
Kevin Zhou Physics Olympiad Handouts

Mechanics VII: Fluids

The fundamental material is covered in chapters 15 and 16 of Halliday, Resnick, and Krane, and at

a somewhat higher level in chapter 9 of Wang and Ricardo, volume 1. For a neat explanation of lift

and the Coanda effect, see this video. For interesting discussion, see chapters II-40 and II-41 of the

Feynman lectures. For a much more advanced introduction which uses vector calculus heavily, see

chapters 2–5 and 12–15 of Physics of Continuous Matter by Lautrup. There is a total of 86 points.

1 Fluid Statics

Idea 1

In equilibrium, the pressure in a static fluid varies with height as

dp

dy
= −ρg.

This always holds in equilibrium. For instance, if we squeeze a sealed container of fluid,

increasing the pressure locally, then this pressure increase must propagate throughout the

entire fluid to maintain dp/dy = −ρg. This is Pascal’s principle.

Idea 2: Archimedes’ Principle

An object in a fluid experiences an upward buoyant force due to the different pressures on its

top and bottom sides. The force is equal in magnitude to the weight of the fluid that would

fill the volume of the immersed portion of the object.

This can be surprisingly tricky, so we’ll begin with some conceptual questions.

Example 1

A large rock is tied to a balloon filled with air. Both are placed in a lake. As the balloon

sinks, how do the air pressure in the balloon, the average density of the balloon, air, and

rock system, and magnitude of the net force on the system vary?

Solution

For simplicity, we ignore the elastic force in the balloon itself. Then for the balloon to be in

equilibrium, its pressure must match that of the water pressure, so the air pressure in the

balloon increases. As the balloon sinks, the rock stays the same volume but the balloon is

squeezed smaller, so the density of the system increases. Finally, since the density of water is

very approximately constant, the buoyant force on the system is decreasing since its volume is

decreasing, so the net force is increasing; the system accelerates downward faster and faster.

[1] Problem 1 (HRK). The average human body floats in water. SCUBA divers wear weights and a

flotation vest that can fill with a varying amount of air to establish neutral buoyancy. A diver is

originally neutrally buoyant at a certain depth. How should the diver manipulate the amount of

air in their flotation vest to move lower, then stay there at neutral buoyancy?

1

https://knzhou.github.io/
https://www.youtube.com/watch?v=6H6EP-AmMFM&list=PLt5AfwLFPxWI9eDSJREzp1wvOJsjt23H_&index=3


Kevin Zhou Physics Olympiad Handouts

[2] Problem 2. A beaker contains liquid water at its freezing point and has a big ice cube floating in

it, also at its freezing point. If the ice cube

(a) is solid ice,

(b) contains a small metal ball, or

(c) contains a lot of olive oil (which will float on the water in a thin layer),

then how does the fluid level change when the cube melts? In all cases, neglect the density of air.

[2] Problem 3 (Moscow 1939). Consider a pair of scales with identical vessels in which there are equal

quantities of water.

In the left-hand vessel you suspend a very light ping-pong ball on a thin, light wire attached to the

base of the vessel. In the right-hand vessel you suspend a ping-pong ball filled with lead, again by

a light thin wire. Do the scales stay level, go down on the left, or go down on the right?

[2] Problem 4 (BAUPC). Two trapezoidal containers, connected by a tube as shown, hold water.

Assume that the containers do not undergo thermal expansion.

(a) If the water in container A is heated, causing it to expand, will water flow through the tube?

If so, in which direction?

(b) What if the water in container B is heated instead?

[2] Problem 5 (MPPP 85). A solid cube of volume Vi and density ρi is fastened to one end of a cord,

the other end of which is attached to a light bucket containing water, of density ρw = ρi/10.

The system is in equilibrium.
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(a) Find the volume Vw of the water in the bucket.

(b) What would happen if more water were poured into the bucket?

(c) What would happen if some or all of the water evaporated?

Example 2

A perfectly spherical, nonrotating planet is covered with water. Geological activity causes a

small underwater mountain to form, made of rock that is denser than water. Does the ocean

surface above this mountain become higher or lower?

Solution

Systems minimize their energy in equilibrium. This means that in hydrostatic equilibrium,

the surface of the water is an equipotential. Since the gravitational field of the mountain

increases the gravitational potential near it, the water surface is higher near the mountain.

Example 3

Robert Boyle is best known for Boyle’s law, but he also invented a remarkably simple perpetual

motion machine, called the perpetual vase.

Since the volume of the vase is much greater than the neck, the pressure in the neck cannot

possibly hold up all of the water in the vase. Hence the water will flow through the neck and

fall back into the vase, causing perpetual motion. Why doesn’t this work?

Solution

This is an example of the hydrostatic paradox. Most of the upward force on the water is

not provided by the pressure in the water in the neck, but from the normal force from

the walls; each piece of wall provides enough normal force to hold up all of the water

above it. (Of course, ultimately each piece of the glass is held in place by internal forces

with other pieces of the glass, which ultimately are balanced by whatever is holding the glass.)

Thus, the water in the neck only supports the water directly above it. That’s precisely what

is balanced by the heightened pressure in the neck, so the water doesn’t start moving. (There

have been many more attempts at fluid-based perpetual motion, as you can see here.)

[2] Problem 6. Below is another perpetual motion machine, proposed centuries ago.
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The balls are less dense than water. The balls on the left are pulled downward by gravity, while the

balls on the right are pushed upward by the buoyant force.

(a) Why doesn’t this work?

(b) Would it work if the balls and chain were replaced with a flexible tube of constant thickness?

[2] Problem 7 (HRK). A fluid is rotating at constant angular velocity ω about the vertical axis of

a cylindrical container. Defining z = 0 to be the water level at the cylinder’s axis, show that the

liquid surface is the paraboloid

z =
ω2r2

2g
.

Since a paraboloid perfectly focuses incoming light which is parallel to its axis, a rotating fluid can

be used as a telescope, as was first pointed out by Isaac Newton. Such liquid-mirror telescopes are

cheap, but have the disadvantage that they can only point up. Alternatively, one can gradually

cool molten glass in a rotating container so that it solidifies into a paraboloidal lens.

[3] Problem 8. �W10 USAPhO 2013, problem A4. In order to make measurements, print out the

problem before starting.

2 Fluid Mechanics

Next we’ll consider some situations involving fluids and other objects, where the fluids can be

treated at least quasistatically but the objects must be treated dynamically.

Idea 3

The buoyant force can be regarded as acting at the center of gravity of the fluid displaced by

the submerged part of a floating object, called the center of buoyancy. A floating configuration

is stable if, when the configuration is slightly rotated, the buoyant force provides a restoring

torque about the center of mass.

[2] Problem 9 (Kalda). A hemispherical container is placed upside-down on a smooth horizontal

surface. Water is poured in through a small hole at the bottom of the container. Exactly when the

container fills, water starts leaking from between the table and the edge of the container.

4

https://knzhou.github.io/
https://en.wikipedia.org/wiki/Liquid-mirror_telescope


Kevin Zhou Physics Olympiad Handouts

Find the mass of the container if the water has density ρ and the hemisphere has radius R.

[2] Problem 10 (MPPP 89). A thin-walled hemispherical shell of mass m and radius R is pressed

against a smooth vertical wall.

It is filled with water through a small aperture at its top, with total mass M . Find the minimum

magnitude of the force that has to be applied to the shell to keep the liquid in place.

[3] Problem 11. �W10 USAPhO 2004, problem A2.

[3] Problem 12. �W10 USAPhO 2002, problem A4. Be careful with this one!

[3] Problem 13. A long log with square cross section and density ρl floats in water with density ρw.

If α = ρl/ρw, then when α ≪ 1, the log will float stably with one of its sides parallel to the water.

(a) As α is increased, show that once α > (3−
√
3)/6, this orientation becomes unstable. (Hint: to

keep the calculations short, choose a good coordinate system and work to the lowest relevant

order everywhere.)

(b) How do you think the stable orientation of the log varies as α continues to increase? In

particular, what it is when α = 1/2, or when α ≈ 1?

Finding the stable orientation of the log for general values of α is quite complicated, but you can

play with a nice simulation here; you can also use this to check your answer.

Remark

Some Olympiad questions involving oscillating fluids, which are more subtle. These questions

are often impossible to solve exactly, because one must keep track of the entire motion of the

water to know how much kinetic and potential energy are in play. In M4, you solved IPhO

1984, problem 2, which only asked for an order of magnitude estimate. Physics Cup 2018,

problem 4 considers a V -shaped container, where the calculation can be done exactly.

[4] Problem 14. �@10 EuPhO 2022, problem 1. A nice fluid oscillations problem which can be solved

nearly exactly without too much trouble.
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Idea 4: Virtual Mass

When an object moves through water, it effectively has extra inertia because it forces water

to move as well. This is the “virtual mass” effect (also called added mass, or hydrodynamic

mass) which we first mentioned in M4. For example, it turns out that

∆m = ρ×


(2π/3)R3 sphere of radius R

πR2L cylinder of radius R, length L ≫ R,moving perpendicular to axis

(8/3)R3 thin disc of radius R,moving along its axis of symmetry

where ρ is the water density. You don’t have to memorize these results, but the idea of virtual

mass does occasionally show up. For instance, IPhO 1995, problem 3 involves oscillations

of a cylindrical buoy of mass m which is only partially submerged in water; they ask you to

simply assume a virtual mass m/3.

Example 4

Derive the expression for the virtual mass of a sphere.

Solution

Consider a spherical object of radius a moving uniformly with speed v0 through water

of density ρ. The object forces the water to move: the water ahead of it has to get out

of the way, while the water behind it needs to fill the space it leaves behind. By the

ideas of M4, the total kinetic energy of the water is (∆m)v20/2, where ∆m is the virtual mass.

It turns out the fluid’s velocity field v(r) has to satisfy∇·v = 0, reflecting the incompressibility

of water, and ∇ × v = 0, reflecting the absence of vorticity. It also has to go to zero far

from the sphere, and have zero relative normal velocity at the sphere itself. These differential

equations and boundary conditions yield a unique solution. The methods for finding the

solution are standard, and typically taught in an undergraduate electromagnetism course,

but since they’re outside the Olympiad syllabus, I’ll just display the answer. The velocity is

v(r) =
v0a

3

2r3
(2 cos θ r̂+ sin θ θ̂)

in polar coordinates, where we placed the origin at the center of the sphere and aligned the

ẑ axis with its direction of motion. If you’ve done E1, you might notice this is just like

the electric dipole field; this coincidence isn’t too surprising because that field satisfies the

similar equations ∇ ·E = 0 and ∇×E = 0, which are quite restrictive.
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Now, to derive the virtual mass, we just have to carry out the kinetic energy integral, which

is easiest in spherical coordinates,

K =

∫
ρv2

2
dV

=
ρv20a

6

8

∫ ∞

a

r2 dr

r6

∫ 2π

0
dϕ

∫ π

0
(sin θ dθ)(4 cos2 θ + sin2 θ)

=
ρv20a

6

8

(
1

3a3

)
(2π)(4).

This yields a virtual mass of (2π/3)ρa3 = ρV/2, as stated above.

Remark

We won’t derive the virtual mass for any other shapes, because it tends to require advanced

mathematical techniques, outside the Olympiad syllabus. If you’re interested in this subject,

this paper compiles many exact results, and this paper discusses the history and measurement

of virtual mass. Furthermore, Physics Cup 2019, problem 1 and Physics Cup 2024, problem

1 introduce slick methods to calculate virtual mass for some special shapes.

Example 5

What is the initial upward acceleration of a spherical air bubble in water?

Solution

The upward buoyant force on the bubble is ρV g, and the mass of the bubble is negligible, so

if we didn’t know about virtual mass, we would be tempted to conclude the acceleration is

enormous. Instead, the buoyant force is used to move the virtual mass ρV/2 out of the way,

so the upward acceleration is 2g.

Like most things in fluid dynamics, this isn’t an exact result. The usual expression for the

buoyant force assumes no motion at all, while the virtual mass derivation assumes uniform

motion, neither of which are true for an accelerating bubble. For the result above to be

accurate, the bubble has to be small, so that the pressure and flow fields have time to reach

a quasi-steady state, but not too small, so that we can still ignore viscous forces.

3 Fluid Dynamics

Idea 5: Continuity

In steady flow, the quantity ρAv is constant along tubes of streamlines.
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Idea 6: Bernoulli’s Principle

For steady, nonviscous, incompressible flow, the quantity

p+
1

2
ρv2 + ρgy

is constant along streamlines. Another version of Bernoulli’s principle, valid for compressible

flow, is given in T3. As explained there, the incompressible result here is applicable for

water flow, and for gas flow as long as the velocity is much less than the speed of sound.

You might be wondering how steady the flow has to be. Bernoulli’s principle is derived by

equating work done to kinetic energy, as water flows between two points on a streamline.

So you can apply Bernoulli’s principle between those two points if the flow is steady on the

timescale that it takes fluid to move from one to the other.

Example 6: HRK

A tank is filled with water to a height H. A small hole is punched in one of the walls at a

depth h below the water surface as shown.

Find the distance x from the foot of the wall at which the stream strikes the floor.

Solution

The flow isn’t perfectly steady, but it’s close enough since the hole is small. We thus apply

Bernoulli’s principle along a streamline, where one point is at the water’s top surface, and

the other point is just outside the hole. Both points are at atmospheric pressure, because

they are directly exposed to the atmosphere. Since the hole is small compared to the tank,

the velocity at the first point is small by continuity, so we neglect it, giving

1

2
ρv2 = ρgh

which implies Torricelli’s law,

v =
√

2gh.

The time t to fall is t =
√

2(H − h)/g, so

x = vt = 2
√
h(H − h)
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which incidentally is maximized at h = H/2.

Incidentally, Bernoulli himself was aware that the answer was different for a large hole, and

treated the general case in his 1738 book, Hydrodynamica. The method is to apply energy

conservation to all of the water at once (i.e. equating the rate of decrease of gravitational

potential energy to the rate of increase of total kinetic energy), rather than attempt to apply

it along streamlines. You can see this general analysis here.

Example 7

Why should you close your barn door during a storm?

Solution

The wind can flow into the barn, at which point it stops. By Bernoulli’s principle, this

increases its pressure by ρv2/2. This creates a net upward force on the roof, which can tear

it off the barn.

By the way, even if you do close the barn door, there’s a second effect that can still cause a

problem: the wind outside has to flow faster along the top to get around it, which decreases

its pressure, again creating a net upward force on the roof. This lift effect is very common

in real life. You probably already know it’s responsible for the lift on an airplane wing. But

it also caused my childhood trampoline to achieve liftoff during Hurricane Sandy, destroying

a backyard fence. And plumbers rely on it to make sewer pipes “self-clean”, by picking up

anything stuck to the bottom.

Incidentally, this example brings up a little puzzle about Bernoulli’s principle. We argued

that the air slows down when it enters the barn, so the pressure goes up. But in the reference

frame moving with the wind, the air speeds up when it enters the barn – so shouldn’t its

pressure go down? The issue with this reasoning is two-fold. First, in the wind’s frame, the

barn is moving, so the flow isn’t steady and Bernoulli’s principle doesn’t apply. Second, even

if the barn were moving slowly, so that the flow were almost steady, the barn’s motion would

still be doing work on the air, and this changes Bernoulli’s principle because it is ultimately

a restatement of energy conservation. So in either case, the reasoning fails. When obstacles

are present, Bernoulli’s principle should always be invoked in the frame of the obstacles.

Example 8: JEE 2020

When a train enters a narrow tunnel, your ears pop because of the pressure change. Find

the pressure change, assuming the air has constant density ρ, the atmospheric pressure is P0,

the train speed is v, and the cross-sectional areas of the train and tunnel are At and A0.
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Solution

We work in the reference frame of the train. In this frame, the air in the tunnel begins

moving towards the train at speed v. When it gets to the train, it has to speed up to speed

vf because it flows through a smaller area A0 −At, and this causes its pressure to decrease

by Bernoulli’s principle. Specifically, we have

A0v = (A0 −At)vf , Pf +
1

2
ρv2f = P0 +

1

2
ρv2

which gives a pressure drop of

Pf − P0 = −1

2
ρv2

(
1

(1−At/A0)2
− 1

)
.

We neglected the change in density of the air, which is a good approximation when the train

is much slower than the speed of sound. We’ll treat fluid flow with changing density in T3.

Example 9

A whirly tube is a long, narrow, flexible tube that produces musical tones when swung. Model

a whirly tube as a cylinder of length L, rotated about one end with angular velocity ω. For

simplicity, neglect gravity. What is the speed of the air when it shoots out the other end?

Solution

The air is slowly sucked from all directions around the entry hole, and shot out at the exit

hole. Applying Bernoulli’s principle between a point near the entry hole, and the exit hole,

Patm ≈ Patm +
1

2
ρv2out.

But that implies vout ≈ 0, which doesn’t make sense. The problem is that Bernoulli’s

principle applies to steady flows, and this situation is definitely not steady: by the time the

air goes through the tube, the tube has rotated by a significant amount.

Instead, we apply Bernoulli’s principle in a reference frame rotating with the tube. The

centrifugal force gives an additional term, turning it into

P +
1

2
ρv2 − 1

2
ρω2r2 = const.

Applying Bernoulli’s principle between the same two points gives

Patm ≈ Patm +
1

2
ρv2 − 1

2
ρω2L2

from which we conclude v = ωL. Transforming back to the original reference frame, the exit

speed of the air is
√
v2 + (ωL)2 =

√
2 v.
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Example 10

A big fan produces a stream of air with speed v. If the atmospheric pressure in the room is

Patm, what’s the pressure P in the middle of the fan’s air stream?

Solution

This question frequently appears in middle school physics lessons. Obviously, if we apply

Bernoulli’s principle to the air before and after it goes through the fan, we get

P +
1

2
ρv2 = Patm

so that the pressure is lower than atmospheric pressure. Easy, right? But it’s wrong!

The air in the stream is traveling forward with constant velocity, exposed to the rest

of the air in the room, which has atmospheric pressure. If there actually was such a

pressure difference, the fan’s air stream would be compressed by the air in the room, until

it reached atmospheric pressure again. If you look back carefully at the above examples,

you’ll see this is always the case: air can only be at a different pressure if it’s confined

away from the atmosphere at large (e.g. in a train tunnel or a whirly tube), or if it’s

actively being accelerated (e.g. when it flies into or over a barn, in which case the pressure

difference is precisely what causes the force). The other case where you can maintain

a pressure difference is when the air is moving extremely quickly, which will be discussed inT3.

So the correct answer is that P = Patm. But why doesn’t Bernoulli’s principle work? Because

it’s a statement of energy conservation, and the fan itself is doing work on the air to get it

moving. The correct statement would be

Patm +
1

2
ρv2 = Patm + w

where w is the work done by the fan per unit volume of air.

[2] Problem 15 (HRK). A siphon is a device for removing liquid from a container that cannot be

tipped. An example of a siphon, with constant cross-section, is shown below.
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The tube must initially be filled, but once this has been done the liquid will flow until its level drops

below the tube opening at A. The liquid has density ρ and negligible viscosity.

(a) With what speed does the liquid emerge from the tube at C?

(b) What is the pressure of the liquid at the topmost point B?

(c) What is the maximum possible h1 so that the siphon can operate?

(d) Would the siphon still work if h2 were slightly negative? How negative can it be, for the

siphon to keep on working?

[2] Problem 16 (HRK). Consider a uniform U-tube with a diaphragm shown below.

(a) Suppose the diaphragm is opened and the liquid begins to flow from left to right. Show that

applying Bernoulli’s principle yields a contradiction.

(b) Explain why Bernoulli’s principle doesn’t apply if the diaphragm has a very wide opening.

(c) Explain why Bernoulli’s principle doesn’t apply if the diaphragm has a tiny opening.

For a similar idea to this problem, see F = ma 2018 A22.
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[2] Problem 17 (HRK). A stream of fluid of density ρ with speed v1 passes abruptly from a cylindrical

pipe of cross-sectional area a1 into a wider cylindrical pipe of cross-sectional area a2 as shown.

The jet will mix with the surrounding fluid, forming a turbulent region where the pressure is

approximately p1. Further to the right, the flow becomes almost uniform again, with average speed

v2 and pressure p2.

(a) By considering force and momentum, show that

p2 − p1 = ρv2(v1 − v2).

(b) Show from Bernoulli’s principle that in a gradually widening pipe we would instead get

p2 − p1 =
1

2
ρ(v21 − v22).

(c) Find the loss of pressure due to the abrupt enlargement of the pipe. Can you draw an analogy

with elastic and inelastic collisions in particle mechanics?

[2] Problem 18 (PPP 49). After a tap above an empty rectangular basin has been opened, the basin

fills with water in a time T1. After the tap has been closed, opening a plug at the bottom of the

basin empties it in time T2. If both the tap and plug are open, what ratio of T1/T2 can cause the

basin to overflow?

[4] Problem 19. This problem is about the subtle phenomenon of vena contracta. An incompressible

fluid of density ρ is flowing through a tube of area A1, which suddenly contracts to area A2 ≪ A1.

Naively, the flow looks as shown at left below.
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(a) Argue by energy conservation that v2 ≈
√
2(P1 − P2)/ρ.

(b) Argue that the net force on the fluid shown in the picture is approximately (P1−P2)A2. Then

argue by momentum conservation that v2 ≈
√
(P1 − P2)/ρ.

(c) The resolution of the paradox is that in part (a), we’re actually solving for the final speed of

the water, and in part (b), we’re actually solving for the horizontal component of the velocity.

So the resolution has to be that the fluid does not exit through the orifice purely horizontally.

Instead, it contracts as it exits, as shown at right above, eventually shrinking to a minimum

area A3, at which point the flow actually is horizontal. Assume for simplicity that P1 ≫ P3.

Show that the final area is A3 ≈ A2/2, so that the hole is effectively only half its size.

(d) Even assuming ideal fluid flow satisfying Bernoulli’s principle, the result above for A3 is not

exact, but is instead off by about 20% for the sudden opening shown above. Is the true value

of A3 higher or lower than A2/2?

(e) How could the shape of the orifice be modified so that A3 is almost exactly A2/2? How could

the orifice be modified so that the water comes out perfectly straight?

Remark

Vena contracta is too subtle for introductory textbooks, but it makes a big practical difference.

For example, if you estimate how long it takes water in a bucket to empty through a hole

using Torricelli’s law, you’ll be off by about a factor of 2 if you don’t include vena contracta!

And Halliday, Resnick, and Krane don’t consider it in their example titled “thrust on a

rocket”, getting a thrust which is also off by a factor of 2. Of course, real plumbers and rocket

scientists are perfectly aware of vena contracta, and carefully design nozzles and drains to

account for it. For further discussion, see this paper.

4 Fluid Systems

Now we put it all together and consider complex mechanical systems with moving fluids.

Idea 7

If a fluid is moving in a complex way, it’s usually difficult to say anything by directly

considering the flow. Instead, it’s easier to apply conservation laws.

Example 11

A fluid of density ρ flowing with a fast velocity v1 and height h1 can undergo a “hydraulic

jump”, where the height of the fluid increases to h2. At the same time, the fluid flow slows

down and becomes turbulent.
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This phenomenon is very common in everyday life. For example, it happens whenever you

turn on the water faucet in a sink; the hydraulic jump occurs on a circle centered on the

faucet. Find the final height h2.

Solution

During this process, the bulk kinetic energy of the water is not conserved, because it is

converted to turbulent motion. However, the horizontal momentum of the water is approxi-

mately conserved. Consider a stream of water of width w flowing in the x direction, where

the hydraulic jump occurs at x = 0. By mass conservation,

v1h1 = v2h2

where v2 is the final speed. Now we consider a fixed subset of the water encompassing the

hydraulic jump. The atmospheric pressure does not yield a net horizontal force on the water,

so we focus on the pressure in excess of atmospheric pressure. The total excess pressure force

on the left end is

Fℓ =

∫ h1

0
ρghw dh =

1

2
ρgwh21.

Therefore, we have total force

F =
1

2
ρgw(h21 − h22).

On the other hand, the mass of water that flows through the hydraulic jump per unit time

is ρh1wv1, and its velocity decreases by v1 − v2, so

dp

dt
= ρh1wv1(v1 − v2) = ρwv1v2(h2 − h1)

where we used mass conservation. Equating F = dp/dt and simplifying gives

g(h1 + h2) = 2v1v2.

Applying mass conservation again leads to a quadratic in h2,

h22 + h1h2 −
2v21h1
g

= 0

and the physically relevant positive solution is the answer,

h2 = −h1
2

+

√
h21
4

+
2h1v21
g

.

For v21 > gh1, we have h2 > h1 and an ordinary hydraulic jump. For v21 < gh1, you might

expect a “reverse” hydraulic jump to occur, but this is impossible by the second law of

thermodynamics. In a hydraulic jump, some of the kinetic energy of laminar flow energy

is converted to turbulent flow, which is essentially heat; thus the reverse can’t happen.

So in addition to deriving h2, we’ve found the minimum v1 for a hydraulic jump to be possible!

Note that this conservation law approach doesn’t tell us about how far a fluid will flow before

it undergoes a hydraulic jump. That would require understanding the fluid flow in detail,

accounting for turbulence and viscosity, which is generally analytically intractable. For more

on this subject, see sections 26.1 and 26.2 of Lautrup.
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[3] Problem 20 (PPP 70). A tanker full of liquid is at rest on a frictionless horizontal road.

A small vertical outlet pipe at the rear of the tanker is opened. Describe qualitatively how the

tanker will move (a) immediately afterward, and (b) after a long time. Assume that the water

always falls out of the cart with zero horizontal velocity in the cart’s frame.

[3] Problem 21 (PPP 74). A jet of water strikes a horizontal gutter of semicircular cross-section

obliquely, as shown.

The jet lies in the vertical plane that contains the center-line of the gutter. Assume the angle is

relatively shallow, so that the water hits the gutter smoothly, and doesn’t splatter. Find the ratio

of the quantities of water flowing out at the two ends of the gutter as a function of the angle of

incidence α of the jet.

[3] Problem 22 (EFPhO 2005). A water pump consists of a vertical tube of cross-sectional area S1

topped with a cylindrical rotating tank of radius r. All the vessels are filled with water; there are

holes of total cross-sectional area S2 ≪ S1 along the perimeter of the tank, which are open for the

operating regime of the pump. The height of the tank from the water surface of the reservoir is

h. An electric engine keeps the vessel rotation at angular velocity ω. The water density is ρ, the

atmospheric pressure is p0, and the saturated vapor pressure is pk. Inside the tank there are metal

blades, which make the water rotate with the tank.

(a) Find the pressure p2 at the perimeter of the tank when all the holes are closed.

(b) For the rest of the problem, we suppose the holes are opened. Find the velocity v2 of the

water jets with respect to the ground.
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(c) If the tank rotates too fast, the water pressure at some point will become lower than pk. As

you’ll see in T3, this will cause “cavitation”, i.e. the water will start boiling, lowering the

pump’s efficiency. Find the highest cavitation-free angular speed ωmax.

(d) If the power of the electric engine is P , what is the theoretical upper limit of the volume

pumped per unit time, assuming S2 can be freely adjusted?

[3] Problem 23. A helicopter with length scale ℓ and density ρh can hover using power P , in air of

density ρa. Find a rough estimate for P in terms of the given parameters. (For a nice followup

discussion of lift, see section 3.6 of The Art of Insight.)

Example 12: Kalda 82

A water turbine consists of a large number of paddles that could be considered as light flat

boards with length ℓ, that are at one end attached to a rotating axis. The paddles’ free ends

are positions on the surface of an imaginary cylinder that is coaxial with the turbine’s axis.

A stream of water with velocity v and flow rate µ (kg/s) is directed on the turbine such that

it only hits the edges of the paddles.

Find the maximum possible power that can be extracted.

Solution

Let vt be the speed of the edge of the turbine. In time dt, the amount of mass of water that

collides with the turbine is

dm =
µ

v
(v − vt) dt.

The horizontal force on the paddle is

F =
dp

dt
=

dm

dt
∆v =

µ

v
(v − vt)

2

so the power delivered to the turbine is

P = Fvt =
µvt
v

(v − vt)
2.

Maximizing this by setting dP/dvt = 0 gives vt = v/3, so the maximum power is 4µv2/27.

This is 8/27 of the total power in the incoming water.

[3] Problem 24. Air of constant density ρ and wind speed vi is heading directly towards a windmill

of area A. When the wind gets to the windmill blades, it is traveling forward with speed vf . Well

after it leaves the vicinity of the blades, it has speed vo. The design of the windmill, such as the

shape and speed at which its blades turn, can be adjusted to set the value of vf .
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(a) Find the power going from the wind to the turbine by using energy conservation, assuming

that there are no extraneous energy losses, e.g. to turbulence.

(b) Find the power going from the wind to the turbine by considering the force of the windmill

on the air and using momentum conservation, again assuming no extraneous energy losses.

(c) Find an upper bound on the ratio of the wind power that can be harvested by the windmill,

to the amount of wind power that would pass through it if it weren’t running.

This result is called the Betz limit.

[5] Problem 25. �T10 GPhO 2017, problem 2. A very tricky composite fluids/mechanics problem.

5 Wet Water

So far we’ve mostly ignored viscosity and turbulence, an unrealistic limit that some refer to as “dry

water”. Now we’ll consider some problems involving real, wet water.

Idea 8

A velocity gradient is associated with a drag force

F = ηA
dv

dy

where η is the (dynamic) viscosity. In addition, for fluid flowing next to a wall, the layer of

fluid right next to the wall is approximately at rest.

Example 13: HRK

Prairie dogs live in large colonies in complex interconnected burrow systems. They face the

problem of maintaining a sufficient air supply to their burrows to avoid suffocation. They

avoid this by building conical earth mounds about some of their many burrow openings. How

does this air conditioning scheme work?

Solution

Because of viscous effects, the wind speed is small near the ground, and hence grows with

height. By Bernoulli’s principle, this means the pressure at the top of a mound is slightly

lower than the pressure at an opening without a mound. This difference in pressure drives

air flow through the burrows.

Example 14

If you’ve used a standard garden hose, you might have noticed that the water shoots higher

if you partially block the outlet with your finger. Why does this happen?
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Solution

The water company provides water to your house at a fixed pressure Patm + ∆P . Thus,

naively the water should always shoot equally far, because Bernoulli’s principle says the exit

speed is v =
√
2∆P/ρ, corresponding to a peak height ∆P/ρg, independent of the area of

the hole. (There is a vena contracta effect, as mentioned in problem 19, but this also doesn’t

depend on the area.)

The resolution is that for a typical long, thin garden hose, viscous losses dominate. As you’ll

see in problem 26, a higher mass flow rate leads to a higher drop in pressure. When you

partially block the outlet, you’re simply decreasing the flow rate, so that viscosity has a

smaller effect, allowing the water to get closer to the maximum possible height ∆P/ρg.

In plumbing, the quantity ∆P/ρg is called the “pressure head”, and effects like viscosity

give rise to “head loss”. Unfortunately, for most realistic pipes it is intractable to calculate

the head loss, because the water flow is turbulent. Instead, the amount of head loss is

parametrized by the so-called Darcy friction factor, whose values are tabulated in references.

Example 15

If you stir a cup of coffee, around how long does it take the rotational motion to settle down?

Solution

The rotational motion stops because of viscous drag against the walls. For concreteness, let’s

suppose the coffee has density ρ, viscosity η, and is in a mug of radius R and height H ≫ R

(so most of the drag comes from the vertical wall of the mug). The angular momentum is

L ∼ Iω ∼ ρR4Hω.

The damping torque due to viscous forces is

τ ∼ RF ∼ ηA
dv

dr
R

and since the drag is from the vertical wall, A ∼ HR. Estimating the velocity gradient dv/dr

is a little trickier. As mentioned above, the coffee right next to the wall has zero velocity,

while the coffee slightly inward from the wall has speed v ∼ Rω. The velocity transitions

between these two values in a thin “boundary layer”.

Finding the exact thickness of this boundary layer would require solving complicated

differential equations, but it suffices to use dimensional analysis. Note that R and H can’t

possibly play a role, since the layer is so thin it doesn’t “see” the shape of the mug. The

fluid properties η and ρ surely matter. Perhaps more subtly, ω matters. If the fluid weren’t

spinning, but rather were uniformly translating in a plane, then the boundary layer would

just grow over time until it was the size of the whole fluid. That’s what we saw in problem 26,

where the velocity changes gradually along the whole pipe radius R. The boundary layer

doesn’t grow to the whole mug’s size here, because the velocity it’s trying to match is
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constantly changing over the timescale 1/ω.

Using dimensional analysis, we thus conclude the boundary layer has thickness

∆r ∼
√

η

ρω
.

The damping torque is

τ ∼ η (HR)
Rω

∆r
R ∼

√
ρηω3HR3

so the timescale for damping is

T ∼ L

τ
∼

√
ρ

ηω
R.

Numerically, if we use the rough estimates

ρ ∼ 103 kg/m3, ω ∼ 10 s−1, R ∼ 0.1m, η ∼ 10−3 Pa s

where η is the value for room temperature water, then we get the reasonable results

∆r ∼ 0.3mm, T ∼ 30 s.

[3] Problem 26. Water flows through a cylindrical pipe of radius R and length L ≫ R, across which

a pressure difference ∆p is applied.

(a) If the flow is slow, viscous effects dominate. By balancing forces on a cylinder of fluid, show

that

v(r) =
∆p

4ηL
(R2 − r2).

Then show that the total mass flux is

dm

dt
=

ρπR4∆p

8ηL
.

This is called Poiseuille’s law.

(b) If the flow is very fast, the flow is turbulent. Viscous effects are negligible, and the work

done by the pressure difference is dissipated by turbulence into internal energy. Find a rough

estimate of the mass flow rate.

[4] Problem 27. When a spherical object of radius R moves with velocity v through a fluid of viscosity

η and density ρ, it experiences a drag force.

(a) Apply dimensional analysis to constrain the possible forms of the drag force F . You should

find there is one dimensionless quantity inversely proportional to η, in accordance with the

Buckingham Pi theorem of P1. This dimensionless quantity is called the Reynolds number,

and it determines what kind of drag dominates.

(b) It turns out that F ∝ v at low velocities and F ∝ v2 at high velocities. Using this information,

find the form of the drag force in both cases. (For reference below: the answers are

F = 6πηRv, F =
1

2
CdρAv

2
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where Cd is a dimensionless drag coefficient, which is about 1/2 for a sphere. The drag

coefficient depends strongly on the shape of the object, being much smaller for streamlined

shapes, and weakly on the velocity.)

(c) Hot water has density ρ = 103 kg/m3 and viscosity η = 0.3× 10−3 Pa s. (Room temperature

water has about 3 times the viscosity.) For an object of radius 1 cm, find the characteristic

velocity that divides the two types of drag.

(d) The two cases correspond to flow patterns as shown below.

In the latter case, a region of turbulent flow is created. Using this picture, explain why the

drag force is proportional to v2.

(e) The results above apply to both liquids and gases. In a gas, the relevant quantities are the

mass m of the gas molecules, their typical speed u, their number density n, and radius r (which

determines how often their collide with each other). Use dimensional analysis to constrain

the possible forms of the viscosity η. How do you think η scales with n?

Drag is nicely discussed throughout The Art of Insight; see sections 3.5, 5.3.2, and 8.3.1.2.

Remark

Without knowing the answer to part (b) above, one might expect that the drag force can

depend on η, ρ, v, and the shape of the object. In the linear case, the drag force does not

depend on ρ. In the quadratic case, the drag force does not depend on η.

These differences can be understood by thinking of where the energy dissipated is going. In

the quadratic case, the fluid picks up macroscopic kinetic energy, in the form of a turbulent

flow pattern, which is why the drag force does not depend on η. In the linear case, the fluid

slows smoothly and hence does not pick up any macroscopic energy; instead the energy is

dissipated as heat. Since the macroscopic kinetic energy is not involved, the drag force does

not depend on ρ. (Of course, in the quadratic case the turbulent motion eventually stops; at

this point it has been converted to heat. The time it takes this to happen is set by η, but it

occurs well after the object has passed by and hence does not affect the drag force.)

Example 16

If raindrops fall, why don’t clouds fall?
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Solution

This isn’t a stupid question! It’s actually a tough one, which stumped the ancient Greeks

and Romans. To give context, we’ll cover a bit of atmospheric physics, a topic we will

continue in T1 and T3. This is all a bit of a simplification of an interesting story, told in

more detail in chapter II-9 of the Feynman lectures.

First, it’s useful to review the water cycle. Sunlight directly warms up the ground, and the

ground thereby warms the air near the ground. Since warmer air at the same pressure is less

dense, it begins to rise by convection. This air also expands roughly adiabatically as it rises,

lowering its temperature. Warmer air can also hold more water, so if the original air was

moist, water vapor will condense into droplets as the air rises. (This last point is important,

because the condensation releases energy, partially counteracting the cooling of the rising air.

This keeps it warmer and hence lighter than its surroundings, allowing it to continue to rise.)

Now consider a droplet of radius r. Depending on the droplet size and velocity, the drag

force scales as r or r2, while the gravitational force scales as r3. Hence the tiny water

droplets in clouds are hence carried upward with the ascending moist air, since the drag

force dominates. They fall down once they accrete into sufficiently large raindrops, where

gravity dominates.

Incidentally, falling raindrops do not have the teardrop shape shown in typical illustrations.

Small raindrops are nearly spherical, because of surface tension. Large raindrops are squashed

by air resistance into a “hamburger” shape.

Example 17

Why can you see through both humid air and heavy rain, but not through fog or a cloud,

which contains droplets of intermediate size?

Solution

Let’s consider a fixed number of water molecules in a fixed volume. When they’re all

separated, we have humid air. As the molecules join into small droplets (say, with n ≲ 100

molecules each) the amount of electromagnetic radiation scattered by each droplet grows as

n2 because of constructive interference (as discussed in E7), which allows them to scatter a

larger fraction of the light that passes through them.

But for the very large droplets found in rain, the trend turns around. These droplets are

much larger than the wavelength of light, which means that we’re in the geometric optics

limit. They can scatter at most 100% of the light that falls on them, which scales as their

area. Since the volume goes as n, the area goes as n2/3.

We therefore conclude that

scattering

water molecule
∼

{
n small droplets in cloud/fog

n−1/3 large droplets in rain

22

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

so that clouds occupy a sweet spot, scattering the most light for a given amount of water.

The same applies for fog, which is simply a cloud that touches the ground.

6 Surface Tension

We now return to surface tension, first covered in M2, which we’ll see yet again in T3.

Example 18

A very thin, hollow glass tube of radius r is dipped vertically inside a container of water.

Find the height to which water can climb in the tube.

Solution

In M2, we considered problems that could be solved knowing only the “surface tension

of water” γ, which is the energy cost per unit area of having a water-air interface. But

in this problem there is also a water-glass interface, and the answer to the question

depends on precisely how water and glass interact. Specifically, you need to know the sur-

face tension coefficient γwg which determines the energy cost of having a water-glass interface.

Fortunately, it turns out you don’t need to know γwg if you know the contact angle θ, i.e. the

angle between the glass and water surface at the top of the meniscus, which is drawn as

acute in the diagram above. We’ll just treat θ as a given, but for an explanation of how θ is

determined, see T3 or section 5.5 of Lautrup.

Since the glass tube is very thin, surface tension determines the shape of the water-air

surface, so it is spherical since spheres minimize area. By some elementary geometry, one

can show that the radius of curvature of this sphere is R = r/ cos θ.

We showed using force balance arguments in M2 that the pressure inside the curved water

surface is lower than atmospheric pressure by ∆P = 2γ/R. On the other hand, we also know
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from Pascal’s principle that ∆P = ρgh. Equating the two gives

h =
2γ cos θ

ρgr
.

This is Jurin’s law. Ideally, water and glass have zero contact angle. This implies that water

perfectly wets glass, i.e. that a droplet of water placed on a horizontal glass surface will

spread to cover it completely (though this doesn’t happen in reality because glass tends to

quickly get coated in a layer of impurities). Making this assumption, which we will use for

problems below, the answer reduces to h = 2γ/ρgr.

Example 19: PPP 130

Water in a glass beaker forms a meniscus, as shown below.

Find the height h to which the meniscus rises above the flat water surface.

Solution

We consider all of the external horizontal forces acting on the water. The surface tension

force acting at the top of the meniscus is purely vertical, because water and glass have zero

contact angle. The other surface tension force acting on the flat part of the water is γ per

length. This balances the excess hydrostatic pressure (i.e. the pressure above atmospheric

pressure) at the wall, which is ρgh2/2 per unit length. Thus,

h =

√
2γ

ρg
.

We could have also gotten this with dimensional analysis, up to the prefactor.

Remark

You might be wondering how to compute the shape of the meniscus. There are two methods.

First, the pressure right above the water surface is Patm, so the pressure right below the water

surface can be determined from the radii of curvature of the surface, using the Young–Laplace

equation from M2. This pressure can also be computed from the height of the surface using

Pascal’s principle. Combining these two yields a differential equation for the shape with a

rather complicated solution, as explained in sections 5.6 and 5.7 of Lautrup. As you’ll see in

problem 32, you can also derive this result by considering force balance on the water.
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Example 20: PPP 29

Water can rise to a height H in a certain capillary tube. Three “gallows” are made from this

tubing by bending it, and placed into a tank of water.

Note that H ′ > H. For which tubes, if any, does water flow out of the other end?

Solution

Clearly no water can fall out of (a), because this would produce a perpetual motion machine.

The gallows (b) and (c) are a bit more subtle. Water will not fall out of a capillary tube

if its end is less than a height H below the free water surface; this follows from the same

derivation as Jurin’s law, with the surface tension acting to hold the water in the tube. So

water only falls out of (c).

[2] Problem 28. A soap bubble of radius R and surface tension γ has a small tube of radius r ≪ R

passing through its surface. If the air has density ρ, find the rate of decrease of R.

[2] Problem 29 (PPP 63). Water is stuck between two parallel glass plates. The distance between

the plates is d, and the diameter of the trapped water disc is D ≫ d.

In terms of the surface tension γ of water, what is the force acting between the two plates? This

effect can cause wet glass plates to stick together.

[3] Problem 30 (EFPhO 2009). A soap film of thickness h = 1µm is formed inside a ring of diameter

D = 10 cm, and the surface tension of the film is γ = 0.025N/m. If the film is broken at the center,

it will begin to fall apart; estimate the time needed for this to happen.

[3] Problem 31. �̂10 USAPhO 2020, problem B1. A nice, slightly mathematically involved surface

tension problem with a real-world impact. This setup is discussed in detail in section 5.4 of Lautrup.

[4] Problem 32. �@10 IPhO 2023, problem 3, parts B and C. A nice problem on the shape of a

meniscus, which also explains why pieces of cereal attract each other in a bowl of milk.
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Example 21: IPhO 2022 3B

Slightly wet sand is much stronger than either dry sand or very wet sand, which allows the

construction of large structures like sand castles. Why is this, and how does the strength

depend on the typical size r of the sand grains?

Solution

When a pile of sand is dry, the only force keeping it in place is friction, which is weak. When

it’s very wet, it’s essentially just water, which will simply collapse. But when it’s slightly

wet, adjacent sand grains have a small layer of water connecting them. Since sand grains are

small, this implies a huge total surface area, and thus large surface tension effects.

There are actually two conceptually distinct components to the effect. First, the bit of water

connecting two sand grains will provide a surface tension force F ∼ γr. Second, as you

saw in problem 29, the water has a pressure lower by ∆P ∼ γ/r, leading to an attractive

pressure force (∆P )A ∼ γr. In either case, that means the force needed to displace a single

grain of sand scales with r. The number of sand grains in a fixed cross-sectional area scales

as 1/r2, so the weight a sand castle can bear scales as 1/r. Thus, fine-grained sand is stronger.

This is another example of the subtleties of granular media, first mentioned in M2. Neither

sand nor water are strong on their own, but they’re strong together. Water provides the

forces, while the sand provide the structure which lets those forces be effective.
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