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Electromagnetism III: Magnetostatics
Chapters 4 and 6 of Purcell cover DC circuits and magnetostatics, as does chapter 5 of Griffiths. For

advanced circuits techniques, see chapter 9 of Wang and Ricardo, volume 2. Chapter 5 of Purcell

famously derives magnetic forces from Coulomb’s law and relativity. It’s beautiful, but not required

to understand chapter 6; we will cover relativistic electromagnetism in depth in R3. For further

discussion, see chapters II-12 through II-15 of the Feynman lectures. There is a total of 82 points.

1 Static DC Circuits

We continue with DC circuits, in more complex setups than in E2.

Idea 1

When analyzing circuits, it is sometimes useful to parametrize the currents in the circuits

in terms of the current in each independent loop. This is typically more efficient, because it

enforces Kirchoff’s junction rule automatically, leading to fewer equations.

Example 1: Imbalanced Wheatstone Bridge

Find the current through the following circuit, if the battery has voltage V .

Solution

This circuit can’t be simplified using series and parallel combinations, so instead we

use Kirchoff’s rules directly. From the diagram, we see the circuit has three loops.

Let I1 be the clockwise current on the left loop, I2 be the clockwise current through

the top-right loop, and I3 be the clockwise current through the bottom-right loop. For

instance, this means that the current flowing downward through the top-left resistor is I1−I2.

The three Kirchoff’s loop rule equations are

3I1R− I2R− 2I3R = V,

4I2R− I1R− I3R = 0,

4I3R− 2I1R− I2R = 0.

Adding the last two equations shows that

I1 = I2 + I3
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and plugging this back in shows that 3I2 = 2I3, so we have

I2 =
2

5
I1, I3 =

3

5
I1.

Since the answer to the question is just I1, we can now plug this back into the first equation,

V

R
= 3I1 − I2 − 2I3 =

(
3− 2

5
− 6

5

)
I1 =

7

5
I1.

This gives the answer, 5V/7R.

Incidentally, the Wheatstone bridge is a famous circuit with the same topology. We note that

the current through the middle resistor is zero when the ratios between the top and bottom

resistances match on both sides of it. Hence if three of these outer resistances are known,

we can adjust one of them until the current through the middle resistor vanishes, thereby

measuring the fourth resistor.

Idea 2

Since Kirchoff’s loop equations are linear, currents and voltages in a DC circuit with multiple

batteries can be found by superposing the currents and voltages due to each battery alone.

Idea 3: Thevenin’s Theorem and Norton’s Theorem

Consider any system of batteries and resistors, with two external terminals A and B. Suppose

that when a current I is sent into A and out of B, then a voltage difference V = VA − VB

appears. From an external standpoint, the function V (I) is all we can measure.

Now, by the linearity of Kirchoff’s rules, V (I) is a linear function, so we can write

V (I) = Veq + IReq.

In other words, V (I) is exactly the same as if the entire system were a resistor Req in series

with a battery with emf Veq (with the positive end pointing towards A). This generalizes

the idea of replacing a system of resistors with an equivalent resistance, and is known as

Thevenin’s theorem.

We can also flip this around. Note that I(V ) must also be a linear function, and we can write

I(V ) = Ieq +
V

Req
.

This is precisely the I(V ) of an ideal current source Ieq (sending current towards B) in

parallel with a resistor Req. (An ideal current source makes a fixed current flow through it,

just like a battery creates a fixed voltage across it.) This is known as Norton’s theorem.

Since these functions are inverses of each other, you can see that the Req’s in both equations

above are the same (both are equal to the ordinary equivalent resistance), and Veq = −IeqReq.
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Example 2

Consider some batteries connected in parallel, with emfs Ei and internal resistances Ri. What

is the Thevenin equivalent of this circuit?

Solution

The equivalent resistance is simply

Req =

(∑
i

1

Ri

)−1

.

To infer Veq, we just need one more V (I) value. The most convenient is to set V = 0, shorting

all of the batteries. Each battery alone would produce a current of Ei/Ri, so

0 = Veq +

(∑
i

Ei
Ri

)
Req.

Thus, we have

Veq =

(∑
i

Ei
Ri

)∑
j

1

Rj

−1

.

Remark

With ideal batteries, it’s easy to set up circuits that don’t make any sense.

For example, in the above circuit, Kirchoff’s rules don’t determine the currents; they only

say that i1 + i2 = 1A. If the emfs of the batteries were different, the situation would be

even worse: the equations would be contradictory, with no solution at all! In real life, this is

avoided because all batteries have some internal resistance. Adding such a resistance to each

battery, no matter how small, resolves the problem and gives a unique solution.

[2] Problem 1 (Purcell 4.12). Consider the circuit below.
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(a) Find the potential difference between points a and b.

(b) Find the equivalent Thevenin resistance and emf between points a and b.

Solution. (a) We’ll use loop currents, with positive being clockwise. Let the loop currents be

I1, I2, I3, from top to bottom. We see that

E − E − 2RI1 +RI2 = 0

E − 3RI2 +RI3 +RI1 = 0

−E − 2RI3 +RI2 = 0,

or

I2 = 2I1

3I2 − I3 − I1 = E/R
I2 − 2I3 = E/R.

This can be solved to give I1 = E/8R, I2 = E/4R, and I1 = −3E/8R. We see that Vb − Va =

(I2 − I3)R = 5E/8 .

(b) We’ll do this in two ways for variety. First, note that we already found the voltage between a

and b in part (a), and this is precisely the Thevenin emf, Veff = 5E/8. The Thevenin resistance

is simply the equivalent resistance between a and b. By a straightforward application of the

series and parallel rules, this is Reff = 3R/8 .

Second, suppose we short points a and b with a wire. Then by Thevenin’s theorem, the current

flowing through that wire should be I = Veff/Reff. We already know Veff from part (a). To

compute the current, we just use Kirchoff’s loop rules again; these are now as follows.

E − E − 2RI1 +RI2 = 0

E − 2RI2 +RI1 = 0

−E −RI3 = 0

Solving these equations gives I1 = E/3R, I2 = 2E/3R, and I3 = −E/R. The current through

the wire is now I2 − I3 = 5E/3R. Thus, Reff = (5E/8)/(5E/3R) = 3R/8.
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[2] Problem 2 (Wang). A circuit containing batteries and resistors has two terminals. When an ideal

ammeter is connected between them, the reading is I1. When a resistor R is connected between

them, the current through the resistor is I2, in the same direction. What would be the reading V

of an ideal voltmeter connected between them?

Solution. We consider the Thevenin equivalent, i.e. the function V (I). The first piece of information

tells us that when V = 0, I = I1. The second tells us that when V = −I2R, then I = I2. Thus,

0 = Veq + I1Req, −I2R = Veq + I2Req.

Solving this system of equations gives

Veq =
I1I2R

I2 − I1
, Req =

I2R

I1 − I2
.

When an ideal voltmeter is connected, we have I = 0, so

V = Veq =
I1I2R

I2 − I1
.

Note that your answer may differ by a harmless sign, which ultimately depends on your sign

conventions for I1 and I2 (i.e. which terminal is A and which terminal is B).

[3] Problem 3. �W10 USAPhO 2015, problem A2.

Now we give a few problems on current flow through continuous objects. Fundamentally, all one

needs for these problems is the definition J = σE, and superposition.

Example 3

Consider two long, concentric cylindrical shells of radii a < b and length L. The volume

between the two shells is filled with material with conductivity σ(r) = k/r. What is the

resistance between the shells, and the charge density?

Solution

To find the resistance, we compute the current I when a voltage V is applied between the

shells. By symmetry, in the steady state the current density must be

J(r) =
I

2πrL
r̂.

On the other hand, we also know that

V =

∫
E · dr =

∫ b

a

I

2πrLσ
dr =

I(b− a)

2πkL

from which we conclude

R =
b− a

2πkL
.

Note that the radial electric field between the shells is constant, so

E(r) =
V

b− a
r̂.
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This means that in the steady state, there must be a nonzero charge density between the

shells. (If there weren’t, then we would have E(r) ∝ 1/r, rather than a constant.)

To find the charge density explicitly, it’s easiest to use Gauss’s law in differential form in

cylindrical coordinates. We use the form of the divergence derived in E1,

∇ ·E =
1

r

∂(rEr)

∂r
+ (other terms) =

1

r

V

b− a
=

ρ

ϵ0

thus showing that the charge density is proportional to 1/r. Of course, we could also get this

result by applying Gauss’s law in integral form, to concentric spheres.

[2] Problem 4 (Cahn). A washer is made of a material of resistivity ρ. It has a square cross section

of length a on a side, and its outer radius is 2a. A small slit is made on one side and wires are

connected to the faces exposed.

Since the washer has an irregular shape, the current distribution inside it is complicated: it spreads

out from the first wire, goes around the washer, and converges into the second wire. However, the

situation is simpler if we glue a perfectly conducting square plate, of side length a, to each exposed

face. Find the resistance in this case.

Solution. Since the plates are conducting, the potential doesn’t depend on the radius r at the plates

themselves, so by rotational symmetry, it doesn’t depend on r anywhere in the washer. Therefore,

there is no radial current; all the current flows tangentially, so we can think of the washer as a set

of radial rings in parallel.

Split the washer into a bunch of radial rings with width dr. We see that r ranges from a to 2a.

Each little ring has resistance ρ(2πr)/(adr), and they are all effectively connected in parallel. Thus,

1

R
=

∫ 2a

a
ρ−1 a

2πr
dr = ρ−1 a

2π
log 2,

giving the answer,

R =
2π

log 2

ρ

a
.

[3] Problem 5 (BAUPC 1995). An electrical signal can be transferred between two metallic objects

buried in the ground, where the current passes through the Earth itself. Assume that these objects
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are spheres of radius r, separated by a horizontal distance L ≫ r, and suppose both objects are

buried a depth much greater than L in the ground. If the Earth has uniform resistivity ρ, find the

approximate resistance between the terminals. (Hint: consider the superposition principle.)

Solution. We can consider one object at a time, and then use superposition to find the combined

effect of both. Suppose that current I comes out from one of the objects. Placing this object at the

origin, we have

J =
I

4πr2
r̂, E =

ρI

4πr2
r̂.

Therefore, the potential difference between this object and where the other object would be is

V =
ρI

4π

∫ L

r

dr

r2
≈ ρI

4πr

where we used r ≪ L. Finally, the other object takes in current I, with its J, E, and V superposing

with the first object. Thus, the total potential difference is ρI/2πr, so

R =
V

I
=

ρ

2πr
.

[3] Problem 6 (PPP 162). A plane divides space into two halves. One half is filled with a homogeneous

conducting medium, and physicists work in the other. They mark the outline of a square of side

a on the plane and let a current I0 in and out at two of its neighboring corners. Meanwhile, the

measure the potential difference V between the two other corners.

Find the resistivity ρ of the medium.

Solution. Consider the case where there is current coming in just at A. Then, J always points

radially outward from A and has (hemi)spherical symmetry, with magnitude

J · 2πr2 = I0 =⇒ J =
I0

2πr2
.

Then we have

E =
I0

2πσr2
r̂

where σ is the conductivity of the material, which implies

VD − VC =

∫ √
2a

a

I0
2πσr2

dr =
I0

2πσa
(1− 1/

√
2).
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Similarly, for the case where the current is coming out of B, we have

VD − VC =
I0

2πσa
(1− 1/

√
2).

The actual voltage drop is the superposition of the two,

∆V =
I0ρ

2πa
(2−

√
2)

where ρ = 1/σ is the resistivity. Then ρ can be calculated as

ρ =
2πa∆V

I0(2−
√
2)

=
πa(2 +

√
2)∆V

I0
.

[3] Problem 7 (MPPP 174). We aim to measure the resistivity of the material of a large, thin,

homogeneous square metal plate, of which only one corner is accessible. To do this, we chose points

A, B, C and D on the side edges of the plate that form the corner.

Points A and B are both 2d from the corner, whereas C and D are each a distance d from it. The

length of the plate’s sides is much greater than d, which, in turn, is much greater than the thickness

t of the plate. If a current I enters the plate at point A, and leaves it at B, then the reading on a

voltmeter connected between C and D is V . Find the resistivity ρ of the plate material.

Solution. The reason this problem is a lot harder than the previous one is that there is a nontrivial

boundary condition, namely that the current density at the edges of the plate is parallel to the plate.

The key insight is that we can use the following “image current” configuration to automatically

satisfy the original problem’s boundary conditions, but on an infinite plate.
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We have a new current source and sink respectively at the reflections of A and B in O. The current

sources and sinks all have magnitude 2I, rather than I, because only half of the currents at A and

B actually enter and exit the physical plate, shaded in gray.

Now, if a current 2I enters the plate, the current at a distance r is 2I
2πrt , so the electric field at a

distance r is ρI
πrt (pointing radially outward), so the potential is ρI

πt log(r0/r) for some arbitrary r0,

which we’ll take to be the same for all current sources and sinks. Then

VC =
ρI

πt
(log(r0/d) + log(r0/3d)− 2 log(r0/

√
5d)) =

ρI

πt
log(5/3).

By symmetry, VC = −VD. Thus,

V = 2VC =
2ρI

πt
log(5/3), ρ =

πt

2 log(5/3)

V

I
.

Remark

Setups like those in the previous two problems are commonly used to measure resistivities,

but why do they use a complicated “four terminal” setup? Wouldn’t it have been easier to

just attach two terminals, send a current I through them, and measure the voltage drop

V ? The problem with this is that it also picks up the resistance R of the contacts between

the terminals and the material, along with the resistances of the wires. By having a pair of

terminals measure voltage alone, drawing negligible current, we avoid this problem.

[4] Problem 8. [A] This problem is just for fun; the techniques used here are too advanced to appear on

Olympiads. We will prove Rayleigh’s monotonicity law, which states that increasing the resistance

of any part of a resistor network increases the equivalent resistance between any two points. This

may seem obvious, but it’s actually tricky to prove. The following is the slickest way.

(a) Consider a graph of resistors, where a battery is attached across two of the vertices, fixing

their voltages. Write an expression for the total power dissipated, assuming the voltages at

each vertex are Vi and the resistances are Rij .

(b) The voltages Vi at all the other vertices are determined by Kirchoff’s rules. But suppose you

didn’t know that, or didn’t want to set up those equations. Remarkably, it turns out that

you can derive the exact same results by simply treating the voltages Vi as free to vary, and

setting them to minimize the total power dissipated! Show this result. (This is an example of

a variational principle, like the principle of least action in mechanics.)

(c) For any network of resistors, show that P = V 2/R when V is the battery voltage applied

across two vertices, R is the equivalent resistance between them, and P is the total power

dissipated in the resistors. (This is intuitive, but it’s worth showing in detail to assist with

the next part.)

(d) By combining all of these results, prove Rayleigh’s monotonicity law.

(e) We can use Rayleigh’s monotonicity law to prove some mathematical results. Consider the

resistor network shown below, where the variables label the resistances.
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By considering the resistances before and after closing the switch PQ, show that the arithmetic

mean of two numbers is at least the geometric mean.

(f) Consider the resistor network shown below.

By closing all the switches, show that the arithmetic mean of n numbers is at least the

harmonic mean.

Solution. (a) The power is

P =
∑
i<j

(Vi − Vj)
2

Rij
.

Here the sum over i < j counts all pairs of vertices once. If there is no direct connection

between i and j, the resistance Rij is infinite.

(b) The power is minimized when its derivative is zero, and we are free to vary all voltages except

for the two points where the battery is connected. Let Vi be one of these voltages. Then

∂P

∂Vi
=
∑
j ̸=i

2(Vi − Vj)

Rij
= 0.

Now compare this to how we would solve the problem using Kirchoff’s laws. The fact that

the sum of the voltage drops along a loop is zero is already accounted for, because we already

have specified the voltages at each vertex. The only new equations we would write down

would be charge conservation at each vertex,∑
j ̸=i

Iij = 0.

However, applying Ohm’s law, we see this is precisely the equation that power minimization

has given us!

(c) By the definition of the equivalent resistance, V = IR where I is the total current going

through the circuit. By the definition of power, the power put in by the battery is P = IV ,

since any current going through the circuit must go through the battery. By conservation of

energy, the power dissipated in the circuit is equal to the power put in by the battery. So the

power dissipated is P = IV = V 2/R.

10
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(d) Put a battery of voltage V across the points we are considering. By part (c) Rayleigh’s

monotonicity law is equivalent to the statement that, if we increase any of the Rij , the total

power P dissipated in the resistor network goes down.

We can account for the effect of increasing one of the Rij in two steps. First, suppose we

do so while artificially keeping all the voltages Vi constant. Then by part (a), P decreases.

Second, in reality the voltages quickly rearrange themselves to satisfy Kirchoff’s laws, which

we saw in part (b) is equivalent to minimizing the power. So this further rearrangement can

only further decrease P . This shows the desired result.

(e) Before closing the switch, the resistance is

Ri =
a+ b

2
.

After closing the switch, the resistance is

Rf = 2

(
1

a
+

1

b

)−1

=
2ab

a+ b
.

Closing the switch is equivalent to decreasing RPQ from infinity to zero, so Rf ≤ Ri by

Rayleigh’s monotonicity law. This gives

√
ab ≤ a+ b

2

which is the AM-GM inequality.

(f) Before closing the switches,

Ri =
1

n

∑
i

ai

which is the arithmetic mean. After closing the switches,

Rf = n

(∑
i

1

ai

)−1

which is the harmonic mean. Thus, the arithmetic mean is at least the harmonic mean.

Remark

You might think that Rayleigh’s monotonicity law is too obvious to require a proof; if you

decrease a resistance, how could the net resistance possibly go up? In fact, this kind of

non-monotonicity occurs very often! For example, Braess’s paradox is that fact that adding

more roads can slow down traffic, even when the total number of cars stays the same. A U.S.

Physics Team coach has argued that allowing more team strategies can make a basketball

team score less. For more on this subject, see the paper Paradoxical behaviour of mechanical

and electrical networks or this video.
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Remark

Circuit questions can get absurdly hard, but at some point they start being more about

mathematical tricks than physics. As a result, I haven’t included any such problems here;

they tend not to appear on the USAPhO or IPhO, or in college physics, or in real life, or really

anywhere besides a few competitions. On the other hand, you might find such questions fun!

For some examples, see the Physics Cup problems 2013.6, 2017.2, 2018.1, and 2019.4.

2 RC Circuits

Next we’ll briefly cover RC circuits, our first exposure to a situation genuinely changing in time.

Example 4: CPhO

The capacitors in the circuit shown below were initially neutral. Then, the circuit is allowed

to reach the steady state.

After a long time, what is the charge stored on the 10mF capacitor?

Solution

After a long time, no current flows through the capacitors, so there is effectively a single loop

in the circuit. It has a total resistance 60Ω and a total emf 6V, so the current is I = 0.1A.

Using this, we can straightforwardly label the voltages everywhere on the outer loop.
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To finish the problem, we need to know the voltage V0 of the central node, so we need

one more equation. That equation is charge conservation. We note that the central part

of the circuit, containing the inner plates of the three capacitors, begins uncharged and is

not directly connected to anything else, so it must remain uncharged. (Charge can’t move

through a capacitor!) Suppressing units, this means

20(26− V0) + 20(7− V0) + 10(0− V0) = 0, V0 =
66

5
V

from which we read off the answer,

Q = CV = 0.132C.

[3] Problem 9. �W10 USAPhO 1997, problem A3.

[3] Problem 10 (Purcell 4.18). Consider the two RC circuits below.

(a) The circuit shown below contains two identical capacitors and two identical resistors, with

initial charges as shown above at left. If the switch is closed at t = 0, find the charges on the

capacitors as functions of time.

(b) Now consider the same setup with an extra resistor, as shown above at right. Find the

maximum charge that the right capacitor achieves. (Hint: the methods of M4 can be useful.)

Solution. (a) Let the two loop currents be I1 and I2, both counterclockwise. The loop equations

are Q1/C = I1R and Q2/C = I2R. We also have Ik = −Q̇k. Thus, Qk + RCQ̇k = 0 for

k = 1, 2. Based on the initial conditions, we see then that the solutions are Q1(t) = Q0e
−t/RC

and Q2(t) = 0. (The simple reason Q2(t) is zero is because the middle wire effectively shorts

out the right half of the circuit.)

(b) Again, with the same setup of variables, we get that

Q1/C − 2I1R+ I2R = 0

Q2/C − 2I2R+ I1R = 0.

This is a system of two linear differential equations, which can be solved using the methods

of M4. However, in this case we can just add and subtract the equations, giving

(Q1 +Q2)/C − (I1 + I2)R = 0, (Q1 −Q2)/C − 3(I1 − I2)R = 0.

That is, the sum of the two acts like an RC circuit with time constant RC, while the difference

acts like one with time constant 3RC. (These are the “normal modes”.) By superposing these

solutions and fitting the initial conditions, we get

Q1(t) =
Q0

2
(e−t/RC + e−t/3RC), Q2(t) =

Q0

2
(e−t/RC − e−t/3RC).
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We want to maximize |Q2|, so setting the derivative to zero gives t = 3
2RC log(3), so

|Q2|max =
Q0

3
√
3
.

[3] Problem 11. �W10 USAPhO 2004, problem A1.

[3] Problem 12 (Kalda). Three identical capacitors are placed in series and charged with a battery

of emf E . Once they are fully charged, the battery is removed, and simultaneously two resistors are

connected as shown.

Find the heat dissipated on each of the resistors after a long time.

Solution. In the beginning, the charges on the plates are EC/3,−EC/3, EC/3,−EC/3, EC/3,−EC/3.

After a long time, let the charges on the plates be q1,−q1, q2,−q2, q3,−q3. Note that all currents are

0 now, so we may effectively ignore the resistors and treat the wires as zero resistance. Therefore, the

potential at points connected by wires is the same, so q1 = −q2 = q3. Also, by charge conservation

on the two disjoint pieces (q1,−q2, q3 and −q1, q2,−q3), we see

q1 − q2 + q3 = EC/3,

which implies |q1| = |q2| = |q3| = EC/9. The energy is
∑ 1

2Q
2/C, so the charges dropping by a

factor of 3 means we lose 8/9 of the original total energy, so each resistor dissipates 4/9 of the

original total energy. This is
4

9
· 3 · (EC/3)2

2C
=

2

27
E2C .

[3] Problem 13 (Kalda). Find the time constant of the RC circuit shown below.

Solution. For the purposes of computing the time constant, it is equivalent to assume the capacitor

is already charged, then take out the battery and see how it discharges. Thus all that matters is

the resistance between the capacitor plates, which is

R = R1 +
R2R3

R2 +R3
=

R1R2 +R1R3 +R2R3

R2 +R3
,

so τ = C
R1R2 +R1R3 +R2R3

R2 +R3
.
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[3] Problem 14 (MPPP 175/176). A metal sphere of radius R has charge Q and hangs on an insulating

cord. It slowly loses charge because air has a conductivity σ. In all cases, neglect any magnetic or

radiation effects.

(a) Find the time t for the charge to halve.

(b) By dimensional analysis, t is independent of the radius R of the metal sphere. More generally,

show that t takes the same value if the metal has any shape.

(c) Air has a conductivity of σ ∼ 10−13Ω−1m−1, while water has a conductivity of σ ∼ 10−2Ω−1m−1.

About how long does the charge on an object last, if it is in air or water?

This problem generalizes USAPhO 2010, problem A2, which you can compare.

Solution. (a) We can analyze this as an RC circuit. (The circuit is completed by the “sphere at

infinity”.) The capacitance is the self-capacitance of the sphere,

C = 4πϵ0R.

The resistance is the resistance between the sphere and infinity. The air can be thought of as

a set of resistors in series, with each resistor being a spherical shell of air. Then

Req =

∫
dR =

1

σ

∫ ∞

R

dr

4πr2
=

1

4πσR
.

This gives a time constant of

τ = RC =
ϵ0
σ
.

Therefore, the time is

t =
ϵ0
σ
log 2.

(b) Dimensional analysis doesn’t work, because a general shape is described by many dimensionless

parameters. For example, if the shape was an ellipsoid, we would have to specify its eccentricity.

Instead we use the following more general argument. We note that

I =

∮
J · dS, ΦE =

∮
E · dS

over any surface completely enclosing the object. The right-hand sides are related by J = σE,

and Gauss’s law gives ΦE = Q/ϵ0. Combining these gives

Q̇ = − σ

ϵ0
Q

so the charge decreases exponentially with timescale ϵ0/σ, completely independently of the

shape. (Of course, the sphere is still special, because with the sphere we are guaranteed there

are no magnetism or radiation effects (why?). For a general shape, we have to assume these

effects are negligible, which may or may not be true depending on the value of σ.)

(c) The relevant timescale is ϵ0/σ. Thus we find t ∼ 10 s for air, and t ∼ 1 ns for water.

[5] Problem 15. �h10 IPhO 1993, problem 1. A really neat question with real-world relevance.

[5] Problem 16. �h10 IPhO 2007, problem “orange”. A combination of mechanics and RC circuits.

3 Computing Magnetic Fields
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Idea 4

The Biot–Savart law is

B =
µ0I

4π

∮
ds× r

r3
.

As a consequence, we have Ampere’s law,∮
B · ds = µ0I, ∇×B = µ0J

as well as Gauss’s law for magnetism,∮
B · dS = 0, ∇ ·B = 0.

Idea 5

The force on a stationary wire carrying current I in a magnetic field B is

F = I

∫
ds×B.

The energy of a magnetic field is

U =
1

2µ0

∫
B2 dV.

The magnetic dipole moment of a planar current loop of area A and current I is m = IA,

with m directed perpendicular to the loop by the right-hand rule.

Idea 6: Magnetic Dipoles

Far from a magnetic dipole with magnetic moment m, its magnetic field is just the same as

the electric field of an electric dipole,

B(r) =
µ0m

4πr3
(2 cos θ r̂+ sin θ θ̂) =

µ0

4πr3
(3(m · r̂)r̂−m).

As with the electric dipole field, you don’t need to memorize this, but you should remember

that it’s proportional to the dipole moment, falls off as 1/r3, and be able to sketch it.

You should have already seen basic examples of using the Biot–Savart law in Halliday and Resnick,

such as the field of a circular ring of current on its axis. We’ll start with some problems that are

similarly straightforward, but more technically complex.

[3] Problem 17. This is a key question which will help you understand idea 7. A spherical shell with

radius R and uniform surface charge density σ spins with angular frequency ω about a diameter.

(a) Find the magnetic field at the sphere’s center.

(b) Find the magnetic dipole moment of the sphere.

(c) It can be shown that (1) the magnetic field inside the sphere is uniform, and (2) the magnetic

field outside the sphere is exactly that of a magnetic dipole. (It requires doing some obnoxious
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integrals, as can be seen in section 5.4 of Griffiths.) Using this information, make a qualitatively

accurate sketch of the field.

(d) There is a closely related question in electrostatics: suppose we had two solid spheres of the

same radius R, with volume charge densities ±ρ, and the spheres were displaced by a tiny

distance d ≪ R. Qualitatively, what would the electric field of this setup look like, for r < R

and r > R? How does it differ from your answer to part (c)?

Solution. (a) First, we find the field due to a ring of counterclockwise current I with radius a in

the z = 0 plane at a point directly above the center at some height z. Using the Biot–Savart

law, we see that

B =
µ0I

4π

2πa a√
a2+z2

a2 + z2
ẑ =

µ0I

2

a2

(a2 + z2)3/2
ẑ.

Let us work in spherical coordinates with the axis of rotation being the z axis. Then, at angle

θ, we essentially have a ring of charge of radius a = R sin θ, z = R cos θ, and

dI = σR(dθ)ω(R sin θ) = σR2ω sin θ dθ.

Therefore,

dB =
µ0σR

2ω sin θ dθ

2

R2 sin2 θ

R3
ẑ =

ẑ

2
µ0σωR sin3 θ dθ.

Integrating from 0 to π to obtain the full field,

B =
ẑ

2
µ0σω

∫ π

0
sin3 θ dθ =

2

3
µ0σωR ẑ.

(b) The magnetic dipole moment of a slice is

dm = ẑπ(R sin θ)2ωσR2 sin θ dθ.

Integrating this gives

m =
4

3
πωσR4 ẑ.

(c) The field is as shown below.

The key feature is that the field lines of the dipole outside and the uniform field inside match

up perfectly, so that every field line forms a closed loop; this is Gauss’s law for magnetism.
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(d) We’ve already seen this setup in E1. It’s easy to show by the shell theorem that the electric

field is uniform for r < R, and exactly an electric dipole field for r > R. The crucial difference

is that the uniform field inside points along the dipole moment, rather than against it. As a

result, the electric field switches directions upon crossing r = R. This reflects the fact that

∇× E = 0, so that the line integral of E along any closed path has to vanish. If we follow

a field line, this is only possible if the field switches direction. In addition, compared to the

magnetic case, the field lines don’t close up, because ∇ ·E isn’t zero.

[2] Problem 18 (Purcell 6.12). A ring with radius R carries a current I. Show that the magnetic

field due to the ring, at a point in the plane of the ring, a distance r from the center, is given by

B =
µ0I

2π

∫ π

0

(R− r cos θ)R dθ

(r2 +R2 − 2rR cos θ)3/2
.

In the r ≫ R limit, show that

B ≈ µ0

4π

m

r3

where m = IA is the magnetic dipole moment of the ring, as expected from idea 6.

Solution. Let the ring be centered at the origin, and let the field point be ax̂, and say we are at

an angle θ. Then, dl = (−R sin θ) x̂+ (R cos θ) ŷ, and

r = a x̂−R(cos θ x̂+ sin θ ŷ) = (a−R cos θ) x̂+ (−R sin θ) ŷ.

Note that r = |r| =
√
a2 +R2 − 2aR cos θ. Therefore, by the Biot–Savart law,

dB =
µ0I

4π

R(R− a cos θ)ẑ dθ

(a2 +R2 − 2aR cos θ)3/2
,

so integrating from 0 to 2π and noting that θ and −θ contribute the same, we arrive at the desired

result. Now, to take the r ≫ R limit cleanly and consistently, it’s best to nondimensionalize

everything. Defining x = R/r ≪ 1, we can pull dimensionful factors out of the integral to get

B =
µ0I

2π

rR

r3

∫ π

0

x− cos θ

(1 + x2 − 2x cos θ)3/2
dθ.

Now, it’s not immediately obvious to what order in x we should expand in. If we already know the

answer is proportional to 1/r3, then we can see the answer must be first order in x. But if we didn’t

know that, we could expand to zeroth order, giving

B =
µ0I

2π

R

r2

∫ π

0
(− cos θ) dθ = 0.

The fact that the answer vanishes means we need to go to higher order to find the true answer. At

first order, applying the binomial theorem, the integrand is

(x− cos θ)(1 + x2 − 2x cos θ)−3/2 ≈ (x− cos θ)(1 + 3x cos θ) ≈ − cos θ + x(1− 3 cos2 θ)

where we threw away higher order terms throughout. Then

B =
µ0I

2π

R2

r3

∫ π

0
(1− 3 cos2 θ) dθ.

Using the fact that cos2 θ averages to 1/2 over a cycle, the integral is −π/2, giving

B =
µ0I

4π

πR2

r3
=

µ0

4π

m

r3

as desired.
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[3] Problem 19 (Purcell 6.14). Consider a square loop with current I and side length a centered

at the origin, with sides parallel to the x and y axes. Show that the magnetic field at rx̂ is

B ≈ (µ0/4π)(m/r3) for r ≫ a, as expected from idea 6. Be careful with factors of 2!

Solution. This calculation is a bit subtle. It is tempting to ignore the sides parallel to x̂, because

the current is almost parallel to r, so ds× r is small; more precisely, it is suppressed by a power of

a/r. The sides parallel to ŷ do each give much larger contributions, but they have opposite sign and

nearly cancel out, suppressing their sum by a power of a/r. So all four sides need to be considered.

First consider the segments parallel to x̂. We get a factor of (a/2)/r from the sin θ factor in the

cross product. Similarly, a appears in the Biot–Savart integral in the denominator; however, its

effect here would give higher-order terms in a/r, which we don’t want to keep since they’re much

smaller than the final answer. So the segments each contribute equally, for a total of

B1 = −µ0I

4π

(
aa/2

r

r2
+

aa/2
r

r2

)
= −µ0I

4π

a2

r3
.

Next, the segments parallel to ŷ contribute a total of

B2 =
µ0I

4π

(
a

(r − a/2)2
− a

(r + a/2)2

)
=

µ0I

4π

2a2

r3

where we work to the same accuracy as for B1. Adding the two contributions and using m = Ia2

gives the desired result. If you forget to count B1, you’ll get an answer that is two times too big.

[3] Problem 20. �W10 USAPhO 2012, problem A3.

Idea 7: Magnetic Monopoles

Far away from the center of the dipole, the magnetic field of a magnetic dipole has the same

form as the electric field of an electric dipole. Therefore, we can often replace a magnetic

dipole m with a fictitious pair of “magnetic charges” ±qm separated by d, where qmd = m.

This is called a “Gilbert dipole”, in contrast to a true “Amperian dipole”.

This was the default way to think about magnets in the 1800s, but was largely removed from

American textbooks in the 1950s because it’s misleading in general: magnetic charges don’t

actually exist in magnets, and applying this analogy will give the wrong fields inside the

dipole, as you saw in problem 17 and will see another way in problem 21. However, if we

only care about the field outside the magnet, the analogy works, and it’s often the fastest

way to solve problems. We’ll return to this idea in greater depth in E8.

[3] Problem 21. �m10 USAPhO 2015, problem B2. A key problem which illustrates idea 7.

We now give a few arguments for computing fields using symmetry.

Example 5: PPP 31

An electrically charged conducting sphere “pulses” radially, i.e. its radius changes periodically

with a fixed amplitude. What is the net pattern of radiation from the sphere?
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Solution

There is no radiation. By spherical symmetry, the magnetic field can only point radially.

But then this would produce a magnetic flux through a Gaussian sphere centered around

the pulsing sphere, which would violate Gauss’s law for magnetism. So there is no magnetic

field at all, and since radiation always needs both electric and magnetic fields (as you’ll see

in E7), there is no radiation at all. In fact, outside the sphere the electric field is always

exactly equal to Q/4πϵ0r
2, in accordance with Coulomb’s law.

Example 6

Find the magnetic field of an infinite cylindrical solenoid, of radius R and n turns per unit

length, carrying current I.

Solution

Orient the solenoid along the vertical direction and use cylindrical coordinates. By symmetry,

the field must be independent of z. Now consider the radial component of the magnetic field

Br. Turning the solenoid upside-down is equivalent to reversing the current. But the former

does not flip Br while the latter does, so we must have Br = 0.

Now, by rotational symmetry, the tangential component Bϕ must be uniform. But then

Ampere’s law on any circular loop gives Bϕ(2πr) = 0, so we must have Bϕ = 0 as well.

The only thing left to consider is Bz. By applying Ampere’s law to small vertical rectangles, we

see that Bz is constant unless that rectangle crosses the surface of the solenoid. Furthermore,

Bz must be zero far from the solenoid, so it must be zero everywhere outside the solenoid.

Now, for a rectangle of height h that does cross the surface, Ampere’s law gives∮
B · ds = Bin

z h = µ0Ienc = µ0nIh

which tells us that Bin
z = µ0nI.

Example 7

Now suppose the solenoid has finite length L ≫ R. What do the fringe fields look like?

Solution

In principle we could solve for the exact fringe field by applying the Biot–Savart law to

the solenoid wire, but that would be rather complicated. Instead, let’s approximate the

solenoid as a stack of N = nL evenly spaced circular wire loops. Each one of these loops is a

magnetic dipole µ = πR2I, so the field of each loop well outside of it is just a dipole field.

Summing up all of these dipole fields is still complicated, so let’s use idea 7. We can replace

each wire loop with a pair of magnetic charges ±qm separated by d, with the same magnetic
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dipole moment µ = qmd. If we choose d = 1/n, then the charges of adjacent dipoles cancel,

leaving only charges qm = ±nµ = ±πR2nI on the ends.

Thus, the fringe field of a solenoid, at distances much greater than R, looks like the elec-

tric field of two point charges! This is confirmed by a numeric calculation shown at left below.

This may come as a surprise to you if you’ve read basic, algebra-based introductory physics

textbooks. Many of them contain hand-drawn diagrams like the one shown at right above,

where all the magnetic flux comes neatly out the ends of the solenoids, in straight lines. In

reality, the field sprays out almost spherically symmetrically from the end, with only half

the flux actually going out through the end face, while the rest exits downward through the

sides. (You will show this more directly with a slick argument in problem 23.)

We can also be more quantitative. Suppose the solenoid is vertical and centered at z = 0.

Then the field at a radius r from the solenoid axis, at z = 0, is

B(r) = µ0nI ẑ×


1 r < R

−2R2/L2 R ≪ r ≪ L

−R2L/4r3 L ≪ r

where the first line is the usual solenoid field, the second line is from applying Coulomb’s

law to our dipole analogy (which is only valid when R ≪ r), and the third is from the dipole

field of the two charges (only valid when L ≪ r). As expected, in the limit L ≫ R, the

fringe field outside the solenoid is negligible. Another way of phrasing the result is that most

of the upward flux through the solenoid returns through a downward field which mainly

extends out to r ∼ L. You can see all of these features in the accurate drawing above.

We can draw two lessons from this example. First, misleading diagrams are a common

problem in introductory textbooks. A general rule is that the more basic a textbook is, the

more pictures it’ll have, but the less useful they’ll be. Second, the analogy between Ampere

and Gilbert dipoles is quite useful, and shows up frequently in tricky Olympiad problems.
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Remark: Real Solenoids

Real solenoids are even more complicated. First, we didn’t account for the discreteness of

the wires. We just treated them as forming a uniform current per length K = nI, which is

how we wrote Ienc = nIh. This is valid when you don’t care about looking too closely, i.e. if

your distance to any wire is much larger than the wire spacing 1/n.

Second, the fact that solenoids are made by winding real wires means there is another

contribution to the current, even in the limit n → ∞. The wires are wound with a small

slope, since a net current I still has to move along the solenoid. Another way of saying

this is that the current per length along the solenoid surface is K = nIθ̂+ (I/2πR)ẑ. This

causes a tangential magnetic field Bϕ = µ0I/2πr outside the solenoid. Thus, in practice

many solenoids are “counterwound”: half the wires are wound evenly spaced going up the

axis, and the other half are wound evenly spaced going back down the axis, which closes the

loop and cancels this unwanted field.

[2] Problem 22. A toroidal solenoid is created by wrapping N turns of wire around a torus with a

rectangular cross section. The height of the torus is h, and the inner and outer radii are a and b.

(a) In the ideal case, the magnetic field vanishes everywhere outside the toroid, and is purely

tangential inside the toroid. Find the magnetic field inside the toroid.

(b) There is another small contribution to the magnetic field due to the winding effect mentioned

above. Roughly what does the resulting extra magnetic field look like? If you didn’t want

this additional field, how would you design the solenoid to get rid of it?

Solution. (a) Applying Ampere’s law on a circular loop gives B(r)(2πr) = µ0NI, so

B(r) =
µ0NI

2πr
.

(b) Note that the twisting of the wire adds an effective small current in the tangential direction.

This looks like a current loop, so, e.g. it produces a magnetic field pointing vertically through

the toroid’s hole. We can remove it by using a bunch of current loops instead of a single

winding wire, or by using counterwinding: after winding the wire around the toroid once

clockwise, wind it around again counterclockwise.

[3] Problem 23 (Purcell 6.63). A number of simple facts about the fields of solenoids can be found

by using superposition. The idea is that two solenoids of the same diameter, and length L, if joined

end to end, make a solenoid of length 2L. Two semi-infinite solenoids butted together make an

infinite solenoid, and so on.

22

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Prove the following facts.

(a) In the finite-length solenoid shown at left above, the magnetic field on the axis at the point

P2 at one end is approximately half the field at the point P1 in the center. (Is it slightly more

than half, or slightly less than half?)

(b) In the semi-infinite solenoid shown at right above, the field line FGH, which passes through

the very end of the winding, is a straight line from G out to infinity.

(c) The flux through the end face of the semi-infinite solenoid is half the flux through the coil at

a large distance back in the interior.

(d) Any field line that is a distance r0 from the axis far back in the interior of the coil exits from

the end of the coil at a radius r1 =
√
2r0, assuming

√
2r0 is less than the solenoid radius.

Solution. (a) Let B1 and B2 be the fields at these points, respectively. Note that B1 is close to

the ideal value µ0nI, but smaller because the solenoid is not infinite. Now glue two of these

solenoids together end-to-end, and consider the field at the center of this new, bigger solenoid.

By superposition, it is 2B2, but also, it is close to µ0nI, and it is slightly closer to µ0nI than

B1 is, since the combined solenoid is longer. Therefore, B2 is slightly more than half of B1.

(b) Let G′ be the reflection of G in the axis. Say the field line GH comes out at an angle θ. Then,

at G′, it also comes out with an angle θ. Now, making a copy and rotating 180◦ and flipping

the current direction, the field at G becomes one pointing at θ above the horizontal (coming

from G at the original), and one at angle π− θ to the horizontal (coming from G′ in the copy).

Therefore, the field there would be non-zero right outside the solenoid, unless θ = 0, in which

case the fields cancel.
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(c) Do the same procedure as in (a), and the flux at the glue points gets doubled to what it was

originally. However, now we have an infinite solenoid, so double the flux through the end is

equal to the flux in the middle.

(d) Note that (c) holds even if we take a constant disk of radius a as our surface to take the flux

over. Note that the flux through the disk at the edge with radius r is the same as at the

middle with radius r0 (same field lines). However, if we draw a disk of radius r at the middle,

it will have twice the flux as it did at the top, or twice the flux as with r0. However, here in

the middle, the magnetic field is essentially constant, so the areas must be twice each other,

so πr2 = 2πr20, or r =
√
2r0.

[3] Problem 24 (MPPP 160). Two infinite parallel wires, a distance d apart, carry electric currents

along the z-axis with equal magnitudes but opposite directions. We can find the shape of the

magnetic field lines with a neat trick, which only works for “two-dimensional” setups like this one,

where the fields lie in the xy plane and don’t depend on z.

(a) Argue that if we rotated B by 90◦ in the xy plane at each point, it would produce a valid

electrostatic field E. (Hint: consider rotating the B field of each wire individually.)

(b) Argue that the field lines of B are the same as the equipotentials of this artificial E, and use

this to find the field lines.

This trick is also useful for fluids in two dimensions, where it swaps vortices with sources and sinks.

Solution. (a) First, we can get the intuition using a single wire. In this case,

B =
µ0I

2πr
θ̂

in cylindrical coordinates. Upon a 90◦ rotation, θ̂ turns into r̂, giving

E =
µ0I

2πr
r̂

which is a valid electrostatic field, as it’s simply the electric field of an charged wire with linear

charge density λ = µ0ϵ0I. So by superposition, rotating the B field of the two wires would

also give a valid electrostatic field. (Of course, this isn’t really physically meaningful, since

electric and magnetic fields don’t even have the same units. It’s just a mathematical trick.)

We can also prove the correspondence more generally. The key criterion for a valid magne-

tostatic field is ∇ ·B = 0, which for such two-dimensional setups is ∂xBx + ∂yBy = 0. Now,

when we rotate by 90◦, we define an electric field by Ey = Bx and Ex = −By, which implies

∂xEy−∂yEx = 0. But in such a two-dimensional setup, this is equivalent to ∇×E = 0, which

is the condition to have a valid electrostatic field.

(b) The field lines of B are always parallel to B. Now, this artificial E is always perpendicular to

B, and equipotentials are always perpendicular to E, so the equipotentials follow the magnetic

field lines.

On the other hand, we know precisely what the potential is in this problem. By integrating

the 1/r field, the potential is proportional to log r, so

V (r) ∝ log(r+)− log(r−) = log(r+/r−)
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where r+ and r− are the distances to the two wires. So the equipotentials have constant

r+/r−. We’ve already found, when investigating the method of images for spheres in E2, that

this implies the equipotentials are circles, specifically circles of Appolonius. So the magnetic

field lines are circles!

[2] Problem 25 (IPhO 1996). Two straight, long conductors C+ and C−, insulated from each other,

carry current I in the positive and the negative ẑ direction respectively. The cross sections of the

conductors are circles of diameter D in the xy plane, with a distance D/2 between the centers.

The current in each conductor is uniformly distributed. Find the magnetic field in the space between

the conductors.

Solution. See page 12 of the official solutions here.

[3] Problem 26 (MPPP 157). A regular tetrahedron is made of a wire with constant resistance per

unit length. A long, straight wire sends current I into one vertex, and another long, straight wire

removes it from another vertex, as shown.

Find the magnetic field at the center of the tetrahedron.

Solution. By symmetry C and D are at the same potential, so IDC = 0. Then the current from A

to B just splits up into three branches, which have resistances RACB = RADB = 2RAB. Therefore,

the currents are

IAB =
1

2
I, IAC = IAD = ICB = IDB =

1

4
I.

The field at O due to the current along AD is directed along the vector
−−→
CB. Similarly, the magnetic

field due to the current along AC is directed along
−−→
BD, and so on. By repeating this reasoning for

all five contributions, we find that the magnetic field at O is proportional to

2
−−→
DC +

−−→
BD +

−−→
CB +

−−→
AD +

−→
CA = 2

−−→
DC +

−−→
CD +

−−→
CD = 0

so there is no field at O.

[5] Problem 27. �h10 APhO 2013, problem 1. A neat question on a cylindrical RC circuit that uses

many of the techniques we’ve covered so far.
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