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Mechanics Review

For some nice mechanical examples, see this talk and this talk. There is a total of 87 points.

1 Statics and Linear Dynamics

[3] Problem 1 (FYKOS 34.1). We model a person’s head as a sphere of radius R, and a beanie as a

circular, massless rubber band of radius r0 and spring constant k, where r0 < R. The coefficient of

friction between the band and head is µ. When is it possible for the person to put the beanie on

with one hand?

That is, find the conditions for which it is possible to stretch the band so that it lies along the

equator of the sphere, by applying forces only at one point at the band, as shown above. Assume

for simplicity that the band is always planar.

[3] Problem 2. In M2, we considered many problems with ideal strings, which have a fixed length

and can exert tension forces along themselves but no bending moment. The next simplest case is an

elastic strip, such as a long, thin piece of plastic. An elastic strip is just like an ideal string, except

that it also contains a bending moment (i.e. an internal torque) of τ , related to its local radius of

curvature R by τ = κ/R, for a constant κ.

Suppose the ends of an elastic strip of total length L+∆x are connected by an ideal string of

length L, where ∆x ≪ L, so that the strip bends away from the string near its middle. Find the

tension T in the string, and the maximal distance between the strip and the string.

[3] Problem 3 (MPPP 19). A small pearl moving in deep water experiences a viscous retarding force

that is proportional to its speed, by Stokes’ law. If a pearl is released from rest under the water,

then it reaches a terminal velocity v1.

(a) Suppose the pearl is instead released horizontally with initial speed v2. Find the minimum

speed of the pearl during the subsequent motion.

(b) If v2 < v1, for what range of angles can the pearl be released, so that its speed monotonically

increases?

[3] Problem 4 (PPP 42). A uniform rod of mass m and length ℓ is supported horizontally at its ends

by two fingers. As the fingers are slowly brought together, the rod alternates between sliding on

each finger. The coefficients of friction are µk < µs.

(a) Explain why the fingers meet under the center of mass of the rod. (Try it in real life!)

(b) Find the total work done by the fingers during this process.
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[3] Problem 5. A long rope with linear mass density λ rests on a horizontal table with a small bend.

You pull the end of the rope that is near the bend with force F .

(a) Suppose that the bend is very small, so that all of the rope touching the ground is perfectly

slack (zero tension). What F is needed to pull the end of the rope with constant velocity v?

(b) Now suppose that the bend is smooth, so that pieces of the rope are gradually accelerated

from rest as they pass the bend. What force F is needed to pull the end of the rope with

constant velocity v?

(c) In both cases, what force F (t) is needed to pull the rope with constant acceleration a, if we

assume the rope starts flat and at rest at time t = 0?

[2] Problem 6. �Y10 INPhO 2012, problem 1.

[3] Problem 7. �Y10 INPhO 2018, problem 4.

[4] Problem 8. �@10 US Theory TST 2022, problem 2. A set of nice exercises.

2 Oscillations

[3] Problem 9 (EFPhO 2007). Consider a light elastic rod with fixed length ℓ. If one end of the

rod is firmly fixed, and a force F is applied to the other end of the rod, perpendicular to the rod

at the point of application, then it can be shown that the rod takes a form of a circular arc with

radius of curvature R = k/F , for a constant k. (We previously considered such objects in problem 2.)

Let the rod be fixed vertically, at its bottom end, and a mass m be attached to its upper end. The

rod is initially standing up straight.

(a) Find the period of small oscillations, assuming mgℓ ≪ k.

(b) What is the maximum mass m for the configuration to be stable?

[3] Problem 10. �c10 INPhO 2019, problem 7. A nice data analysis problem; bring graph paper.

[5] Problem 11. �h10 APhO 2011, problem 2. This covers “stick-slip”, which appears in many real-

world contexts and Olympiad problems. You can see it in action on a violin string here. (The

calculations in this problem are chosen to be relatively simple, requiring mostly intuition; for some

other calculations, see USAPhO 2021, problem A1, which covers a similar setup.)
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3 Rotation

[2] Problem 12. EFPhO 2015, problem 3.

[3] Problem 13. �̂10 USAPhO 2021, problem B1. An elegant rotation problem.

[3] Problem 14 (Morin 8.24). A spherically symmetric ball of radius R initially slides without rotating

on a horizontal surface with friction. The initial speed is v0, and the moment of inertia about the

center is I = βmR2.

(a) Assuming that the normal force is always applied upward at the bottom of the ball, and

that the friction force is always applied horizontally at the bottom of the ball (but assuming

nothing about how the friction force varies), find the speed of the ball when it begins to roll

without slipping. Also, find the kinetic energy lost while sliding.

(b) Now consider the case where the friction force is standard uniform kinetic friction, f = −µkN .

Verify that the work done by friction equals the energy loss calculated in part (a).

(c) In reality, the conclusions above can be modified by “rolling resistance”. Any real material

will slightly deform when the ball rolls on it. We can crudely account for this by thinking

of the normal force as applied not at the bottom of the ball, but at a point slightly forward

from the bottom. The horizontal component of this normal force is defined to be fr = −µrNy

where Ny is the vertical normal force, and µr ≪ 1. In addition, kinetic friction is still present,

as in part (b). Under these assumptions, find the velocity of the ball once it stops slipping.

Is more or less energy lost than in part (b)?

Remark

In the early 1800s, some said it was impossible for a train engine to pull anything heavier

than the engine itself. As the argument went, the force that moves the train forward is

friction between the engine car’s wheels and the track. If the engine car has mass M , the

maximum friction force is µM . If the rest of the train has mass M ′, however, then it requires

a force µM ′ to get it started moving, so the train can’t start if M ′ > M .

Problem 14 explains why this reasoning is wrong. The maximum forward frictional force on

the engine car wheels is determined by the coefficient of static friction µs, while the force

needed to get the rest of the train moving is determined by the coefficient of rolling friction

µr. So we only need µsM > µrM
′, which is possible since µr can be very small. For steel

train wheels on steel rail, we might have µs ∼ 0.5 but µr ≲ 10−3.

On the other hand, early trains could have trouble going up inclines. This led to several

innovative concepts, such as trains propelled by atmospheric pressure or pushed by mechanical

legs. All the mechanical systems we’re familiar with today, whose design might seem obvious

at first glance, actually gradually evolved through many intermediate forms. For instance,

most people think they know how a bicycle works, but actually don’t, because it’s really

quite tricky. Accordingly, it took over a century for the modern bicycle design to evolve.

[4] Problem 15 (IPhO 1998). A hexagonal pencil with mass M and side length R is pushed and

rolls down a ramp of inclination θ. For some values of θ, the pencil will roll down the plane with
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some terminal speed, never losing contact with the ramp. In order to avoid a complicated moment

of inertia calculation, we will assume the cross section looks like a wheel with six equally spaced

massless spokes and no rim, with all the mass on the axle.

(a) The pencil does not speed up indefinitely, but rather reaches a steady state. Explain why, and

compute the speed the pencil’s axis has immediately after each collision, in the steady state.

(b) Find the minimum θ so that rolling spontaneously starts, without needing a push.

(c) Find the minimum θ so that, once the pencil has been pushed to start rolling, it never stops.

(d) Find the maximum θ so that a rolling pencil always remains in contact with the plane.

[4] Problem 16. �m10 USAPhO 2017, problem B1. A tough rotation problem.

[3] Problem 17. �̂10 USAPhO 2021, problem B3. A cute setup with many nice lessons.

The next two questions are about three-dimensional rotation, covered in M8.

[3] Problem 18 (BAUPC). A frictionless fixed cone stands on its tip.

(a) A particle slides on the inside surface of the cone at height h above the tip, as shown at left

above. Find the angular frequency of the circular motion.

(b) Now suppose the cone has friction, and a small ring of negligible radius rolls on the surface

without slipping at the same height. Also assume that the plane of the ring is at all times

perpendicular to the line joining the point of contact and the tip of the cone, as shown at

right above. Find the angular frequency of the circular motion.

(c) How general were our assumptions in part (b)? Specifically, would the described motion had

been possible if the plane of the ring were at a different angle? Is a slightly smaller or larger

angle to the horizontal possible? Would it be possible if the ring were exactly horizontal?

[3] Problem 19. Richard Feynman used to tell the following story, here reproduced verbatim.

I was in the cafeteria and some guy, fooling around, throws a plate in the air. As the

plate went up in the air I saw it wobble, and I noticed the red medallion of Cornell on

the plate going around. It was pretty obvious to me that the medallion went around

faster than the wobbling.
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I had nothing to do, so I start figuring out the motion of the rotating plate. I discover

that when the angle is very slight, the medallion rotates twice as fast as the wobble rate

– two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the electron

orbits start to move in relativity. Then there’s the Dirac equation in electrodynamics.

And then quantum electrodynamics. And before I knew it... the whole business that I

got the Nobel prize for came from that piddling around with the wobbling plate.

Feynman was right about quantum electrodynamics, but was he right about the plate?

4 Gravity

[3] Problem 20 (Morin 5.65). Let the Earth’s radius be R, its average density be ρ, and its angular

frequency of rotation be ω. Consider a long rope with uniform mass density extending radially from

just above the surface of the Earth out to a radius ηR. Show that if the rope is to remain above

the same point on the equator at all times, then we must have

η2 + η =
8πGρ

3ω2
.

What is the numerical value of η, and where does the tension in the rope achieve its maximum value?

Such a rope would function as a space elevator, allowing objects to be lifted to space much more

cheaply. It was conceived by the science fiction writer R. A. Heinlein, who called it a “skyhook”.

[2] Problem 21 (Morin 10.7). A puck slides with a small speed v on frictionless ice. The surface

is “level” in the sense that it is orthogonal to geff at all points, where geff includes the centrifugal

acceleration. Show that the puck moves in a circle, as seen in the Earth’s rotating frame. Find

its radius and the angular frequency and direction of the motion, in terms of the Earth’s angular

velocity ω0 and the latitude ϕ of the puck.

[2] Problem 22. A narrow tube is formed in the shape of ring of radius R. Initially, it is stationary

and horizontal in the lab frame. Then, it is quickly spun by 180◦ about its east-west diameter.

(a) Suppose the tube contains water, and the Earth’s rotational velocity ω makes an angle ϕ to

the vertical in the lab frame. What is the speed of the water afterward?

(b) Suppose the tube is a conductor with self-inductance L, and the Earth’s magnetic field B

makes an angle ϕ to the vertical in the lab frame. What is the current in the tube afterward?

[3] Problem 23. Consider a potential of the form V (r) ∝ −1/rn. It turns out that for some value of

n, it is possible for a particle to orbit in a circle passing through the origin. What is n?

[3] Problem 24. In this problem, you will explore yet another slick derivation of Kepler’s first law. As

usual, suppose the orbit lies in the xy plane. This derivation resolves around writing r(t) = r(t)r̂(θ)

where r̂ = cos θ x̂+ sin θ ŷ, and solving a differential equation for v(θ).

(a) Show that dv/dθ is proportional to r̂, times constants and conserved quantities.

(b) Integrate this result to find v(θ). What nice geometric property does it have?

(c) Plug this result into L = r× p to show that r(θ) is a conic section.
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5 Fluids

[2] Problem 25 (BAUPC). Two cylindrical containers, A and B, have the same shape and contain

equal volumes of water. In addition to the water, B contains an immersed balloon, attached to the

bottom with a string. Consider the following reasoning.

The total upward force exerted by the bottom of container A is equal to the weight of

the water in A, likewise for B. Since the areas of the bottoms are the same, and the

weights of the water are the same, the pressures at the bottoms are the same.

Is this reasoning correct or incorrect? Explain your answer.

[4] Problem 26. �T10 IPhO 1997, problem 3. A simple, neat question about how a plane works.

Remark

As you saw in the above problem, a plane works by having a wing angled so that air passing

next to it gets pushed downward; momentum conservation then implies there is an upward

force on the wing. Concretely, this upward force occurs because there is a higher pressure

on the bottom of the wing, which by Bernoulli’s principle means there must be a higher air

velocity on the top of the wing.

This is all standard knowledge among engineers. However, in outdated or poor physics

textbooks, an incorrect explanation is sometimes given. The story is that because the top

side of the wing is curved, the air at the top of the wing must be moving faster, so that it

can “catch up” to the air at the bottom. Then by Bernoulli’s principle there is a higher

pressure on the bottom of the wing, causing lift.

The second step of this argument is right, but the first step doesn’t make sense: there

is no reason air should want to “catch up” with the air it used to be next to. For

example, airplanes can fly upside down as long as the wing is angled the right way. In this

case, the air at the top of the wing still moves faster, but now it’s the bottom side that’s curved.

There’s much more to say about flight, which is a whole field of study. For some nice further

discussion, see section 4.6 of The Art of Insight, or this paper and this paper by the same

author. And for a perspective from a cantankerous old aerodynamicist, see this talk.

[5] Problem 27. Physics Cup 2023, problem 1.

[3] Problem 28. [A] The Navier–Stokes equation, governing the velocity v(x, t) of an incompressible

fluid of density ρ and dynamic viscosity µ, are

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

µ

ρ
∇2v.

Let’s consider a fixed fluid, with a given ρ and µ, and see how potential solutions to this equation

behave under symmetry transformations.

(a) Given a velocity v(x, t), we can define a time-reversed velocity profile v′(x, t) = −v(x,−t).

If we replace v with v′ in the above equation, then the ∂v/∂t term stays the same, because

both the sign of the velocity and the sign of the time derivative get flipped. Show that among

the other three terms, two of them stay the same and one flips sign, and interpret your result.

6

https://knzhou.github.io/
https://aapt.scitation.org/doi/10.1119/10.0002140
https://aapt.scitation.org/doi/10.1119/10.0003729
https://www.youtube.com/watch?v=QKCK4lJLQHU
https://physicscup.ee/physics-cup-taltech-2023-problem-1/


Kevin Zhou Physics Olympiad Handouts

We can schematically describe the above transformation as “t → −t and v → −v”. Next, we’ll

consider a scaling, which simultaneously takes x → λx and t → λ2t.

(b) Find how this scaling affects v, P , time derivatives, and space derivatives.

(c) Show that under this scaling, all the terms in the Navier–Stokes equation scale as λ−n, for an

integer n you should find.

In other words, you will have shown that the Navier–Stokes equation has scale symmetry: if

something can happen in a fluid, then it can also happen at a scale 2 times larger and 4 times

slower. Remarkably, this also explains why there aren’t many additional terms in the equation! In

principle there must be terms with more time or space derivatives, since the microscopic dynamics

of a fluid are very complex. However, all such terms would be suppressed by more than λ−n as

we scale a solution up, which means that they wouldn’t have any significant effect on macroscopic

scales. The Navier–Stokes equation contains precisely the terms that remain relevant.
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