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Electromagnetism IV: Lorentz Force

The problems here mostly use material covered in previous problem sets, though chapter 5 of Purcell

covers relativistic field transformations. For further interesting physical examples, see chapter II-29

of the Feynman lectures. There is a total of 84 points.

1 Electrostatic Forces

Idea 1: Lorentz Force

A charge q in an electromagnetic field experiences the force

F = q(E+ v ×B).

In particular, a stationary wire carrying current I in a magnetic field experiences the force

F = I

∫
ds×B.

Example 1: PPP 183

A small charged bead can slide on a circular, frictionless insulating ring. A point-like electric

dipole is fixed at the center of the circle with the dipole’s axis lying in the plane of the circle.

Initially the bead is in the plane of symmetry of the dipole, as shown.

Ignoring gravity, how does the bead move after it is released? How would the bead move if

the ring weren’t there?

Solution

Set up spherical coordinates so that the dipole is in the ẑ direction. Then

V (r, θ) =
kp cos θ

r2
.

Since the ring fixes r, the potential on the ring is just proportional to cos θ, which is in turn

proportional to z. But a potential linear in z is equivalent to a uniform downward field, so

the bead oscillates like the mass of a pendulum, with amplitude π/2.
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The answer remains the same when the ring is removed! Conservation of energy states that

kqp cos θ

r2
+

1

2
mv2 = 0.

Let N be the normal force. Then accounting for radial forces gives

N + q
∂V

∂r
=

mv2

r
.

However, plugging in our conservation of energy result for v2 shows that N = 0, so the ring

doesn’t actually do anything, and it may be removed without effect.

Example 2

A parallel plate capacitor with separation d and area A is attached to a battery of voltage V .

One plate moves towards the other with uniform speed v. Verify that energy is conserved.

Solution

The capacitance is C = Aϵ0/d. The power supplied by the battery is

Pbatt = IV = V
dQ

dt
= V 2dC

dt
.

On the other hand, the rate of change of the energy stored in the capacitor is

Pcap =
d

dt

(
1

2
CV 2

)
=

1

2
V 2dC

dt
.

At first glance, there seems to be a problem. But then we remember that there is an attractive

force between the plates, so the plates do work on whatever is moving them together,

Pmech = Fv =
QE

2
v =

QV

2d
v =

1

2
CV 2 v

d
=

1

2
V 2dC

dt
.

where E is the electric field inside the capacitor. Thus, Pbatt = Pcap + Pmech as required.

Technically there’s energy in the magnetic field too, but it’s smaller than the electric field

energy by v2/c2, and thus negligible unless you’re moving the plates so fast that relativity

comes into play. Most problems in this problem set ignore such relativistic effects.

[2] Problem 1 (PPP 193). Two positrons are at opposite corners of a square of side a. The other two

corners of the square are occupied by protons. All particles have charge q, and the proton mass M

is much larger than the positron mass m. Find the approximate speeds of the particles much later.

Solution. The idea is that since the positrons are so light, they will be extremely far away before

the protons hardly move. Let v1 be their final speed. Then, energy conservation tells us that

kq2

a

(
4 +

2√
2

)
≈ kq2√

2a
+ 2

(
1

2
mv21

)
.
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Solving for v1 yields

v1 =

√
kq2

am
(4 + 1/

√
2).

The speed of the protons can be calculated by assuming that the positrons didn’t even exist, since

by the time the protons move appreciably, the positrons are long gone away to a very far distance.

Therefore, energy conservation again tells us that the final speed v2 of the protons obeys

kq2√
2a

≈ 2

(
1

2
Mv22

)
, v2 =

√
kq2√
2 aM

.

[3] Problem 2 (PPP 114). A small positively charged ball of mass m is suspended by an insulating

thread of negligible mass. Another positively charged small ball is moved very slowly from a large

distance until it is in the original position of the first ball. As a result, the first ball rises by h.

How much work has been done?

Solution. Let r be the final separation of the balls, and let L be the length of the string. By basic

trigonometry,
h

r
= sin θ

where θ is half the angle of the string to the vertical. Letting the balls have charges q and Q and

balancing forces, we have

kqQ

r2
cos θ = mg sin 2θ = 2mg sin θ cos θ

from which we conclude
kqQ

r
= 2mgr sin θ = 2mgh.

Furthermore, one of the balls has been raised by a height h during the process. Thus, the total work

done is 3mgh . It’s neat how almost all the dimensionful quantities drop out in the final answer!

[3] Problem 3 (PPP 71). Two small beads slide without friction, one on each of two long horizontal

parallel fixed rods a distance d apart.

The masses of the beads are m and M and they carry charges q and Q. Initially, the larger mass

M is at rest and the other one is far away approaching it at a speed v0. For what values of v0 does

the smaller bead ever get to the right of the larger bead?
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Solution. When v0 is just large enough for the small bead to get to the right of the big bead, when

both beads end up side-to-side, the small bead’s velocity should be just a bit greater than that of

the big bead for it to get past. This means the minimum possible value vm of v0 should be just

large enough to provide enough energy so that both beads can move together at some velocity v,

1

2
mv2m =

kqQ

d
+

1

2
(m+M)v2.

Since the total horizontal momentum is conserved,

mvm = (m+M)v.

Thus, we have

1

2

(
m− m2

m+M

)
v2m =

kqQ

d
, vm =

√
2kqQ

d

m+M

mM
.

[2] Problem 4 (PPP 192). Classically, a conductor is made of nuclei of positive charge fixed in place,

and electrons that are free to move.

(a) Consider a solid conductor in a gravitational field g. Argue that the electric field inside the

conductor is not zero; find out what it is.

(b) Now suppose a positron is placed at the center of a hollow spherical conductor in a gravitational

field g. Find its initial acceleration.

Solution. (a) We usually argue that the electric field has to vanish to keep the electrons from

accelerating. In this case, the electric field has to be nonzero, because otherwise the electrons

will fall down. Specifically, there is a downward electric field of magnitude mg/e, where e > 0

is the magnitude of the electron charge and m is the electron mass. This comes out to about

6× 10−11V/m, which is quite small.

You might wonder how the forces on the positive ions are balanced, since they experience both

downward gravitational and electrical forces. The answer is that they’re locked into a lattice,

and held up by internal stresses within the lattice. These ultimately come from whatever is

keeping the conductor as a whole from falling, such as a normal force from the ground.

(b) The electric field found in part (a) also exists in a cavity, which one can argue by uniqueness

or by the fact that the electric field is conservative. So the positron has an initial downward

acceleration of 2g. (We had to specify the positron was at the center, or else it would have an

additional acceleration due to charge induction, which we could compute using image charges.)

[3] Problem 5. �m10 USAPhO 2008, problem B2. You may ignore part (c), which was removed in the

final version of the exam, though you can also do it for extra practice.

[3] Problem 6. �̂10 USAPhO 2019, problem B1.

[5] Problem 7. �h10 IPhO 2004, problem 1. A nice question on the dynamics of a multi-part system.

2 The Lorentz Force
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Idea 2

Some questions below will involve special relativity. The Lorentz force law as written in

idea 1 is still valid as long as F is interpreted as dp/dt, where the relativistic momentum is

p = γmv, γ =
1√

1− v2/c2
.

The relativistic energy is also modified to

E = γmc2 = mc2 +
1

2
mv2 + . . . .

We will return to this subject in more detail in R2, but for now this is all you need.

Example 3: Kalda 163

A beam of electrons, of mass m and charge q, is emitted with a speed v almost parallel to

a uniform magnetic field B. The initial velocities of the electrons have an angular spread

of α ≪ 1, but after a distance L the electrons converge again. Neglecting the interaction

between the electrons, what is L?

Solution

Consider an electron initially traveling at an angle α to the magnetic field. This electron has

a speed v∥ = v cosα ≈ v parallel to the field, and a speed v⊥v sinα ≈ vα perpendicular to

the field. The component v∥ always stays the same, while v⊥ rotates, so the electron spirals

along the field lines.

The acceleration of the electron is

a⊥ =
F

m
=

qv⊥B

m
.

The perpendicular velocity component rotates through a circle in velocity space of circumfer-

ence 2πv⊥. After one such circle, the total perpendicular displacement is zero, so the beam

refocuses. Thus we have

L =
2πv⊥
a

v∥ ≈
2πmv

qB
.

In other words, this setup acts like a magnetic “lens”.

Example 4: Griffiths 7.50

In a “betatron”, electrons move in circles in a magnetic field. When the magnetic field is

slowly increased, the accompanying electric field will impart tangential acceleration.
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Suppose the field always has the same spatial profile B(r, t) = B0(r)f(t). For what B0(r) is

it possible for an electron to start at rest in zero magnetic field, and then move in a circle of

constant radius as the field is increased?

Solution

The electrons experience a tangential force

ṗ = qE = q
Φ̇B

2πr
=

qr

2
Ḃav

where Bav is the average field over the orbit. Since the particles start from rest in zero field,

we can integrate this to find

p =
qr

2
Bav.

On the other hand, the standard result for cyclotron motion is p = qrB, which means we

must have B = Bav/2, i.e. the field at any radius is half the average magnetic field inside,

B(r) =
1

2

1

πr2

∫ r

0
B(r′)(2πr′) dr′.

This rearranges slightly to give

r2B(r) =

∫ r

0
r′B(r′) dr′.

Differentiating both sides with respect to r, we have

2rB(r) + r2B′(r) = rB(r)

which simplifies to
dB

B
= −dr

r

which means the field profile should be B0(r) ∝ 1/r. (Of course, a real betatron might differ

since it only needs to obey B = Bav/2 at the radii where electrons will be orbiting.)

[3] Problem 8 (Griffiths 5.17). A large parallel plate capacitor with uniform surface charge σ on the

upper plate and −σ on the lower is moving with a constant speed v as shown.
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(a) Find the magnetic field between the plates and also above and below them.

(b) Find the magnetic force per unit area on the upper plate, including its direction.

(c) What happens to the net force between the plates in the limit v → c? Explain your result

using some basic ideas from special relativity.

Solution. (a) Let x̂ be the direction of the velocity. Let ŷ point into the page, and let ẑ point

up. The magnetic field due to the top plane is −1
2µ0σvŷ above the above plane and 1

2µ0σvŷ

below the above plane. Similarly for the lower plane, we have 1
2µ0σvŷ above and −1

2µ0σvŷ

below. Thus, the magnetic field is µ0σvŷ between the plates, and zero outside.

(b) The force per unit area (i.e. pressure) is σvx̂× 1
2µ0σvŷ = 1

2µ0σ
2v2ẑ. The factor of 1/2 is there

since it only feels a force due to the contribution of the other plate; this is the essentially the

same 1/2 as we found for the pressure on a conductor in E1.

(c) The forces balance when v = c,
1

2
µ0σ

2c2 =
1

2ϵ0
σ2

because c2 = 1/ϵ0µ0. Thus, as v increases to approach c, the attractive force between the

plates gets smaller and smaller. If we invoke special relativity, this makes perfect sense. In

the rest frame of the plates, there is only the attractive electrostatic force, so the plates move

together. This implies that in the lab frame, the plates also have to move together, so the

force must be attractive. But for high v, there’s a lot of time dilation, so the plates move

together more slowly. (This is partially due to the force decreasing, as derived here, and

partially due to the higher “transverse mass” due to the plates’ relativistic momentum, as

we’ll see in R2.)

[3] Problem 9. EFPhO 2012, problem 7. An elegant Lorentz force problem with wires. (If you enjoy

this problem, consider looking at IdPhO 2020, problem 1B, which has a similar setup but requires

three-dimensional reasoning. The official solutions are here.)

Solution. See the official solutions here.

[4] Problem 10 (Purcell 6.35/INPhO 2008.6). Consider the arrangement shown below.
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The force between capacitor plates is balanced against the force between parallel wires carrying

current in the same direction. A voltage alternating sinusoidally with angular frequency ω is applied

to the parallel-plate capacitor C1 and also to the capacitor C2, and the current is equal to the

current through the rings. Assume that s ≪ a and h ≪ b.

Suppose the weights of both sides are adjusted to balance without any applied voltage, and C2

is adjusted so that the time-averaged downward forces on both sides are equal. Show that

1
√
µ0ϵ0

=
√
2π aω

√
b

h

C2

C1
.

The left-hand side is equal to c, as we’ll show in E7, so this setup measures the speed of light.

Solution. It can be a little tricky to read the diagram. The key point is that the triangles are

conductors. They represent the fulcrum of a see-saw, but they also allow the voltage to be applied

across the capacitors on the left and right. The charge buildup on the capacitors on the left causes

them to attract, while the current flowing through the circular wires on the right causes them to

attract as well.

Let a current I flow on in the right-hand side. Since h ≪ b, the magnetic field created by the

bottom circular loop at a point on the top circular loop is approximately the same as that created

by an infinite wire, B = µ0I/2πh. Thus, the force between the wires is

F = (2πbI)
µ0I

2πh
=

µ0bI
2

h
.

This force oscillates over time. The charge on the capacitor C2 is

Q2(t) = C2E0 cos(ωt)

so that

⟨I2(t)⟩ = C2
2E2

0ω
2⟨sin2(ωt)⟩ = C2

2E2
0ω

2

2
.
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Thus, the average force on the right is

⟨F ⟩ = µ0C
2
2E2

0ω
2b

2h
.

On the left-hand side, the force between the plates is, by a result in E1,

F =
1

2
ϵ0E

2(πa2)

where E is the electric field inside the plates, and we have

⟨E2(t)⟩ = 1

s2
⟨E2(t)⟩ = E2

0

2s2
.

Combining these results and eliminating s, since it doesn’t appear in the final result,

⟨F ⟩ = C2
1E2

0

4πa2ϵ0
.

Equating the averaged forces gives

µ0C
2
2ω

2b

h
=

C2
1

2πa2ϵ0
,

which is equivalent to the desired result.

[3] Problem 11. An electron beam is accelerated from rest by applying an electric field E for a time

t, and subsequently guided by magnetic fields. These magnetic fields are produced with a series of

coils, which carry currents Ii.

Now suppose the apparatus is repurposed to shoot proton beams. Suppose a proton beam is

accelerated from rest by applying an electric field E for a time t (in the opposite direction). Let an

electron have mass m and a proton have mass M .

(a) Find the currents Ii needed so that the proton follows the same trajectory the electron did,

assuming V is small enough that both the electron and proton are nonrelativistic.

(b) How does the answer change if relativistic corrections are accounted for?

Solution. (a) The electron and proton have the same momentum p, and we have

dp

dt
= qvB ∼ qvI

since B ∝ I. Now, the magnetic field can only rotate the particle’s momentum. Suppose at

some moment it is curving in a trajectory with radius of curvature r, and speed v. Then it

has instantaneous angular velocity ω = v/r along the circle tangent to its trajectory, and

dp

dt
= ωp

in magnitude. Hence we have

qvI ∼ v

r
p

and since r is the same for both the electron and proton, we suppress it to give

I ∼ p

q
.

In other words, we have I ∝ 1/q, so all that happens is that the currents should change sign

to accommodate the proton.
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(b) Every step in the solution to part (a) still works with relativity accounted for (the change of

p = mv to p = γmv doesn’t matter, because we never used p = mv), so the answer is the

same: we just flip the currents.

[5] Problem 12. �h10 IPhO 2000, problem 2. A solid question on the Lorentz force with real-world

relevance. Requires a little relativity, namely the expressions for relativistic momentum/energy.

Solution. The official files are a mess; the solutions to this particular problem are here and here.

[4] Problem 13. �T10 IPhO 1996, problem 2. An elegant problem on particles in a magnetic field.

(There’s a deeper principle behind the solution to this problem; see R3 for more discussion.)

3 Magnetic Moments

[3] Problem 14. Consider a current loop I in the xy plane in a constant magnetic field B.

(a) Show that the net force on the loop is zero.

(b) Show that the torque is

τ = m×B

where the magnetic moment is

m = IAẑ

where A is the area of the loop. For simplicity, you can show this in the case where the current

loop is a square of side length L, whose sides are aligned with the x and y axes. (The proof

for a general loop shape requires some vector calculus, but you can attempt it for a challenge.

You’ll need the double cross product identity, a× (b× c) + b× (c× a) + c× (a× b) = 0.)

Solution. (a) We see that

F = I

∮
ds×B = I

(∮
ds

)
×B = 0,

as desired.

(b) The magnetic moment of the square is

m = IL2ẑ.

The torque on a side of the square is

τ =

∫
r× dF = I

∫
s× (ds×B).

In particular, it’s useful to pair the two sides parallel to the x axis. These have opposite

currents and differ only by a translation ∆r = Lŷ, so adding their contributions gives a torque

τ = −I

∫ L

0
(Lŷ)× (x̂ dx×B) = −IL(ŷ × (x̂×B))

∫ L

0
dx = −IL2(ŷ × (x̂×B)).

Similarly, the torques due to the other two sides add up to

τ = IL2(x̂× (ŷ ×B)).
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Manually performing the cross products, we have

−ŷ × (x̂×B) = −Byx̂, x̂× (ŷ ×B) = Bxŷ.

Adding these together gives exactly the desired result, τ = m×B.

For completeness, we display a fully general, vector calculus solution, valid for any loop shape.

We note that along the full, closed loop, the fundamental theorem of calculus implies∮
d(s× (s×B)) = 0

simply because the closed loop integral of d(anything) is the net change in (anything) along

the loop, which is zero. Expanding with the product rule gives∮
ds× (s×B) + s× (ds×B) = 0.

Using these results and the double cross product identity, the torque is

τ = I

∮
s× (ds×B)

= −I

∮
ds× (B× s)− I

∮
B× (s× ds)

= −τ − IB×
(∮

s× ds

)
.

Now, s× ds = 2 dA, because as s moves a little along the loop it sweeps out a small triangle

of area. Thus we have 2τ = 2IB×A, giving the result.

Idea 3

The force on a small magnetic dipole m is

F = ∇(m ·B)

where the gradient acts only on the spatial dependence of B. If there are no other currents

at the dipole’s location, so that ∇×B = 0, this formula is equivalent to

F = (m · ∇)B,

which is sometimes easier to evaluate.

As in problem 14, this can be shown relatively easily for a square loop, and requires some

tricky vector calculus for a general current distribution. Both the force and torque on a

magentic dipole can be found by differentiating the potential energy

U = −m ·B.

All of these results also hold for electric dipoles, if we replace m with p and B with E.
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Remark

The expression for the potential energy above is notoriously subtle. Here’s the problem: we

know the Lorentz force on a charge is qv ×B, which means magnetic fields never do work.

So how can they be associated with a nonzero potential energy?

There are two levels of explanation. First, suppose the magnetic dipole is made of charges

moving in a loop. When such a current loop is placed in a magnetic field, and moved

or rotated, mechanical work can be done on the loop. But at the same time, there will

be an induced emf in the loop, which speeds up or slows down the current. The work

done by these two effects perfectly cancels, so that the energy of the loop stays constant.

For this kind of dipole, the expression for U doesn’t indicate the total energy, but only

the “mechanical” potential energy, in the sense that differentiating it gives the right forces

and torques. (Some further discussion of this point is in chapter II-15 of the Feynman lectures.)

On the other hand, the magnetic dipole moment of a common bar magnet doesn’t come from

charges moving in a loop! Instead, it comes from the intrinsic magnetic dipole moments of

the unpaired electrons in the magnet. These kinds of dipole moments aren’t composed of

any moving subcomponents; they are an elementary and immutable property of the electron,

like its mass or charge. In these cases, U = −m · B really is the total energy, and the

magnetic field can do work. You won’t hear much about these elementary dipole moments in

introductory books, because they can only be properly understood by combining relativity

and quantum mechanics, but they’re responsible for most magnetic phenomena.

Example 5

If a magnet is held over a table, it can pick up a paper clip. If the paper clip is removed, it

can pick up another paper clip just as well, and this process can seemingly continue forever

without any effect on the magnet. Since the magnet does work on each paper clip, doesn’t

this mean a permanent magnet is an infinite energy source?

Solution

This is the kind of question that makes magnets feel so mysterious. They’re basically the

only everyday example of a long range force besides gravity (in fact, Kepler once thought

the Sun acted on the planets like a giant magnet), and as such they’ve inspired countless

attempts at perpetual motion machines. For centuries, many people have spent years of

their lives trying to get elaborations of this example to work.

To see why this doesn’t work for a bar magnet, just replace the word “magnet” with “charge”.

It’s true that a positive charge can attract a negative charge to it. And if the negative

charge is then removed, the positive charge can then attract another negative charge to

it. But conservation of energy isn’t violated, because the force from the positive charge

is conservative: the work it does on the negative charge to draw it close is precisely the

opposite of the work an external agent needs to do to pull it away. The force of a magnet on

a paper clip is also conservative.
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It’s also interesting to consider a slightly different case. Unlike a bar magnet, an electromagnet

(i.e. a magnet created by moving current in a loop) can be turned on and off with the flick

of a switch. Therefore, we might suspect that the following is a perpetual motion machine:

1. Turn on the electromagnet, which costs energy E0.

2. Use it to lift a paper clip, increasing its potential energy by mgh.

3. Turn off the electromagnet, which costs energy E0, while holding the paper clip.

4. Move the paper clip away; we’ve managed to raise it higher for free.

To see the problem, note that the attractive force between the magnet and paper clip arises

because the magnet induces a magnetic dipole moment in the paper clip, leading to a (m·∇)B

force. As the paper clip moves toward the magnet, its own dipole moment causes a changing

magnetic flux through the electromagnet, and thus an emf against the current. Therefore, it

costs extra energy to keep the current in the electromagnet steady. Since the qv×B Lorentz

force doesn’t do work, that energy must be precisely mgh, so nothing comes for free.

Remark

A compass needle is essentially a small magnetic dipole, whose dipole moment points towards

the end painted red. We can also approximate the Earth’s magnetic field as a dipole field.

Since the tangential component of this dipole field points north, the red end of the compass

points towards the geographic north pole, which is the Earth’s magnetic south pole.

By the way, a cheap compass calibrated to work in America or Europe won’t work well in

Australia. The reason is that the Earth’s magnetic field also has a radial component, which

acts to tip the compass needle up or down. The needle needs to be appropriately weighted

to stay horizontal, so that it can freely rotate, but the side that needs to be weighted differs

between the hemispheres.

[3] Problem 15 (Griffiths 6.23). A familiar toy consists of donut-shaped permanent magnets which

slide frictionlessly on a vertical rod.

13

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Treat the magnets as dipoles with mass md and dipole moment m, with directions as shown above.

(a) If you put two back-to-back magnets on the rod, the upper one will “float”. At what height

z does it float?

(b) If you now add a third magnet parallel to the bottom one as shown, find the ratio x/y of the

two heights, using only a scientific calculator. (Answer: 0.85.)

Solution. (a) We know that the field from a magnetic dipole is

B =
µ0m

4πr3

(
2 cos θ r̂+ sin θ θ̂

)
.

Along the z-axis, this reduces to

Bz =
µ0m

2πz3
.

The force on the upper magnet must balance gravity, so

−µ0m
2

2π

d

dz

(
1

z3

)
−mdg = 0

which yields

z =

(
3µ0m

2

2πmdg

)1/4

.

(b) The net force on the middle magnet comes from the field from the top and bottom magnets,

along with gravity,
3µ0m

2

2π

(
1

x4
− 1

y4

)
= mdg.

Similarly, the top magnet, experiences forces from the bottom and middle magnets,

3µ0m
2

2π

(
1

y4
− 1

(y + x)4

)
= mdg.

Putting these two equations together yields

1

x4
− 1

y4
=

1

y4
− 1

(y + x)4
.

Defining α = x/y, we then need to solve

α =

(
(1 + α)4

2(1 + α)4 − 1

)1/4

.
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We solve this using iteration, as introduced in P1. That is, we guess a reasonable value like

α = 0.5, then repeatedly plug in (
(1 + Ans)4

2(1 + Ans)4 − 1

)1/4

which yields x/y = 0.85.

[3] Problem 16 (PPP 89). Two identical small bar magnets are placed on opposite ends of a rod of

length L as shown.

(a) Show that the torques the magnets exert on each other are not equal and opposite.

(b) Suppose the rod is pivoted at its center, and the magnets are attached to the rod so that

they can spin about their centers. If the magnets are released, the result of part (a) implies

that they will begin spinning. Explain how this can be consistent with energy and angular

momentum conservation, treating the latter quantitatively.

Solution. (a) Referring to the dipole fields computed in E1, the field at D due to C is twice

that at C due to D, so they can’t possibly cancel. Worse, the directions of the torques are

the same (both out of the page).

(b) Energy is conserved because there is an energy density B2/2µ0 stored in the magnetic field of

the two magnets. As the rotational kinetic energy of the system increases, the energy stored

in the field decreases to compensate.

Angular momentum conservation holds for a different reason. While electromagnetic fields

can store angular momentum too, they don’t in this particular case. Instead, the answer is

something more familiar. The magnets also exert forces on each other, so a force from the

rod is necessary to keep the magnets in place. This implies the magnets exert a torque on the

rod, which begins spinning in the opposite direction. Thus, angular momentum is conserved.

To show this quantitatively, set up coordinates with the origin at the center of the rod, and

the z-axis pointing out of the page. The total torque on the two magnets is

τ0 =
3µ0

4π

m2

L3
ẑ

where m is the magnetic moment of each magnet. This is the rate of change of their spin

angular momentum. Next, we consider forces. The force on magnet C due to D is

FCD = (mC · ∇)BD = m
∂BD

∂x
= m

∂

∂x

(
−µ0m

4π

ŷ

x3

∣∣∣∣
x=−L

)
=

3µ0

4π

m2

L4
ŷ.

This produces a torque on the rod, about its pivot point, of

τ1 = −1

2

3µ0

4π

m2

L3
ẑ.
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The force on magnet D due to magnet C is equal and opposite, and therefore provides an

equal torque τ2 on the rod. Therefore, the total rate of change of angular momentum is

τ0 + τ1 + τ2 = 0.

In introductory textbooks, you might have read that angular momentum is conserved as

a consequence of the strong form of Newton’s third law, which is that forces are equal

and opposite, and always directed along the line separating two particles. As we’ve just

seen, this isn’t actually necessary: here we have an example of a force which isn’t directed

along the separation, but angular momentum is still conserved. In E7 we’ll see even more

exotic examples, where even the weak form of Newton’s third law (i.e. that forces are equal

and opposite) breaks down, but momentum remains conserved anyway, as a consequence of

electromagnetic fields carrying away the excess momentum. Generally speaking, the deeper

you get into physics, the less important Newton’s laws become, while conservation laws remain

as important as ever.

4 Point Charges

In this section we’ll give a sampling of classic problems involving just point charges in fields; these

will be a bit more mathematically advanced than the others in this problem set.

[3] Problem 17. A point charge q of mass m is released from rest a distance d from a grounded

conducting plane. Find the time until the point charge hits the plane. (Hint: use Kepler’s laws.)

Solution. This is an incredibly classic problem, which has been appearing in various forms on

competitions for decades. By using image charges, we see that the particle always experiences a

force

F =
kq2

4z2

directly towards the plane, where z is its separation from the plane. Let the particle impact the

plane at point O.

This force has the form of an inverse-square law. In particular, we would get the exact same

result if the force were always directed towards O (rather than always directed towards the plane),

F = −kq2

4r2
r̂.

But in this case, the problem is perfectly analogous to the central force of gravity, where O serves

as the location of the Sun, and one of the foci of the charge’s orbit. In particular, releasing the

charge from near rest and waiting for it to hit the plane corresponds to performing the first half of

an extremely eccentric elliptic orbit.

The trick is now to use Kepler’s third law. If the charge had performed a circular orbit of radius

d about O, then
kq2

4d2
=

mv2

d
= mω2d

which gives a period of

T =
2π

ω
= 4π

√
md3

kq2
.
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We can use Kepler’s third law to find the period of the eccentric elliptic orbit the charge actually

follows. This orbit has semimajor axis d/2, so it has period

T ′ =
T

2
√
2
.

The actual path of the charge is only the first half of this orbit, so the answer is

T ′

2
=

T

4
√
2
=

π√
2

√
md3

kq2
.

Of course, the problem can also be solved by directly integrating the differential equation. If you

do it that way, you’ll get the same integral as in a similar example, given in P1.

[3] Problem 18. A point charge of mass m and charge q is released from rest at the origin in the

fields E = Ex̂, B = Bŷ. Find its position as a function of time by solving the differential equations

given by Newton’s second law, F = ma.

Solution. We will assume non-relativistic motion throughout. Note that the motion is solely in

the xz plane, since the electric and magnetic forces are in that plane. Newton’s second law gives

ẍ =
q

m
(E0 −B0ż),

z̈ =
q

m
B0ẋ.

Taking the time derivative of the first equation and plugging in into the second, we find

...
x = −q2B2

0

m2
ẋ,

and along with the initial condition that ẋ(0) = 0, we see that

ẋ = v0 sin(ωt)

where v0 is some yet to be determined velocity, and ω ≡ qB0/m. Integrating, and using the initial

condition that x(0) = 0, we see that

x(t) =
v0
ω
(1− cos(ωt)).

We also have that

z̈ = ωẋ = ωv0 sin(ωt).

Integrating twice and using the fact that z(0) = ż(0) = 0, we see that

z(t) = v0t−
v0
ω

sin(ωt).

All that is to be found now is v0. Plugging our x and z into the first equation, we see that

v0ω cos(ωt) =
q

m
(E0 −B0v0(1− cos(ωt))) =⇒ v0 = E0/B0.
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Thus, our final solution is

x(t) =
v0
ω
(1− cos(ωt)),

z(t) = v0t−
v0
ω

sin(ωt)

where v0 = E0/B0 and ω = qB0/m.

Notice that while naively one might have thought the motion would be along E, on average the

particle actually moves along E×B. This is actually quite general. For example, it remains true

even if there’s a bit of friction; the steady state velocity turns out to be along E × B. Another

example is how weather systems work. When I was a kid, I was always confused about how entire

regions could have low or high pressure; would the wind just go along the pressure gradient to even

it out? That doesn’t happen because the Coriolis force deflects the wind sideways. In this case, the

pressure gradient is acting like E, and the Coriolis force behaves like a magnetic field B ∥ ω ∥ ẑ.

The net effect is that in the steady state, wind tends to move along lines of constant pressure, not

perpendicular to them. So a low pressure system stays low pressure but spins around.

[3] Problem 19 (Wang). Two identical particles of mass m and charge q are placed in the xy plane

with a uniform magnetic field Bẑ. The particles have paths r1(t) and r2(t). Neglect relativistic

effects, but account for the interaction between the charges.

(a) Write down a differential equation describing the evolution of the separation r = r1 − r2.

(b) Suppose that the initial conditions have been set up so that the particles orbit each other in

a circle in the xy plane, with constant separation d. What is the smallest d for which this

motion is possible?

Solution. (a) The equations of motion for the two particles are

mr̈1 =
q2

4πϵ0r3
r+ qṙ1 ×B, mr̈2 = − q2

4πϵ0r3
r+ qṙ2 ×B.

Subtracting the two, the separation between the particles evolves as

mr̈ =
q2

2πϵ0r3
r+ qṙ×B.

(b) Note that since B is along the ẑ direction, and v = ω×r where ω is also along the ẑ direction,

all three vector terms in the above equation are parallel. So we have(
q2

2πϵ0r3
+ qωB +mω2

)
r = 0.

Setting the term in parentheses to zero, and noting that the separation r has magnitude d,

ω =
−(qB/m)±

√
(qB/m)2 − 2q2/πmϵ0d3

2

where ωc = qB/m is the usual cyclotron angular frequency. For this equation to have a

solution, the discriminant must be nonnegative, so

q2B2

m2
≥ 2q2

πmϵ0d3
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which gives

d ≥
(

2m

πϵ0B2

)1/3

.

For smaller d, the charges will always fly apart, either due to electrostatic repulsion if they’re

slow, or the angular momentum barrier if they’re fast.

[4] Problem 20. [A] Consider a point charge of mass m and charge q in the field of a magnetic

monopole at the origin,

B =
g

r2
r̂.

In this problem we’ll investigate the strange motion that results.

(a) Argue that the speed v is constant.

(b) Show that the angular momentum L of the charge is not conserved, but that

V = L− qgr̂

is. The second term is the angular momentum stored in the fields of the charge and monopole.

(c) Show that the charge moves on the surface of a cone. (Hint: in spherical coordinates where

the z-axis is parallel to V, consider V · ϕ̂.) Sketch some typical trajectories.

Solution. (a) The force is qv ×B ⊥ v, so no work is done on the particle, so its speed remains

the same.

(b) Note that

˙̂r =
d

dt

r

r
=

ṙr − ṙr

r2
=

ṙr − rr·ṙ
r

r2
= (r̂ · r̂) ṙ

r
−
(
r̂ · ṙ

r

)
r̂ = r̂×

(
ṙ

r
× r̂

)
=

1

r2
r× (ṙ× r̂).

We have L̇ = τ = r× (qṙ× (g/r2)r̂) = qg ˙̂r, so L− qgr̂ is conserved.

(c) Take coordinates so that V is directed along ẑ and the particle is instantaneously in the xz

plane. Now take the y-component of the above equation, to give Ly = 0. In components, this

tells us that xpz − zpx = 0, or in other words that ẋ/ż = x/z. By drawing similar triangles,

this implies that the particle is momentarily moving so that x/z is conserved. By repeating

this argument at all times, r/z is conserved, where r is the distance to the z-axis. This defines

a cone.

In a typical trajectory, the charge spirals in towards the monopole along this cone, reaches

some minimum distance from it, then turns around and spirals out. In fact, it turns out that

if the cone is “cut and unfolded” and laid flat, the trajectory is a straight line! In other words,

it is a geodesic on the cone.

One can do problem 18 slickly using field transformations, an advanced subject we will cover in R3.

Idea 4: Field Transformations

If the electromagnetic field is (E,B) in one reference frame, then in a reference frame moving
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with velocity v with respect to this frame, the components of the field parallel to v are

E′
∥ = E∥, B′

∥ = B∥

while the components perpendicular are

E′
⊥ = γ(E⊥ + v ×B), B′

⊥ = γ
(
B⊥ − v

c2
×E

)
.

Remark: Galilean Field Transformations

The nonrelativistic limit of the field transformation is useful, but one has to be careful in

deriving it. You might think, what’s the need for care? Can’t we just send c → ∞, Taylor

expand the above expressions, and call it a day? The problem with this reasoning is that

there’s no such thing as setting c → ∞. You can’t change a fundamental constant, and

moreover this statement isn’t even dimensionally correct, as noted in P1. What we really

mean by the nonrelativistic limit is restricting our attention to some subset of possible

situations, within which relativistic effects don’t matter.

For example, if we have a bunch of point charges with typical speed v, then the nonrelativistic

limit is considering only situations where v/c is small. In other words, we are taking v/c → 0,

not c → ∞. Since the magnetic field of a point charge is v/c2 times the electric field, the

magnetic field ends up small. Now if we also consider boosts with small speeds v, then

expanding the field transformations to lowest order in v/c gives

E′ = E, B′ = B− v

c2
×E.

This is the nonrelativistic limit for situations where E/B ≫ c, also called the electric limit.

However, there’s another possibility. Suppose that we have a bunch of current carrying,

approximately neutral wires. In this case, it’s the electric fields that are small, E/B ≪ c.

Using this in the transformations above, we arrive at the distinct result

B′ = B, E′ = E+ v ×B

which apply for situations where E/B ≪ c, also called the magnetic limit.

You might think we could improve the approximation by combining the two,

E′ = E+ v ×B, B′ = B− v

c2
×E

but this isn’t self-consistent. For example, if you apply a Galilean boost with speed v, and

then a boost with speed −v, you don’t get back the same fields you started with! A sensible

Galilean limit is only possible if E/B ≫ c or E/B ≪ c, which are called the electric and

magnetic limits. It’s only in relativity that E and B can be treated on an equal footing.

By the way, whenever relativity or similarly subtle physics is involved, internet sources will

be generally poor. If you search for “Galilean electrodynamics”, the first result will be an

awful journal that only publishes rants from crackpots who don’t understand relativity. If

you actually want to learn more, ditch the search engines and just read this classic paper.
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[3] Problem 21. Using the Galilean field transformations to solve problem 18.

(a) In the magnetic limit, show that the Lorentz force stays the same between frames, as it should.

Then use the field transformations to find an appropriate reference frame where the problem

becomes easy.

(b) In the electric limit, show that the Lorentz force stays the same up to terms that are order

(v/c)2 smaller, assuming B/E ∼ v/c2. (This is fine, since we’re taking the limit v/c → 0

anyway.) Then use the field transformations to find an appropriate reference frame where the

problem becomes easy.

(c) You should have found two distinct behaviors in parts (a) and (b). One of them should look

like what you found in problem 18, and the other should be very different. But the values of

E and B in problem 18 were arbitrary, so why didn’t you see the other type of behavior?

Solution. (a) Suppose a particle has velocity u in the original frame, so the force there is

F = q(E+ u×B). The force in the boosted frame is F′ = q(E+ v ×B+ (u− v)×B) = F.

We can find a frame where there’s no electric field, by letting E+v×B = 0. In this frame, the

particle just orbits in a circle. (Going back to the original frame just gives back the cycloid

we found earlier.)

(b) We use the same setup as (a). The boosted force is

F′ = q(E+ (u− v)× (B− v ×E/c2)) = F+ q

(
−v ×B+

v × v ×E

c2
− u× v ×E

c2

)
.

The extra terms are all second order in v/c.

We can now find a frame where there’s no magnetic field, by letting B − v × E/c2 = 0. In

this frame, the particle just accelerates straight along E. This indicates that in the original

frame, the particle is always going along E, while getting deflected a bit to the side by the

magnetic field.

(c) The reason is that the solution to problem 18 neglected relativistic effects. We found in that

problem that the characteristic velocity of the particle during the cycloid motion is v0 = E/B.

So relativity can only be consistently neglected in the magnetic limit, where v0 ≪ c. In the

electric limit, the particle necessarily becomes highly relativistic. This makes a difference

because in relativity, p = γmv > mv, but the magnetic force still is proportional to v, so it’s

harder for the magnetic force to turn the particle around.

As a followup, you might be wondering precisely what value of E/B separates two types

of behavior. It turns out to be precisely E/B = c, because when you use the exact field

transformations in idea 4, you can only transform the electric field away when E < cB, and

you can only transform the magnetic field away when E > cB.

In these two cases, you get circular and linear motion respectively, and the solution in the

original frame follows by boosting back using the Lorentz transformation. When E/B is small,

you get a cycloid solution, and as E/B increases, the trajectory gets more and more stretched

along the direction of E, until it gets infinitely long at E/B = c.

There are a number of other nice questions one can ask about the dynamics of point charges,

which use more advanced concepts such as “hidden” momentum, canonical momentum, or adiabatic

invariants. These ideas are collected in a section of R3.
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5 Continuous Systems

Example 6: The Drude Model

Model a conductor as a set of electrons, of charge q, mass m, and number density n, which are

completely free. Assume that in every small time interval dt, each electron has a probability

dt/τ of hitting a lattice ion, which randomizes the direction of its velocity. Under these

assumptions, compute the resistivity of the material.

Solution

First, suppose the electrons have some average momentum ⟨p⟩ each. Because the collisions

randomize the velocity, the average momentum falls exponentially with timescale τ ,

d⟨p⟩
dt

= −⟨p⟩
τ

.

On the other hand, if there is an applied field, a force term appears on the right,

d⟨p⟩
dt

= −⟨p⟩
τ

+ qE

since F = dp/dt for each individual electron. In the steady state,

⟨p⟩ = qEτ.

The current density is

J = nq⟨v⟩ = nq⟨p⟩
m

=
nq2τ

m
E.

Thus, the resistivity in the Drude model is

ρ =
m

nq2τ
.

We can also compute the typical drift velocity,

v =
qEτ

m
.

For values of m that give reasonable ρ, the value of v is a literal snail’s pace, which is why

people say that the electrons themselves move very slowly through a circuit. (Of course, a

current can get started in a circuit much faster, because when a battery is attached, each

moving electron pushes on the next one along the wire, and this wave of motion travels much

faster than the electrons themselves.)

Remark: The Drude–Sommerfeld Model

Above we tacitly assumed there was a given probability of collision per unit time, but that’s

not right: when a particle flies through a medium, there is instead a given probability of

collision per unit length it travels. These are equivalent for electrons moving at constant

speed, but intuitively, we would expect electrons to have to accelerate starting from rest after
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each collision, in which case the two differ. To estimate this quickly, note that if the typical

collision distance is ℓ, the kinetic energy picked up between collisions is mv2/2 ∼ qEℓ, giving

typical speed v ∝
√
E. The analogue of Ohm’s law would then be I ∝

√
V , completely

contrary to observation!

The resolution is that electrons in solids really do effectively move with almost constant speed,

even after collisions. This is a quantum mechanical effect, as explained in X1. The Pauli

exclusion principle implies the electrons in the conductor have to occupy different quantum

states, and the high density of electrons requires most of them to always have extremely high

speeds, on the order of 1% of the speed of light! The drift velocity is merely the tiny amount

by which their velocities are shifted on average.

[2] Problem 22. Consider Drude theory again, but now suppose there is also a fixed magnetic field

Bẑ. In this case, J is not necessarily parallel to E, but the relation between the two can be described

by the “tensor of resistivity”. That is, the components are related by

Ei =
∑

j∈{x,y,z}

ρijJj .

Calculate the coefficients ρij . Express your answers in terms of the quantities

ρ0 =
m

nq2τ
, ω0 =

qB

m

as well as the parameter τ .

Solution. The Lorentz force expression says

d⟨p⟩
dt

= −⟨p⟩
τ

+ q(E+ v ×B).

In the steady state, the left-hand side vanishes, so

⟨p⟩
qτ

= E+
1

m
⟨p⟩ ×B.

Switching from ⟨p⟩ to J and using the variables defined gives

E = ρ0J− ρ0ω0τJ× ẑ.

From this, we can directly read off the components of the resistivity,

ρ =

 ρ0 −ρ0ω0τ

ρ0ω0τ ρ0
ρ0

 .

When the electric field is in the ẑ direction, the magnetic field does nothing, which makes sense.
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Example 7: Griffiths 5.40

Since parallel currents attract, the currents within a single wire should contract. To estimate

this, consider a long wire of radius r. Suppose the atomic nuclei are fixed and have uniform

density, while the electrons move along the wire with speed v. Furthermore, assume that the

electrons contract, filling a cylinder of radius r′ < r with uniform negative charge density,

and that the wire is overall neutral. Find r′.

Solution

The contraction of the electrons produces an overall inward electric field, and hence an

outward electric force on each electron, which balances the radially inward magnetic force.

Specifically, equilibrium occurs when E = vB.

Let the charge densities of the nuclei and electrons be ρ+ and ρ−. The magnetic field at

radius r is found by Ampere’s law, which gives

(2πr)B = µ0(ρ−v)(πr
2), B =

µ0ρ−vr

2
.

The electric field at radius r is found by Gauss’s law, which gives

(2πr)E =
1

ϵ0
(ρ+ + ρ−)πr

2, E =
1

2ϵ0
(ρ+ + ρ−)r.

Note that both E and B are proportional to r. Then E = vB can be satisfied at all r simul-

taneously, which confirms that our assumption that ρ+ and ρ− were uniform is self-consistent.

Plugging these results into E = vB yields

ρ+ + ρ− = ρ−(ϵ0µ0v
2) = ρ−

v2

c2
.

This can be written in terms of the Lorentz factor of special relativity,

ρ− = −γ2ρ+, γ =
1√

1− v2/c2
.

Since the wire is overall neutral, ρ−r
′2 + ρ+r

2 = 0, so

r′ =
r

γ
.

For nonrelativistic motion, the contraction is extremely small. (However, in plasmas, where

the positive charges are also free to move, this so-called pinch effect can be very significant.)

[2] Problem 23 (Griffiths 5.41). A current I flows to the right through a rectangular bar of conducting

material, in the presence of a uniform magnetic field B pointing out of the page, as shown.
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(a) If the moving charges are positive, in what direction are they deflected by the magnetic field?

This deflection results in an accumulation of charge on the upper and lower surfaces of the

bar, which in turn produces an electric force to counteract the magnetic one. Equilibrium

occurs when the two exactly cancel. (This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference, called the Hall voltage, between the top and bottom

of the bar, in terms of B, the speed v of the charges, and the dimensions of the bar.

(c) How would the answer change if the moving charges were negative?

When measurements were performed in the early 20th century, some metals were found to have

positive moving charges! This “anomalous Hall effect” was solved by the quantum theory of solids,

as you can learn in any solid state physics textbook. (It is related to the strange behavior you will

see in problem 27.) Today, extensions of the Hall effect, such as the integer and fractional quantum

Hall effects, remain active areas of research, and could be used to build quantum computers. We’ll

return to these effects in X3.

Solution. (a) By using the right-hand rule twice, we find they are deflected down.

(b) The electric field is E = vB, so V = Eh = vBh where h is the thickness. Thus, in equilibrium,

the bottom is at a higher potential.

(c) If the current stays the same, the charges move the other direction. Since both the charge

and velocity flip, the Lorentz force stays the same, so the charges are still deflected down.

Thus, the sign of the charge that accumulates on the bottom is flipped, so now the top is at a

higher potential. Hence measuring the Hall voltage can be used to find the sign of the charge

carriers in a material.

[3] Problem 24 (Zangwill 14.16). A conducting sphere of radius a is moving with speed v parallel

to a straight wire which carries a current I. The distance between the wire and the center of the

sphere is d ≫ a.

Show that the force between the wire and the sphere scales as

F ∼ v2

c2
a3

d3
µ0I

2.

Is the force attractive or repulsive?
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Solution. The Lorentz force v × B pushes on the charges of the sphere, causing the sphere to

develop an electric dipole moment, with more positive charge closer to the wire. Then, the motion

of the positive and negative charge causes a secondary Lorentz force. This force almost cancels out,

except that the magnetic field is stronger closer to the wire, so that we get a net attractive force.

Let’s make this more quantitative, dropping all constants in the process. The Lorentz force per

unit charge is

vB ∼ µ0Iv

d
.

This acts on the sphere in the same way as a uniform electric field, and we know from a problem in

E2 that this induces an electric dipole moment

p ∼ ϵ0a
3(vB) ∼ 1

c2
a3Iv

d

where we used ϵ0µ0 = 1/c2. Since we only want to find out how the answer scales, we can approximate

the charge distribution on the sphere as a pair of opposite charges ±q separated by distance a,

where p ∼ qa. Then the net force on those charges is

F ∼ qv

(
dB

dr
a

)
∼ pv

dB

dr
∼ pv

µ0I

d2
∼ v2

c2
a3

d3
µ0I

2

as desired. If you want to, it wouldn’t be too hard to find the constant of proportionality.

Notice that the force is of order v2/c2. This implies that it cannot be found using the Galilean field

transformations discussed above; instead, one needs to use the full machinery of special relativity.

You will learn how to do this in R3. It will turn out that in the sphere’s frame, there are no

magnetic forces, but the wire will pick up a tiny electric charge, which then electrically polarizes

the sphere. In other words, in that frame the force between them is entirely electric, while in the

original frame we found it was entirely magnetic!

[3] Problem 25. �m10 USAPhO 1997, problem B1. A nice problem on the dynamics of a plasma.

(Note that the assumption made in part (e) is somewhat arbitrary, without much physical meaning.

It’s just made to make part (f) a bit simpler.)

[3] Problem 26. �̂10 USAPhO 2019, problem A3. This is a tough but useful problem. The first half

derives the so-called Child–Langmuir law, covered in problem 2.53 of Griffiths.

[3] Problem 27. �̂10 USAPhO 2022, problem B3. About the weird behavior of electrons in solids.
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