
Kevin Zhou Physics Olympiad Handouts

Mechanics Review

For some nice mechanical examples, see this talk and this talk. There is a total of 87 points.

1 Statics and Linear Dynamics

[3] Problem 1 (FYKOS 34.1). We model a person’s head as a sphere of radius R, and a beanie as a

circular, massless rubber band of radius r0 and spring constant k, where r0 < R. The coefficient of

friction between the band and head is µ. When is it possible for the person to put the beanie on

with one hand?

That is, find the conditions for which it is possible to stretch the band so that it lies along the

equator of the sphere, by applying forces only at one point at the band, as shown above. Assume

for simplicity that the band is always planar.

Solution. This is secretly a statics problem. The problem with trying to put on a beanie this

way is that it might slip back up your head, since it wants to contract. If the coefficient of friction

is high enough, this slipping won’t happen. And as long as slipping doesn’t happen, it’s possible

to pull the beanie down, by just applying an infinitesimal force at some point with a downward

component.

Consider the moment where the beanie is a circle with radius r. At each point along the beanie,

there is a normal force dN and a friction force df . Balancing the net upward/outward force gives

df sinα = dN cosα, sinα =
r

R
.

Assuming the friction is maximal, we require

µ ≥ cotα.

This is harder to satisfy the smaller r is, so the toughest part is when we just start, and r = r0. By

solving the relevant right triangle and rearranging, we have

µ ≥
√
(R/r0)2 − 1

or equivalently,

r0 ≥
R√
1 + µ2

.

The spring constant k doesn’t matter, as one could have seen by dimensional analysis.
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[3] Problem 2. In M2, we considered many problems with ideal strings, which have a fixed length

and can exert tension forces along themselves but no bending moment. The next simplest case is an

elastic strip, such as a long, thin piece of plastic. An elastic strip is just like an ideal string, except

that it also contains a bending moment (i.e. an internal torque) of τ , related to its local radius of

curvature R by τ = κ/R, for a constant κ.

Suppose the ends of an elastic strip of total length L+∆x are connected by an ideal string of

length L, where ∆x ≪ L, so that the strip bends away from the string near its middle. Find the

tension T in the string, and the maximal distance between the strip and the string.

Solution. Let’s suppose the endpoints of the string are at (0, 0) and (L, 0), and let the strip’s shape

be y(x). Now consider torque balance on the part of the strip at x < x0. There are contributions

from the tension from the string, the bending moment from the rest of the strip, and the tension from

the rest of the strip. We don’t care about the tension in the strip in this problem, so we eliminate

that contribution by taking torques about (x0, y(x0)), leading to the torque balance equation

−Ty(x0) = τ(x0) =
κ

R(x0)
.

Because ∆x ≪ L, the strip is only slightly bent, so we can approximate

1

R(x0)
≈ d2y

dx2

∣∣∣∣
x=x0

.

Since x0 was arbitrary, the shape of the strip obeys the differential equation

d2y

dx2
= −T

κ
y

and imposing the boundary condition y(0) = 0 gives

y(x) = y0 sin

(√
T

κ
x

)
.

We need the strip to bend away and then back to the string, so π =
√
T/κL, so that

T =
π2κ

L2
.

Now, to find the value of y0 we integrate the arc length of the strip,

L+∆x =

∫ L

0

√
1 + (dy/dx)2 dx ≈

∫ L

0

(
1 +

y20T

2κ
cos2(

√
T/κx)

)
dx

where we used the binomial theorem. This yields ∆x = y20TL/4κ, and solving for y0 gives

y0 =
2

π

√
L∆x.

By the way, you might have noticed that if we hadn’t had ∆x ≪ L, the problem would have

been much harder, largely because the formula for the radius of curvature would have been more

complicated. The resulting shapes in that general case are called elastica, and they can be very

elaborate, with reversals in direction and even loops. The history of the elastica is discussed here.

The problem was first posed by Bernoulli in 1691, and conclusively solved by Euler in 1744.

2

https://knzhou.github.io/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.pdf


Kevin Zhou Physics Olympiad Handouts

[3] Problem 3 (MPPP 19). A small pearl moving in deep water experiences a viscous retarding force

that is proportional to its speed, by Stokes’ law. If a pearl is released from rest under the water,

then it reaches a terminal velocity v1.

(a) Suppose the pearl is instead released horizontally with initial speed v2. Find the minimum

speed of the pearl during the subsequent motion.

(b) If v2 < v1, for what range of angles can the pearl be released, so that its speed monotonically

increases?

Solution. (a) When the speed is at a minimum, d(v2)/dt = 0, so v · a = 0. The retarding force

−bv satisfies bv1 = mg. Newton’s laws in each dimension give

max = −bvx may = −bvy −mg

Solving these equations by separating variables gives

vx = v2e
−bt/m, vy = −v1(1− e−bt/m).

Differentiating, we have

ax = −gv2
v1

e−bt/m, ay = −ge−bt/m.

We want vxax + vyay = 0, and letting α = e−bt/m, this means,

v22
v1

α2 = v1(1− α)α

and solving gives

α =
v21

v21 + v22
, v =

√
v22α

2 + v21(1− α)2 =
v1v2√
v21 + v22

.

(b) Note that in the previous part, ay/ax is constant. Let the velocity vector start at O. The end

of the velocity vector moves in a straight line since the direction of acceleration is constant

(goes from v2 to −v1ŷ).

At the limiting angle when the velocity monotonically increases, v2 will be the minimum

velocity, so v2 is perpendicular to the blue line. That means that the angle θ as measured

from the vertical needs to satisfy

|θ| < arccos

(
v2
v1

)
.
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[3] Problem 4 (PPP 42). A uniform rod of mass m and length ℓ is supported horizontally at its ends

by two fingers. As the fingers are slowly brought together, the rod alternates between sliding on

each finger. The coefficients of friction are µk < µs.

(a) Explain why the fingers meet under the center of mass of the rod. (Try it in real life!)

(b) Find the total work done by the fingers during this process.

Solution. (a) Consider balancing torques about the center of mass of the rod. As a finger moves

closer to the center, its lever arm decreases so the normal force increases. Eventually, the

maximum possible friction force increases enough so that finger stops sliding, at which point

the other finger starts sliding. (For a visual explanation, see this nice video!)

(b) Let x1 and x2 denote the distances from the center. Then F1 = mgx2

x1+x2
, and similarly for F2.

During the motions, one finger is stationary while the other finger moving from x1 = a to

x1 = b will do work

W =

∫ b

a

mgµkx2
x1 + x2

dx1 = mgµkx2 log

(
x2 + a

x2 + b

)
Each finger does work until the ratio of the forces is µs/µk, and the ratio of the distances is

r = µk/µs, at which point the finger switches. Then the total work is

W = −1

2
mgµkℓ

(
log

(
1 + r

2

)
+ r log

(
r + r2

1 + r

)
+ r2 log

(
r2 + r3

r + r2

)
+ . . .

)
which means

− W
1
2mgℓ

= log

(
1 + r

2

)
+ r log(r) + r2 log(r) + r3 log(r) + . . . = log

(
1 + r

2

)
+

r

1− r
log(r).

Plugging back in for r, we conclude

W =
1

2
mgµkℓ

(
log

(
2µs

µk + µs

)
+

µk

µs − µk
log

(
µs

µk

))
.

This is a pretty complicated expression, so let’s check it with limiting cases. Let µs = µk(1+ϵ)

where ϵ ≪ 1. The first logarithm term is O(ϵ), so

W =
1

2
mgµkℓ

(
1

ϵ
log(1 + ϵ) +O(ϵ)

)
=

1

2
mgµkℓ+O(ϵ).

This makes sense, because in this limit both fingers are sliding almost continuously, moving a

distance ℓ/2 each against a friction force µkmg/2.

[3] Problem 5. A long rope with linear mass density λ rests on a horizontal table with a small bend.

You pull the end of the rope that is near the bend with force F .
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(a) Suppose that the bend is very small, so that all of the rope touching the ground is perfectly

slack (zero tension). What F is needed to pull the end of the rope with constant velocity v?

(b) Now suppose that the bend is smooth, so that pieces of the rope are gradually accelerated

from rest as they pass the bend. What force F is needed to pull the end of the rope with

constant velocity v?

(c) In both cases, what force F (t) is needed to pull the rope with constant acceleration a, if we

assume the rope starts flat and at rest at time t = 0?

Solution. (a) In this case, we can’t directly consider the energy, because the sudden acceleration

of a piece of the rope when it hits the bend is inherently inelastic. On the other hand, since

the part of the rope touching the ground is slack, there can be no horizontal forces on any

part of it, so the friction force vanishes. As a result, the only horizontal external force is the

force you exert. Note that the mass m that is moving is

m =
λx

2

where x is the total distance the bend has moved. Then

dm

dt
=

λv

2

and we have

F =
dp

dt
=

dm

dt
v =

1

2
λv2.

(b) In this case, we can’t directly consider the momentum because of the friction force from the

ground. However, there are no energy losses, so we have

F =
1

v

dE

dt
=

1

v

1

2

dm

dt
v2 =

1

4
λv2.

Of course, in reality, the true answer will be somewhere in between the results of (a) and (b),

depending on the properties of the bend.

There’s a simple reason why this answer is precisely half of the answer to part (a). We showed

in M8 that an isolated flexible chain moving with uniform speed u along its length, carrying

a constant tension T = λu2, can indefinitely maintain its shape. Now consider the rope in

a reference frame moving with speed v/2 to the right. Then the curved part of the rope is

precisely such a flexible chain, with uniform tension T = λv2/4. Therefore, the two rightward

forces on the rope, due to the pulling and the friction, are equal.

(c) Again, we can consider momentum and energy, respectively. The part of the string that’s

moving has mass and speed

m(t) =
λat2

4
, v(t) = at

so that we have

p(t) =
λa2t3

4
, E(t) =

λa3t4

8
.

In the first case, we have

F (t) =
dp

dt
=

3

4
λa2t2.
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In the second case, we have

F (t) =
1

v

dE

dt
=

1

2
λa2t2.

Again, the difference comes from the friction force. (The slick argument of part (b) doesn’t

quite work anymore, since in the moving frame, the chain is accelerating along its length, so

the tension inside the curved part isn’t uniform; instead, it needs to be higher at the top.

However, the argument still shows that the tension at the bottom is λv2/4 = λa2t2/4. This

force is supplied by friction and precisely accounts for the difference between the two cases.)

[2] Problem 6. �Y10 INPhO 2012, problem 1.

Solution. See the official solutions here.

[3] Problem 7. �Y10 INPhO 2018, problem 4.

Solution. See the official solutions here.

[4] Problem 8. �@10 US Theory TST 2022, problem 2. A set of nice exercises.

Solution. See the official solutions here.

2 Oscillations

[3] Problem 9 (EFPhO 2007). Consider a light elastic rod with fixed length ℓ. If one end of the

rod is firmly fixed, and a force F is applied to the other end of the rod, perpendicular to the rod

at the point of application, then it can be shown that the rod takes a form of a circular arc with

radius of curvature R = k/F , for a constant k. (We previously considered such objects in problem 2.)

Let the rod be fixed vertically, at its bottom end, and a mass m be attached to its upper end. The

rod is initially standing up straight.

(a) Find the period of small oscillations, assuming mgℓ ≪ k.

(b) What is the maximum mass m for the configuration to be stable?

Solution. (a) Recall that when we find the period of the ordinary pendulum, we can ignore the

effect of the tension because it’s directed radially, so it’s always perpendicular to the mass’s

trajectory. We only have to care about the tangential component of gravity. This case is a

bit trickier than that, for two reasons. First, the trajectory of the mass isn’t a circle, because

the rod bends. Second, in general we need to care about both the tangential component of

gravity and the internal force of the rod.
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When the rod has bent through a small total angle θ, its radius of curvature is R = ℓ/θ, so

the horizontal displacement of the mass is

∆x = R(1− cos θ) ≈ Rθ2

2
=

ℓθ

2
.

The mass also has a small vertical displacement, but it’s proportional to θ2 and thus negligible.

So ∆x is roughly the total distance the mass has moved.

Next, we want to find the restoring force, i.e. the magnitude of the force acting on the

mass which points backwards along the mass’s trajectory. The part due to the rod itself is

k/R = kθ/ℓ. The mass’s trajectory makes a small angle of order θ to the horizontal, so the

part due to gravity is of order mgθ ≈ mgℓ/R, which is negligible by assumption.

Thus, the motion is simple harmonic with an effective spring constant of 2k/ℓ2, giving period

T = πℓ
√
2m/k.

(b) It would be confusing to do this with forces, because the directions of the forces change in a

complicated way as the rod is bent, so we instead consider the energy.

When the rod bends an angle θ, the change in the mass’s gravitational potential energy is

∆Ug = mgr sin θ −mgℓ ≈ mgrθ − 1

6
mgrθ3 −mgℓ ≈ −1

6
mgℓθ2.

On the other hand, the rod itself gains potential energy, which can be computed by considering

the work done on it. To lowest nontrivial order in θ, we have dx = ℓdθ/2 and F = kθ/ℓ, so

∆Ur ≈
∫

F dx =

∫ θ

0

kθ

ℓ

ℓ

2
dθ =

1

4
kθ2.

Note that ∆Ug is negligible when mgℓ ≪ k, which is why we were able to neglect the

gravitational force in part (a). More generally, we need to make sure the total potential energy

is a minimum at θ = 0, so we need
mgℓ

6
<

k

4

which gives a maximum mass of

m =
3k

2gℓ
.

[3] Problem 10. �c10 INPhO 2019, problem 7. A nice data analysis problem; bring graph paper.

Solution. See the official solutions here.

[5] Problem 11. �h10 APhO 2011, problem 2. This covers “stick-slip”, which appears in many real-

world contexts and Olympiad problems. You can see it in action on a violin string here. (The

calculations in this problem are chosen to be relatively simple, requiring mostly intuition; for some

other calculations, see USAPhO 2021, problem A1, which covers a similar setup.)
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3 Rotation

[2] Problem 12. EFPhO 2015, problem 3.

Solution. See the official solutions here.

[3] Problem 13. �̂10 USAPhO 2021, problem B1. An elegant rotation problem.

[3] Problem 14 (Morin 8.24). A spherically symmetric ball of radius R initially slides without rotating

on a horizontal surface with friction. The initial speed is v0, and the moment of inertia about the

center is I = βmR2.

(a) Assuming that the normal force is always applied upward at the bottom of the ball, and

that the friction force is always applied horizontally at the bottom of the ball (but assuming

nothing about how the friction force varies), find the speed of the ball when it begins to roll

without slipping. Also, find the kinetic energy lost while sliding.

(b) Now consider the case where the friction force is standard uniform kinetic friction, f = −µkN .

Verify that the work done by friction equals the energy loss calculated in part (a).

(c) In reality, the conclusions above can be modified by “rolling resistance”. Any real material

will slightly deform when the ball rolls on it. We can crudely account for this by thinking

of the normal force as applied not at the bottom of the ball, but at a point slightly forward

from the bottom. The horizontal component of this normal force is defined to be fr = −µrNy

where Ny is the vertical normal force, and µr ≪ 1. In addition, kinetic friction is still present,

as in part (b). Under these assumptions, find the velocity of the ball once it stops slipping.

Is more or less energy lost than in part (b)?

Solution. (a) The point here is that we can relate the linear and angular impulses without having

to know how the force behaves in time. If there’s a net impulse J on the ball, the net change

in angular momentum about the center of the ball is
∫
RF dt = RJ . When the ball is rolling

without slipping, v = ωR. Thus

J = mv0 −mvf = L/R = βmRω

which gives

vf =
v0

1 + β
.

The kinetic energy lost is

∆K =
1

2
mv20 −

1

2
mv2f − 1

2
βmR2ω2 =

1

2
m(v20 − (1 + β)v2f ) =

1

2

β

1 + β
mv20.

(b) Here, f = −µkmg and acts for a time of t = J/f . Since the acceleration is constant,

the ball travels a distance of 1
2(v0 + vf )t while sliding. However, it will turn a distance of

Rθ = 1
2ωRt = 1

2vf t in the other direction, so the relative distance traveled between the surface

of the ball and the ground is L = 1
2v0t.

∆K = fL =
1

2
v0J =

1

2
m(v0 − vf )v0 =

1

2

β

1 + β
mv20

as desired.
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(c) Now the angular and linear accelerations are

α =
µkg

βR
, a = −(µr + µk)g

where the rolling resistance doesn’t affect the angular acceleration, because the overall normal

force always exerts no torque about the center of mass of the ball. (Note that this conclusion

would have been changed if we accounted for the deformation of the ball itself, which would

give a second, additional type of rolling resistance. Here we are assuming that the ball is much

harder than the surface it rolls on, though there are plenty of situations where the reverse is

true, such as when a bike tire rolls on concrete.)

Thus, by similar reasoning to that of part (a),

vf =
v0

1 + β(1 + µr/µk)
.

This is smaller than the result of part (a), so more energy is lost. The reason is that the

rolling resistance dissipates additional energy. Notice that even once slipping stops, rolling

resistance will continue to dissipate energy, causing the ball to eventually come to a stop.

Remark

In the early 1800s, some said it was impossible for a train engine to pull anything heavier

than the engine itself. As the argument went, the force that moves the train forward is

friction between the engine car’s wheels and the track. If the engine car has mass M , the

maximum friction force is µM . If the rest of the train has mass M ′, however, then it requires

a force µM ′ to get it started moving, so the train can’t start if M ′ > M .

Problem 14 explains why this reasoning is wrong. The maximum forward frictional force on

the engine car wheels is determined by the coefficient of static friction µs, while the force

needed to get the rest of the train moving is determined by the coefficient of rolling friction

µr. So we only need µsM > µrM
′, which is possible since µr can be very small. For steel

train wheels on steel rail, we might have µs ∼ 0.5 but µr ≲ 10−3.

On the other hand, early trains could have trouble going up inclines. This led to several

innovative concepts, such as trains propelled by atmospheric pressure or pushed by mechanical

legs. All the mechanical systems we’re familiar with today, whose design might seem obvious

at first glance, actually gradually evolved through many intermediate forms. For instance,

most people think they know how a bicycle works, but actually don’t, because it’s really

quite tricky. Accordingly, it took over a century for the modern bicycle design to evolve.

[4] Problem 15 (IPhO 1998). A hexagonal pencil with mass M and side length R is pushed and

rolls down a ramp of inclination θ. For some values of θ, the pencil will roll down the plane with

some terminal speed, never losing contact with the ramp. In order to avoid a complicated moment

of inertia calculation, we will assume the cross section looks like a wheel with six equally spaced

massless spokes and no rim, with all the mass on the axle.

(a) The pencil does not speed up indefinitely, but rather reaches a steady state. Explain why, and

compute the speed the pencil’s axis has immediately after each collision, in the steady state.
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(b) Find the minimum θ so that rolling spontaneously starts, without needing a push.

(c) Find the minimum θ so that, once the pencil has been pushed to start rolling, it never stops.

(d) Find the maximum θ so that a rolling pencil always remains in contact with the plane.

Solution. (a) Each time the pencil rolls through an angle π/3, a new vertex of the pencil hits

the plane. In this moment, that vertex suddenly becomes the new pivot point about which

the pencil is rotated, which means energy is dissipated in an inelastic collision. This is the

reason that the pencil reaches a steady state, instead of accelerating indefinitely. You can see

this very nicely depicted in this video.

Let the pencil’s center of mass have speed vi just before an impact, and vf just after the

impact. The impact involves a singular impact force at the new pivot point, which means

angular momentum is conserved about that point. Thus,

MviR cos 60◦ = MvfR

from which we conclude

vf =
vi
2
.

In the steady state, the kinetic energy gained from rolling from one vertex to another bal-

ances the energy lost in the collision, so conserving energy immediately after a collision and

immediately before a next one gives

1

2
Mv2f +MgR sin θ =

1

2
M(2vf )

2

from which we conclude

vf =

√
2gR sin θ

3
.

By the way, the original formulation of the question gave the pencil a moment of inertia

CMR2 about its center of mass. The solution with general C is not much harder. Now the

angular momentum conservation condition is

MviR cos 60◦ + CMR2ωi = (C + 1)MR2ωf

where ωi = vi/R and ωf = vf/R. Thus,

vf =
2C + 1

C + 1

vi
2
.

Likewise, the energy balance equation for the steady state becomes

1

2
M(C + 1)v2f +MgR sin θ =

1

2
M(C + 1)(2vf )

2

from which we conclude

vf =

√
2gR sin θ(C + 1/2)2

(C + 1) ((C + 1)2 − (C + 1/2)2)
.
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(b) This is a basic statics problem. The rolling must start if the center of mass of the hexagon is

not above its support, which implies θ = 30◦.

(c) Between two vertex transitions, the maximum potential energy of the pencil is when the

center of mass is directly above the vertex at a height R. It will start out at a height of

h0 = R sin(θ+60◦) above the vertex, and fall down to a height hf = R sin(60◦ − θ) above the

vertex.

In order for it to roll indefinitely, potential energy from height R to hf followed by the inelastic

collision must leave enough kinetic energy for the pencil to go from height h0 to height R.

Earlier we found that ωf = ω0(C + 1/2)/(C + 1), so the kinetic energy will be reduced by a

factor of α = (ωf/ω0)
2. Thus the energy equation for indefinite rolling is

αMg(R− hf ) = Mg(R− h0).

This implies
1− sin(θ + 60◦)

1− sin(60◦ − θ)
= α.

In our case, α = 1/4. The solution of the above equation can be found using either binary

search or by the “plug in” method, i.e. repeatedly calculating

arcsin

(
1− 1− sin(60◦ −Ans)

4

)
− 60◦.

Both methods give an answer of θ = 10.21◦.

(d) The pencil leaves the ramp when gravity isn’t strong enough to provide the needed centripetal

acceleration for the rotation about a vertex. Right before the next vertex transition, the pencil

is moving the fastest, and the radial component of gravity is the smallest, so the pencil most

readily leaves the ramp at that point. Using part (a)’s notation (ω0 is the angular velocity

right before the next transition), the leaving condition is g cos(30◦+θ) = g sin(60◦−θ) = ω2
0R,

where 30◦ + θ is the angle between the vertical and line connecting the center of mass to the

vertex. Using our expression for ω0 =
vf
R (C + 1)/(C + 1/2) found in part (a),

sin(60◦ − θ) =
2 sin θ(C + 1)

((C + 1)2 − (C + 1/2)2)

With C = 0, we have

sin(60◦ − θ) =
8 sin θ

3
.

We can binary search for the answer or repeatedly plug in

arcsin

(
3 sin(60◦ −Ans)

8

)
to find that the maximum angle for it to stay on the ramp is θ = 15.3◦. So the range of angles

where the rolling will never stop, but also keep the pencil on the ramp, is quite narrow!

This famous question has appeared on the IPhO, BAUPC, and Morin’s mechanics book, and papers

have even experimentally confirmed its results. If you would like to know even more about it, see

the extended analysis here.
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[4] Problem 16. �m10 USAPhO 2017, problem B1. A tough rotation problem.

[3] Problem 17. �̂10 USAPhO 2021, problem B3. A cute setup with many nice lessons.

The next two questions are about three-dimensional rotation, covered in M8.

[3] Problem 18 (BAUPC). A frictionless fixed cone stands on its tip.

(a) A particle slides on the inside surface of the cone at height h above the tip, as shown at left

above. Find the angular frequency of the circular motion.

(b) Now suppose the cone has friction, and a small ring of negligible radius rolls on the surface

without slipping at the same height. Also assume that the plane of the ring is at all times

perpendicular to the line joining the point of contact and the tip of the cone, as shown at

right above. Find the angular frequency of the circular motion.

(c) How general were our assumptions in part (b)? Specifically, would the described motion had

been possible if the plane of the ring were at a different angle? Is a slightly smaller or larger

angle to the horizontal possible? Would it be possible if the ring were exactly horizontal?

Solution. (a) The centripetal forcemω2h tan θ is horizontal, which equals toN cos θ. The particle

must be vertically balanced, so N sin θ = mg, giving

ω2h tan θ = g cot θ

and an answer of

ω = cot θ

√
g

h
.

(b) Let the ring have moment of inertia βmr2 (where β = 1) and moves in a circle of radius

R = h tan θ ≫ r. The no slip condition is ωr = ΩR. When taken about the point of contact,

the ring has a horizontal angular momentum Lh = (1 + β)mr2ω sin θ. Since τ = dL/dt, then

about the point of contact (so the confusing normal and friction forces can be ignored) the

torque is τ = mgr cos θ and |dL|/dt = ΩLh. Thus

mgr cos θ = Ω(1 + β)mr2ωΩsin θ

g

r
= (1 + β)

Ω2R

r
tan θ

Ω = cot θ

√
g

2h

12
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(c) There are two constraints in this problem: force balance and torque balance. As we saw in

part (b), considering the torque of gravity about the contact point alone fixes the angular

frequency Ω of the circular motion. That in turn gives the force balance equations (vertical

force is zero, horizontal force is centripetal), and since the coefficient of friction is high enough

to prevent slipping, there’s always some combination of normal and frictional forces that

makes the problem work out. Since none of this depends very sensitively on the angle, we

could change the angle and the problem would still work.

There’s only one exception: you can’t have a horizontal ring. In that case, the angular

momentum of the ring does not change at all (because it’s always spinning in a horizontal

plane), so the torque balance equation can’t be satisfied. As a real-life example, when

motorcyclists ride along the equator of the globe of death (mentioned in M2), they always

tilt a bit above the horizontal.

[3] Problem 19. Richard Feynman used to tell the following story, here reproduced verbatim.

I was in the cafeteria and some guy, fooling around, throws a plate in the air. As the

plate went up in the air I saw it wobble, and I noticed the red medallion of Cornell on

the plate going around. It was pretty obvious to me that the medallion went around

faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate. I discover

that when the angle is very slight, the medallion rotates twice as fast as the wobble rate

– two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the electron

orbits start to move in relativity. Then there’s the Dirac equation in electrodynamics.

And then quantum electrodynamics. And before I knew it... the whole business that I

got the Nobel prize for came from that piddling around with the wobbling plate.

Feynman was right about quantum electrodynamics, but was he right about the plate?

Solution. For concreteness, take the angular momentum of the plate to point upward. From the

problem statement, the axis of symmetry of the plate is a small angle θ away from this direction.

As in M8, we decompose the angular momentum into parallel and perpendicular components, and

L∥ = L, L⊥ = θL

by the small angle approximation, and hence

ω∥ =
L∥

I∥
=

L

MR2/2
, ω⊥ =

L⊥
I⊥

=
θL

MR2/4
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where the last step is by the perpendicular axis theorem. Now we need to think more about the

physical motion of the plate. The component ω∥ of angular velocity parallel to the axis of rotation

is the part that makes the medallion go around,

ωmed = ω∥.

The component ω⊥ makes the orientation of the plate itself rotate. Specifically, the entire setup

drawn above rotates about the axis of L with angular velocity ωwob. Imagine the path taken by

the unit normal n̂ to the plate. The tip of this vector goes in a circle of circumference 2πθ, but the

speed of the tip of the vector is ω⊥. Therefore, the angular velocity of the vector along the circle is

ωwob =
ω⊥
θ
.

The answer to the question is
ωmed

ωwob
=

1

2
.

So it’s the opposite of what Feynman says – actually the wobbling goes twice as fast. Sometimes,

when you tell a story too many times, you forget details like this.

4 Gravity

[3] Problem 20 (Morin 5.65). Let the Earth’s radius be R, its average density be ρ, and its angular

frequency of rotation be ω. Consider a long rope with uniform mass density extending radially from

just above the surface of the Earth out to a radius ηR. Show that if the rope is to remain above

the same point on the equator at all times, then we must have

η2 + η =
8πGρ

3ω2
.

What is the numerical value of η, and where does the tension in the rope achieve its maximum value?

Such a rope would function as a space elevator, allowing objects to be lifted to space much more

cheaply. It was conceived by the science fiction writer R. A. Heinlein, who called it a “skyhook”.

Solution. The gravitational field from Earth will be

g =
4

3
GπρR3/r2

which works with the tension to provide the centripetal acceleration ω2r. For a small piece of rope

of length dr and mass dm = µdr, the force balance gives

ω2r dm = g dm− dT

dT =
4

3

GπρµR3

r2
dr − µω2r dr

Integrating from r = R to r = ηR gives

T (ηR)− T (R) =
4

3
GπρµR2

(
1− 1

η

)
− 1

2
µω2R2(η2 − 1).

14
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At both ends of the rope, the tension must be zero since they’re not connected to anything, so

8πGρ

3ω2

η − 1

η
= (η − 1)(η + 1)

which gives

η2 + η =
8πGρ

3ω2
= 579

and solving the quadratic numerically gives

η = 23.6.

The maximum value of the tension occurs when dT/dr = 0, which is when

r3 =
4πGρR3

3ω2
, r = R

(
4πGρ

3ω2

)1/3

= 6.62R.

This radius has a physical meaning: since the gravitational and centrifugal forces on a piece of mass

balance here, it’s the radius where a satellite can stay in geostationary orbit.

[2] Problem 21 (Morin 10.7). A puck slides with a small speed v on frictionless ice. The surface

is “level” in the sense that it is orthogonal to geff at all points, where geff includes the centrifugal

acceleration. Show that the puck moves in a circle, as seen in the Earth’s rotating frame. Find

its radius and the angular frequency and direction of the motion, in terms of the Earth’s angular

velocity ω0 and the latitude ϕ of the puck.

Solution. Since the surface is level with gravity and the centrifugal acceleration, the normal force

will cancel out the effects from those, so the only remaining force is the Coriolis force −2mΩ× v.

The component of Earth’s angular velocity normal to the ground at latitude ϕ is Ω sinϕ, so

2ω0v sinϕ = v2/r, r =
v

2ω0 sinϕ
, ω = 2ω0 sinϕ.

The puck will travel clockwise in the Northern hemisphere and counterclockwise in the Southern

hemisphere. (You might wonder why this is opposite the direction hurricanes turn. The difference

is that in a hurricane, the center has low pressure, and the Coriolis force provides a outward force

which opposes the inward pressure force, so that the system doesn’t immediately collapse. By

contrast, here the Coriolis force must be inward since it is the only source of centripetal force.)

[2] Problem 22. A narrow tube is formed in the shape of ring of radius R. Initially, it is stationary

and horizontal in the lab frame. Then, it is quickly spun by 180◦ about its east-west diameter.

(a) Suppose the tube contains water, and the Earth’s rotational velocity ω makes an angle ϕ to

the vertical in the lab frame. What is the speed of the water afterward?

(b) Suppose the tube is a conductor with self-inductance L, and the Earth’s magnetic field B

makes an angle ϕ to the vertical in the lab frame. What is the current in the tube afterward?

Solution. (a) This is called the Compton generator. It was invented by Compton while he was

still an undergraduate to measure the Coriolis force, and he found agreement to within 3%.
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We first compute the Coriolis impulse on a small piece of the water in the tube, with mass

dm, as the ring spins around. We have

dJc = (dm)

∫
2ω× v dt = (dm)

∫
2ω× dr = (dm) 2ω×∆r

where ∆r is the total displacement of that piece of water. Since the rotation is about the

east-west axis, all the displacements are north-south, which means that only the vertical

component of ω matters. If we let θ = 0 at the easternmost point of the ring, then the

component of the impulse on this fluid element along the ring is

dJc = (2ω cosϕdm)∆r sin θ

Next, we integrate over the ring, letting θ = 0 at the easternmost point, so that

Jc = 2ω cosϕ

∫ 2π

0
dθ

dm

dθ
(2R sin θ) sin θ = 4ωR cosϕ

m

2π
π.

The final velocity is given by Jc = mvf , so that

vf = 2ωR cosϕ.

(b) This is called an Earth inductor, or Delzenne’s circle. We simply apply Faraday’s law, using

the fact that the change in magnetic flux is 2πR2B cosϕ, along with

∆Φ =

∫
E dt = LIf

to conclude that

If =
2πR2

L
B cosϕ.

This is similar in form to the answer in part (a), and the reason is that the magnetic force

v ×B and the Coriolis force 2v × ω are similar. Indeed, we could have solved part (a) much

faster by thinking like the magnetic case, and computing a change in the “flux” of ω. Of

course, the analogy isn’t perfect. The fluid motion is dominated by kinetic energy, while, as

we mentioned in E5, in a typical circuit the kinetic energy of the charges is negligible, and

field energy dominates instead. Also, in a typical circuit the density of electrons is almost

perfectly uniform, while in a mechanical system the mass density can be arbitrary.

However, it can sometimes be helpful to keep this analogy in mind. If the force is the only

thing that matters, then we can often exchange magnetic and Coriolis force effects. For

example, as we discussed in E5, a superconductor in a magnetic field will produce currents

that expel that magnetic field. But since the Coriolis force has the same form, if you just

rotate a superconductor in a lab on the Earth, it will also produce currents, because the

electrons respond to the Coriolis force in the same way! This neat effect is called the London

moment.

[3] Problem 23. Consider a potential of the form V (r) ∝ −1/rn. It turns out that for some value of

n, it is possible for a particle to orbit in a circle passing through the origin. What is n?
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Solution. This is a classic problem, which was common in mechanics books in the 1800s. Technically,

it’s not really physical since the potential blows up near the origin, so the particle has to be aimed

perfectly to pass straight through it rather than get deflected through some angle, but it’s still cute.

Letting V (r) = −a/rn and using the effective potential results from M6, we have

1

2
m

(
dr

dt

)2

= E − a

rn
− L2

2mr2
.

We also know that
dθ

dt
=

L

mr2

and since we’re interested in the trajectory’s shape, we multiply by (dθ/dt)−2 to get

1

2
m

(
dr

dθ

)2

=
m2

L2

(
Er4 − a

rn−4
− L2r2

2m

)
.

The equation of a circle through the origin in polar coordinates is r = b sin θ, so(
dr

dθ

)2

= b2 cos2 θ = b2 − r2.

We therefore must have, for appropriate constants E, L, and b, that

b2 − r2 =
2m

L2

(
Er4 − a

rn−4
− L2r2

2m

)
.

The final terms on each side cancel, so the first two terms on the right-hand side have to sum to a

constant. This is only possible if E = 0 and n = 4.

[3] Problem 24. In this problem, you will explore yet another slick derivation of Kepler’s first law. As

usual, suppose the orbit lies in the xy plane. This derivation resolves around writing r(t) = r(t)r̂(θ)

where r̂ = cos θ x̂+ sin θ ŷ, and solving a differential equation for v(θ).

(a) Show that dv/dθ is proportional to r̂, times constants and conserved quantities.

(b) Integrate this result to find v(θ). What nice geometric property does it have?

(c) Plug this result into L = r× p to show that r(θ) is a conic section.

Solution. (a) Using the usual variables, we have

dv

dt
= −GM

r2
r̂, L = mr2

dθ

dt
.

The desired quantity is
dv

dθ
=

dv

dt

dt

dθ
= −GMm

L
r̂.

(b) Performing a straightforward integration, we find

v(θ) = −GMm

L
(sin θ + c1,− cos θ + c2)

where c1 and c2 are constants of integration. The nice result is that v(θ) is a circle! That’s

the hidden reason why this derivation will be so quick.
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(c) Carrying out the cross product, the magnitude of the angular momentum is

L = −GMm2r

L
((cos θ)(− cos θ + c2)− (sin θ)(sin θ + c1)).

We can easily solve this to get

1

r
=

GMm2

L2
(1 + c1 sin θ − c2 cos θ).

This can be put into the standard form for a conic section by just shifting θ to get rid of the

sin θ term.

5 Fluids

[2] Problem 25 (BAUPC). Two cylindrical containers, A and B, have the same shape and contain

equal volumes of water. In addition to the water, B contains an immersed balloon, attached to the

bottom with a string. Consider the following reasoning.

The total upward force exerted by the bottom of container A is equal to the weight of

the water in A, likewise for B. Since the areas of the bottoms are the same, and the

weights of the water are the same, the pressures at the bottoms are the same.

Is this reasoning correct or incorrect? Explain your answer.

Solution. The reasoning is incorrect. As usual, the pressure depends only on the depth of the

water, which is greater for container B. The net forces still balance: the greater upward force of the

bottom on the water in container B is compensated for by the downward force of the balloon on

the water.

[4] Problem 26. �T10 IPhO 1997, problem 3. A simple, neat question about how a plane works.

Remark

As you saw in the above problem, a plane works by having a wing angled so that air passing

next to it gets pushed downward; momentum conservation then implies there is an upward

force on the wing. Concretely, this upward force occurs because there is a higher pressure

on the bottom of the wing, which by Bernoulli’s principle means there must be a higher air

velocity on the top of the wing.

This is all standard knowledge among engineers. However, in outdated or poor physics

textbooks, an incorrect explanation is sometimes given. The story is that because the top

side of the wing is curved, the air at the top of the wing must be moving faster, so that it

can “catch up” to the air at the bottom. Then by Bernoulli’s principle there is a higher

pressure on the bottom of the wing, causing lift.

The second step of this argument is right, but the first step doesn’t make sense: there

is no reason air should want to “catch up” with the air it used to be next to. For

example, airplanes can fly upside down as long as the wing is angled the right way. In this

case, the air at the top of the wing still moves faster, but now it’s the bottom side that’s curved.
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There’s much more to say about flight, which is a whole field of study. For some nice further

discussion, see section 4.6 of The Art of Insight, or this paper and this paper by the same

author. And for a perspective from a cantankerous old aerodynamicist, see this talk.

[5] Problem 27. Physics Cup 2023, problem 1.

Solution. See the official solutions here.

[3] Problem 28. [A] The Navier–Stokes equation, governing the velocity v(x, t) of an incompressible

fluid of density ρ and dynamic viscosity µ, are

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

µ

ρ
∇2v.

Let’s consider a fixed fluid, with a given ρ and µ, and see how potential solutions to this equation

behave under symmetry transformations.

(a) Given a velocity v(x, t), we can define a time-reversed velocity profile v′(x, t) = −v(x,−t).

If we replace v with v′ in the above equation, then the ∂v/∂t term stays the same, because

both the sign of the velocity and the sign of the time derivative get flipped. Show that among

the other three terms, two of them stay the same and one flips sign, and interpret your result.

We can schematically describe the above transformation as “t → −t and v → −v”. Next, we’ll

consider a scaling, which simultaneously takes x → λx and t → λ2t.

(b) Find how this scaling affects v, P , time derivatives, and space derivatives.

(c) Show that under this scaling, all the terms in the Navier–Stokes equation scale as λ−n, for an

integer n you should find.

In other words, you will have shown that the Navier–Stokes equation has scale symmetry: if

something can happen in a fluid, then it can also happen at a scale 2 times larger and 4 times

slower. Remarkably, this also explains why there aren’t many additional terms in the equation! In

principle there must be terms with more time or space derivatives, since the microscopic dynamics

of a fluid are very complex. However, all such terms would be suppressed by more than λ−n as

we scale a solution up, which means that they wouldn’t have any significant effect on macroscopic

scales. The Navier–Stokes equation contains precisely the terms that remain relevant.

Solution. (a) The other term on the left-hand side gets two sign flips, because it has two powers

of v. On the right-hand side, the fluid properties ρ and µ stay the same, as does the pressure

P , so the ∇P term is unchanged, while the ∇2v term flips sign. The interpretation is that

viscosity is the only effect in the equations that cares about the direction of time, because it

arises from dissipation and thus has a direction set by the second law of thermodynamics. In

the absence of viscosity, the dynamics of a fluid are time reversal symmetric.

(b) Since v is a distance per time, it must scale as v → λ−1v. The spatial derivative transforms

in the opposite way as the space: if a configuration gets stretched out, then its change per

length is smaller, so its derivative gets smaller. Thus we conclude ∇ → λ−1∇, and by similar

reasoning ∂/∂t → λ−2∂/∂t.

Pressure is the tricky one. You can find it by thinking about how pressure emerges in kinetic

theory, or by dimensional analysis: P/ρ is a speed squared, and ρ is fixed, so P → λ−2P .
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(c) By plugging in our results to part (b), it’s straightforward to show n = 3.
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