actually work with, we

need to subtract off an infinite constant from the potential. Equivalently, we need to set the
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potential to be zero at some finite distance r = r0. This process is known as renormalization,

and it is extremely important in modern physics. After renormalization, we have

V (r) =
λ

2πϵ0
log

r0
r

which is perfectly consistent with dimensional analysis.

Notice that in the process of renormalization, a new dimensionful quantity r0 appeared out

of nowhere. This phenomenon is known as dimensional transmutation. Of course, physical

predictions don’t depend on this new scale (e.g. the electric field is independent of r0), but

you can’t write down quantities like the potential without it.

3 Conductors

Idea 9

In electrostatic conditions, E = 0 inside a conductor, which implies the conductor has constant

electric potential V . This further implies that E is always perpendicular to a conductor’s

surface. By Gauss’s law, the conductor has ρ = 0 everywhere inside, so all charge resides on

the surface.

Example 10

Consider a point on the surface of a conductor with surface charge density σ. Show that the

outward pressure on the charges at this point is σ2/2ϵ0.

Solution

Gauss’s law tells us that the difference of the electric fields right inside and outside the

conductor at this point is

Eout − Ein =
σ

ϵ0

by drawing a pillbox-shaped Gaussian surface. But we also know that Ein = 0 since we’re

dealing with a conductor, so Eout = σ/ϵ0.

Let’s think about how this electric field is made. If there were no charges around except for

the ones at this surface, then the interior and exterior fields would have been ±σ/2ϵ0. This

means that all of the other charges, that lie elsewhere on the surface of the conductor, must

provide a field σ/2ϵ0 here, so that Ein cancels out.

The pressure on the charges at this point on the surface is equal to the product of the surface

charge density with the field due to the rest of the charges, since the charges at this point

can’t exert an overall force on themselves, so

P = σ

(
σ

2ϵ0

)
=

σ2

2ϵ0
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as required. Equivalently, we can conclude that P = ϵ0E
2
out/2.

Example 11

Is the charge density at the surface of a charged conductor usually greater at regions of higher

or lower curvature?

Solution

We can’t answer this question directly, because it is essentially impossible to find the

charge distribution of an irregularly shaped conductor. However, we can get some insight

by considering the limiting case of a conductor made of two spheres of radii R1 and R2,

connected by a very long rod.

For the potential to be the same at both spheres, we must have Q1/R1 = Q2/R2, so the

charge is proportional to the radius, and the charge density is inversely proportional to the

radius. Thus, there’s generally higher charge density at sharper points of the conductor.

[1] Problem 23. Show that any surface of charge density σ with electric fields E1 and E2 immediately

on its two sides experiences a force σ(E1 + E2)/2 per unit area. (This is a generalization of the

example above, where one side was inside a conductor.)

Solution. Let E be the field due to all the other charges. Again, we have E1 = E+ σ/2ϵ0n̂ and

E2 = E− σ/2ϵ0n̂. Thus, E = 1
2(E1 +E2), and the force per area is σE.

[2] Problem 24. Is it possible for a single solid, isolated conductor with a positive total charge to

have a negative surface charge density at any point on it? If not, prove it. If so, sketch an example.

Solution. This can’t happen. Note that the surface of the conductor has a constant, positive

potential. Now suppose there was a region with negative charge on the conductor, and consider

a field line that ends on such a charge. It can’t have come from infinity, because the potential at

infinity is lower than that of the conductor. And it can’t have come from elsewhere on the conductor,

because the conductor is an equipotential. This yields a contradiction.

Idea 10: Existence and Uniqueness

In a system of conductors where the total charge or potential of each conductor is specified,

there exists a unique charge configuration that satisfies those boundary conditions.

This is very useful because in many cases, it is difficult to directly derive the charge distribu-

tions or fields. Instead, sometimes one can simply insightfully guess an answer; then it must

be the correct answer by uniqueness. For further discussion, see section 2.5 of Griffiths.

Example 12

Consider a conductor with nonzero net charge, and an empty cavity inside. Show that the

electric field is zero in the cavity.
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Solution

Let’s consider a second conductor with the same net charge and the same shape, but

without the cavity. By the existence and uniqueness theorem, we know there exists

some charge configuration on the second conductor’s surface which satisfies the boundary

conditions, namely that the electric field vanishes everywhere inside the conductor. In par-

ticular, that means the field is zero where the cavity of the original conductor would have been.

Now consider the original conductor again. If we give this conductor precisely the same

surface charge distribution, then this will again solve the boundary conditions, and it’ll have

no field in the cavity. But by the existence and uniqueness theorem, the charge distribution

is unique, so this is the only possible answer: the field must be zero in the cavity.

If this is your first time seeing this, it can sound like a fast-talking swindle (which is why I

made it an example rather than a problem!). It looks like we used no effort and got a strong

conclusion out. Of course, that’s because all the work is done by the uniqueness theorem.

[1] Problem 25. Consider a spherical conducting shell with an arbitrary charge distribution inside,

with net charge Q. Find the electric field outside the shell.

Solution. The shell is an equipotential. The field of a point charge Q at the center of the shell

hence satisfies the boundary conditions. By the uniqueness theorem, this is the only solution.

[2] Problem 26 (Purcell 3.33). The shaded regions represent two neutral conducting spherical shells.

Carefully sketch the electric field. What changes if the two shells are connected by a wire?

Solution. The results are shown below.
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Whether or not there are any field lines coming from the charge outside the shell depends on how

close that charge is to the shell. (The entire field configuration in this problem can be found exactly

using the method of images, as shown in E2.) In the case that the two spheres are connected with

a wire, the field in between the two spheres disappears, but nothing else changes.

[3] Problem 27. �W10 USAPhO 2014, problem A4.

[4] Problem 28 (MPPP 150). A solid metal sphere of radius R is divided into two parts by a planar

cut, so that the surface area of the curved part of the smaller piece is πR2. The cut surfaces are

coated with a negligibly thin insulating layer, and the two parts are put together again, so that the

original shape of the sphere is restored. Initially the sphere is electrically neutral.

The smaller part of the sphere is now given a small positive electric charge Q, while the larger

part of the sphere remains neutral. Find the charge distribution throughout the sphere, and the

electrostatic interaction force between the two pieces of the sphere.

Solution. We know that distributing charge uniformly on the outer surface of the entire sphere will

give a valid configuration, in the sense that the field is everywhere perpendicular to the conductors.

Similarly, distributing equal and opposite charges uniformly on the two flat faces will give a valid

configuration, since it acts like a parallel plate capacitor, making the field vanish everywhere outside.

Neither of these solutions have the right total charge on each piece, but we can fix this by

superposing the two. By solving a system of two equations, we find the charge distribution is

• total charge Q distributed uniformly on the sphere,

• charges ±(3/4)Q distributed uniformly on the flat surfaces.

The two flat faces attract each other and the two curved faces repel each other; there are no other

forces by the shell theorem. The pressure on the flat faces is σ2/2ϵ0. With a little trigonometry, we

find the area of the flat faces is (3/4)πR2, giving a force

F1 =
3Q2

8πϵ0R2
.

As for the repulsive force, using the result of problem 11 we get

F2 = − 3Q2

128πϵ0R2
, Ftot = F1 + F2 =

45

128

Q2

πϵ0R2
.

[3] Problem 29. In this problem we’ll work through a heuristic proof of a version of the uniqueness

theorem. In particular, we will show that for a system of conductors in empty space, specifying the

total charge on each conductor alone specifies the entire surface charge distribution.
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(a) Suppose for the sake of contradiction that two different charge distributions can exist, and

consider their difference, which has zero total charge on each conductor. Argue that at least

one conductor must have electric field lines both originating from and terminating on it.

(b) Show that at least one of these field lines must originate from or terminate on another one of

the conductors.

(c) By generalizing this reasoning, prove the desired result. (Hint: consider the conductors with

nonzero surface charges that have the highest and lowest potentials.)

Solution. (a) Since the overall charge distributions are different, at least one conductor C must

have different charge distributions in the two cases. So when we consider the difference, C

has areas of both positive and negative surface charge. Field lines come out of the former,

and go into the latter.

(b) The field lines can connect back to C, because by following the field line, one would prove

that C has a higher potential than itself, which is impossible. They also can’t all go off to

infinity, because we can consider “infinity” to just be a big, far away neutral conductor at zero

potential. If lines both came from infinity to C and from C to infinity, then C would again

have a higher potential than itself, which is impossible. So some field line must go between C

and another conductor C ′.

(c) By assumption, at least some of the conductors have nontrivial surface charges on them. So

among those conductors, consider the one with the highest potential ϕmax. At we argued in

part (a), this conductor has to have both field lines coming from it and going into it. Since

potential decreases along field lines, the field lines going into it can’t come from any of the

other conductors, so they have come from infinity. Since infinity is at zero potential, we have

ϕmax ≤ 0.

Now consider the conductor with the lowest potential ϕmin, which has nontrivial surface charges.

Again, at least some field lines have to leave this conductor, but they can’t go anywhere except

for infinity. Since infinity is at zero potential, ϕmin ≥ 0. This forces ϕmin = ϕmax = 0, so

everything must be at zero potential, which means there aren’t any electric field lines at all.

Example 13: Griffiths 7.6

A wire loop of height h and resistance R has one end placed inside a parallel plate capacitor

with electric field E, as shown.

The other end of the loop is far away, where the field is negligible. Find the emf in the loop.

Solution

This is a trick question: if the answer were nonzero, the current would run forever, yielding a

perpetual motion machine. Electrostatic fields always produce zero total emf along any loop.

The σh/ϵ0 voltage drop inside the capacitor is canceled out by the voltage drop due to the
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fringe fields, which are small, but accumulate over a long distance. The point of this example

is that, while we can ignore fringe fields for some calculations, they are often essential to get

a consistent overall picture. We’ll revisit the subtleties of fringe fields in E2.

[2] Problem 30 (Purcell 3.2). Spheres A and B are connected by a wire; the total charge is zero. Two

oppositely charged spheres C and D are brought nearby, as shown.

The spheres C and D induce charges of opposite sign on A and B. Now suppose C and D are

connected by a wire. Then the charge distribution should not change, because the charges on C

and D are being held in place by the attraction of the opposite charge density. Is this correct?

Solution. This isn’t correct. To see this rigorously, we can use the uniqueness theorem. After

connecting the wires, we have two conductors (A/B, and C/D), each with zero net charge. One

possible solution is to have zero charge everywhere. By uniqueness, this is the only possible solution,

so anything else cannot have been in equilibrium.

That is rigorous, but it might not be intuitive; after all, it sure looks like the charges on C are

stuck where they are. However, though the charges on C are attracted towards A, they also strongly

repel each other. It’s this repulsion that causes charge on C to start flowing to D when the wire is

connected.
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