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Mechanics II: Statics
For review, read chapter 2 of Morin or chapter 2 of Kleppner and Kolenkow. Statics is covered in

more detail in chapter 7 of Wang and Ricardo, volume 1. Surface tension is covered in detail in

chapter 5 of Physics of Continuous Matter by Lautrup, which is an upper-division level introduction

to fluids in general. There is a total of 83 points.

1 Balancing Forces

Idea 1

In principle, you can always solve every statics problem by balancing forces on every individual

particle in the setup, but often you can save on effort by considering appropriate systems.

Idea 2

Any problem where everything has a uniform velocity is equivalent to a statics problem,

by going to the reference frame moving with that velocity. Any problem where everything

has a uniform acceleration a is also about statics, by going to the noninertial frame with

acceleration a, where there is an extra effective gravitational acceleration −a. The same

principle applies to uniform rotation, where a centrifugal force appears in the rotating frame,

acting like an effective gravitational acceleration ω2r.

Example 1

Six blocks are attached in a horizontal line with rigid rods, and placed on a table with

coefficient of friction µ. The blocks have mass m and the leftmost block is pulled with a force

F so the blocks slide to the left. Find the tension force in the rod in the middle.

Solution

There are six objects here and five rods, each with a different tension, so a direct analysis

would involve solving a system of six equations. Instead, first consider the entire set of six

blocks as one object; we can do this because the rigid rods force them to move as one. The

total mass is 6m, and applying Newton’s second law gives

F − 6mgµ = 6ma, a =
F

6m
− µg.

Next, consider the rightmost three blocks as one object. Their total mass is 3m, and their

acceleration is the same acceleration a we computed above. This system experiences two

horizontal force: tension and friction. Newton’s second law gives

T − 3mgµ = 3ma

and solving for T gives

T =
F

2
.

This is intuitive, because the differences of any two adjacent tension forces are the same;

that’s the amount of tension that needs to be spent to accelerate each block. So the middle
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rod, which has to accelerate only half the blocks, has half the tension.

The reason we could ignore the tension forces in the other four rods is that the only thing

they do is ensure the blocks move with the same acceleration. Once we assume this is the

case, the specific values of the tensions don’t matter; we can just zoom out and forget them.

It’s just like how within each block there is also an internal tension which keeps it together,

but we rarely need to worry about its details.

Idea 3

To handle a problem where something is just about to slip on something else, set the frictional

force to the maximal value µN and assume slipping is not yet occurring, so the two objects

move as one. The same idea holds for problems which ask for the minimal force needed to

make something move, or the minimal force needed to keep something from moving.

[1] Problem 1 (KK 2.7). A block of mass M1 sits on a block of mass M2 on a frictionless table. The

coefficient of friction between the blocks is µ. Find the maximum horizontal force that can be

applied to (a) block 1 or (b) block 2 so that the blocks will not slip on each other.

Solution. Let the horizontal force be F . In both cases the friction is maximal, f = µM1g, and the

blocks move together, so a = F/(M1 +M2).

(a) The bottom block experiences only the force f = M2a, so

µM1g = M2a, F = µg(M1 +M2)
M1

M2

(b) The top block experiences only the force f = M1a, so

µM1g = M1a, F = µg(M1 +M2).

[2] Problem 2 (KK 2.28). An automobile enters a turn of radius R.

The road is banked at angle θ, and the coefficient of friction between the wheels and road is µ. Find

the maximum and minimum speeds for the car to stay on the road without skidding sideways.

Solution. Let N be the normal force, and let f be the friction force (defined to be positive if it’s

pointing up the hill). We see that N cos θ+f sin θ = mg, and N sin θ−f cos θ = mv2/R. Therefore,

v2

gR
=

N sin θ − f cos θ

N cos θ + f sin θ
.

Since −Nµ ≤ f ≤ Nµ, we have

v2min

gR
=

sin θ − µ cos θ

cos θ + µ sin θ
,

v2max

gR
=

sin θ + µ cos θ

cos θ − µ sin θ
.
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In addition, there are some cases where these formulas break down. If µ > tan θ, then the minimum

speed is zero. If µ > cot θ, then the maximum speed is infinity. (In these cases, the formulas

give nonsense, i.e. imaginary numbers for the speeds. That’s one way of checking, at the end of a

problem, whether there are more special cases that must be accounted for.)

Usually, we are in the regime where µ > tan θ, in which case vmin = 0 and banking the turn

increases vmax. Another benefit is that it helps align the direction of the gravitational and centrifugal

force with the height of the car, making the turn more comfortable; you get less of a sideways pull

along your seat. For this reason, banked turns are very common in highways. In highway engineering,

this trick is called superelevation.

[2] Problem 3 (KK 2.19). A “pedagogical machine” is illustrated in the sketch below.

All surfaces are frictionless. What force F must be applied to M1 to keep M3 from rising or falling?

Solution. By considering all the masses as one system, we see that a = F
M1+M2+M3

. We see that

the tension T = M3g, and T = M2a, so

M3g = M2a =⇒ F

M1 +M2 +M3
=

M3

M2
g =⇒ F = (M1 +M2 +M3)

M3

M2
g.

[3] Problem 4. �W10 USAPhO 2017, problem A1.

2 Balancing Torques

Idea 4

A static rigid body will remain static as long as the total force on it vanishes, and the total

torque vanishes, where the torque about the origin is

τ =
∑
i

ri × Fi

where ri is the point of application of force Fi. If the total force vanishes, the total torque

doesn’t depend on where the origin is, because shifting the origin by a changes the torque by

∆τ =
∑
i

a× Fi = a×

(∑
i

Fi

)
= 0.

The origin should usually be chosen to set as many torques as possible to zero.

[1] Problem 5. The line of a force is defined to the line passing through its point of application

parallel to its direction; then the torque of the force about any point on that line vanishes. Suppose
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a body is static and has three forces acting on it. Show that in two dimensions, the lines of these

forces must either be parallel or concurrent. This will be useful for several problems later.

Solution. Let F1,F2,F3 be the forces. Suppose two are parallel, then the third must be parallel to

the first two to balance forces in the direction perpendicular to the direction of the first two. Now,

suppose they are not parallel, and let the origin be at the intersection of the lines of forces of F1

and F2. Then, the torque due to these two is zero, so the torque due to F3 must also be zero, so

the line of action of F3 must also pass through the origin.

Idea 5

The center of mass rCM of a set of masses mi at locations ri with total mass M satisfies

MrCM =
∑
i

miri.

If a system experiences no external forces, its center of mass moves at constant velocity.

Idea 6

A uniform gravitational field exerts no torque about the center of mass. Thus, for the

purposes of applying torque balance on an entire object, the gravitational force Mg can

be taken to act entirely at its center of mass. (This is a formal substitution; of course, the

actual gravitational force remains distributed throughout the object.)

Torque balance works in noninertial frames, as long as one accounts for the torques due to

fictitious forces. Thus, for an accelerating frame, the −Ma fictitious force can be taken to act

at the center of mass. In a uniformly rotating frame, the total centrifugal force is Mω2rcm,

and for the purposes of balancing torques, can be taken to act entirely at the center of mass.

Example 2

Show that the tension in a completely flexible static rope, massive or massless, points along

the rope everywhere in the rope.

Solution

Consider a tiny segment dℓ of the rope. Since the rope is static, the tension forces on

both ends balance, so they are opposite. Let them both be at an angle θ to the rope

direction. Then the net torque on the segment is (Tdℓ) sin θ. Since this must vanish for

static equilibrium, we must have θ = 0 and hence the tension is along the rope. In other

words, flexible ropes can transmit force, but they can’t transmit torque.

It’s important to note that the argument above doesn’t work for a rigid rod, because the

internal forces in a rigid object can look like the picture above. In other words, there can be
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extra shear forces from the adjacent pieces of the rod that provide the compensating torque.

If one tried to set up forces like this in a rope, it would flex instead.

In general, the force distribution within a massless rigid rod can be quite complicated, but if

we zoom out, we can replace it with a single tension which does not necessarily point along

the rod. This transmits both a force and a torque through the rod, in the sense that a torque

is eventually exerted by whatever holds the end of the rod in place. Note that if the rod’s

supports are free to rotate, then they can’t absorb torque, so the rod acts just like a rope,

with tension always along it.

Remark

Sometimes, problem writers will intentionally not introduce any variables that are irrelevant

to the answer. This can occur in two ways. First, the variables might just cancel out, as

one can often see by dimensional analysis. Second, the specific values of the variables might

not matter in the limit when they are very large or small. For instance, if a problem simply

states a mass is “very heavy” but doesn’t give it a name like m, it is asking for the answer

in the limit m → ∞.

Idea 7

To handle problems where an object is just about to tip over, note that at this moment, the

entire normal force will often be concentrated at a point. (For example, when you’re about

to fall forward, all your weight goes on your toes.) That often means it’s a good idea to take

torques about this point.

Example 3: Povey 5.6

Suppose that on level ground, a car has a distance d between its left and right tires, and its

center of mass is a height h above the ground. Now suppose the car turns as in problem 2,

but in the extreme case θ = 90◦, with speed v. For what v is this motion possible?

Solution

Again working in the noninertial frame of the car, force balance gives

ffric = mg, N =
mv2

R

where ffric and N are the total friction and normal forces on the four tires. Since ffric/N ≤ µ,

v ≥
√
gR/µ

which matches the general solution to problem 2. But in that problem, we only considered

force balance. In this extreme situation, we also have to consider torque balance, i.e. the

possibility that the car might topple over. When the car is about to topple over, all the

normal and friction force is on the bottom tires. About this point, we have only torques from
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gravity and the centrifugal force, giving

mgh =
mv2

R

d

2

and solving for v gives v =
√

2gRh/d. Toppling is less likely the higher v is, so the answer is

v ≥
√
gR max(1/

√
µ,
√
2h/d).

[2] Problem 6 (Quarterfinal 2004.3). A uniform board of length L is placed on the back of a truck.

There is no friction between the top of the board and the vertical surface of the truck. The coefficient

of static friction between the bottom of the board and the horizontal surface of the truck is µs = 0.5.

The truck always moves in the forward direction.

(a) What is the maximum starting acceleration the truck can have if the board is not to slip or

fall over?

(b) What is the maximum stopping acceleration the truck can have if the board is not to slip or

fall over?

(c) For what value of stopping acceleration is the static frictional force equal to zero?

Solution. Let us work in the accelerating frame of the truck.

Force balance gives mg = N and N2 +ma = f , and torque balance gives

−mg
L

2
sin θ +ma

L

2
cos θ +N2L cos θ = 0
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which implies

2N2 +ma = mg tan θ.

Thus,

N2 =
m(g tan θ − a)

2
, f =

m(g tan θ + a)

2
.

Since −mgµ ≤ f ≤ mgµ, to avoid slipping we require

−g ≤ g tan θ + a ≤ g =⇒ −g ≤ 3

4
g + a ≤ g =⇒ −7

4
g ≤ a ≤ 1

4
g.

To avoid falling over, we need N2 > 0, which is equivalent to

a ≤ g tan θ =
3

4
g.

We can now read off the answers.

(a) For starting accelerations above 3g/4 we would have falling, while for ones above g/4 we would

have slipping. So slipping kicks in first, and the answer is g/4.

(b) Here the only constraint is slipping, and the answer is 7g/4.

(c) Here 3
4g + a = 0, so the truck decelerates with acceleration 0.75g.

[2] Problem 7 (Kalda). Three identical massless rods are connected by freely rotating hinges.

The rods are arranged so that CD is parallel to AB, and AB = 2CD. A mass m is hung on hinge

C. What is the minimum force that must be exerted at hinge D to keep the system stationary?

Solution. Let the rods have length ℓ. There are many ways to solve the problem, but the quickest

is to consider the torque on the system of rod CD and its hinges, about the intersection point of AC

and BD. About this point, the torque due to the weight of rod CD vanishes. Since the hinges are

freely rotating, the force of rod AC on the system is directed along AC, so it also exerts no torque,

and the same applies for the force from rod BD.

Thus, the only torque is mgℓ/2, from the weight of the mass. The applied force must balance

this torque, and by some elementary geometry, we find that its maximum possible lever arm is ℓ,

when the force is perpendicular to BD. Therefore, the minimum force is mg/2 .

Note that it is crucial to assume the rods are massless. If the rods had mass, then the structure

can’t be supported by freely rotating hinges, even in the absence of the mass m and external force

F . (For example, the forces of the hinges on the rod CD would have to be horizontal, which means

they can’t balance gravity.) Instead, in reality the structure would deform a bit until the hinges

were no longer freely rotating, but rather jammed in place.
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Idea 8

An extended object supported at a point may be static if its center of mass lies directly above

or below that point. More generally, if the object is supported at a set of points, it can be

static if its center of mass lies above the convex hull of the points.

[2] Problem 8. N identical uniform bricks of length L are stacked, one above the other, near the edge

of a table. What is the maximum possible length the top brick can protrude over the edge of the

table? How does this limit grow as N goes to infinity?

Solution. Suppose we begin with all N blocks stacked directly on top of each other and slide them

to the right. The maximal extension is reached when the center of mass of the top n blocks lies on

the edge of the (n+ 1)th block. Let ℓ = L/2, and suppose we have already adjusted the top n− 1

blocks to be in the optimal position. Then the center of mass of the top n blocks is a distance ℓ/n

from the edge of the (n + 1)th block, so the nth block and everything on top of it may be moved

ℓ/n to the right. Hence the total distance is

L

2

(
1 +

1

2
+ . . .+

1

N

)
≈ L

2

∫ N

1

dx

x
≈ L

2
logN

which is unbounded as N → ∞. (By the way, if you allow blocks to be stacked in any combination,

not just one on top of the other, then the maximum overhang is much larger. As shown in this neat

paper, it grows as N1/3.)

[2] Problem 9 (Kalda). A cylinder with mass M is placed on an inclined slope with angle α so that

its axis is horizontal. A small block of mass m is placed inside it.

The coefficient of friction between the block and cylinder is µ. Find the maximum α so that the

cylinder can stay at rest, assuming that the coefficient of friction between the cylinder and slope is

high enough to keep the cylinder from slipping.

Solution.
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We see that the center of mass of the cylinder-block system must be right above the contact point

A. Now, we see that the CM is at B where CB/BO = M/m. Thus, OA = OB +OC = k(m+M),

so by the law of sines on OAB, we have

OB

sinα
=

OA

sin(α+ θ)
=⇒ sin(α+ θ) = (1 +M/m) sinα.

We see that m slips when tan(α+ θ) = µ, or sin(α+ θ) = µ√
1+µ2

, so

αmax = sin−1

(
µ√

1 + µ2

(
1 +

M

m

)−1
)
.

[2] Problem 10 (PPP 11). A sphere is made of two homogeneous hemispheres stuck together, with

different densities. Is it possible to choose the densities so that the sphere can be placed on an

inclined plane with incline 30◦ and remain in equilibrium? Assume the coefficient of friction is

sufficiently high so that the sphere cannot slip.

Solution. By balancing torques around the point of contact, we need the center of mass to be

straight above the point of contact. Doing some geometry, we learn that the center of mass be more

than a distance R/2 away from the center of the sphere.

We now show that this is impossible. Consider a homogeneous hemisphere flat on a table. Its

center of mass must be at a height lower than R/2, since the mass above the plane z = R/2 is less

than the mass below it, and concentrated closer to the plane. Therefore, the centers of masses of

the hemispheres are each within R/2 of the center of the sphere. Since the overall center of mass is

a convex combination of the two, it is also within R/2 of the center, so the sphere cannot be stable.

[3] Problem 11. An object of mass m lies on a uniform floor, with coefficient of static friction µ.

(a) First, suppose the object is a point mass. What is the minimum force required to make the

object start moving, if you can apply the force in any direction?

(b) Now suppose the object is a thin, uniform bar. What is the minimum force required to make

the object start moving, if the force can only be applied horizontally? Assume the normal

pressure on the floor remains uniform.

Solution. (a) Just before the block slides, the friction force is Nµ, so we can think of the normal

force and friction force as exerting an effective normal force with angle ϕ with respect to the

vertical, where tanϕ = µ.
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We see that the magnitude of N varies as P varies along the line ℓ which is the line at angle

ϕ to AO, and the magnitude of F is AP . AP is minimized when P is the foot of the altitude

from A to ℓ, so we see

Fmin = Mg sinϕ =
Mgµ√
1 + µ2

.

As a sidenote, if the block were treated as an extended object, not just a point particle, one

would have to worry about whether it’s possible to do this without tipping the block over

instead. However, by choosing the point of application of the force correctly, it’s always

possible to make the block slide without tipping. Can you see why?

(b) Naively the answer is µmg, because that’s the maximum total friction force. However, we

know from everyday experience that it’s easier to get the object to start moving if you pull

at the edge. That’s because the friction forces distributed along the bar also need to balance

torque, which means some of them must point along the force you exert.

Just before slipping, friction has the maximum possible magnitude everywhere, and points

either directly against or directly along the force you exert. Using the variables defined in the

figure, just barely balancing forces and torques simultaneously gives

F = µmg

(
ℓ

L
− L− ℓ

L

)
, F ℓ = µmg

(
ℓ

L

ℓ

2
+

L− ℓ

L

L− ℓ

2

)
.

Solving for ℓ gives ℓ = L/
√
2, and plugging this in gives

F = (
√
2− 1)µmg

which is less than half the naive answer!

[3] Problem 12 (Morin 2.17). A spool consists of an axle of radius r and an outside circle of radius

R which rolls on the ground.

A thread is wrapped around the axle and is pulled with tension T at an angle θ with the horizontal.

(a) Which way does the spool move if it is pulled with θ = 0?
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(b) Given R and r, what should θ be so that the spool doesn’t move? Assume that the friction

between the spool and the ground is large enough so that the spool doesn’t slip.

(c) Given R, r, and the coefficient of friction µ between the spool and the ground, what is the

largest value of T for which the spool remains at rest?

(d) Given R and µ, what should r be so that you can make the spool slip from the static position

with as small a T as possible? That is, what should r be so that the upper bound on T in

part (c) is as small as possible? What is the resulting value of T?

Solution. (a) The torque about the contact point with the ground is clockwise, so the spool rolls

to the right. You might think it would roll to the left, by thinking about torque about the

center, but one must also account for the torque from friction with the ground; taking torques

about the contact point avoids this complication.

(b) Let O be the center of the spool, A the point where the thread leaves the inner circle, and B

the point of contact of the outer circle with the floor. We see that ∠BOA = θ. Considering

torques about B, we see that gravity provides 0 torque, so the tension must provide 0 torque

as well. This means BA is tangent to the inner circle. Since BAO is a right triangle with

∠BAO = 90◦, we have that cos θ = r/R .

(c) Let f be the friction force, and N the normal force. We see that T cos θ = f and N =

Mg − T sin θ. Since f ≤ µN , we see

T cos θ ≤ µ(Mg − T sin θ) =⇒ T ≤ µMg

cos θ + µ sin θ
,

where θ = cos−1(r/R).

(d) We see that cos θ + µ sin θ = 1√
1+µ2

cos(θ − β) where tanβ = µ. Thus,

T =
µMg√

1 + µ2 cos(θ − β)
,

so to minimize T , we want θ = β, so r = R cosβ =
R√
1 + µ2

, and the minimum value of T

is
µMg√
1 + µ2

.

[3] Problem 13 (PPP 44). A plate, bent at right angles along its center line, is placed on a horizontal

fixed cylinder of radius R as shown.

How large does the coefficient of static friction between the cylinder and plate need to be if the

plate is not to slip off the cylinder?
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Solution. Let the normal and friction forces at the top be Nt, ft and at the right Nr, fr, and the

static coefficient of friction be µ. Balancing forces on the plate gives

ft = Nr, Nt + fr = mg.

Now, it’s not obvious whether friction will be maximal at the top or the right contact point, or

both, so we define

ft = µtNt, fr = µrNr

where µt, µt ≤ µ. Eliminating the friction forces and solving the force balance equations gives

Nt =
mg

1 + µrµt
, Nr =

mgµt

1 + µrµt
.

Next, consider torques on the plate about its vertex. (This is an arbitrary choice; taking torques

about either of the contact points also works about equally well.) The weight of the vertical of the

plate contributes no torque, so the torque balance equation is

Nr +mg/2 = Nt.

Plugging in our results for Nr and Nt gives

µt(2 + µr) = 1.

To find the minimum coefficient of friction to avoid slipping, we need to find the solution to this

equation where the larger of µr and µt is as small as possible. But it’s clear now that increasing

one decreases the other, so this is achieved when the two are equal. In other words, at the limit,

slipping is just about to occur at both contact points simultaneously. Setting µr = µt = µ gives

µ2 + 2µ− 1 = 0, µ =
√
2− 1.

Incidentally, you can also do this problem with the idea of problem 5. At the minimum µ, we

assume both friction forces are saturated. The lines of these forces must cross at a point directly

above/below the center of mass, where gravity is applied. This quickly yields the same quadratic

equation as found above. If you do it this way, though, it’s a bit harder to see why both friction

forces are saturated simultaneously at the minimum µ. It’s usually true, but not guaranteed in

general; our more explicit derivation above shows why.

3 Trickier Torques

Idea 9

Sometimes, a clever use of torque balance can be used to remove any need to have explicit

force equations at all. Rarely, the same situation can occur in reverse.

Example 4: EFPhO 2010.4

A spherical ball of mass M is rolled up along a vertical wall, by exerting a force F to some

point P on the ball. The coefficient of friction is µ. What is the minimum possible force F ,

and in this case, where is the point P?
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Solution

Following the logic of idea 3, when the minimum possible force is used, the frictional

force with the wall must be maximal, f = µN , and directed upward. (If friction weren’t

pushing the ball up as hard as possible, we could get by using a smaller force F .)

So even though we don’t know the magnitude of the normal or the frictional force, we

know the direction of the sum of these two forces, so we’ll consider them as one combined force.

This reduces the number of independent forces in the problem to three: gravity (acting at

the center of mass), the force F (acting at P ), and the combined normal and friction forces

(acting at the point of contact C with the wall). Therefore, by the result of problem 5, the

lines of these forces must all intersect at some point A, as shown.

This ensures that the torques will balance, when taken about point A.

Next, we need to incorporate the information from force balance. Doing this directly will

lead us to some nasty trigonometry, but there’s a better way. There are in principle two

force balance equations, for horizontal and vertical forces. However, one of these equations is

just going to tell us the magnitude of the normal/frictional force, which we don’t care about.

So in reality, we just need one equation, which preferably doesn’t involve that force.

The trick is to use torque balance again, about the point C, which says that the torques due

to gravity and F must cancel. Now you might ask, didn’t we already use torque balance?

We did, but recall from idea 4 that taking the torque about a different point can give you a

different equation if the forces don’t balance. So by demanding the torque vanish about two

different points, we actually are using force balance! (Specifically, we are using the linear

combination of the horizontal and vertical force balance equations that doesn’t involve the

normal/friction force, which we don’t need to find anyway.)

When taking the torque about C, we see that F is minimized if P is chosen to maximize the

lever arm of the force. This occurs when CA ⊥ PA, in which case the lever arm is R
√
1 + µ2,

where R is the radius of the ball. So we have

MgR = FR
√
1 + µ2, F =

Mg√
1 + µ2

and P is determined as described above.
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[2] Problem 14. NBPhO 2020, problem 4, parts (i) and (ii).

Solution. See the official solutions here.

[3] Problem 15. EFPhO 2012, problem 3. The problem statement is missing some information: both

the bars and rod have diameter d.

Solution. See the official solutions here.

[3] Problem 16. EFPhO 2006, problem 6. You will need to print out the problem to make measure-

ments on the provided figure.

Solution. See the official solutions here.

[4] Problem 17 (Physics Cup 2012). A thin rod of mass m is placed in a corner so that the rod forms

an angle α with the floor. The gravitational acceleration is g, and the coefficient of friction with

the wall and floor is µs = tanβ, which is not large enough to keep the rod from slipping.

What is the minimum additional force F needed to keep the rod static?

Solution. See the solutions here.

We’ve now covered some really mathematically elegant problems, but it’s important to remember

the real-world limitations of this kind of analysis. We discuss two examples below.

Example 5

A uniform bar with mass m and length ℓ hangs on four equally spaced identical light wires.

Initially, all four wires have tension mg/4.

Find the tensions after the leftmost wire is cut.

Solution

This illustrates a common issue with setups involving rigid supports: there are often more

normal forces than independent equations, so there is not a unique solution. In the real

world, the result is determined by imperfect characteristics of the wires. For example, if one

of the wires was slightly longer than the others, it would go slack, reducing the number of
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normal forces by one and yielding a solution.

A reasonable assumption, if you aren’t given any further information, is to assume that the

supports are identical, very stiff springs. In equilibrium, the bar will tilt a tiny bit, so that

the length of the middle wire will be the average of the lengths of the other two. By Hooke’s

law, the force in that wire will than be the average of the other two, so the tensions are

mg/3− x, mg/3, and mg/3+ x. Applying torque balance yields 7mg/12, mg/3, and mg/12.

The general point here is that concepts like rigid bodies or strings characterized by a single

tension force are abstractions, made for the idealized problems we study in mechanics classes.

A real civil engineer designing a structure would instead use a sophisticated computer program

which simulates the complex internal forces, torques, and strains throughout the material.

[2] Problem 18 (Kalda). A rod is hinged to the ceiling, so that it makes an angle α with the vertical.

Underneath, a thin board is being dragged on the floor. The coefficient of (static and kinetic)

friction is µ1 between the board and rod, and µ2 between the board and floor. The rod is meant to

stop the board from being dragged to the right, no matter how hard or how quickly it is pulled. Is

this possible? If so, what are the conditions on the parameters that allow this to occur?

Solution. Let the rod have mass m and length ℓ, and suppose it feels a normal force N and friction

force f from the board. Then torque balance on the rod about the hinge gives

Nℓ sinα =
ℓ

2
mg sinα+ fℓ cosα.

When friction is maximal and the board is about to move, f = µ1N , so

N =
mg sinα

2(sinα− µ1 cosα)
.

It is impossible to move the board if µ1 is large enough to make N blow up, so the board is stuck if

µ1 ≥ tanα.

Physically, what’s going on is that the harder you pull, the larger the normal force becomes, and

so the larger the friction can be; that’s how things get jammed.
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Remark: Subtleties of Friction

Statics problems involving friction can also get quite elegant, but it’s important to remember

that they’re just an imperfect approximation for the real world. Coulomb’s law for “dry”

friction, |f | = µN , works for a variety of materials, but for lubricated materials the friction

has to be computed using fluid mechanics, as discussed in M7. More generally, friction is an

entire field of study called tribology, which is essential for engineering. For much more, see

Tribology by Hutchings and Shipway.

Coulomb’s law has other weird features: assuming it can produce mathematical contradic-

tions, in the so-called Painleve paradox! Problem 18 above is the simplest possible example

of the paradox. In this problem, you showed that under the right conditions, it is impossible

for the board to move to the right. But that means that if you assume the board starts with

some rightward velocity, then trying to solve Newton’s second law for the acceleration will

give a mathematical contradiction.

Of course, in real life there actually would be some finite, albeit large acceleration. To solve

for it you would need to adopt a more refined model of the rod and its interaction with

the board, e.g. accounting for how the rod and board deform when subject to stress. That

requires “contact mechanics”, briefly discussed in example 14.

We conclude with some questions that train three-dimensional thinking.

[2] Problem 19 (PPP 10). In Victor Hugo’s novel les Miserables, the main character Jean Valjean, an

escaped prisoner, was noted for his ability to climb up the corner formed by the intersection of two

vertical perpendicular walls. Suppose for simplicity that Jean has no feet. Let µ be the coefficient

of static friction between his hands and the walls. What is the minimum force that Jean had to

exert on each hand to climb up the wall? Also, for what values of µ is this feat possible at all?

Solution. Jean Valjean experiences two normal forces and two friction forces, one from each hand.

Each friction force must balance the other normal force, plus half the weight, so

f2
fric = N2 + (mg/2)2.

Assuming the friction is maximal, ffric = µN , we have

N =
mg

2
√

µ2 − 1

and the force Jean Valjean exerts with each hand is

F =
√
N2 + f2

fric =
mg

2

√
µ2 + 1

µ2 − 1
.

The feat is only possible if µ > 1.

[3] Problem 20 (PPP 69). A homogeneous triangular plate has threads of length h1, h2, and h3
fastened to its vertices. The other ends of the string are fastened to a common point on the ceiling.

Show that the tension in each thread is proportional to its length. (Hint: with the origin at the

point on the ceiling, let the vertices be at positions ri and express everything in vector form.)
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Solution. Define the origin to be the attachment point on the ceiling, and let the vertices be at

positions ri. The tensions are along the ropes, so let them be Ti = −ηiri. Force balance says

η1r1 + η2r2 + η3r3 = mg.

Torque balance tells us that the center of mass of the triangle must lie directly below the attachment

point, and the center of mass is at

rCM =
1

3
(r1 + r2 + r2)

which means that

r1 + r2 + r3 ∝ g.

Thus, we know that the sum of the ri is in the vertical direction, and also that the weighted sum of

the ηiri is in the same vertical direction. This is only possible if all the ηi are equal to each other,

which proves the desired result.

In case you’re not convinced, we can justify this in more detail. Let r1 + r2 + r3 = αg. Then

subtracting this equation from α/m times the force balance equation gives∑
i

(
1− α

m
ηi

)
ri = 0.

The only way a nontrivial sum of three vectors can vanish is if they lie in a plane, which isn’t true

here. So each of the coefficients must vanish, so 1 − (α/m)ηi = 0, which means all the ηi are the

same, ηi = m/α.

[4] Problem 21 (KoMaL 2019, BAUPC 1998). Two identical uniform solid cylinders are placed on a

level tabletop next to each other, so that they are touching. A third identical cylinder is placed on

top of the other two.

(a) Find the smallest possible values of the coefficients of static friction between the cylinders,

and between a cylinder and the table, so that the arrangement can stay at rest.

(b) Repeat part (a) for spheres. That is, put three uniform solid spheres next to each other, with

their centers forming an equilateral triangle, and put a fourth sphere on top.

(c) Now return to part (a), and suppose the setup is frictionless. A force is applied directly to

the right on the leftmost cylinder, causing the entire setup to accelerate. Find the minimum

and maximum accelerations so that all three cylinders remain in contact with each other.

Parts (a) and (b) demonstrate an interesting point: it is possible for a collection of objects to resist

some force, even though a single one of those objects would begin moving even with an infinitesimal

applied force! This is a simple example of how granular materials, like sand, can give rise to emergent

phenomena that are hard to predict from analyzing individual grains alone. Understanding these

materials is a whole field of applied research.

Solution. (a) Call the top cylinder A, and the bottom ones B and C. Suppose the normal force

between the top cylinder and one of the bottom cylinders is N , and the friction force is f .

When the coefficient of static friction is at its smallest between the cylinders, f = µ1N . B

and C are being pushed apart by A, so only the ground, gravity, and A are exerting forces on

B and C.
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The total torque about C is 0, so the friction force from the ground is also f (towards B).

Then for the net horizontal force on C to be 0, by drawing out the forces and their directions

we get

f + f cos(π/6) = N sin(π/6) µ1 =
f

N
=

1

2 +
√
3
= 0.268

The normal force between the cylinder and the ground is N2 = N cos(π/6) + f sin(π/6) +mg.

The vertical force exerted on A from C is N cos(π/6) + f sin(π/6) = mg/2. Or, you can use

the fact that N2 = 3mg/2 by symmetry. Using the latter 2 equations:

N2 = 3

(
cosπ/6

µ1
+ sinπ/6

)
f

f =
µ1

3
N2 = 0.0893N2

So the coefficient of friction between the cylinders and the ground is 0.0893.

(b) All the spheres are being pushed apart, so the analysis above is the same except now the angle

is a bit different and the bottom balls exert a vertical force of mg/3 on the top ball since there

are 3 supports now.

The lines connecting the centers of the spheres form a tetrahedron by symmetry.

Let the length of the sides of a tetrahedron ABCD be ℓ, and A being the point at the top

(center of the top sphere). Then the distance from the centroid of triangle BCD to B is ℓ/
√
3

(use the fact that medians intersect in a ratio of 2 to 1 or draw a line from the centroid to

a side). Since AB has length ℓ, the angle between the vertical and the lines connecting the

centers of the top sphere and a bottom sphere is α = arcsin(1/
√
3).

We will replace sin(π/6) with 1/
√
3 and cos with

√
2/3 in the previous results. Thus with

the same analysis on a bottom ball with only the top ball acting on it, the friction coefficient

between the balls is:

µ1 =
sinα

1 + cosα
=

√
3−

√
2 = 0.318

And copying the above formula except N2 = 4mg/3 and N cos(π/6)+ f sin(π/6) = mg/3 will

get

N2 = 4

(
cosα

µ1
+ sinα

)
f µ2 =

µ1

4
≈ 0.0795.

(c) Call the top cylinder A, the left cylinder B, and the right cylinder C, and the normal forces

between them Nij . Let θ = π/6.

At the minimum acceleration, the weight of cylinder A almost pushes B and C apart, so

NBC = 0. Under this assumption, considering horizontal forces on cylinders A and C gives

NAC sin θ = ma, (NBA −NAC) sin θ = ma

while balancing vertical forces on cylinder C gives

(NBA +NAC) cos θ = mg

Combining these equations and plugging in θ, we find

2NAC = 4ma =
mg√
3/2

− 2ma

18
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from which we read off

amin =
g

3
√
3
.

Now consider the maximum acceleration. In this case, cylinder A will be just about to fly off

the top, so that NAC = 0. Thus, the only normal force on cylinder A is from cylinder B, and

considering horizontal and vertical forces on cylinder A gives

NBA sin θ = ma, NBA cos θ = mg

from which we read off

amax =
g√
3
.

4 Extended Bodies

Idea 10: Principle of Virtual Work

Some physical systems have a lot of parts but also a lot of constraints, such as joints, so that

they can only move in a few ways. In these cases, it is easiest to determine if the system is

static using the principle of virtual work. Suppose that the system moves an infinitesimal

amount, in a way allowed by the constraints. If the net work done on the system by this

“virtual displacement” is zero, then the system can be in static equilibrium at that position.

(Alternatively, if you already know the system can be in static equilibrium, this approach

can be used to find the magnitude of one unknown force, such as the tension in a string.)

Example 6: Roberval Balance

Consider the following scale made of rigid bars. The joints ensure that the quadrilateral in

the middle always remains a parallelogram, with its left and right sides vertical.

If identical weights are placed on each horizontal arm as shown, can the system remain static?

Solution

There’s only one way for the system to move: the rectangle can deform into a parallelogram

so that the left horizontal arm moves up, and the right horizontal arm moves down by the

same amount. Then the total virtual work done on the scale by the weights is zero, so the

system can be in equilibrium no matter where on the arms the weights are placed.

Next, we’ll consider problems with continuous bodies, where one often needs to consider forces and

torques acting on infinitesimal pieces.
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Example 7

Find the tension in a circular rope of radius R spinning with angular velocity ω and mass

per length λ.

Solution

Consider an infinitesimal segment of the rope, spanning an angle dθ.

The mass of this segment is dm = Rλdθ. The total force is downward, with magnitude

dF = 2T sin
dθ

2
≈ T dθ

where we used the small angle approximation. This is the centripetal force, so

dF = (dm)ω2R.

Combining these results yields T = R2ω2λ.

Example 8

Find the distance d of the center of mass of a uniform semicircle of radius R to its center.

(Note that a semicircle is half of a circle, not half of a disc.)

Solution

This can be done by taking the setup of the previous problem, and taking a subsystem

comprising exactly half of the rope. In this case the net tension force is simply

F = 2T.

The total mass is m = πRλ, and the force must provide the centripetal force, so

F = (πRλ)(ω2d)

But we also know that T = R2ω2λ as before, so plugging this in gives

d =
2

π
R.

Alternatively, we could have worked in the frame rotating with the rope. The equations

would be the same, but instead we would say the tension balances the centrifugal force.
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[1] Problem 22 (KK 2.22). A uniform rope of weight W hangs between two trees. The ends of the

rope are the same height, and they each make angle θ with the trees.

Find the tension at either end of the rope, and the tension at the middle of the rope.

Solution. Let the tension at the end be T0, and T1 at the center. Considering the entire rope as

one system, we see that 2T0 cos θ = W , so T0 = W
2 cos θ . Considering one half of the rope as a system,

we see T1 = T0 sin θ = W
2 tan θ.

[3] Problem 23 (KK 2.24). A capstan is a device used aboard ships to control a rope which is under

great tension.

The rope is wrapped around a fixed drum with coefficient of friction µ, usually for several turns.

The load on the rope pulls it with a force TA. Ignore gravity.

(a) Show that the minimum force TB needed to hold the other end of the rope in place is TAe
−µθ,

an exponential decrease.

(b) How does this result depend on the shape of the capstan, if we fix the angle θ between the

initial and final tension forces? Would the answer be the same for an oval, or a square?

(c) If θ = π, explain why the total normal and friction force of the rope on the drum is TA + TB.

Solution. (a) Consider a small piece of the rope that turns through an angle dθ. Using the

small angle approximation, the normal force must be T dθ, and the friction force must be dT .

Setting f = µN gives µT dθ = dT , or dT/T = µdθ, and integrating gives the desired result.

(b) The infinitesimal reasoning above doesn’t care about the shape as long as it’s reasonably

smooth, so the answer for an oval is the same: just break it into pieces that turn through dθ

again. On the other hand, for a square one has sharp kinks where the normal force is singular,

in which case the answer won’t be as reliable.

(c) Consider the system consisting of the curved part of the rope. This system experiences a

force TA + TB from the straight part of the rope. But it is static, which means it must also

experience an equal and opposite force from the drum, which comes from integrating the

friction and normal forces along the contact surface.
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That’s all you have to say, but we can also show this more explicitly. For concreteness, let

both tensions be vertical. We have a normal force and difference in tension forces

dN = T dθ, dT = −dffric

on a small piece dθ of the rope. The contribution to the vertical force on the drum is

dFy = dN sin θ + dffric cos θ = T sin θ dθ − dT cos θ = −d(T cos θ)

by the product rule. So the total vertical force is

Fy =

∫
dFy = −

∫ π

0
d(T cos θ) = −(TA + TB)

as expected. A very similar manipulation shows that Fx = 0.

[2] Problem 24 (F = ma 2018 B20). A massive, uniform, flexible string of length L is placed on

a horizontal table of length L/3 that has a coefficient of friction µs = 1/7, so equal lengths L/3

of string hang freely from both sides of the table. The string passes over the edges of the table,

which are smooth frictionless curves, of size much less than L. Now suppose that one of the hanging

ends of the string is pulled a distance x downward, then released at rest. Neither end of the string

touches the ground.

(a) Find the maximum value of x so that the string does not slip off of the table.

(b) For the case x = 0, draw a free body diagram for the string, indicating only the external

forces on the entire string. Do the forces balance?

(c) Would the answer change significantly if the table’s small edges had friction as well?

Solution. (a) The difference in weights is 2(Mg/L)x, and needs to be balanced by the friction

force f . At the max value of x, f = µsN = µsMg/3 (the normal force at the top only holds

up the top of the string), so x = (µs/6)L = L/42.

(b) At first, it may seem that the forces don’t balance, because the normal force from the flat

part of the table only balances the weight of the string above it, leaving nothing to balance

the weight of the vertical parts of the string. But we must recall that there is an enormous

normal pressure at the smooth corners. The total normal force there is large enough so that

its vertical component holds up all of the string underneath it.
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(c) Yes, the answer changes sufficiently no matter how small the edges are. This is because, as we

saw in part (b), there is a sizable normal force at the edges, since they alone are responsible

for holding up a significant part of the rope. So turning on a coefficient of friction at the edges

would yield a sizable friction force. (You can calculate it using problem 23.)

[3] Problem 25 (Morin 2.25). A rope rests on two platforms that are both inclined at an angle θ.

The rope has uniform mass density, and the coefficient of friction between it and the platforms is 1.

The system has left-right symmetry. What is the largest possible fraction of the rope that does not

touch the platforms? What angle θ allows this maximum fraction?

Solution. Let η be the fraction of the rope that does not touch the platforms. Split the rope into

the 3 obvious pieces (the left touching portion, the hanging portion, the right touching portion).

Let T be the tension at the boundaries (its the same on both sides by symmetry). Balancing forces

on the middle portion tells us

2T sin θ = ηmg =⇒ T =
ηmg

2 sin θ
.

We see the friction force on the left piece is f = T + 1−η
2 mg sin θ, and the normal force is N =

1−η
2 mg cos θ. We have f ≤ Nµ, so

ηmg

2 sin θ
+

1− η

2
mg sin θ ≤ 1− η

2
mgµ cos θ,

or
η

sin θ
+ (1− η) sin θ ≤ (1− η) cos θ,

so some algebra reveals

η ≤ cos θ − sin θ

cos θ + sin θ
tan θ .

Doing some more algebra turns this into

η ≤ sin 2θ + cos 2θ − 1

sin 2θ + cos 2θ + 1
.

To maximize η, we need to maximize sin 2θ + cos 2θ, which implies θ = π/8 . The corresponding

value of η is 3− 2
√
2.

Example 9

A chain is suspended from two points on the ceiling a distance d apart. The chain has a

uniform mass density λ, and cannot stretch. Find the shape of the chain.
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Solution

First, we note that the horizontal component of the tension Tx is constant throughout the

chain; this just follows from balancing horizontal forces on any piece of it. Moreover, by

similar triangles, we have Ty = Txy
′ everywhere.

Now consider a small segment of chain with horizontal projection ∆x. The length of the

piece is ∆x
√

1 + y′2 which determines its weight, and this be balanced by the difference in

vertical tensions. Thus

∆Ty = λg
√
1 + y′2∆x.

For infinitesimal ∆x, we have ∆Ty = Txd(y
′) = Txy

′′ dx, so we get the differential equation

y′′ =
λg

Tx

√
1 + y′2.

Usually nonlinear differential equations with second derivatives are very hard to solve, but

this one isn’t because there is no direct dependence on y, just its derivatives. That means

we can treat y′ as the independent variable first, and the equation is effectively first order in y′.

Writing y′′ = d(y′)/dx and separating, we have∫
dy′√
1 + y′2

=

∫
λg

Tx
dx.

Integrating both sides gives

sinh−1(y′) =
λgx

Tx
+ C.

Choosing x = 0 to be the lowest point of the chain, the constant C is zero, and

y′ = sinh

(
λgx

Tx

)
.

Integrating both sides again gives the solution for y,

y =
Tx

λg
cosh

(
λgx

Tx

)
where we suppressed another constant of integration. This curve is called a catenary.

[1] Problem 26. To check that you understand the previous example, repeat it for a suspension bridge.

In this case the cable is attached by vertical suspenders to a horizontal deck with mass λ per unit

length, and supports the weight of the deck. Assume the cable and suspenders have negligible mass.

Solution. By the same logic as in the example, we have

y′′ =
λg

Tx

where there is now no factor of
√

1 + y′2. Integrating this twice gives

y =
λg

Tx

x2

2
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which is a parabola. One result of this analysis is that the required height of the bridge scales as the

square of its horizontal span, which is why very long suspension bridges are broken into multiple

spans. According to Feynman, engineers were able to watch the shape of the cables of the George

Washington bridge turn from a catenary into a parabola as the deck was installed.

By the way, essentially the same calculation can be used to determine the shape of an ideal

suspended arch bridge. The main difference is that the arch, being a solid structure, can transmit

internal torques (i.e. bending moments, as discussed below) which can result in more general shapes.

But in a well-designed arch bridge this internal torque should be negligible, so the analysis is almost

identical to the suspended cable bridge, but with an extra minus sign since arches are in compression

rather than tension. The shape is an inverted parabola.

[4] Problem 27 (MPPP). A slinky is a uniform spring with negligible relaxed length, with mass m

and spring constant k.

(a) Find the shape of a slinky hung from two points on the ceiling separated by distance d. (Hint:

to begin, consider the mass and tension of a small piece of the spring with horizontal and

vertical extent dx and dy. Don’t forget that the slinky’s density won’t be uniform.)

(b) Suppose a slinky’s two ends are fixed, separated by distance d, and rotating uniformly with

angular frequency ω like a jump rope in zero gravity. Find the values of ω for which this

motion is possible, and the shape of the slinky in this case.

Solution. (a) Consider a small piece of the spring with mass dm, and horizontal and vertical

extent dx and dy. This piece of the spring has spring constant km/dm, which means

Tx = km
dx

dm
, Ty =

dy

dx
Tx.

By horizontal force balance, Tx is a constant, which means dx/dm is a constant; the same

amount of mass is contained within each horizontal interval. Thus

dx

dm
=

d

m
.

Balancing vertical forces on this segment gives

dTy = y′′Tx dx = g dm

and combining this with the previous result gives

y′′ =
mg

kd2
.

We thus conclude that the shape is a parabola. Centering it at x = 0, we have

y =
mgx2

2kd2
.

In particular, the lowest point of the parabola is a distance y(d/2)− y(0) = mg/8k below the

supports. (This solution is very similar to that of the example; the only difference is that

the weight of the segment is proportional to dx instead of
√

1 + y′2 dx. This is because the

slinky’s mass per length is not constant, while the chain’s was.)
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(b) The only difference with respect to part (a) is that now we have a radial “gravity” force of

geff = −ω2y, because of the centrifugal acceleration in the frame rotating with the slinky.

Therefore,

y′′ = −mω2

kd2
y

The solution is a sinusoid. For concreteness, let’s suppose one endpoint is at x = 0, imposing

y(0) = 0. Then

y(x) = y0 sin

(√
m

k

ω

d
x

)
.

For the other endpoint to be fixed, y(d) = 0, we must have√
m

k
ω = nπ.

If ω satisfies this condition for some n, then the slinky can rotate with uniform angular velocity,

and its shape is a sinusoid. The value of y0 is arbitrary.

Another way to say this is that the solutions we have found here are standing waves. The valid

values of ω, given the spring parameters, are just the standing wave frequencies. The fact that

ω doesn’t depend on d follows from dimensional analysis, and reflects the fact that stretching

the string further increases the tension and decreases the density, therefore increasing the

wave speed. These two effects cancel, keeping the standing wave frequencies the same.

Note that so far we’ve considered three cases: a hanging rope (in the example), a hanging slinky,

and a rotating slinky. So what about a rotating rope? Unfortunately, the differential equation

describing it is y′′ ∝ y
√
1 + y′2, since the centrifugal acceleration is proportional to y. And unlike

the example, this is a genuine nonlinear second order differential equation. Mathematica reports

that the solution is not an elementary function, but rather an inverse elliptic integral. Unfortunately,

that’s just what happens most of the time.

Example 10

A uniform spring of spring constant k, mass m, and relaxed length L is hung from the ceiling.

Find its length in equilibrium, as well as its center of mass.

Solution

Problems like this contain subtleties in notation. For example, if you talk about “the piece

of the slinky at z”, this could either mean the piece that’s actually at this position in

equilibrium, or the piece that was originally at this place in the absence of gravity. Talking

about it the first way automatically tells you where the piece is now, but talking about it

the second way makes it easier to keep track of, because then the z of a specific piece of the

spring stays the same no matter where it goes.

In fluid dynamics, these are known as the Eulerian and Lagrangian approaches, respectively.

If you don’t use one consistently, you’ll get nonsensical results, and it’s easy to mix them up.

There are many ways to solve this problem, but I’ll give one that reliably works for me.
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We’re going to use the Lagrangian approach, and avoid confusion with the Eulerian approach

by breaking the spring into discrete pieces. Let the spring consist of N ≫ 1 pieces, of masses

m/N , spring constants Nk, and relaxed lengths L/N .

The ith spring from the bottom has tension (i/N)mg, and thus is stretched by

∆Li =
1

kN

i

N
mg =

mg

kN2
i.

The total stretch is
N∑
i=1

∆Li =
mg

kN2

∫ N

0
i di =

mg

2k
.

This makes sense, since the average tension is mg/2. To find the center of mass, note that

the jth spring is displaced downward by a distance

∆yj =

N∑
i=j

∆Li =
mg

2k

(
1− j2

N2

)
downward from its position in the absence of gravity. The center of mass displacement is

∆yCM =
1

N

N∑
j=1

∆yj ∝
1

N

N∑
j=1

(
1− j2

N2

)
=

1

N3

∫ N

0
N2 − j2 dj =

2

3

so restoring the proportionality constant gives

∆yCM =
mg

3k
.

If you want to test your understanding of slinkies, you can also try doing this problem with

the Eulerian approach. This would be best done without discretization. The first steps would

be finding a relation between the density ρ(z) and tension T (z) from Hooke’s law, and finding

out how to write down local force balance as a differential equation.

Remark

In this problem set, we’ve given some examples involving static, continuous, one-dimensional

objects such as strings and ropes. The general three-dimensional theory of elasticity is

mathematically quite complicated, but extremely important in engineering. For more about

this subject, which requires comfort with tensors, see chapters 6 through 11 of Lautrup. It

is also covered in chapters II-31, II-38, and II-39 of the Feynman lectures.

Remark: Why Use Torque?

Here’s a seemingly naive question. Why is the idea of torque so incredibly useful in physics

problems, even though in principle, everything can be derived from F = ma alone? Why is

it almost impossible to solve any nontrivial problem without referring to torques, and how

would a student who’s never heard of torque come up with it in the first place?
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We don’t need torque to analyze the statics of a single, featureless point particle. Torque

only became useful in this problem set when we started analyzing rigid bodies with spatial

extent. The reason we couldn’t reduce torque balance to force balance easily is because the

internal forces in these bodies, which maintain their rigidity, are generally very complicated.

To see this, let’s consider the simplest possible example of a rigid body: a triangle with

masses at the vertices, and sides made of very thin, rigid, massless springs. The triangle is

pivoted at one vertex, and experiences external forces F1 and F2 at the other two vertices.

Consider force balance on the first marked vertex. The tension in the side of length r2 takes

whatever value is necessary to balance the horizontal force on the vertex, while the tension

T in the other side has to balance the vertical force. Thus,

F⊥,1 = T sin θ1, F⊥,2 = T sin θ2

where the second line follows by considering the second marked vertex. Eliminating T and

using the law of sines gives r2F⊥,1 = r1F⊥,2, which of course is the statement of torque

balance. (And if you continue along this line of reasoning, letting the forces be arbitrary,

you can also derive the rotational form of Newton’s second law, τ = Iα.)

However, recovering the results of torque balance is much more complicated in general.

For example, consider a rigid bar supported at its ends. The middle of the bar doesn’t

collapse, despite the force of gravity on it, because the bar contains internal, upward shear

forces, which transmit the normal forces applied at its end throughout the rest of the bar.

To analyze such systems without using torque, one would have to account for all of these

microscopic forces, acting on all of the rod’s infinitely many pieces. So for any problem with

a continuous object, torque balance is an essential tool.

In fact, now that you’re aware of how complicated internal forces can be, you might be

wondering why torque balance even works. The simplest explanation is by the principle of

virtual work. The torque of a force about a pivot is just the virtual work it does per angle

the system rotates about the pivot. If a system is in static equilibrium, it must experience

no net virtual work under any displacement, including rotations, so the torques must cancel.
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Example 11: IPhO 2022 3A

A thin piece of spaghetti of diameter d is balanced horizontally from its middle.

It can have a length ℓ ≫ d before it snaps under its own weight. How does ℓ scale with d?

Solution

Let the spaghetti rod have density ρ, and consider its right half. There must be a vertical

normal force F ∼ ρd2ℓ to balance the weight. This vertical force is transmitted through

the rod by a shear stress (i.e. an internal force per area, perpendicular to the rod) of order

σs ∼ F/A ∼ ρℓ. Each piece of the rod exerts such a shear stress on its neighbors, just like

how pieces of a string exert tensions on their neighbors.

Now consider torques on the right half of the rod, about the pivot point. The torque

τ ∼ ρd2ℓ2 of the rod’s weight has to be balanced by forces from the other half of the rod.

Vertical forces don’t work, since they don’t provide any torque about the pivot. Instead, the

torque is supplied by a horizontal compression force at the bottom, and a horizontal tension

force at the top, which cancel out to maintain horizontal force balance. This combination of

forces, which produces no net force but does produce a net torque, is a bending moment.

Let the associated normal stresses be of order ±σn. Then the net compression and tension

forces are of order ±d2σn, and the lever arm is of order d, so balancing torques gives

ρd2ℓ2 ∼ σnd
3

which implies σn ∼ ρℓ2/d. This is much greater than σs, because of the miserably small lever

arm, which is why thin rods usually break by snapping, not by shearing or pulling apart.

Given a fixed maximum σn, we conclude the maximum length scales as ℓ ∼
√
d.

[3] Problem 28. �̂10 USAPhO 2022, problem A1. A practical bending moment problem.

5 Pressure and Surface Tension

Example 12

A sphere of radius R contains a gas with a uniform pressure P . Find the total force exerted

by the gas on one hemisphere.
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Solution

The pressure provides a force per unit area orthogonal to the sphere’s surface, so the

straightforward way to do this is to integrate the vertical component of the pressure force

over a hemisphere. However, there’s a neat shortcut in this case.

Momentarily forget about the sphere and just imagine we have a sealed hemisphere of gas at

pressure P . The net force of the gas on the hemisphere must be zero, or else it would just

begin shooting off in some direction, violating conservation of momentum. So the force on

the curved face must balance the force on the flat face, which is πR2P . The same logic must

hold for the sphere, since the forces on the curved face are the same, so the answer is πR2P .

This trick works whenever one has a uniform outward pressure on a surface, and it’ll come in

handy for several future problems. For example, it’s the quick way to do F = ma 2018 B24.

Idea 11

The surface of a fluid carries a surface tension γ. If one imagines dividing the surface into two

halves, then γ is the tension force of one half on the other per length of the cut. Specifically,

dF = γ ds× n̂

which means the tension acts along the surface and perpendicular to the cut.

Example 13

A soap bubble of radius R and surface tension γ is in air with pressure P , and contains air

with pressure P +∆P . Compute ∆P .

Solution

We use the result of the previous problem to conclude that the force of one hemisphere

on another is πR2∆P . This must be balanced by the surface tension force. By imagining

cutting the surface of the bubble in half, the surface tension force is γL where L is the total

length of the surface connecting the hemispheres.

At this point, we can write L = 2πR, giving

∆P =
2γ

R
.

This is called the Young–Laplace equation. However, in this particular case, this is not the

right answer. The reason is that we should actually take L = 4πR because the surface tension

is exerted at both the inside and outside surfaces of the bubble wall, and thus the answer is

∆P =
4γ

R
.

The increased pressure inside balances the surface tension, which wants to collapse the bubble.
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If you’re confused about why L = 4πR, you can also think about it in terms of energy. Surface

tension arises from the fact that it costs energy to take soapy water and stretch it out into a

surface, because this breaks some of the attractive intermolecular bonds. The Young–Laplace

equation would give the correct answer for a ball of soapy water. But for a bubble of soapy

water, twice as much soapy water/air surface is created. So the energy cost is double, and

the force is double.

[2] Problem 29. One can also derive the Young–Laplace equation using the principle of virtual work.

Suppose the bubble radius changes by dr. The energy of the bubble changes for two reasons: first,

there is net ∆P dV work from the two pressure forces, and there is the γ dA surface tension energy

cost. By setting the net virtual work to zero, find ∆P .

Solution. The work done by the surface tension should be balanced by the work done by the

pressure difference. Noting that the total surface area is 8πR2, we have

∆P dV = ∆P d

(
4

3
πR3

)
= ∆P (4πR2) dR = d(8πR2γ) = 16πγRdR

from which we conclude

∆P =
4γ

R
.

Of course, one can generalize this to any other kind of energy. For example, if the bubble was

charged, it would grow due to electrostatic repulsion, and the new equilibrium radius could also be

found using virtual work.

Remark

Note that the Young–Laplace equation we gave above only holds for spherical surfaces. More

generally, a surface has two principle radii of curvature R1 and R2 at each point. These are

both equal to R for a sphere of radius R, but for, e.g. a cylinder of radius R, one is equal to

R and the other is infinity. For general surfaces, the Young–Laplace equation is

∆P = γ

(
1

R1
+

1

R2

)
where the Ri can each be positive or negative, depending on the direction of curvature.

[2] Problem 30 (Kalda). Consider two soap bubbles which have stuck together. The part of the soap

film that separates the interior of the first bubble from the outside air has radius of curvature R.

The part that separates the interior of the second bubble from the outside air has radius of curvature

2R. What is the radius of curvature of the part which separates the bubbles from each other?

Solution. The key is that the Young–Laplace equation should hold for every point on the surface

since the surface tension and pressure should balance for every infinitesimal surface element. The

gauge pressure (pressure minus the atmospheric pressure) inside the first bubble is P1 = 4γ/R,

and for the second P2 = 4γ/(2R). Thus the pressure difference between the two bubbles is

∆P = 2γ/R = P2, giving a radius of curvature of 2R for the part separating the bubbles.

[3] Problem 31 (MPPP 67). When a pipe bursts under pressure, it often splits “lengthwise” instead

of “across”. (One familiar example is the process of cooking a long, straight sausage.) The two

modes of splitting are shown as dotted lines below.
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Explain this observation, assuming the thickness of the sausage skin is uniform, and hence can

support a constant surface tension before breaking. (Hint: model the sausage as a cylinder of length

L capped by hemispheres of radius R ≪ L, and consider the surface tension needed to prevent the

two modes of splitting mentioned, once an excess pressure P builds up inside the sausage.)

Solution. Let the pressure differential from inside the sausage to outside be P . Cutting it across

so the cross section is a circle tells us that the surface tension γa will exert a force F = (2πr)γa on

each end since F = γℓ. Using the trick from example 12, it must balance the force F = πr2P , so

γa = Pr/2.

Lengthwise, the cross section has perimeter 2L + 2πr ≈ 2L. If we apply the trick to each

half-cylinder, we find that the pressure force is F = (2rL)P , so balancing forces gives γL = Pr.

Since this is a greater requirement on the surface tension, the sausage will break lengthwise, as we

regularly observe in the kitchen.

[4] Problem 32. Two coaxial rings of radius R are placed a distance L apart from each other in

vacuum. A soap film with surface tension γ connects the two rings.

(a) Derive a differential equation for the shape r(z) of the film, and solve it.

(b) Show that for sufficiently large L, there are no solutions. If L is increased to this value, what

happens to the film?

(c) Using a computer or calculator, find the largest possible value of L.

We’ll consider surface tension in more detail in T3.

Solution. (a) Consider a segment of the bubble between z and z + dz. The net forces exerted

by surface tension on both sides along the z-direction are 2πrγ/
√
1 + r′2. To balance forces

in the z-direction for each segment, the quantity r/
√
1 + r′2 must be independent of z, so

r2 = A2(1 + r′2)

for some constant A. Separating and integrating, we have∫
dz =

∫
Adr√
r2 −A2

and substituting r = A coshu and integrating yields

z + C = A cosh−1(r/A), r = A cosh

(
z + C

A

)
for another constant C. Setting the rings to be at z = ±L/2, we have C = 0. The quantity

A is the minimum radius, which occurs by symmetry at z = 0.
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You may have noticed that the answer is a catenary, which is the same as the answer to

example 9. The reason is that both problems can be solved by minimizing a similar quantity.

Here, we want to find the function r(z) that minimizes the area,

A =

∫
2πr

√
1 + r′2 dz

where the value of r at two given values of z is fixed. In that example, we wanted to find the

shape y(x) of the chain that minimizes the gravitational potential energy,

U = λ

∫
y
√
1 + y′2 dx.

This function is extremely similar in form, which explains why the form of the solution is

similar. But there’s an important physical difference: the length of the chain is fixed, and

you need to specify it to determine the solution. (To see how this constraint can be imposed

with Lagrange multipliers, see here.) By contrast, the soap bubble is more free to vary. That

explains why, as we’ll see below, you can sometimes have no solution for a soap bubble at all.

In those cases, the middle of the film can just get thinner and thinner, always decreasing the

area, until it pinches off into two separate pieces.

(b) We introduced the parameter A above, which describes the shape of the solution. It is fixed

by R and L by the requirement that the bubble fit the rings,

R = A cosh
L

2A
.

Now, we wish to find the largest L so that there exists some A so that the left-hand side

can be R. This is a somewhat annoying optimization problem. It’s clearer to note that by

dimensional analysis, the only invariant thing is the single dimensionless ratio R/L. (A doesn’t

count as a dimensionful parameter, because it’s fixed by R and L.) So finding the largest L

for fixed R is equivalent to finding the smallest R for fixed L.

But this is now easy, because we already have R as a function of L, which is fixed, and A,

which can vary. By graphing the function R(A), we see it has a single minimum, so there is

indeed a minimum possible R/L and hence a maximum possible L/R.

(c) Setting the derivative dR/dA to zero, the minimum occurs when

2A

L
= tanh

L

2A
.

This equation cannot be solved analytically. Using a calculator and the techniques of P1, we

find the maximum possible L is about 1.33R.

By the way, you can also solve this problem by looking at the forces on individual small elements

of the bubble. Since the bubble isn’t a closed surface, there’s no pressure difference across it. Thus,

in equilibrium, the Young–Laplace equation implies that the radii of curvature satisfy R1 +R2 = 0,

i.e. the “mean curvature” is zero. This is the condition for the bubble to be a minimal surface.

However, actually evaluating this condition in general is somewhat complicated; what we did above

is the simplest way, which takes advantage of the axis of symmetry of the setup.
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Example 14

A solid ball of radius R, density ρ, and Young’s modulus Y rests on a hard table. Because

of its weight, it deforms slightly, so that the area in contact with the table is a circle of radius r.

Estimate r, assuming that it is much smaller than R.

Solution

Recall from P1 that the Young’s modulus is defined by

Y =
stress

strain
=

restoring force/cross-sectional area

change in length/length

and has dimensions of pressure. By dimensional analysis, you can show that

r = Rf(ρgR/Y )

but dimensional analysis alone can’t tell us anything more about f . Moreover, an exact

analysis using forces would be very difficult, because different parts of the ball are compressed

in different amounts, and in different directions; there’s little symmetry here.

Instead, we’ll roughly estimate the stress and strain near the bottom of the ball. For the

part directly in contact with the table, we have

stress ∼ F/r2 ∼ ρgR3/r2

because the normal pressure has to balance gravity. This is the pressure exactly at the

bottom of the ball; at heights much greater than r, the pressure will be smaller because it

can spread out over a wider horizontal surface area. Since stress is proportional to strain,

that means the part of the ball that is significantly strained has typical height r. (This is an

example of Saint–Venant’s principle, which states that strain is generally confined near the

location that external forces are applied.) So in that region, the strain must be

strain ∼ δ/r ∼ r/R.

Using the definition of the Young’s modulus, we conclude

r ∝ R

(
ρgR

Y

)1/3

.
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We can also phrase this result in terms of force and displacement. The ball’s total vertical

deformation is d ∼ r2/R and the total force that pushes it into the table is F ∼ ρgR3, so

F ∝ Y R1/2d3/2.

The restoring force is not linear in d, so it doesn’t obey Hooke’s law.

By the way, there’s a whole field of study devoted to figuring out how the normal and other

forces behave for realistic, deformable solids, known as contact mechanics, which is essential

in engineering. This particular example is about “Hertzian contact”. For much more, see

Contact Mechanics by Johnson, and Contact Mechanics and Friction by Popov.

[4] Problem 33. EFPhO 2006, problem 5. A tough problem on a deforming object.

Solution. See the official solutions here.

Remark: Normal Forces at Corners

Unfortunately, some problem writers don’t really understand contact forces, and they’ll end

up writing questions like the one below, which is taken from a real book.

Assuming there’s no friction, which way do the normal forces on the block point?

Many students have no problem “solving” this, because they’ve been trained to blindly

trust exam questions. They’ll just choose some random directions and move on. But the

smart student will get seriously confused, because the answer is clearly not well-defined.

There are three different normal directions at the bottom contact point, and at least

two at the other contact point (depending on what the diagram means by the wall magi-

cally ending). There doesn’t seem to be any sensible rule to decide which is the “real” normal.

The resolution, of course, is that there is no rule. What happens in reality depends on

the exact shape of the block and wall, and how deformable it is. For example, suppose

the block was perfectly rigid, but actually had slightly rounded corners (not shown in the

diagram). Then there’s a definite normal direction at the bottom contact point, pointing

up. Similarly, we could suppose that at the other contact point, the wall actually ends in

a step with a rounded corner, in which case the normal direction points directly into the block.

Alternatively, suppose the block and step weren’t rounded, but could deform. Then the

answer depends on the relative hardness of the materials, and how they were placed in

contact. For instance, if we suppose the block is much softer, then it could squash at the

bottom contact point, again leading to a common upward normal direction. But then we

would expect the step to dig into the block at the other contact point, which yields two

separate normal forces at that point. Or perhaps the step is made of a softer material
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than the floor, so that it’s the step rather than the block that deforms. Or maybe both deform!

To be clear: the issue isn’t that the problem involved unrealistic idealizations. Physics uses

idealizations, like neglecting air resistance and friction, all the time, and they’re reasonable

within appropriate limits. The issue is that when you apply the idealizations implied by the

diagram, the result is mathematically undefined. And you get completely different answers

depending on which idealizations you drop, because the true answer depends on the details.

As a result, you certainly won’t see this kind of thing on thoroughly vetted competitions,

such as the IPhO, APhO, and EuPhO, or large national Olympiads such as those in America

or China. I’ll never assign such a dysfunctional problem, but they’re depressingly common in

homework assignments and less carefully written exams, such as the JEE. If you personally

encounter such a problem, your best bet is to attempt to read the question writer’s mind; that

is, simply start guessing and go with whatever gives you tractable results. If you encounter

this sort of thing often, in a book or competition, then it’s not worth your time. We’re in it

to learn physics, not to please examiners.
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