
Kevin Zhou Physics Olympiad Handouts

Electromagnetism VIII: Materials

Electromagnetism in matter is covered in chapters 10 and 11 of Purcell. For more on dielectrics, see

chapters II-10 and II-11 of the Feynman lectures. Electromagnetism in matter is covered in greater

detail in chapters 4, 6, and 9 of Griffiths, and chapters I-31 and II-32 through II-37 of the Feynman

lectures. For an enlightening overview of the history of magnetism, see chapter 1 of Magnetism and

Magnetic Materials by Coey. There is a total of 97 points.

1 Polarization

In E2, we introduced the basics of dielectrics. To review: when a dielectric is placed in an electric

field, dipoles inside align with the field, reducing the field value. In very symmetrical situations,

the field is simply reduced by a factor of the dielectric constant κ = ϵ/ϵ0. The total energy density

within a dielectric is ϵE2/2. This section is about problems which require more than these few facts.

To answer them, we need to think about the charge bound to the dielectric itself.

Idea 1: Bound Charge

The polarization P of a material is its electric dipole moment per unit volume. It corresponds

to a “bound” charge density

ρb = −∇ ·P

within the dielectric, as well a bound surface charge density

σb = P · n̂

on its surface.

Example 1

Find the electric field of a sphere with uniform polarization P and radius R.

Solution

There is no bound charge density inside the sphere, but a bound surface charge density

σb = P · r̂ = P cos θ

on its surface. We could apply Coulomb’s law to this charge density, but an easier method

is to recall that polarization just means an internal displacement of charge. This surface

charge density precisely corresponds to having two uniformly charged balls of total charge

±Q displaced by a tiny amount d so that Qd = (4πR3/3)P.

By the shell theorem, the resulting field inside is uniform, and points against P,

E = − P

3ϵ0
,

and the field outside is exactly a dipole field, with dipole moment p = (4πR3/3)P.
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[2] Problem 1. An infinite cylindrical rod of radius R has a uniform polarization P.

(a) If P is perpendicular to the rod’s axis, describe E outside, and find the value of E inside.

(b) If P is parallel to the rod’s axis, find the electric field everywhere.

Now let’s think about how polarization arises in the first place.

Idea 2: Electric Susceptibility

A small number of insulators are “ferroelectrics”, whose crystal structure lets them maintain

a preferred polarization P in the absence of external electric fields. (You can suppose that the

preceding example and problem were implicitly about ferroelectrics.) But the vast majority

of insulators are dielectrics, whose polarization is related to the total electric field by

P = ϵ0χeE, ϵ = ϵ0(1 + χe) = ϵ0κ

where χe is the electric susceptibility and κ is the dielectric constant. The susceptibility is

nonnegative, except in some very exotic materials. The key difficulty is that above, E is the

total electric field, including that due to the bound charge, which in turn depends on P.

Example 2

A point charge q is inside a dielectric sphere of radius R with dielectric constant κ. Find the

electric field and charge density everywhere.

Solution

This is one of the simple symmetric cases where the electric field in the dielectric is simply

reduced by a factor of κ,

E =
q r̂

4πϵ0r2
×

{
1/κ r < R

1 r > R
.

Inside the sphere, this corresponds to an electric polarization

P =
q

4πr2
χe

κ
r̂.

To check that this solution is actually right, we need to ensure the original point charge q,

plus the bound charge, indeed generates the claimed electric field.

The divergence of P is zero everywhere besides the origin, where negative bound charge piles

up to cancel some of the charge q. The charge at the origin is thus

q − qb = q
(
1− χe

κ

)
= q

(
1− κ− 1

κ

)
=

q

κ

which is consistent with Gauss’s law for E there. At the surface of the sphere, there is a

positive bound surface charge density

σb =
q

4πR2

χe

κ

which cancels the negative bound charge at the origin. Thus, by the shell theorem, the

electric field outside the sphere is indeed that of the point charge q alone.
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Example 3

A dielectric sphere of radius R and dielectric constant κ is placed in a uniform field E0, and

as a result develops a uniform polarization P. Find P and the field inside the sphere.

Solution

In example 1, we found the electric field due to the polarized sphere itself, which we’ll call Ep.

Here, we must remember that the polarization is produced in response to the total electric

field inside the sphere,

P = χeϵ0E, E = E0 +Ep.

Using our previous result for Ep and solving the system, we find

E =
3

κ+ 2
E0, P = 3

κ− 1

κ+ 2
ϵ0E0.

The polarizability α of each atom is defined as the dipole moment per applied field,

p = αE0

so we have shown above that

α =
3ϵ0
n

κ− 1

κ+ 2

where n is the number density of atoms. This is the Clausius–Mossotti formula; it relates

the macroscopically measurable parameter κ to the microscopic parameter α.

[2] Problem 2 (Purcell 10.10). Assume that the uniform field E0 that causes the electric field in

example 2 is produced by large capacitor plates very far away. The field lines tangent to the sphere

hit each of the distant capacitor plates in a circle of radius r. Find r in terms of R and κ.

Idea 3

The “free” charge density ρf is the part of the charge density that isn’t bound, so that

ρ = ρb + ρf .

If we take the divergence of P = ϵ0χeE, we get ρb = −χeρ inside a uniform dielectric, so

ρ = ρf/κ.

That is, a uniform dielectric “screens” charges embedded within it, reducing it by a factor

of κ. That’s exactly what we saw in example 2, and it also tells us that a conductor

can be viewed as a dielectric with κ → ∞, because conductors completely expel electric fields.

The difficulty in dealing with dielectrics is when κ changes in space, such as at the boundary

of a dielectric, where a bound surface charge density σb can appear. If all the free charges in

a problem are outside of uniform dielectrics, bound charges only appear on their surfaces.

[3] Problem 3. A version of the method of images, introduced in E2, works for dielectrics. Let’s

suppose there is vacuum at z > 0, a dielectric κ at z < 0, and a point charge q a distance d above
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the plane z = 0. We need to find the surface bound charge density σb that appears on the plane.

(a) Let Ez
0 be the z-component of the electric field due to the point charge alone. At a given

point just below the plane z = 0, find Ez in terms of Ez
0 and σb.

(b) Use this result to solve for σb in terms of Ez
0 and κ.

(c) Your answer will be exactly the same as what one gets for a conductor at z < 0, multiplied

by a κ-dependent constant. Using this information, characterize the image charge and find

the force on the real charge.

[3] Problem 4 (Purcell 10.2). A rectangular capacitor with side lengths a and b has separation s ≪ a, b.

It is partially filled with a dielectric with dielectric constant κ. The overlap distance is x.

The capacitor is isolated and has constant charge Q.

(a) What is the energy stored in the system?

(b) Using the result of part (a), what is the force on the dielectric? Which direction does it point?

(c) Is your answer to part (b) affected by the presence of fringe fields near the interface?

[3] Problem 5 (Griffiths 4.28). Two long coaxial cylindrical metal tubes of inner radius a and outer

radius b stand vertically in a tank of dielectric oil, with susceptibility χe and mass density ρ. The

inner one is maintained at potential V , and the outer one is grounded. To what height h does the

oil rise in the space between the tubes?

2 Magnetization

Idea 4

As discussed in E5, materials contain two kinds of magnetic dipole moments: the “orbital”

part, due to moving electrons, and the “spin” part, due to the electrons’ intrinsic magnetic

moments. For most materials, in the absence of external magnetic fields, these dipole

moments point in random directions, and thus sum to zero on average.

When such a material is placed in a magnetic field, two things happen at once:

• The spins partially align with the field, producing a net dipole moment along B.

• The orbits are affected by the changing field in accordance with Lenz’s law, and thus

produce a net dipole moment against B.

These effects are often comparable in size. If the first is more important, the material is

paramagnetic, and if the second is more important, it is diamagnetic.
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This can be a bit tricky to remember, because it seems opposite to the definition of a dielectric,

where the internal electric dipoles try to align with the external field. The reason it makes

sense is that inside an electric dipole, the electric field points against the dipole moment,

while inside a magnetic dipole, the magnetic field points with the dipole moment, as discussed

in E3. So, both dielectrics and diamagnets try to reduce the applied field within them.

Idea 5: Bound Currents

The magnetization M of a material is its magnetic dipole moment per unit volume. It

corresponds to a bound current density

Jb = ∇×M

as well as a surface bound current density

Kb = M× n̂

on its surface.

Example 4

Find the magnetic field of a sphere with uniform magnetization M and radius R.

Solution

In this case Jb is zero in the sphere, while at the sphere’s surface,

Kb = M× r̂ = M sin θ ϕ̂

where we worked in spherical coordinates and aligned M with the z-axis. However, this is

precisely the current density of a rotating, uniformly charged sphere, as we discussed in E3.

Scaling the constants appropriately, we find that inside,

B =
2

3
µ0M

which should be compared with example 3. Outside, the field is exactly a magnetic dipole

field, with m = (4πR3/3)M.

[2] Problem 6. An infinite cylindrical rod of radius R has a fixed, uniform magnetization M.

(a) If M is parallel to the rod’s axis, find the magnetic field everywhere.

(b) If M is perpendicular to the rod’s axis, describe B outside, and find the value of B inside.

[2] Problem 7 (Griffiths 6.10). A rod of length L and square cross section of side a is given a uniform

longitudinal magnetization M and then bent into a circle with a narrow gap of width w.
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Find the magnetic field at the center of the gap, assuming w ≪ a ≪ L.

Idea 6: Magnetic Susceptibility

Permanent magnets, such as the ones on your refrigerator, or the strong neodymium magnets

popular in science toys, are made of “hard” ferromagnets. These are materials whose crystal

structure lets them maintain a fixed magnetization M in the absence of external magnetic

fields. (The preceding example and problems were implicitly about hard ferromagnets.)

In most other materials, the magnetization is related to the magnetic field in the material by

M =
1

µ0

χm

1 + χm
B, µ = µ0(1 + χm) = µ0µr

where χm is the magnetic susceptibility, µ is called the permeability, and µr is called the

relative permeability. We’ll explain later why χm isn’t defined the same way as χe.

• Diamagnets have −1 < χm < 0 and paramagnets have χm > 0.

• Most materials are weakly diamagnetic (|χm| ≪ 1), but some are weakly paramagnetic.

• As discussed in E5, a superconductor totally expels magnetic fields, and thus can be

viewed as a “perfect diamagnet” with χm = −1 and hence µ = 0.

• A “soft” ferromagnet (such as iron) is strongly paramagnetic, with χm ≫ 1.

• It is impossible to have χm < −1, as then the energy density B2/2µ would be negative.

The material would spontaneously develop arbitrarily large B, and blow itself up.

Because magnetization can arise from freely moving electrons, bound electrons orbiting, or

the spin of electrons, these ideas can be applied to both conductors and insulators. As always,

we must be careful to remember that B is the total magnetic field, due to both whatever is

outside the material, and the magnetization of the material itself.

Remark: Estimating Susceptibility

Why is it that many common solids have |χm| ≪ 1, but χe of order 1? Atoms contain a

few valence electrons of charge q orbiting with radius of order a0, the Bohr radius. To very

roughly estimate electric and magnetic susceptibility, it’s easiest to consider the extreme

case where the field is so strong that the atom is about to fall apart.

The electrons are bound by an electric field Emax ∼ q/ϵ0a
2
0, so the atom will fall apart if the

external field is much larger than this. And when the electron orbits are completely deformed,
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they will provide an electric dipole moment pmax ∼ qa0. So the polarizability is of order

α ∼ pmax

Emax
∼ ϵ0a

3
0.

Then the electric susceptibility is

χe =
P

ϵ0E
∼ nα

ϵ0
∼ 1

because the number density of atoms is n ∼ a−3
0 . So, in a completely typical insulator, χe is

of order 1, which is indeed what we observe.

If you don’t know this, it can seem like a magical fact. Electrical engineers are often

amazed that the permittivity of free space ϵ0 is comparable to that of common materials.

For instance, it’s around half the permittivity ϵ of teflon, so does that mean “vacuum” is

like a material half as strong as teflon? But this is thinking backwards. The properties of

electromagnetism in vacuum are fundamental and have nothing to do with materials, but

they determine the structure of materials. We start with ϵ0 and use it to derive ϵ ∼ ϵ0.

Now, magnetic susceptibility is penalized by the fact that magnetic forces are suppressed by

a factor of the electron speed v. The field strength at which the magnetic force is as strong

as that of the binding electric field is Bmax ∼ Emax/v. At this point, the electrons provide

the maximum possible magnetic moment by all orbiting in the same direction, so

µmax ∼ IA ∼ (qv/a0)(a
2
0) ∼ qva0.

To leading order in χm, the magnetic susceptibility is

χm ≈ µ0M

B
∼ µ0µmaxn

Bmax
∼ ϵ0µ0v

2 =
v2

c2
∼ α2 ∼ 10−4

where α is the fine structure constant, introduced in P1. And indeed, this estimate result

matches experimental results. Magnetic susceptibility is typically small because relativistic

effects for valence electrons are weak.

Example 5

An infinite solenoid with n turns per length and current I is filled with material with magnetic

susceptibility χm. Find the magnetic field inside.

Solution

The magnetic field inside has contributions from the solenoid wire and the magnetization,

B = µ0(nI +M) = µ0nI +
χm

1 + χm
B.

Solving for B yields

B = (1 + χm)nI = µnI
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which can be a significant enhancement if the material is a soft ferromagnet.

[2] Problem 8. A sphere of magnetic susceptibility χm is placed in a uniform field B0, and as a result

develops a uniform magnetization M. Find M and the field B inside the sphere. Then check the

limiting cases of a superconductor and a soft ferromagnet. Do they make sense?

Idea 7: The H Field

Historically, magnetism was formulated in terms of the field

H =
1

µ0
B−M.

The magnetic susceptibility was originally defined to be simple in terms of H, with

M = χmH, B = µH.

The reason H is useful is that it gives a close analogy to electrostatics. Note that

∇×H = J− Jb

so that H has no curl if there are no currents around besides the bound current. (This extra

current is sometimes called “free” current Jf .) In addition,

∇ ·H = −∇ ·M

which is analogous to how a polarization yields a charge density, ∇·E = −∇·P/ϵ0. Therefore,

any magnetostatic problem without free current can be mapped to an electrostatic one via

(ϵ0E,P, ρb, χe) ↔ (H,M, ρm, χm)

where ρm = −∇ ·M is the “magnetic charge density”.

This is the mathematical formalization of the idea of Gilbert dipoles, introduced in E3, which

replace a true magnetic dipole with a pair of fictitious magnetic charges. At the time, we

remarked that this gives you the correct magnetic field outside of a magnet, but not inside.

The underlying reason is this analogy is actually computing H, not B. To get the correct B

within a magnetized material, we have to compute B = µ0(H+M). Heuristically, µ0M is

the magnetic field due to dipole moments right at that location, while µ0H is the magnetic

field due to all other currents and magnetic dipole moments. Finally, we note that a soft

ferromagnet can be thought of as a material within which H is approximately zero.

Remark: The History of H

If you learned physics in the United States, you might have found the preceding idea

unfamiliar, because it has been systematically removed from the introductory curriculum.

The reason comes down to history. First, it’s worth noting that the choice between covering

B and H isn’t obvious. Today we would say the B field is more fundamental, because it is
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what determines the Lorentz force on a charge, and the force and torque on a dipole moment,

and thereby the reading on a magnetometer. But for most of history, one could just as well

argue that it is µ0H that determines these things. After all, we can’t embed a measuring

device within a magnet. Doing so would require hollowing out a hole, which would remove

M there, which would render B just equal to µ0H.

Therefore, choosing between B and µ0H requires measuring some interaction where particles

pass through a magnet. In the 1930s, this became possible with neutron scattering, since

neutrons are electrically neutral but carry a magnetic dipole moment m. As discussed

here, the Nobel laureates Bloch and Schwinger disagreed on whether the interaction energy

was −m · B or −m · (µ0H), which corresponds to treating m as Amperian or Gilbertian,

respectively. The controversy remained open for decades, but was eventually settled by data.

At the same time, there was a growing consensus in the United States that magnetic poles

were a “useless concept” which should be banished from teaching entirely. So, when the

modern American physics curriculum was set in the 1960s, that’s exactly what happened.

For example, Halliday, Resnick, and Krane spends only a few pages covering magnetization,

and half of them are spent admonishing the reader that magnetic poles don’t exist. If

you were educated in America, you probably only heard about them for a day in middle school.

Unfortunately, removing magnetic poles from the curriculum has some real costs. Experimen-

talists still think in terms of poles and H, because it’s harder to visualize how complicated

currents source B. Moreover, it’s harder to do anything with B without vector calculus

background. That’s why some other countries’ introductory physics courses put poles first.

(But some teachers don’t clearly explain how B and µ0H differ, leading to confusion later.)

In this problem set, I’ll tell you only what you need to know about H to solve theoretical

problems. If you try to dive deeper into how experimentalists use it, you’ll run into a lot more

historical cruft. For instance, they tend to prefer the “Gaussian” system, where annoying

factors of 4π are inserted into Maxwell’s equations to make the Coulomb and Biot–Savart

laws slightly simpler. Also, they use “cgs” (centimeter-gram-second) units, so all units need

to be rescaled by some number of powers of 10. Worst of all, they have totally different

units for B (Gauss), H (Oersted), and M (emu/cm3), which are tricky to relate. I wouldn’t

recommend learning any of this unless you have to for your job.

Example 6

Using the H field, recompute the magnetic fields inside a uniformly magnetized sphere, and

a rod magnetized parallel to and perpendicular to its axis.
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Solution

In the first section, we found that inside these objects,

E =


−P/3ϵ0 sphere,

−P/2ϵ0 cylinder, perpendicular

0 cylinder, parallel

Using the analogy above, we immediately conclude

H =


−M/3 sphere

−M/2 cylinder, perpendicular

0 cylinder, parallel

The minus signs make sense because the “magnetic charge” accumulates on the side that M

points to, and produces an H field in the opposite direction. Converting back to B yields

B =


2µ0M/3 sphere

µ0M/2 cylinder, perpendicular

µ0M cylinder, parallel

which precisely matches what we found in example 4 and problem 6, with much less effort.

Remark: Demagnetizing Fields

At a given point in an isolated magnet, µ0H is the part of B due to the rest of the magnet.

However, the above example shows that H always points against the direction of M, so a

permanent magnet is always trying to demagnetize itself! Similarly, electrically polarized

materials carry an internal “depolarization” field. This is why, in the absence of external

fields, the vast majority of materials have zero polarization and magnetization.

Before the advent of very effective “hard” ferromagnets, like neodynium magnets, magnets

had to be shaped to avoid this effect, e.g. by making them into long bars or horseshoes.

Even so, the demagnetization effect would make the field produced by the magnet a little

less than you would expect. For an average-shaped bar magnet made in the 1950s, the

magnetic poles are effectively not at the ends, but rather 10% to 20% closer together.

This bit of historical trivia is irrelevant today, but it has stuck around in the Indian physics

curriculum. Every Indian introductory physics textbook demands its students memorize

the ratio of the “magnetic length” and “geometric length” of a bar magnet, as if it were a

fundamental constant of nature rather than an obsolete rule of thumb. But different ones

don’t even agree on what the ratio is, with HC Verma giving 84%, various JEE prep sources

stating 4/5, 5/6, or 7/8, and none whatsoever explaining where the number comes from.

Such “magic formulas” are depressingly common in Indian books and should just be ignored.
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Idea 8: Magnetic Energy, Force, and Torque

The appropriate magnetic energy density depends on the material.

• If the magnetization is permanent, as in a hard ferromagnet, we should use the same

potential energy introduced in E4. Specifically, the potential energy density is −M ·B.

• For all other materials, where the magnetization is induced by the presence of other fields,

the total energy density is B2/2µ.

If you use one of these formulas where the other applies, you’ll typically be off by a factor of 2.

Regardless of how the magnetization arises, the resulting force and torque in an external field

B are given by the formulas introduced in E4. Specifically, the torque density is M×B, and

the force density is ∇(M ·B), where the ∇ only acts on B. Alternatively, if you’re using the

magnetic pole trick, a magnetic charge qm feels a force qmB.

[3] Problem 9. A version of the method of images works for magnetic materials. Let’s suppose there

is vacuum at z > 0, and a material of relative permeability µr at z < 0. When using the method of

images, we only care about the field at z > 0, where B and H are proportional. So we can directly

use the analogy between H and E.

(a) Suppose a magnetic charge qm is a distance d above the plane. By recycling your answer to

problem 3, find the magnetic charge q′m of the image. What does it become if the material is

a superconductor, or a soft ferromagnet?

(b) Of course, magnetic charges don’t actually exist, so let’s instead suppose a permanent magnetic

dipole moment m was a distance d above the plane, with m pointing towards the plane.

Characterize the image dipole, and find the force on the real dipole.

(c) To be even more concrete, consider a very long permanent magnet of cross-sectional area A

and uniform magnetization M along its length. When one end of the magnet is placed flat

against an iron plate, what is the force between them?

[2] Problem 10. AuPhO 2019, problem 13. A neat explanation of how a fridge magnet works; for

this problem it will be useful to consult the answer sheet.

[5] Problem 11. Physics Cup 2024, problem 3. This relatively straightforward problem reviews almost

everything we’ve covered so far.

Example 7: Griffiths 6.27

How does a magnetic field line bend when it passes from one medium to another?
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Solution

We say the field lines “bend” because of Gauss’s law for magnetism: they can’t start or end,

so each one has to keep on going. Let’s suppose the figure above is drawn in the xz plane.

Applying Gauss’s law for magnetism in a small pillbox spanning the interface gives

Bz
1 = Bz

2 .

On the other hand, since ∇×H is zero (assuming no additional, “free” current is around),

considering an Amperian loop spanning the interface gives

Hx
1 = Hx

2 .

Combining these results gives
tan θ2
tan θ1

=
µ2

µ1
.

In other words, when a field line enters a medium with higher µ, it bends away from the

normal, and when it enters a medium with lower µ, it bends towards the normal.

This statement has two limiting cases which will be important later.

• Amagnetic field line can’t enter a superconductor (µ2 = 0) at all, so field lines approaching

a superconductor bend away, to become tangent to them (θ1 → 90◦).

• A magnetic field line entering a soft ferromagnet (µ2 → ∞) bends towards it to enter along

the normal direction (θ1 → 0◦), similar to how electric field lines approach conductors.

It’s also possible for θ1 to be nonzero if θ2 → 90◦, but we won’t see any examples of this.

You can see both of these behaviors in the limiting cases of problem 9. In general, we conclude

that magnetic field lines are “attracted” to regions of higher µ, which makes sense because

it helps minimize the energy. Soft ferromagnets tend to keep magnetic field lines within

themselves, which is why they’re used in transformers.
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[2] Problem 12 (IPhO 2012 Experiment). Water is a diamagnetic substance. A powerful cylindrical

magnet with field B is placed below the water surface.

(a) Which of the following shows the resulting shape of the water surface?

The magnet is roughly 2/3 as wide as each of these sketches.

(b) Let ρ be the density of the water. If the maximum change in height of the water surface has

magnitude h, find an approximate expression for the magnetic susceptibility χm of water.

For a very closely related, but more extreme problem, see EuPhO 2018, problem 2.

[3] Problem 13. EFPhO 2004, problem 6. A cute exercise with permanent magnets.

[5] Problem 14. �h10 IPhO 2022, problem 1. A series of exercises on spherical magnets, which uses

almost everything covered in this section.

[4] Problem 15. Physics Cup 2012, problem 2. If you only know what’s taught in American intro-

ductory courses, this problem is basically impossible. If you only know what’s stated explicitly in

Griffiths, it’s very hard. But if you’ve internalized the intuition of the above examples, and the

relevant section of E5 on superconductors, it should be relatively approachable.

[5] Problem 16. Physics Cup 2018, problem 3. A substantially tougher problem which requires

solving some differential equations. I recommend starting from the fifth hint.

3 Multipoles

In this section, we explore some of the physics of dipoles and higher multipoles.

[3] Problem 17 (Purcell 10.27). Two monopoles of opposite sign form a dipole, two dipoles of opposite

sign for a quadrupole, and so on. Hence we can construct arbitrarily high multipoles using the rows

of Pascal’s triangle.

The field of a dipole falls as 1/r3, a quadrupole as 1/r4, and an octupole as 1/r5.

13

https://knzhou.github.io/
https://www.ioc.ee/~kalda/ipho/2EuPhO/eupho18-theory.pdf
https://www.ioc.ee/~kalda/ipho/E_S2.pdf
http://www.ipho2012.ee/physicscup/problem-no-2/
https://www.ioc.ee/~kalda/ipho/PhysicsCup2018/PC18-3-v1.pdf
https://www.ioc.ee/~kalda/ipho/PhysicsCup2018/PC18-3-v6.pdf


Kevin Zhou Physics Olympiad Handouts

(a) To warm up, verify explicitly that the quadrupole field along the axis of the quadrupole starts

at 1/r4, i.e. that all lower terms cancel.

(b) [A] Prove that this cancellation occurs for general multipoles along their axis.

(c) [A] The magnitude and orientation of a dipole is specified by a vector, with three components.

How many numbers are necessary to specify the magnitude and orientation of a quadrupole?

(The linear quadrupoles here are just a special case of a general quadrupole.) Try to generalize

to arbitrary multipoles.

Section 3.4 of Griffiths explains how to decompose an arbitrary charge distribution into multipoles.

[3] Problem 18 (Purcell 11.23). Consider two magnetic dipoles with coplanar dipole moments.

Show that the associated potential energy is

U =
µ0m1m2

4πr3
(sin θ1 sin θ2 − 2 cos θ1 cos θ2) .

For what orientations is this potential energy maximized or minimized?

[2] Problem 19 (Purcell 11.36). Three magnetic compasses are placed at the corners of a horizon-

tal equilateral triangle. As in any ordinary compass, each compass needle is a magnetic dipole

constrained to rotate in a horizontal plane. The Earth’s magnetic field has been shielded. What

orientation will the compass needles eventually assume? Does your result also hold for regular

N -gons?

[3] Problem 20. Some questions about forces between dipoles and other multipoles.

(a) Above, you’ve shown that the force between permanent magnetic dipoles falls off as 1/r4.

How about two permanent electric dipoles?

(b) How about a permanent dipole and a permanent quadrupole?

(c) How about two permanent quadrupoles?

(d) Now consider an ion and a neutral atom. The electric field of the ion polarizes the atom; the

field of that induced dipole then reacts on the ion. Show that the resulting force is attractive

and falls as 1/r5.

4 Electromagnetic Waves in Matter

In this section, you will work out some of the theory of electromagnetic waves in matter.
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Idea 9

In the absence of any free charge or current, Maxwell’s equations in matter are identical to

Maxwell’s equations in vacuum, except that ϵ0 and µ0 are related by ϵ and µ, so the waves

propagate with speed 1/
√
ϵµ = c/n, with E = (c/n)B.

[5] Problem 21. Suppose the regions x < 0 and x > 0 are filled with material with permittivities

ϵ1 and ϵ2, both with permeability µ0. (As mentioned above, this is typical for most materials.)

We send in an incident wave from the left with electric field Eie
i(ki·r−ωit). The wave will be both

transmitted and reflected at the interface, so the total electric field is

E =

{
Eie

i(ki·r−ωit) +Ere
i(kr·r−ωrt) x < 0,

Ete
i(kt·r−ωtt) x > 0.

The angles with the normal are θi, θr, and θt as shown. Note that since light is a transverse wave,

all three electric field amplitudes above are perpendicular to their corresponding wavevector.

(a) We can decompose every field into a part perpendicular to the interface (i.e. containing just

the x-component), and a part parallel to the interface (containing the other components).

Using Maxwell’s equations, argue that at the interface, E∥ and B⊥ must be continuous. Also

show that for this setup, B∥ is also continuous.

(b) Argue that by continuity of E∥ at the interface, we must have

ωi = ωr = ωt.

(c) Further argue that k
∥
i = k

∥
r = k

∥
t , and thereby derive the laws of reflection and refraction,

θi = θr, n1 sin θi = n2 sin θt.

This result is very general, and holds for all kinds of waves as long as we define ni ∝ 1/vi.

(d) Now suppose the electric fields Ei, Er, and Et are polarized perpendicular to the page. Then

continuity of E∥ gives

Ei + Er = Et.
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Using continuity of B∥, show that

Er

Ei
=

n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

,
Et

Ei
=

2n1 cos θi
n1 cos θi + n2 cos θt

.

These are the Fresnel equations for normal polarized light, also called “s-polarized” light.

(e) If n1 > n2, then total internal reflection occurs when

sin θi >
n2

n1

and the wave is totally reflected. Nonetheless, Et is nonzero in this regime. To make sense

of this, show that the x-component of kt is imaginary in this regime, indicating that the

“transmitted” wave does not propagate in the region x > 0, but rather exponentially decays.

Remark

Above, we found the angle of refraction using the conservation of kz at an interface. To

relate this to the wave speed, we used that fact that ω is conserved when a wave passes an

interface, so that |k| = ω/|v| ∝ 1/|v|.

However, we could also model light as a stream of nonrelativistic bullets, and the interface

as dividing two regions, each with constant potential energy. In that case, the analogue of

kz is pz, which is still conserved by translational symmetry. However, now the mass m is

conserved when the particles pass the interface, and we have |p| = m|v| ∝ |v|. This gives

the opposite dependence on wave velocity, so that now n/ sin θ stays the same! Hundreds of

years ago, nobody could directly measure |v|, so the correct model was hotly debated.

[5] Problem 22. In most common materials, µ ≈ µ0 while ϵ depends on frequency. We’ll investigate

the origin of this frequency dependence below.

(a) Model an electron in an atom as a mass m with charge q attached to a spring, with natural

angular frequency ω0 and a damping force −mγv, in an electric field E0e
−iωt. Write down

the equation of motion for the electron.

(b) The atomic polarizability α is defined by p = αE. Show that

α =
q2/m

−ω2 + ω2
0 − iγω

.

Now we restrict to a gas with small number density n, so that nα ≪ ϵ0. For simplicity, you may

also assume that the damping is weak, γ ≪ ω0. Now, the Clausius–Mossotti formula reduces to

ϵ = ϵ0 + nα

and α is a complex number, so we learn that ϵ is also cmmplex.

(c) The wavevector and angular frequency are related by k2 = µϵω2. Explain why the fact that ϵ

is complex indicates that waves can be absorbed.

(d) What value of ω maximizes the absorption rate of the electromagnetic waves? Roughly how

many wavelengths does such a wave propagate before being mostly absorbed?
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(e) What value of ω maximizes the speed of the electromagnetic waves, and what is that speed?

(f) Transparent objects such as glass can be modeled as having a very high resonant frequency,

much higher than that of visible light. Does blue light or red light refract more when passing

from air to glass?

The intuitive reason that these electrons can affect the propagation speed of light is because they

emit secondary electromagnetic waves that are out of phase with the original wave; this “pushes” the

phase of the composite wave forward or backward, affecting the phase velocity. A nice explanation

of this can be found in chapter I.31 of the Feynman lectures.

[5] Problem 23. �h10 IPhO 2002, problem 1. A neat application of electromagnetic waves in matter.

[5] Problem 24. �h10 APhO 2007, problem 2. A problem on an exotic negative index of refraction.

Remark

Above, we considered the response of a medium composed of atoms, obeying p = αE. However,

this relation is just an approximation, like Hooke’s law. For larger electric fields, higher order

terms are necessary,

p = αE + α′E2 + . . .

which lead to strange effects, studied in the field of nonlinear optics. For example, suppose

we send in light of angular frequency ω. Then

E2 ∝ cos2(ωt) =
1 + cos(2ωt)

2
.

That means that a nonlinear medium can respond to light at angular frequency ω by oscillating,

and hence emitting light, at angular frequency 2ω. This phenomenon is called frequency

doubling, or second-harmonic generation, and converts red light to blue. Similarly, for a cubic

nonlinearity, you can use trigonometric identities to show that frequency tripling can occur.

5 Electromagnetic Systems

In this section we’ll consider problems that use everything we’ve covered, with a focus on techno-

logical applications and systems with multiple moving parts.

[2] Problem 25 (Purcell 11.19). A magnetic dipole m oscillates so that m(t) = m0 cosωt. Some of

its flux links the nearby circuit C1, inducing an electromotive force E1 sinωt.

If a current I1 flowed in C1, then the resulting field at the location of the dipole would be B1. Show

that E1 = (ω/I1)B1 ·m0. (Hint: recall the results involving mutual inductance in E5.)
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[3] Problem 26. EFPhO 2007, problem 3. A problem on focusing particles with electric fields. (For

part 4, your answer should include T , but not Um, and you should assume that T is large, so that

a/T is less than the electrons’ typical speed.)

[4] Problem 27. �T10 IPhO 2004, problem 3. A practical problem which also reviews damped/driven

oscillations.

[4] Problem 28. EFPhO 2014, problem 1. A challenging problem about a complex nonlinear circuit.

[5] Problem 29. Physics Cup 2020, problem 1. (It’s not stated explicitly, but you should assume the

rod is an insulator with zero electric susceptibility. Alternatively, you can suppose the rod has some

electric susceptibility, but it’s too thin to have an effect on the dynamics of the metal balls.)
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