
Kevin Zhou Physics Olympiad Handouts

Mechanics VIII: 3D Rotation

Three-dimensional rotation is covered in chapter 7 of Kleppner and chapter 9 of Morin. For further

discussion and examples, see chapter I-20 of the Feynman lectures, and this awesome video. There

is a total of 98 points.

1 3D Rotation

InM6, we considered mostly two-dimensional rotation. Now we will tackle the full three-dimensional

case, starting with the general description of rigid body motion.

Idea 1: Chasles’ Theorem

The instantaneous velocity of a three-dimensional rigid body can always be decomposed in

one of two ways. First, for any given point, it can be written in terms of a translational

velocity plus a pure rotation about an axis going through that point. In practice, this point

is almost always chosen to be the center of mass, giving the decomposition

v = vCM + ω× (r− rCM).

Alternatively, there always exists an axis so that the motion can be written as rotation about

that axis, plus a translational velocity parallel to the axis, giving

v = v0 + ω× (r− r0)

where v0 and ω are parallel. (This is known as a “screw” motion.) In both cases, ω is the

same, and its direction defines the axis of rotation. These two decompositions are analogous

to the two we saw in M5, and both will be useful below.

Idea 2

Sometimes it can be hard to visualize ω, so here are two tricks. First, if any two points

on the object are stationary, then ω must be parallel to the axis connecting the two points.

Second, if the rotation is complicated, one can use rotating frames to simplify the analysis.

If a body has angular velocity ω1 in one frame, and that frame has an angular velocity ω2

with respect to a second frame, then the body has angular velocity ω1 + ω2 with respect to

the second frame.

Example 1

You have a small globe, which is mounted so that it can spin on the polar axis and can be

spun about a horizontal axis (so that the south pole can be on top). Give the globe a quick

spin about the polar axis, and then, before it stops, give it another quick spin about the

horizontal axis. Are there any points on the globe that are at rest?
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Solution

The first spin gives the angular velocity a vertical component ω1. The second spin gives the

angular velocity an additional horizontal component ω2. The globe now rotates about its

center of mass with angular velocity ω1+ω2. Precisely two points on the globe are stationary,

namely the points that are parallel and antiparallel to this vector.

[2] Problem 1 (Morin 9.3). A cone rolls without slipping on a table; this means that all the points

of the cone that touch the table are instantaneously stationary. The half-angle of the vertex is α,

and the axis has length h.

Let the speed of the center of the base, point P in the figure, be v.

(a) Compute the angular velocity ω by thinking of the motion as pure rotation about some axis.

(b) Compute the angular velocity ω by thinking of the motion as translation of P , plus rotation

about an axis passing through P .

(c) The apex of the cone is fixed, and the cone continues to rotate. As this motion goes on, the

angular velocity vector rotates uniformly, keeping a constant magnitude. Find the precession

rate Ω, i.e. the constant vector that satisfies dω/dt = Ω× ω at all times.

Heuristically, the precession rate Ω is “the angular velocity of the angular velocity”. For the relevant

problems below, it’s important to keep track of the difference between ω and Ω.

Most of our statements about rotational dynamics from M6 remain true. The main new aspect is

that angular momentum is not necessarily parallel to angular velocity.

Example 2: KK Example 7.4

Consider a rigid body consisting of two particles of mass m connected by a massless rod of

length 2ℓ, rotating about the z-axis with angular velocity ω as shown.

Find the angular momentum of the system.
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Solution

We simply add r× p for both masses. Let the rod lie in the xz plane at this moment. Then

for the top left mass,

r = −ℓ cosα x̂+ ℓ sinα ẑ.

The momentum is

p = mv = mω× r = −mωℓ cosα ŷ.

Then the angular momentum is

L = r× p = mωℓ2 cosα (sinα x̂+ cosα ẑ) .

The other mass has the opposite r and p and hence the same L, so the total angular

momentum is

L = 2mωℓ2 cosα (sinα x̂+ cosα ẑ) .

It is directed perpendicular to the rod, and in particular, it isn’t parallel to the angular velocity!

Here is another way to derive the same result. We can decompose the angular velocity vector

into a component along the rod, and a component perpendicular to the rod. The former

contributes no angular momentum, because rotating about the rod’s axis doesn’t move the

masses. The latter contributes all the angular momentum. So the angular momentum is

L = I⊥ω⊥ = (2mℓ2)(ω cosα)

directed perpendicular to the rod, which is what we just saw explicitly.

We can summarize the lessons drawn from this example as follows.

Idea 3

For a three-dimensional object, L is not necessarily parallel to ω. In general, for pure rotation

about an axis passing through the origin, we have L = Iω where I is a 3× 3 matrix called

the “moment of inertia tensor about the origin”. In components, this means that

Li =
∑
j

Iijωj .

While this is simple and general, the Iij are a pain to calculate. You can learn more in the

reading, but to my knowledge, no Olympiad problem has ever required computing a general

moment of inertia tensor.

For the purposes of Olympiad problems, there is a better way to think about the angular

momentum. We use the first decomposition of idea 1, and think of the motion as translation

plus rotation about the center of mass. If the object has an axis of symmetry, which it will

in almost all Olympiad problems, then the angular velocity can then be decomposed into a

component parallel to the axis, and perpendicular to the axis,

ω = ω∥ + ω⊥.
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The key is that, in such situations, the spin angular momentum has two pieces, which are

each parallel to the corresponding piece of the angular velocity,

L∥ = I∥ω∥, L⊥ = I⊥ω⊥

where I∥ and I⊥ are ordinary moments of inertia about the center of mass. For example, for

a flat uniform disc, I∥ =MR2/2 and I⊥ =MR2/4.

The total angular momentum about the origin is then

L = rCM ×MvCM + I∥ω∥ + I⊥ω⊥

where the first term is from the motion of the center of mass, and the next two are from

rotation about the center of mass. Note that this is exactly the same as what we saw in M5,

except that the “spin” angular momentum is broken into two parts.

Finally, the rate of change of angular momentum is

dL

dt
= τ

where the torque τ is defined as in M5. The kinetic energy is

K =
1

2
Mv2CM +

1

2
I∥ω

2
∥ +

1

2
I⊥ω

2
⊥.

Remark

In any dynamics problem, there are many choices you can make in the setup. For example,

if you’re using an inertial frame, you need to choose where the origin is; usually it’s best

to place it along the axis of symmetry if possible. You are also free to use a noninertial

frame with acceleration a. The only difference is that there will be a fictitious force

−Ma acting at the center of mass. For that reason, it’s usually best to have the acceler-

ating frame follow the center of mass, keeping it at its origin, so no new torques are introduced.

However, you should avoid rotating reference frames for dynamics problems. Not only will

there be position-dependent Coriolis forces, but they’ll add up and contribute a Coriolis

torque, which is a pain to calculate, as you saw in M6. In general, rotating frames are only

good for getting a handle on the kinematics, as mentioned in idea 2.

Example 3: KK Example 7.5

Calculate the magnitude of the torque on the rod in example 2.

Solution

We recall that the angular momentum was

L = 2mωℓ2 cosα (sinα x̂+ cosα ẑ).

4

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

The rod as a whole rotates with angular velocity ωẑ. In particular, the angular momentum

vector rotates with this angular velocity as well; its horizontal component moves in a circle

with angular velocity ω. Then

|τ| =
∣∣∣∣dLdt

∣∣∣∣ = ωLx = 2mω2ℓ2 cosα sinα = mω2ℓ2 sin(2α).

It might be surprising that there needs to be a torque given that ω is constant, but that’s

just because L and ω aren’t necessarily parallel. Conversely, there can be situations where

there is no torque, yet ω changes over time.

[2] Problem 2 (Morin 9.10). A stick of mass m and length ℓ spins with angular frequency ω around

an axis in zero gravity, as shown.

The stick makes an angle θ with the axis and is kept in its motion by two strings that are perpen-

dicular to the axis. Find the tension in the strings.

[3] Problem 3 (KK 7.1). A thin hoop of mass M and radius R rolls without slipping about the z-axis.

It is supported by an axle of length R through its center, as shown.

The axle circles around the z-axis with angular speed Ω, so that the bottom point of the wheel

traces out a circle of radius R. Let O be the pivot point of the rod, i.e. the point where the rod

meets the z-axis.

(a) Find the instantaneous angular velocity ω of the hoop. (Before moving forward, you’ll want

to be totally sure you have this part right. Sometimes, students get confused on it because

they imagine a symmetric pair of hoops instead. However, if you actually had a pair, the

setup wouldn’t even make sense. Why not?)
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(b) As the motion continues, the angular velocity vector rotates in a circle. Find the precession

rate Ω of this system.

(c) Find the instantaneous angular momentum L of the hoop, about the point O.

(d) Find the instantaneous torque on the hoop about the contact point with the ground, and

verify that τ = dL/dt.

[2] Problem 4 (KK 7.4). In an old-fashioned rolling mill, grain is ground by a disk-shaped millstone

which rolls in a circle on a flat surface driven by a vertical shaft. Because of the stone’s angular

momentum, the contact force with the surface can be greater than the weight of the wheel.

Assume the millstone is a uniform disk of mass M , radius b, and width w, and it rolls without

slipping in a circle of radius R with angular velocity Ω. Find the contact force. Assume the millstone

is closely fitted to the axle so that it cannot tip, and w ≪ R. Neglect friction.

[2] Problem 5 (Morin 9.29). A uniform ball rolls without slipping on a table. It rolls onto a piece

of paper, which you then slide around in an arbitrary (horizontal) manner. You may even give

the paper abrupt, jerky motions, so that the ball slips with respect to it. After you allow the ball

to come off the paper, it will eventually resume rolling without slipping on the table. Show that

the final velocity equals the initial velocity. (Hint: this remarkably simple result is because of a

conservation law. We saw a lower-dimensional version of this problem in M5.)

Idea 4: Precession

In the above problems, we’re seen a few examples of systems undergoing uniform precession.

In these cases, the angular velocity and the angular momentum vectors rotate with a uniform

angular velocity Ω, called the precession rate, where

dω

dt
= Ω× ω,

dL

dt
= Ω× L.

Precession is easiest to see in gyroscopes, which are systems spun up to a very high angular

velocity, subject to a weak external torque, so that Ω ≪ ω. (Kleppner calls this the “gyroscope

approximation”.) More generally, you’ll have to decide whether or not Ω ≪ ω in each case.
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Example 4: KK 7.3

A gyroscope wheel is at one end of an axle of length ℓ. The other end of the axle is suspended

from a string of length L.

The wheel is set into motion so that it executes slow, uniform precession in the horizontal

plane. The wheel has mass M and moment of inertia I0 about its center of mass, and turns

with angular speed ωs. Neglect the mass of the shaft and string. Find the angle β the string

makes with the vertical, assuming β is very small.

Solution

Let T be the tension in the rope, and let the precession rate be Ω = Ωẑ. Since the center of

mass does not accelerate vertically, and the center of mass moves in a horizontal circle,

T cosβ =Mg, T sinβ =MΩ2(ℓ+ L sinβ).

We’ll work to lowest possible order in β everywhere, which means approximating cosβ ≈ 1

and ignoring the L sinβ term, giving

T =Mg, Tβ =MΩ2ℓ.

Combining these equations gives the precession angular frequency

Ω =

√
gβ

ℓ
.

This is as far as we can go with forces alone.

Now we use τ = dL/dt. First we need to determine the angular velocity of the wheel. Note

that if we went in the rotating frame with angular velocity Ωẑ, the wheel would just spin

with angular speed ωs in place. So the angular velocity vector in the original frame is

ω = Ωẑ+ ωsx̂

where x̂ is directed along the rod. The center of mass of the wheel moves with speed

(ℓ+ L sinβ)Ω in a horizontal circle.

Since the precession is assumed to be slow, we have Ω ≪ ωs, so we can ignore contributions

to the angular momentum proportional to Ω. That is, we can take

ω ≈ ωsx̂

7

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

for the purposes of computing angular momentum, giving

L ≈ I0ωsx̂.

This rotates in a horizontal circle with angular speed Ω, so

|τ| ≈ I0Ωωs.

The torques in the relevant direction come from gravity and the vertical component of the

tension force, |τ| =Mgℓ. Equating these, we have

Mgℓ = I0Ωωs.

Plugging the result for Ω in above and solving for β gives

β =
m2gℓ3

ω2I20
.

If we had not used Ω ≪ ωs, we could still find an exact solution, but it would be messy.

Remark

In most gyroscope problems, we simply assume the system is already undergoing uniform

precession. However, you might wonder just how it gets started in the first place. For example,

suppose we had the same setup as the previous problem, with the wheel spinning and the axle

horizontal. For simplicity, let’s get rid of the string and suppose the end of the axle is held

at a fixed support. Now suppose the axle and wheel are released with no translational motion.

The following chain of events ensues:

• Of course, the axle starts to tip downward because of the weight of the wheel. (Rotational

mechanics is counterintuitive, but not that counterintuitive!)

• This produces a downward component of angular momentum, which is balanced by the

axle/wheel system twisting about its center of mass, rotating slightly about the z-axis.

• This twist tries to push the end of the axle out of the page, causing the support to exert

a force on the axle pointing into the page. That force propagates down the axle as an

internal shear stress, eventually causing the center of mass of the wheel to start moving

into the page, starting the precession.

• In reality, the process overshoots and overcorrects, leading to oscillations called nutation

on top of the precession. (For more details, see Note 2 of chapter 7 of Kleppner.)

• For a typical pivot, energy can be dissipated at the pivot point, but the angular momentum

of the system stays roughly the same because the pivot is small. Assuming this is the

case, the oscillations will eventually damp away, leaving the uniform precession.

Notice that in this example, the initial angular momentum is perfectly horizontal. The final

angular momentum includes an upward component due to the uniform precession, which
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implies that the axle must tilt slightly downward, by an angle of order (ω/Ω)2. Therefore,

if you want to set up uniform precession with the axle perfectly horizontal, as in the above

example, you should point the axle slightly upward when releasing it from rest.

[2] Problem 6 (KK 8.5). An “integrating gyro” can be used to measure the speed of a vehicle.

Consider a gyroscope spinning at high speed ωs. The gyroscope is attached to a vehicle by a

universal pivot. If the vehicle accelerates in the direction perpendicular to the spin axis at rate a,

then the gyroscope will precess about the acceleration axis, as shown.

The total angle of precession is θ. Show that if the vehicle starts from rest, its final speed is

v =
Isωs

Mℓ
θ

where Isωs is the gyroscope’s spin angular momentum, M is the total mass, and ℓ is the distance

from the pivot to the center of mass.

[3] Problem 7 (KK 7.5). When an automobile rounds a curve at high speed, the weight distribution

on the wheels is changed. For sufficiently high speeds, the loading on the inside wheels goes to

zero, at which point the car starts to roll over. This tendency can be avoided by mounting a large

spinning flywheel on the car.

(a) In what direction should the flywheel be mounted, and what should be the sense of rotation, to

help equalize the loading? (Check your method works for the car turning in either direction.)

(b) Show that for a disk-shaped flywheel of mass m and radius R, the requirement for equal

loading is that the angular velocity ω of the flywheel is related to the velocity of the car v by

ω = 2v
ML

mR2

where M is the total mass of the car and flywheel, and L is the height of their center of mass.

[3] Problem 8 (KK 7.7). A thin hoop of mass M and radius R is suspended from a string through a

point on the rim of the hoop. The string makes an angle α with the vertical.
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The support is turned with angular velocity ω, which is high enough so that the hoop’s plane makes

a small angle β with the horizontal, and the hoop’s center travels in a small circle of radius r ≪ R.

(a) Does the gyroscope approximation apply in this problem?

(b) Find approximate expressions for β and r.

[4] Problem 9 (KK 7.6, Morin 9.23). With the right initial conditions, a coin on a table can roll in a

circle.

As shown, the coin leans inward, with its axis tilted to the horizontal by an angle ϕ. The radius of

the coin is b, the radius of the circle it follows on the table is R, and its velocity is v.

(a) Assuming the coin rolls without slipping and b≪ R, show tanϕ = 3v2/2gR.

(b) No longer assuming b≪ R, show that the described motion is only possible if R > (5/6)b sinϕ.

[4] Problem 10 (Morin 9.24). If you spin a coin around a vertical diameter on a table, it will slowly

lose energy and begin a wobbling motion. The angle between the coin and the table will gradually

decrease, and eventually it will come to rest. Assume this process is slow, and consider the motion

when the coin makes an angle θ with the table, as shown.
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You may assume that the center of mass is essentially motionless. Let R be the radius of the coin,

and let Ω be the angular frequency at which the contact point on the table traces out its circle.

Assume the coin rolls without slipping.

(a) Show that the angular velocity of the coin is ω = Ωsin θ x̂2, where x̂2 always points upward

along the coin, directly away from the contact point.

(b) Show that Ω = 2
√
g/R sin θ.

(c) Show that the face on the coin appears to rotate, when viewed from above, with angular

frequency (1− cos θ)Ω.

Remark: Bivectors

Vector quantities defined by the cross product have some unusual properties. For example,

under a spatial inversion, which flips the signs of r and p, the sign of L = r × p doesn’t

get flipped, so L transforms differently from other vectors. The same applies to the veloc-

ity ω and magnetic field B. All three of these quantities are “pseudovectors”, not true vectors.

The underlying reason is that all of these quantities are fundamentally a different kind

of mathematical object. They are really rank 2 differential forms, also called bivectors

in three dimensions. While a vector is specified by an arrow with magnitude and di-

rection, a bivector is specified by a planar tile with area and orientation. The following

figure, taken from this paper, shows how it can be constructed visually from the cross product.

In three dimensions, we can always convert between bivectors and pseudovectors using

the right-hand rule, so any calculation can be done with either form. Bivectors have the

advantage of visually representing rotational quantities: the angular velocity bivector lies

along an object’s plane of rotation, while the magnetic field bivector lies along the plane in

which it makes charged particles circularly orbit. However, it is easier to add vectors, both

visually and mathematically, which also makes it easier to think about decomposing vectors

into components. This advantage is so important in practice that I don’t recommend using

bivectors at all for three-dimensional problems.

On the other hand, when you work in higher-dimensional spaces, the differential form per-

spective becomes indispensible. In general, in d dimensions the angular velocity has
(
d
2

)
components, corresponding to the rotation rate in each independent plane.

11

https://knzhou.github.io/
https://pubs.aip.org/aapt/ajp/article/91/12/970/2922102/Teaching-rotational-physics-with-bivectors
https://doi.org/10.1119/5.0176852


Kevin Zhou Physics Olympiad Handouts

• Of course, when d = 1 there is no such thing as rotation at all, while when d = 2 the

angular velocity has one component, so we treat it as a scalar.

• When d = 3 the angular velocity has three components, so we treat it as a vector.

• When d = 4 the angular velocity has six components, so we can’t even pretend it’s a

vector; we have to use the differential form description.

Rotational dynamics gets really complicated in 4 dimensions. Both the angular velocity and

the angular momentum are rank 2 differential forms with 6 independent components each.

The moment of inertia is a rank 4 tensor with 20 independent components, though it takes a

simpler form when you work in the body’s 6 “principal planes”.

Remark: Alternative Notation

If you want to look into bivectors more, be sure to steer clear of “geometric algebra”, which

dominates the Google search results. Geometric algebra is an internet cult which recruits

unsuspecting young people by telling them about bivectors, which are indeed cool. Once

they have your attention, they’ll claim that “mainstream” physics has hit a dead end because

it refuses to go beyond vector notation, and that you should spend years relearning all of

physics in their homemade alternative notation.

However, as we’ve discussed in P1 and R3, there’s nothing magical about notation. Physi-

cists don’t teach geometric algebra simply because we have better tools in every situation.

In d = 3 vectors are intuitive and work just fine, while for higher dimensions we either use

differential forms, which are more elegant, or tensor calculus, which is powerful enough to

do almost anything. When you get to quantum field theory, you’ll have to deal with spinors,

which are best handled with Clifford algebra, which is commonly taught in graduate textbooks.

The idea of geometric algebra is to mash together the ideas of differential forms and Clifford

algebra into a single universal operation called the “geometric product”, and use it to

describe absolutely everything, including basic 3d vector operations. But while this seems

satisfying in principle, in practice it introduces a huge number of secondary operations

and identities. It doesn’t just not lead to any new results, it makes familiar results sub-

stantially harder to reach. (Don’t just take my word for it; see this blog post by a practitioner.)

Geometric algebra is also touted as a replacement for standard matrix operations in pure

math, but it has problems there too. According to a another long-time practitioner,

definitions in geometric algebra sources are wildly inconsistent with each other, and

sometimes aren’t even self-consistent. And using geometric algebra is exponentially less

efficient than ordinary matrix operations once you get past the trivial case of 3× 3 matrices!

There are two general lessons to be drawn here. First, physicists are generally not ideological

about notation, and will use whatever notation works the best for the problems they care

about. So if an alternative isn’t used, it’s not because it’s being censored, it’s because it’s

not particularly useful. But most of the time, there won’t be anybody around on the internet
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to tell you precisely why, because practitioners are busy solving real problems. Relying on

the internet can therefore give a very skewed view of what’s important.

Second, learning new things is more important than learning new names for old things.

Practitioners of geometric algebra say that it’s worth using, even if it’s less efficient, because

it “makes more sense”. Simple problems end up taking lots of steps, and each step introduces

new objects associated with new jargon, so it’s apparently deeply satisfying to see the whole

apparatus at work. But in my opinion, those people are just getting lost in a maze of their

own making. Physical objects don’t care about how we describe them, and there’s no extra

credit for making things harder than necessary.

Many people fall into the trap of overformalization. For example, the popular blog series

Graphical Linear Algebra advocates a category theory inspired notation for arithmetic. It

proudly takes 9 blog posts to get to the definition of addition, and 25 to define fractions. If

you’ve gotten all the way to this handout, I don’t need to convince you this is a waste of time,

but this illustrates why even mathematicians don’t take “applied category theory” seriously.

Example 5: IIT JEE 2016

Two thin circular discs, with radii a and 2a, are connected by a rod of length ℓ =
√
24 a

through their centers. This rigid object rolls without slipping on a flat table.

The center of mass of the object rotates about the z-axis with an angular speed of Ω. The

angular speed of the object about the axis of the rod is ω. How are Ω and ω related?

Solution

This is the most famous problem ever set on the IIT JEE (condensed for clarity), cel-

ebrated by generations of students for its difficulty. But it’s also an example of how

not to write a 3D rotation problem. Under the standard definition of angular velocity,

none of the options provided in the question were correct, while the intended answer

requires a nonstandard, arbitrary definition. You can find a detailed explanation of this

here, by one of the former top scorers on the JEE, and I’ll give a condensed explanation below.

First, let’s figure out what’s going on. The kinematics of this problem isn’t any different

from problem 1. Defining the x-axis to be horizontal in the figure above, the instantaneous
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angular velocity is ω = ω x̂, while the precession rate is Ω = (ω/
√
24) ẑ. The hard part is fig-

uring out what the question writers meant by “the angular speed ω about the axis of the rod”.

If we’re only talking about the object’s instantaneous motion, then the only possible answer

is ω = ω · n̂, where n̂ is the unit vector pointing along the rod. In that case we have

Ω/ω = 5/24, which wasn’t an answer choice in the exam. On the other hand, if we are

comparing the object’s orientation at different times, then there isn’t a unique answer. At

a finite time later, the object will be in a different place, and computing a relative angle

requires defining a convention for comparing orientations.

Here’s what the problem authors meant. We work in the frame rotating with angular

velocity Ω. In this frame, the system is spinning in place, with angular velocity ω + Ω

parallel to n̂. The definition of ω is |ω+Ω|, which gives Ω/ω = 1/5, the intended answer.

Another way of saying this is that when we compare the orientation of the system at one

moment to its orientation at another moment, we bring them to the same position by rotating

about the z-axis, at which point they differ by a rotation about n̂. But this procedure is

totally arbitrary, and not specified by the problem. To pose the problem properly, the writers

could have either defined ω explicitly in the rotating frame mentioned above, or replaced

it with a quantity with equivalent but unambiguous physical meaning, such as the interval

between times a given point on the rim of a disc touches the ground. Fortunately, you’ll

almost never see problems this ambiguous on Olympiads.

Remark

One of the most counterintuitive things about 3D rigid body motion is the intermediate

axis theorem, which states that if a body has moments of inertia I1 < I2 < I3 about its

principal axes, then it can rotate stably about the first and third principal axes, but not the

second, “intermediate” axis. You can demonstrate this yourself by throwing a rectangular

prism (such a book or a phone) in the air. If you spin it about the intermediate axis, it’ll

start tumbling. The Soviet physicist Dzhanibekov found a particularly striking example of

such motion in zero gravity, which you can see here.

Rigorously demonstrating this theorem requires setting up the full theory of 3D rotational

kinematics, which is beyond the scope of the Olympiad, but there’s a simple explanation of

this effect using conserved quantities. The rotational kinetic energy is

K =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3

while the magnitude squared of the angular momentum is

L2 = I21ω
2
1 + I22ω

2
2 + I23ω

2
3.

This makes it easy to see why rotation about the third axis is stable: it corresponds to the

smallest possible kinetic energy for a given angular momentum.
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On the other hand, it’s not so clear why the first axis is stable, because it corresponds to

the maximum possible kinetic energy. Aren’t maxima usually unstable? Generally yes, but

in this case, the kinetic energy is the only contribution to the energy. Since kinetic energy

is conserved in the short run, there is nowhere else for the energy to go, so a system set

spinning about the first axis has to stay that way. (Of course, in the long run energy will be

lost to the environment, e.g. by friction. So we might say that rotation about the first axis

is stable mechanically, but not thermodynamically.)

However, for rotation about the second, “intermediate” axis, the body can keep both K and

L2 the same by turning on some combination of ω1 and ω3. That explains the Dzhanibekov

effect. Initially the second principal axis aligns with the direction of L. Then the body

rotates so that ω1 and ω3 become nonzero, until the body has completely flipped over. At

that point ω1 and ω3 become zero again, with the second principal axis now aligned against

L. It’s like a one-dimensional oscillation, where I2ω
2
2/2 plays the role of “potential” energy

and I1ω
2
1/2 + I3ω

2
3/2 plays the role of “kinetic” energy.

2 Composite Rotation

These are rotational dynamics problems like the ones you saw in M5, but more complex.

[3] Problem 11 (PPP 60). A uniform thin rod is placed with one end on the edge of a table in a

nearly vertical position and then released from rest. Find the angle it makes with the vertical at

the moment it loses contact with the table. Investigate the following two extreme cases.

(a) The edge of the table is smooth (friction is negligible) but has a small, singe-step groove.

(b) The edge of the table is rough (friction is large) and very sharp, which means the radius of

curvature of the edge is much smaller than the flat end-face of the rod. Half of the end-face

protrudes beyond the table edge, so that when it is released the rod pivots about the edge.

[3] Problem 12 (Cahn). A tall, thin brick chimney of height L is slightly perturbed from its vertical

equilibrium position so that it topples over, rotating rigidly about its base B until it breaks at a

point P .
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(a) For concreteness, we will model the internal forces in the chimney as shown below. Assume

throughout that r is very small.

We assume that each piece of the chimney experiences a shear force F and longitudinal tension

or compression forces T1 and T2 from its neighbors. Find the point on the chimney with the

greatest |T1| or |T2|, assuming the chimney is very thin.

(b) Find the point on the chimney experiencing the greatest shear force F .

(c) At what point is the chimney most likely to break? Do you think the limiting factor is the

chimney’s maximal compressive strength, tensile strength, or shear strength?

[3] Problem 13. �̂10 IPhO 2014, problem 1A.

[3] Problem 14 (PPP 14). A bicycle is supported so that it can move forward or backwards but

cannot fall sideways; its pedals are in their highest and lowest positions.
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A student crouches beside the bicycle and pulls a string attached to the lower pedal, providing a

backward horizontal force.

(a) Which way does the bicycle move?

(b) Does the chain-wheel rotate in the same or opposite sense as the rear wheel?

(c) Which way does the lower pedal move relative to the ground?

In particular, be sure to account for the gearing of the bike! To check your answer, watch this video.

[4] Problem 15. �r10 APhO 2005, problem 1B. A problem on parametric resonance, an idea we first

encountered in M4. (The problem is good, but it’s slightly underspecified, leading to two possible

answers which were both accepted. If you get stuck, just make a reasonable assumption.)

[4] Problem 16. �m10 INPhO 2020, problem 5. A tough angular collision problem.

[5] Problem 17. �h10 EuPhO 2019, problem 2. A tough problem about the motion of an rigid body

in a magnetic field.

3 Frictional Losses

These miscellaneous problems are grouped under the theme of friction or energy dissipation.

[2] Problem 18 (Kalda). A plank of length L and mass M lies on a frictionless horizontal surface; on

one end sits a small block of mass m.

The coefficient of friction between the block and plank is µ. The plank is sharply hit and given

horizontal velocity v. What is the minimum v required for the block to slide across the plank and

fall off the other end?

[3] Problem 19 (BAUPC). A uniform sheet of metal of length ℓ lies on a roof inclined at angle θ,

with coefficient of kinetic friction µ > tan θ. During the daytime, thermal expansion causes the

sheet to uniformly expand by an amount ∆ℓ≪ ℓ. At night, the sheet contracts back to its original

length. What is the displacement of the sheet after one day and night?

[3] Problem 20. �r10 APhO 2010, problem 1A. A question about a different kind of inelastic collision.

[5] Problem 21. �h10 IdPhO 2020, problem 2. A nice problem on anisotropic friction.

4 Ropes, Wires, and Chains

Example 6: MPPP 78

A uniform flexible rope passes over two small frictionless pulleys mounted at the same height.
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The length of rope between the pulleys is ℓ, and its sag is h. In equilibrium, what is the

length s of the rope segments that hang down on either side?

Solution

The problem can be attacked by differential equations, but there is an elegant solution using

only algebra. We let our unknowns be s, the tension T1 = (T1,x, T1,y) in the rope at the

pulley, and the tension T2 at the lowest point.

Considering the entire sagging portion as the system, vertical force balance gives

2T1,y = λℓg, T1,y = λℓg/2.

Now consider half of the sagging portion as the system. Horizontal force balance gives

T2 = T1,x.

Finally, consider one of the hanging portions as the system. Then

T1 = λgs.

We hence have three equations, but four unknowns.

For the final equation, we need to consider how the tension changes throughout the rope.

This would usually be done by a differential equation, but there is a clever approach using

conservation of energy. Suppose we cut the rope somewhere, pull out a segment dx, and

reattach the two ends. This requires work T dx, where T is the magnitude of the local

tension. Now suppose we cut the rope somewhere else, separate the ends by dx, and paste

our segment inside. This requires work −T ′ dx. After this process, the rope is exactly in the

same state it was before, so the total work done must be zero.

This would seem to prove that T = T ′, which is clearly wrong. The extra contribution is that

if the two locations have a difference in height ∆y, then it takes work λg(∆y) dx to move the

segment from the first to the second. So in equilibrium, for any two points of the rope,

∆T = λg∆y.

18

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Therefore, we have

T1 − T2 = λgh.

Now we’re ready to solve. We have

T 2
1 − T 2

2 = (λℓg/2)2

from our first three equations, and dividing by this new relation gives

T1 + T2 = λg
ℓ2

4h
.

This allows us to solve for T1, which gives

s =
T1
λg

=
h

2
+
ℓ2

8h
.

This is a useful result in real engineering projects: it means that the tension in a cable can

be estimated by seeing how much it sags.

Example 7: Kalda 27

A wedge with mass M and acute angles α1 and α2 lies on a horizontal surface. A string has

been drawn across a pulley situated at the top of the wedge, and its ends are tied to blocks

with masses m1 and m2.

There is no friction anywhere. What is the acceleration of the wedge?

Solution

This is a classic example of a problem best solved with the Lagrangian-like techniques of M4.

By working in generalized coordinates, we won’t have to solve any systems of equations.

Let s be the distance the rope moves through the pulley, so that both blocks have speed ṡ in

the noninertial frame of the wedge. The “generalized force” is

Feff = −dV
ds

= (m1 sinα1 −m2 sinα2)g.

Now, the kinetic energy in the lab frame will be of the form

K =
1

2
Meffṡ

2

which means that, by the Euler–Lagrange equations,

s̈ =
Feff

Meff
.
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Our task is now to calculate Meff. Since the center of mass of the system can’t move

horizontally, the wedge has speed

vw =
m1 cosα1 +m2 cosα2

M +m1 +m2
ṡ.

Now, it’s a bit annoying to directly compute the kinetic energy K in the lab frame, but it’s

easy to compute the kinetic energy in the frame of the wedge: it’s simply (m1 +m2)ṡ
2/2.

But the two are also related simply,

K +
1

2
(M +m1 +m2)v

2
w =

1

2
(m1 +m2)ṡ

2.

Using this to solve for K, we conclude

Meff = m1 +m2 −
(m1 cosα1 +m2 cosα2)

2

M +m1 +m2
.

Finally, the desired answer is

aw =
m1 cosα1 +m2 cosα2

M +m1 +m2
s̈.

[3] Problem 22 (Kalda). A rope of mass per unit length ρ and length L is thrown over a pulley so

that the length of one hanging end is ℓ. The rope and pulley have enough friction so that they do

not slip against each other.

The pulley is a hoop of mass m and radius R attached to a horizontal axle by light spokes. Find

the force on the axle immediately after the motion begins.

[3] Problem 23 (French 5.10). Two equal masses are connected as shown with two identical massless

springs of spring constant k.

Considering only motion in the vertical direction, show that the ratio of the frequencies of the two

normal modes is (
√
5 + 1)/(

√
5− 1).
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[3] Problem 24 (Kalda). A massless rod of length ℓ is attached to the ceiling by a hinge which allows

the rod to rotate in a vertical plane.

The rod is initially vertical and the hinge is spun with a fixed angular velocity ω.

(a) Before starting, explain why this problem has to use rods, and not just strings.

(b) If a mass m if attached to the bottom of the rod, find the maximum ω for which the configu-

ration is stable.

(c) [A] Now suppose another mass m and rod of length ℓ is attached to the first mass by an

identical hinge that turns in the same direction, as shown above. Find the maximum ω for

which the configuration is stable. (Hint: the configuration is unstable if any infinitesimal

change in the angles of the rods can lower the energy.)

[4] Problem 25 (PPP 106). A long, heavy flexible rope with mass ρ per unit length is stretched by a

constant force F . A sudden movement causes a circular loop to form at one end of the rope.

The center of the loop moves with speed c as shown.

(a) Calculate the speed c, assuming gravity is negligible.

(b) Find the energy E carried by a loop rotating with angular frequency ω.

(c) Show that the momentum p carried by the loop obeys E = pc. This is true for waves in

general, as we’ll see in W1.

(d) Find the angular momentum carried by the loop.

5 [A] Advanced Mathematical Techniques

The following problems were cut from earlier problem sets because they required more advanced

math; however, they illustrate some very neat and important ideas.

[3] Problem 26. In P1, you found a general expression for the period of a pendulum oscillating with

amplitude θ0 in terms of an integral, then approximated the integral for θ0 ≪ 1 to find

ω = ω0

(
1− θ20

16
+O(θ40)

)
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where ω0 =
√
g/L. In this problem, we will show a different way to get the same answer, by solving

the equation of motion approximately. We write the solution θ(t) as a series in θ0. The overall

solution is of order θ0, and the corrections only depend on θ20, so we can write

θ(t) = θ0f0(t) + θ30f1(t) + θ50f2(t) + . . .

where all the functions fi(t) are of order 1. Then we plug this expansion into Newton’s second law,

θ̈ + ω2
0 sin θ = 0, and expand it out order by order in θ0.

(a) A naive first guess is to set f0(t) so that it cancels precisely the order θ0 terms in this equation,

then set f1(t) to cancel the order θ30 terms, and so on. Using this guess, show that

f̈0 + ω2
0f0 = 0, f̈1 + ω2

0f1 =
ω2
0f

3
0

6

where the first equation has solution f0(t) = cos(ω0t).

Unfortunately, this decomposition is not very useful. The problem is that two things are going on

at once: the oscillations are not quite sinusoidal, and they have an angular frequency lower than

ω0. The expansion we’ve done would be useful if we only had the first effect, because then f1(t)

would just capture the small, non-sinusoidal corrections to f0(t). But our method can’t account

for the frequency shift; by construction, f0(t) always oscillates at angular frequency ω0. Over time,

the real oscillation θ(t) gets out of phase with f0(t). This manifests itself as a “secular growth” in

f1(t), i.e. it increases in magnitude every cycle until it has a huge value, of order 1/θ20, and our

perturbative expansion breaks down.

(b) Write the right-hand side of the differential equation for f1(t) as a sum of sinusoids, and show

that it contains a term proportional to cos(ω0t). This resonantly drives f1(t), causing the

secular growth.

(c) We can salvage our perturbative expansion using the method of “renormalized” frequencies.

We impose by fiat that f0(t) oscillates at the true angular frequency, letting

f̈0 + ω2f0 = 0, ω = ω0(1− c θ20 +O(θ40))

for a constant c. Because of this choice, the differential equation for f1(t), which contains all

terms at order θ30, will be altered. The correct choice of ω is precisely the one for which this

eliminates the secular growth of f1(t). Using this idea, show that c = 1/16.

If you keep going, you’ll find the next term f2(t) still has secular growth. We can remove it by

having both f0(t) and f1(t) oscillate at angular frequency ω0(1− θ20/16+ dθ40), where d is chosen to

cancel the secular growth of f2(t). In this way, the frequency can be found to any order in θ20. (This

technique is called the method of strained coordinates. It’s an example of multiple-scale analysis.)

[3] Problem 27. You might be wondering how we can solve the weakening spring problem from M4

without anything fancy like the adiabatic theorem. There is a general technique to solve linear

differential equations whose coefficients are slowly varying. First, write the equation of motion as

ẍ+ ω2(t)x = 0.

Then expand x(t) as

x(t) = A(t)eiϕ(t), ϕ̇(t) = ω(t).

The point of writing x(t) this way is that pulling out the factor of eiϕ(t) will automatically account

for the rapid oscillations. The factor A(t) only varies slowly, so it’s easier to handle by itself.
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(a) Evaluate ẍ(t) and plug it into the equation of motion.

(b) Using the fact that A(t) and ω(t) vary slowly, throw out small terms in your equation from

part (a), until you get a differential equation you can easily integrate. This is an example of

the WKB approximation for differential equations, which we applied at length in X1.

(c) Show that this gives the expected final result for a weakening spring.

[4] Problem 28 (BAUPC 1996). A mass M is located at the vertex of an angle θ ≪ 1 formed by

two massless sticks of length ℓ. The structure is held so that the left stick is initially vertical, then

released. The right stick hits the ground at time t = 0. The structure then rocks back and forth,

coming to a stop at time t = T .

(a) Prove the identity

1 +
1

32
+

1

52
+

1

72
+ . . . =

π2

8

using the result
∑

n≥1 1/n
2 = π2/6, which we derived in W1.

(b) Using this result, calculate T to leading order in θ.

[3] Problem 29. In this problem, we’ll go through Laplace’s slick derivation of Kepler’s first law.

Throughout, we assume the orbit takes place in the xy plane, with the Sun at the origin.

(a) Show that

ẍ = −γx
r3
, ÿ = −γy

r3

where γ is a constant that depends on the parameters.

(b) Show that
d

dt
(r3ẍ) = −γẋ, d

dt
(r3ÿ) = −γẏ.

(c) Show that
d

dt
(r3r̈) = −γṙ.

(Hint: this can get messy. As a first step, try showing the left-hand side is equal to

(r2/2) d3(r2)/dt3. You will have to switch variables to x and y and then switch back; for

these purposes it’s useful to use the results of part (a), and the definition r2 = x2 + y2.)

(d) Define ψ(t) = r(t)3. In parts (b) and (c), we have shown that the differential equation

d

dt

(
ψ(t)

du

dt

)
= −γu

has three solutions, namely ẋ, ẏ, and ṙ. Any second-order linear differential equations only

has two independent solutions. If ẋ and ẏ are not independent, the orbit is simply a line,

which is trivial. Assuming that doesn’t happen, they are independent, so ṙ must be a linear

combination of them,

ṙ = Aẋ+Bẏ.

Use this result to argue that the orbit is a conic section.
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6 Mechanics and Geometry

For dessert, we’ll consider a few cute problems that relate statics to geometry.

Example 8

Given a triangle ABC, the Fermat point is the point X that minimizes AX + BX + CX.

Design a machine that finds the Fermat point.

Solution

We take a horizontal plane and drill holes at points A, B, and C. A mass M on a rope is

fed through each hole, and the three ends of the rope are tied together at point X. The

gravitational potential energy is proportional to AX +BX + CX, so in equilibrium X lies

on the Fermat point. Moreover, since the tensions in each rope are all equal to Mg, force

balance requires ∠AXB = ∠BXC = ∠CXA = 120◦.

[1] Problem 30. Using similar reasoning, design a machine that finds the point X that minimizes

(AX)2 + (BX)2 + (CX)2. What geometrical property can you conclude about this point?

Example 9

Show that the incenter of a triangle (i.e. the meeting point of the angle bisectors) exists.

Solution

Apply six forces at the vertices of a triangle as shown.

These forces clearly balance, and also produce no net torque on the triangle. Now combine

the forces applied at each vertex, yielding three forces that point along the angle bisectors.

By the principles of M2, the torques of these forces can only balance if their lines of action

meet at a point. Therefore the angle bisectors are concurrent, so the incenter exists.

Example 10

Let AB be a diameter of a circle, and let a mass be free to slide on the circle. The mass is

connected to two identical straight springs of zero rest length, which are in turn connected

to points A and B. At what points C can the mass be in static equilibrium?
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Solution

The potential energy of the system is proportional to (AC)2 + (BC)2. Since ABC is a right

triangle, this is just equal to (AB)2 by the Pythagorean theorem. Since the potential energy

doesn’t depend on where the mass is, it can be at static equilibrium at any point on the

circle. Alternatively, you can show that the mass is in static equilibrium by force balance,

and use the reasoning in reverse to derive the Pythagorean theorem.

[1] Problem 31. Consider a right triangle ABC filled with a fluid of uniform pressure. Using torque

balance, establish the Pythagorean theorem.

[1] Problem 32. Shown below is a setup due to the 16th century mathematician Stevin, who was also

known for introducing decimal numbers.

One might argue that because there are more masses on AB than on BC, this is a perpetual motion

machine that turns counterclockwise. By using the fact that perpetual motion machines don’t

actually exist, prove the law of sines.

[2] Problem 33. Consider the n-sided polygon P of least possible area that circumscribes a closed

convex curve K. Prove that every tangency point of K with a side of P is the midpoint of that side.

(Hint: begin by supposing that the area outside P is filled with a gas of uniform pressure, with a

vacuum inside P .)

[2] Problem 34. In this problem we’ll derive Kepler’s first law yet again, using no calculus, but a bit

of Euclidean geometry. As usual, we suppose a planet of mass m orbits a fixed star of much greater

mass M . Placing the star at the origin, let ϕ be the angle between r and v for the planet.

(a) Write down the quantities E and L in terms of G, M , m, v, r, and ϕ, and show that(
r2 +

GMm

E
r

)
sin2 ϕ =

L2

2mE
.

(b) Now consider an ellipse with semimajor axis a and eccentricity e, meaning that the distance

between the foci is 2ae, with one of the foci F at the origin. Consider a point P on the ellipse,

so that the angle between the tangent to the ellipse at P and FP is ϕ. If r = |FP |, show that

(r2 − 2ar) sin2 ϕ = −a2(1− e2).

You will have to use the geometrical property that a light ray sent from one focus will reflect

at the ellipse to hit the other focus.
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(c) By comparing your results for (a) and (b), conclude that the orbit is an ellipse with

a = −GMm

2E
, e =

√
1 +

2EL2

G2M2m3
.
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