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Electromagnetism Review
There is a total of 92 points.

1 Electrostatics and DC Circuits

[3] Problem 1. One of the important achievements of the 19th century was the laying of undersea

cables, which permitted the transmission of telegraph messages. In 1871, the 21 year old electrician

Oliver Heaviside was tasked with locating a leak in the cable connecting England and Denmark.

(Heaviside had been trained by his uncle-in-law Charles Wheatstone, who found many uses for the

Wheatstone bridge. Heaviside later recast Maxwell’s equations in the vector form we use today.)

The cable can be modeled as a uniform cylinder of known resistance R0. That is, when the cable

is operating properly, then grounding one end and applying a voltage V to the other leads to a

steady state current of V/R0. The leak is located a fraction α of the way from the English side. Let

the resistance between the leak point and the Earth, due to the current having to travel through

the water, be Rd. The precise value of Rd is also unknown. Your task, as was Heaviside’s, is to find

a way to measure α without having to dig the whole cable up.

Solution. There are various ways to solve this problem; here’s what Heaviside did.

First, don’t attach the Danish side to anything, and apply a voltage at the English side. By

measuring the resulting current, we can measure the resistance, which in this case is

R1 = αR0 +Rd.

Next, attach the Danish side to ground and repeat the procedure to measure the new resistance,

R2 = αR0 +
RdR0(1− α)

Rd +R0(1− α)
.

We don’t know Rd, so we can plug the first equation into the second to eliminate it. Defining the

rescaled variables r1 = R1/R0 and r2 = R2/R0, the second equation becomes

r2 = α+
(r1 − α)(1− α)

r1 + 1− 2α
.

Clearing denominators and simplifying gives the quadratic

α2 − 2αr2 + r2 + r1r2 − r1 = 0

which has solution

α = r2 ±
√

(r2 − r1)(r2 − 1).

Incidentally, this result was first derived by a French telegrapher, and is called Blavier’s method.

Variations of this method are still used to locate breaks in cables today!
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[3] Problem 2. �W10 USAPhO 2006, problem A2.

[2] Problem 3 (Kalda). Not all circuits are made of only series and parallel combinations. The Y-∆

transform is the next simplest tool you can use. Consider the two sets of resistors shown below.

The two are equivalent provided that

RA =
RABRBC

RAB +RAC +RBC
,

1

RBC
=

1/RBRC
1/RA + 1/RB + 1/RC

along with cyclic permutations. As an application, consider the circuit below.

Find the current through the battery using a Y-∆ transform.

Solution. It’s most convenient to apply the Y-∆ transform to the top vertex, turning it from a Y

into a ∆ of three 9 Ω resistors. At this point the circuit can be simplified using the usual series and

parallel rules, giving Req = 19/7 Ω and thus I = 21/19 A.

[3] Problem 4. �̂10 IZhO 2022, problem 1.3. A three-dimensional electrostatics problem.

Solution. See the official solutions here.

[5] Problem 5. �T10 IPhO 2012, problem 2. A challenging electrostatics and fluids problem; some

prior exposure to surface tension is helpful. (For more about the kinds of bubbles encountered in

this problem, see section 5.9 of Physics of Continuous Matter by Lautrup.)

2 Charges in Fields

[3] Problem 6 (BAUPC). A particle with charge q and mass m is initially at the origin in a region with

constant magnetic field Bẑ, and velocity v0ŷ. The particle experiences a frictional force F = −αv.

Find the final position of the particle.

Solution. We see that

F = qv ×B− αv.
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Let v = (vx, vy) (obviously the velocity stays in this plane as the forces will only be in the xy plane).

Therefore,

(v̇x, v̇y) = qB(v2,−v1)− α(v1, v2) = (qv2B − αv1,−qv1B − αv2).

Thus,
d

dt

(
v1
v2

)
=

1

m

(
−α qB

−qB −α

)(
v1
v2

)
.

The eigenvalues and eigenvectors are

λ1 =
−α− iqB

m
and e1 =

(
i

1

)
and

λ1 =
−α+ iqB

m
and e1 =

(
−i
1

)
.

We see that v(0) = v0
2 (e1 + e2), so the time evolved state is

v(t) =
v0
2

(
e1e

(− α
m
− iqB

m )t + e2e
(− α

m
+ iqB

m )t
)

= v0e
−αt/m

sin
(
qB
m t
)

cos
(
qB
m t
) .

The ending x position is then

X = v0

∫ ∞
0

e−αt/m sin

(
qB

m
t

)
dt = v0

qB/m

(qB/m)2 + (α/m)2

and the ending y position is

Y = v0

∫ ∞
0

e−αt/m cos

(
qB

m
t

)
dt = v0

α/m

(qB/m)2 + (α/m)2
.

[3] Problem 7 (APhO 2006). Two large, identical conducting plates α and β with charges −Q and

+q (where Q > q > 0) are parallel to each other and fixed in place. Another identical plate γ with

mass m and charge +Q is parallel to the original plates at distance d, as shown.

The plates have surface area A. The plate γ is released from rest and bounces elastically off the

plate β. Assume that charges have sufficient time to redistribute between the plates during the

collision. When the plate γ returns to its original position, what is its speed?
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Solution. Initially, the electric field due to the plates α and β at γ is

E =
Q− q
2ε0A

so the force is

F = QE =
Q(Q− q)

2ε0A

towards plate β. During the collision, β and γ effectively become one plate with total charge Q+ q.

In order to shield the field of plate α, the difference of the charges on the left end of β and the right

end of γ must be Q, which means that the right end of γ gets a charge q/2, while the left end of β

gets a charge Q+ q/2. After the collision, the electric field due to α and β is

E′ =
q

4ε0A

so the magnitude of the force is

F ′ =
q

2
E′ =

q2

8ε0A

away from plate β. The total work done is

W = (F + F ′)d =
d

8ε0A
(2Q− q)2

and setting this equal to mv2/2 gives

v =

√
d

ε0mA
(Q− q/2).

[3] Problem 8. �W10 USAPhO 2017, problem A3.

[3] Problem 9. �̂10 USAPhO 2023, problem A2.

[3] Problem 10. EFPhO 2010, problem 1. A contrived, but nice problem involving particles in fields.

Solution. See the official solutions here. However, the solutions have some typos. For part (ii),

there should be a 2π on the right-hand side of the final answer. For part (iii), s + 2x is the

displacement of the red ball after the blue ball enters the field, so the final inequality should be

L > s+ 2x.

[3] Problem 11. �@10 APhO 2003, problem 3. A short problem on a “plasma lens”.

Solution. See the official solutions here.

[3] Problem 12. �m10 APhO 2005, problem 2B. A short problem on focusing with magnetic fields.

[4] Problem 13. �@10 IPhO 2011, problem 3. A problem on the interactions of charges and atoms.

[5] Problem 14. �h10 IPhO 2021, problem 2. A comprehensive problem on E1 through E4.

[3] Problem 15. �m10 USAPhO 2017, problem B2.

[3] Problem 16. �̂10 USAPhO 2023, problem B1.
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Remark

You should almost never use a rotating frame to describe electromagnetic fields. Not only will

you run into a more subtle version of the problems with field transformations, as described

in E4, but basic calculus operations like the divergence, curl, and partial time derivative

transform too. The result is that Maxwell’s equations take on a completely different, and

rather nasty form, as shown here. (It is easier to work with Maxwell’s equations in general

frames if you know how to express them in tensor form, as mentioned in R3. But in that

case you usually wouldn’t even be thinking in terms of electric and magnetic fields anyway,

replacing them with the electromagnetic field strength tensor.)

Idea 1

A metal conductor is made of nuclei of positive charge, and electrons of compensating negative

charge. Classically, the electrons are free to move, but the nuclei are fixed in place in the

crystal lattice by strong electrostatic interactions.

[3] Problem 17 (PPP 173). A solid metal cylinder rotates with angular velocity ω about its axis of

symmetry. The cylinder is in a homogeneous magnetic field B parallel to its axis.

(a) Find the charge distribution inside the cylinder.

(b) Is there a nonzero angular velocity for which the charge distribution is everywhere zero?

Solution. (a) Applying Newton’s second law to the electrons gives

eE + eωrB = mω2r

where m is the electron mass, so

rE + ωr2B =
mω2

e
r2.

But, Gauss’s law tells us that

E(r) =
1

2πε0r

∫ r

0
ρ(r′) 2πr′ dr′,

so taking the derivative of our previous equation with respect to r, we have

ρ

2πε0
(2πr) + 2ωrB =

2mω2r

e
.

Thus, it turns out we get a uniform charge,

ρ =
2ωε0
e

(mω − eB).

Note that we don’t have to apply Newton’s second law to the positive ions in the metal. These

are locked in place by the crystal lattice; it’s only the electrons that are redistributing. (The

metal is of course overall neutral; the extra electrons here just get pushed all the way to the

surface.)
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(b) As we can see above, this occurs when ω = eB/m. (Think about why this is, in terms of

electron orbits!)

[4] Problem 18 (MPPP 173). In 1917, T. D. Stewart and R. C. Tolman discovered that an electric

current flows in any coil wound around, and attached to, a cylinder that is rotated axially with

constant angular acceleration.

Consider a large number of rings of thin metallic wire, each with radius r and resistance R. The

rings have been glued in a uniform way onto a very long evacuated glass cylinder, with n rings per

unit length of the symmetry axis. The plane of each ring is perpendicular to that axis.

At some particular moment, the cylinder starts to accelerate around its symmetry axis with

angular acceleration α. After a certain length of time, there is a constant magnetic field B at the

centre of the cylinder. Find, in terms of the charge e and mass m of an electron, the magnitude

of the field. (The matching experimental result showed that it was the electrons that were free to

move in metals.)

Solution. First, we need to understand why there should be a magnetic field at all. This is puzzling,

because there don’t seem to be any charged objects anywhere in the problem. But we recall that

microscopically, the rings are made of positive ions locked in a lattice, and negatively charged

electrons free to move. If, when we rotated the ring, the positive ions moved but the electrons

stayed in place, we would have a large current.

Of course, this isn’t realistic, because that would mean that moving any conducting object would

produce a huge current. In reality, the electrons get pulled along with the ions due to their mutual

interaction, making the current almost cancel. But since the ions are continually accelerating, the

electrons are always a bit behind, so their velocities differ, and there is a small net current. (Note

that in addition to this effect, electrons are pushed to the outside edge of the ring by the same effect

as in problem 17, but in this problem that isn’t important because the rings are thin.)

Now let’s make this more concrete. It’s easiest to work in the noninertial reference frame rotating

with the ions. (This is okay, despite the remark above, because we’re not going to say anything

about the fields in this frame.) In this frame, there is a fictitious force ma = mrα acting tangentially

on the electrons. In other words, we have an emf across the loop of

E = (2πr)
F

q
=

2πmr2α

e
.

By Ohm’s law, E = IR, this implies a steady state current of

I =
2πmr2α

eR
.

Now return to the inertial lab frame. The current in the frame is the same, and in this frame it is
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due to the electrons slightly lagging in speed behind the ions. We then get

B = µ0nI =
2πµ0nmr

2α

eR
.

Note that the Coriolis force also acts in the noninertial frame, but it’s negligible because the speed

of the electrons in that frame is small.

3 Induction

[3] Problem 19 (IPhO 2000). A thin copper wire of radius r and resistivity ρ is bent into a circular

ring of radius R of total mass m. It is suspended from the ceiling by a frictionless wire and set

rotating with angular frequency ω. The horizontal component of the local magnetic field of the Earth

is B. Neglecting any self-induction effects and assuming that B is small, find the time required for

the angular frequency to halve. This is an example of “induction braking”.

Solution. See the official solutions here and here.

[5] Problem 20. �T10 IZhO 2020, problem 3. A nice problem on electromagnetism and mechanics.

Solution. See the official solutions here.

[5] Problem 21. APhO 2021, problem 3. A challenging problem on time-dependent image charges.

Solution. See the official solutions here.

4 Circuits

[3] Problem 22. �W10 USAPhO 2007, problem A4.

[3] Problem 23. EFPhO 2009, problem 8. A review problem for RC and RL circuits.

Solution. See the official solutions here.

[3] Problem 24 (Kalda). An electrical transformer is connected as shown.

Both windings of the transformer have the same number of loops and the self-inductance of both

coils is equal to L. There is no leakage of the magnetic field lines from the core, so that the mutual

inductance is also equal to L.

(a) Suppose the coil windings are oriented so that if both coils have current flowing from left to

right, then the magnetic fields in the transformer core cancel out. Find the currents in the

resistors immediately after the switch is closed.

(b) Find the current in the left resistor as a function of time.
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(c) Now suppose one of the coils is wound in reverse, relative to the specification of part (a). Find

the current in the right resistor as a function of time.

Solution. (a) Let I1 and I2 be the currents flowing through the top and bottom coils respectively,

and positive being from left to right. Then the magnetic flux is L(I1 − I2), which is equal to

0 at the beginning. Then Kirchoff’s rules give

E = (I1 + I2)R+ EL + I1R (I1 + I2)R− EL = 0

Using I1 = I2, we have E = 2I1R+ 2I1R+ I2R = 5I1R giving I1 = E/(5R) = I2, so currents

of 2E/5R and E/5R flow through the left and right resistors respectively.

(b) Defining I = I1 − I2, we have EL = LdIdt , and Kirchoff’s loop rules give

E = 2L
dI

dt
+ I1R, E = 2(2I1 − I)R+ I1R = 5I1R− 2IR

Putting them together and simplifying yields

2E = 5L
dI

dt
+ IR.

Solving the differential equation yields

I =
2E
R

(
1− e−tR/5L

)
,

dI

dt
=

2E
R(5L/R)

e−tR/5L = (I1 + I2)R/L.

The current in the left resistor is

I1 + I2 =
2E
5R

e−tR/5L.

(c) Now, EL = LdIdt and the second loop rule has the direction of EL reversed: (I1 + I2)R+EL = 0.

Then the equations with I ≡ I1 + I2 are

E = IR− IR+ I1R = I1R

The current through the right resistor is just I1, so the answer is

I1 =
E
R
.

[5] Problem 25. �h10 EuPhO 2022, problem 2. A nice problem on a somewhat contrived nonlinear

circuit element.

Solution. See the official solutions here.

5 Electrodynamics

[3] Problem 26. Consider two infinite parallel plates held at z = h/2 and z = −h/2, with uniform

charge densities σ and −σ respectively, and negligible mass. The plates are initially at rest.
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(a) Both plates are uniformly accelerated by a = aŷ. During this process, find the electric field

induced between the plates. Assume a is small, so that radiation effects can be neglected,

i.e. assume the magnetic field is always approximately magnetostatic.

(b) During this process, find the external force per unit area needed to accelerate the plates.

(c) The acceleration stops when the plates have speed v0. Verify that the total work done is equal

to the change in electromagnetic field energy.

Solution. (a) The magnetic field is B = −µ0σvx̂ between the plates, and zero outside them,

where the speed is v = at. Applying Faraday’s law using rectangular loops in the yz plane,

Ey = −µ0σa×


h/2 z > h/2

z −h/2 < z < h/2

−h/2 z < −h/2

We always also have the usual perpendicular electric field Ez of a parallel plate capacitor

between the plates, but this isn’t relevant for part (b), since it doesn’t affect the work, nor

for part (c), since it stays the same.

(b) On the top plate the induced electric field produces a force per unit area |Ey|σ = µ0σ
2ah/2

pointing against the acceleration. There is an identical force on the bottom plate, so the total

is µ0σ
2ah.

(c) The total work done per unit area is the force per unit area times the displacement,

work

area
= (µ0σ

2ah)
v20
2a

=
µ0σ

2v20h

2
.

On the other hand, before and after the acceleration we have the same electric field (i.e. that

of a parallel plate capacitor), while after the acceleration a magnetic field of magnitude

B = µ0σv0 appears between the plates. This gives

field energy

area
=
B2h

2µ0
=
µ0σ

2v20h

2

as expected.

[3] Problem 27. [A] Electromagnetism is symmetric under charge conjugation C, parity P , and time

reversal T . Explicitly, this means the following: suppose there are charge and current densities

ρ(r, t) and J(r, t), which then produce fields E(r, t) and B(r, t). A test charge q is acted on by these

fields, taking a path x(t). Under one of these symmetry transformation, all of these quantities can

be changed, but the resulting transformed path of the test charge should still obey Newton’s second

law, ma = q(E + v ×B). We’ll consider all three of these in turn.

(a) Under charge conjugation, the signs of all charges are flipped. What are the new charge and

current densities ρ′(r, t) and J′(r, t)? What are the new fields E′(r, t) and B′(r, t)? The path

of the test charge is still x′(t) = x(t). Verify it still obeys Newton’s second law.

(b) Under time reversal, everything at time t now occurs at time −t. For example, ρ′(r, t) =

ρ(r,−t). Verify the test charge’s new path still obeys Newton’s second law.
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(c) Under parity, everything at position x is mapped to −x. For example, the new path of the

test charge is x′(t) = −x(t). Verify its new path still obeys Newton’s second law.

(d) The Poynting vector S = (E×B)/µ0 describes the energy flow in the electromagnetic field.

How does it transform under C, P , and T?

(e) In quantum field theory, one important quantity is the so-called “theta term”,∫
dt

∫
drE(r, t) ·B(r, t)

where the integrals are over all time and all space. Does the theta term stay the same under

C, or P , or T? How about the combined transformations CP and CPT?

Solution. (a) If the charge is flipped, then the current density is flipped too, because currents

are made of moving charges. Since the fields are proportional to charge and current density,

both the electric and magnetic field are flipped. Thus,

ρ′(r, t) = ρ(r, t), J′(r, t) = J(r, t), E′(r, t) = −E(r, t), B′(r, t) = −B(r, t).

The acceleration of the test charge stays the same. Meanwhile, the force on it stays the same

too, because the fields flip and its own charge flips, q → −q. Thus, Newton’s second law is

still satisfied.

(b) The charge density is simply moved to a flipped time,

ρ′(r, t) = ρ(r,−t).

On the other hand, the current also has its sign flipped, because currents are due to moving

charges, and these charges have their velocity flipped,

J′(r, t) = −J(r,−t).

In a quasistatic situation, we know that E is sourced by ρ and B is sourced by J, so

E′(r, t) = E(r,−t), B′(r, t) = −B(r,−t).

Since the path of the test charge has flipped, its velocity has flipped while its acceleration

stays the same,

x′(t) = x(−t), v′(t) = −v(−t), a′(t) = a(−t).

Therefore, we need the Lorentz force to stay the same. Indeed, E hasn’t flipped sign, while

v ×B has flipped sign twice.

(c) The charge density is simply moved to a flipped position,

ρ′(r, t) = ρ(−r, t).

On the other hand, the current also has its sign flipped, because currents are due to moving

charges, and these charges have their velocity flipped,

J′(r, t) = −J(−r, t).
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In a quasistatic situation, we know that E is sourced by ρ and B is sourced by J, so

E′(r, t) = −E(−r, t), B′(r, t) = B(−r, t).

The signs here are flipped from the time reversal case, because E and B are related to ρ and

J by spatial derivatives, which also flip sign. (If this is confusing, consider a few examples,

like a solenoid or point charge!)

The remarkable feature of this result is that we usually think of E and B as vector fields,

meaning they assign a direction to every point in space. Since directions reverse under parity,

we would naively expect both of them to flip sign. The reason this doesn’t happen is that B

is not a true vector at all, but rather a different geometric object called an axial vector. The

directions of axial vectors are determined by applying the right-hand rule, which means they

transform differently under parity because a right hand is mapped to a left hand.

Since the path of the test charge has flipped, its velocity and acceleration have flipped,

x′(t) = −x(t), v′(t) = −v(t), a′(t) = −a(t).

As expected, the Lorentz force also flips sign, because E flips sign, and v ×B flips sign due

to the v.

(d) Under charge conjugation, both E and B flip, so the Poynting vector stays the same. This

tells us that energy is emitted by the motion of reversed charges in the same way as the

original charges.

Under time reversal, only B flips, which means S′(r, t) = −S(r,−t). That is, energy now

flows in the opposite direction. The time reverse of energy flowing out is energy flowing in.

Under parity, only E flips, which means S′(r, t) = −S(−r, t). This is just the expected way a

vector transforms under parity; directions are flipped.

(e) Under charge conjugation, both E and B flip, so the theta term stays the same.

Under both parity and time reversal, one of the fields flips sign, so the integral of the fields

flips sing. We thus say the theta term is odd under P and T .

Under the combined transformation CP , there is still one sign flip. But under CPT , there

are two sign flips, so the theta term stays the same.

In theoretical physics, the theta term is interesting because it does not stay the same under

CP . This is a rather unusual feature, as most of the rest of the terms in the Standard Model’s

Lagrangian stay the same, or approximately the same, under CP . On the other hand, it is a

famous theorem that in any relativistic quantum field theory, everything has to stay the same

under CPT .

Remark

In E7, you learned that an accelerating particle emits electromagnetic radiation, and

therefore loses energy. But under time reversal, an accelerating particle is still accelerating,

so it still should lose energy. How can this be consistent with time reversal symmetry, which

says the particle should instead gain energy?
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The resolution is that when you apply time reversal, you need to time reverse everything.

Suppose a particle accelerates at time t = 0 and emits a burst of radiation, which exists for

t > 0. The time reverse of this process has radiation moving towards the particle at time

t < 0, until at t = 0 it hits the particle and gets absorbed. The reason this seems unrealistic

has nothing to do with the laws of electromagnetism, which treat both scenarios as equally

valid, and everything to do with the second law of thermodynamics.
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