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Problem Solving I: Mathematical Techniques

For the basics of dimensional analysis and limiting cases, see chapter 1 of Morin or chapter 2 of Order

of Magnitude Physics. Many more examples are featured in The Art of Insight; some particularly

relevant sections are 2.1, 5.5, 6.3, 8.2, and 8.3. Other sections will be mentioned throughout the

course. There is a total of 86 points.

1 Dimensional Analysis

Idea 1

Dimensional analysis is simply the statement that the dimensions of physical equations

should match on both sides. This simple idea can sometimes solve whole problems by itself.

Dimensional analysis is also a valuable consistency check. For example, if you’re trying

to derive the surface area of a sphere and find 4πr3, you can instantly know you made a

mistake. As another example, if a problem says the speed of an object is “small”, this

technically doesn’t obey dimensional analysis unless we compare it to another speed. Thus,

the problem might really mean you should assume the speed is small compared to the speed

of light, v ≪ c, which tells you something important.

To be precise, we should distinguish dimensions and units. The dimensions of a physical

quantity determine what kind of quantity it is, while a unit is a measure of a dimension.

Thus, for example, somebody’s height h can be measured in units of feet or meters, but both

have dimensions of length; this can be written as [h] = [ft] = [m] = L, where the brackets

indicate dimensions. Another example is that angles are dimensionless, but can be measured

in units of degrees or radians. These distinctions are not that important for our purposes, so

we will be sloppy and conflate dimensions with units, writing the equivalent of [h] = m.

Example 1: F = ma 2018 B11

A circle of rope is spinning in outer space with an angular velocity ω0. Transverse waves on

the rope have speed v0, as measured in a rotating reference frame where the rope is at rest.

If the angular velocity of the rope is doubled, what is the new speed of transverse waves?

Solution

To solve this problem by dimensional analysis, we reason about what could possibly affect the

speed of transverse waves. The result could definitely depend on the rope’s length L, mass

per length λ, and angular velocity ω0. It could also depend on the tension, but since this

tension balances the centrifugal force, it is determined by all of the other quantities. Thus

the quantities we have are

[L] = m, [λ] = kg/m, [ω0] = 1/s.

Since λ is the only thing with dimensions of mass, it can’t affect the speed, because there is
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nothing that could cancel out the mass dimension. So the only possible answer is

v0 ∼ Lω0

where the ∼ indicates equality up to a dimensionless constant, which cannot be found by

dimensional analysis alone. In practice, the constant usually won’t be too big or too small,

so Lω0 is a decent estimate of v0. But even if it isn’t, the dimensional analysis tells us the

scaling: if ω0 is doubled, the new speed is 2v0.

Example 2

Find the dimensions of the magnetic field.

Solution

To do this, we just think of some simple equation involving B, then solve for its dimensions.

For example, we know that F = q(v ×B), so

[B] =
[F ]

[q][v]
=

kg ·m
s2

1

C

1

m/s
=

kg

C · s
.

[2] Problem 1. Find the dimensions of power, the gravitational constant G, the permittivity of free

space ϵ0, and the ideal gas constant R.

[1] Problem 2. Derive Kepler’s third law for circular orbits, using only dimensional analysis. (Why

do you think people didn’t figure out this argument 2000 years ago?)

[2] Problem 3. Some questions about vibrations.

(a) The typical frequency f of a vibrating star depends only on its radius R, density ρ, and

the gravitational constant G. Use dimensional analysis to find an expression for f , up to a

dimensionless constant. Then estimate f for the Sun, looking up any numbers you need.

(b) The typical frequency f of a small water droplet freely vibrating in zero gravity could depends

on its radius R, density ρ, surface tension γ, and the gravitational constant G. Argue that at

least one of these parameters doesn’t matter, and find an expression for f up to a dimensionless

constant.

[3] Problem 4. Some questions about the speed of waves, to be covered in greater detail in W3. For

all estimates, you can look up any numbers you need.

(a) The speed of sound in an ideal gas depends on its pressure p and density ρ. Explain why we

don’t have to use the temperature T or ideal gas constant R in the dimensional analysis, and

then estimate the speed of sound in air.

(b) The speed of sound in a fluid depends only on its density ρ and bulk modulus B = −V dP/dV .

Estimate the speed of sound in water, which has B = 2.1GPa.

The speed of waves on top of the surface of water can depend on the water depth h, the wavelength

λ, the density ρ, the surface tension γ, and the gravitational acceleration g.
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(c) Find the speed of capillary waves, i.e. water waves of very short wavelength, up to a dimen-

sionless constant.

(d) Find the speed of long-wavelength waves in very deep water, up to a dimensionless constant.

[3] Problem 5 (Morin 1.5). A particle with mass m and initial speed v is subject to a velocity-

dependent damping force of the form bvn.

(a) For n = 0, 1, 2, . . ., find how the stopping time and stopping distance depend on m, v, and b.

(b) Check that these results actually make sense as m, v, and b are changed, for a few values of n.

You should find something puzzling going on. (Hint: to resolve the problem, it may be useful

to find the stopping time explicitly in a few examples.)

Idea 2

Dimensional analysis applies everywhere. The argument of any function that is not a mono-

mial, such as sinx, must have no dimensions. The derivative d/dx has the opposite dimensions

to x, and the dx in an integral has the same dimensions as x. When you perform an integral,

your first step should usually be to “nondimensionalize” it, i.e. to separate out dimensionful

factors to leave a dimensionless integral.

Example 3

Evaluate the indefinite integral

I =

∫ a

0

dx

bx2 + c

where b and c are both positive.

Solution

This isn’t a hard integral by any means, but it’s a simple way to demonstrate what we mean

by “nondimensionalizing”. If you do the integral directly, you’ll get lots of intermediate

expressions with a, b, and c in them, which produces clutter and more opportunities for error.

Instead, start by substituting u =
√
b/c x, to get

I =
1√
bc

∫ u0

0

du

u2 + 1
=

1√
bc

tan−1(u0), u0 = a
√
b/c.

We can now check this by dimensional analysis. Let’s suppose this integral arose from a

problem where x had dimensions of length, [x] = m, and b was dimensionless. Then we must

have [a] = m, [c] = m2. Our answer makes sense if [I] = m−1 and [u0] = 1, which both hold.

[2] Problem 6. We are given the integral∫ ∞

−∞
e−x2

dx =
√
π.

For positive a, find the value of the integral∫ ∞

−∞
e−ax2+bx+c dx
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and verify that your answer makes dimensional sense.

Remark

Consider the value of the definite integral∫ x

−∞
e−x′2

dx′.

You can try all day to compute the value of this integral, using all the integration tricks

you know, but nothing will work. The function e−x2
simply doesn’t have an antiderivative

in terms of the functions you already know, i.e. in terms of polynomials, exponents and

logarithms, and trigonometric functions (for more discussion, see here).

If you ask a computer algebra system like Mathematica, it’ll spit out something involv-

ing erf(x), which is defined by being an antiderivative of e−x2
. But is this really an

“analytic” solution? Isn’t that just saying “the integral of e−x2
is equal to the integral

of e−x2
”? Well, like many things in math, it depends on what the meaning of the word “is” is.

The fact is, the set of functions we regard as “elementary” is arbitrary; we just choose a set

that’s big enough to solve most of the problems we want, and small enough to attain fluency

with. (Back in the days before calculators, it just meant all the functions whose values were

tabulated in the references on hand.) If you’re uncomfortable with erf(x), note that a similar

thing would happen if a little kid asked you what the ratio of the opposite to adjacent sides

of a right triangle is. You’d say tan(x), but they could say it’s tautological, because the only

way to define tan(x) at their level is as the ratio of opposite to adjacent sides. Similarly,

1/x has no elementary antiderivative – unless you count log(x) as elementary, but ultimately

log(x) is simply defined to be such an antiderivative. It’s all tautology, but it’s still useful.

[2] Problem 7. In particle physics it is conventional to work in “natural units”, where the numeric

values of ℏ and c are equal to 1. For example, if we take the second as the unit of time, then we

can take the light-second as the unit of length, so that c = 1 light-second/second. This is usually

sloppily written as “ℏ = c = 1” so that factors of ℏ and c can be suppressed. However, you can

always restore these factors by dimensional analysis.

According to standard references, the mass of the Higgs boson is about 125GeV, where 1 eV is

the energy gained by an electron accelerated through a voltage difference of 1V. Fix the dimensions

of this statement and find the mass of the Higgs boson in kilograms.

[3] Problem 8. �W10 USAPhO 2002, problem A3.

Example 4

The wavefunction ψ(x, y, z) of the electron in a hydrogen atom obeys the Schrodinger equation

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ − e2

4πϵ0r
ψ = Eψ.

Estimate the size of the hydrogen atom.
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Solution

We don’t need to find the wavefunction, as the answer is already determined by dimensional

analysis: there is only one way to form a length using the quantities given above. We have

[m] = kg, [ℏ] = J · s = kgm2 s−1, [e2/4πϵ0] = J ·m = kgm3 s−2.

Doing dimensional analysis, the only length scale is the Bohr radius,

a0 =
4πℏ2ϵ0
me2

∼ 10−10m.

I’ve thrown in a 4π above because ϵ0 always appears in the equations as 4πϵ0. The

dimensional analysis would be valid without this factor, but as you’ll see in problem 11, if

you don’t include it then annoying compensating factors of 4π will appear elsewhere.

Classically (i.e. without ℏ), there is no way to form a length, and hence there should be

no classically stable radius for the atom. (This was one of the arguments used by Bohr to

motivate quantum mechanics; it appears in the beginning of his paper introducing the Bohr

model.) Once we introduce ℏ, there are three dimensionful parameters in the problem, as

listed above. And there are exactly three fundamental dimensions. So there is only one way

to create a length, which we found above, one way to create a time, one way to create an

energy, and so on. This means that the solutions to the Schrodinger equation above look

qualitatively the same no matter what these parameters are; all that changes are the overall

length, time, and energy scales. In problem 11, you’ll investigate how this conclusion changes

when we add more dimensionful parameters.

Dimensional analysis is especially helpful with scaling relations. For example, a question might ask

you how the radius of the hydrogen atom would change in a world where the electron mass was

twice as large. You would solve this problem in the exact same way as the example above, using

dimensional analysis to show that a0 ∝ 1/m.

[3] Problem 9. In this problem we’ll continue the dimensional analysis of the Schrodinger equation.

(a) Estimate the typical energy scale of quantum states of the hydrogen atom, as well as the

typical “velocity” of the electron, using dimensional analysis.

(b) Do the same for one-electron helium, the system consisting of a helium nucleus (containing

two protons) and one electron.

(c) Estimate the electric field needed to rip the electron off the hydrogen atom.

Idea 3: Buckingham Pi Theorem

Dimensional analysis can’t always pin down the form of the answer. If one has N quanti-

ties with D independent dimensions, then one can form N −D independent dimensionless

quantities. Dimensional analysis can’t say how the answer depends on them.

A familiar but somewhat trivial example is the pendulum: its period depends on L, g, and the

amplitude θ0, three quantities which contain two dimensions (length and time). Hence we can form

one dimensionless group, which is clearly just θ0 itself. The period of a pendulum is T = f(θ0)
√
L/g.
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Example 5: F = ma 2014 12

A paper helicopter with rotor radius r and weight W is dropped from a height h in air with

a density of ρ. Assuming the helicopter quickly reaches terminal velocity, use dimensional

analysis to analyze the total flight time T .

Solution

The answer can only depend on the parameters r, W , h, and ρ. There are four quantities in

total, but three dimensions (mass, length, and time), so by the Buckingham Pi theorem we

can form one independent dimensionless quantity. In this case, it’s clearly r/h. Continuing

with routine dimensional analysis, we find

T = f(r/h)h2
√

ρ

W
.

The form of this expression is a bit arbitrary; for instance, we could also have written

f(r/h)r2 in front, or even f(r/h)r37h−35. These adjustments just correspond to pulling

factors of r/h out of f , not to changing the actual result.

This is as far as we can get with dimensional analysis alone, but we can go further using

physical reasoning. If the helicopter quickly reaches terminal velocity, then it travels at a

constant speed. So we must have T ∝ h, which means that f(x) ∝ x, and

T ∝ rh

√
ρ

W
.

Example 6

An hourglass is constructed with sand of density ρ and an orifice of diameter d. When the

sand level above the orifice is h, what is the mass flow rate µ?

Solution

The answer can only depend on ρ, d, h, and g. The Buckingham Pi theorem gives

µ = f(h/d)ρ
√
gd5.

That’s as far as we can get with dimensional analysis; to go further we need to know more

about sand. If we were dealing with an ideal fluid, then the flow speed would be v =
√
2gh by

Torricelli’s law, which means the flow rate has to be proportional to
√
h. Then f(x) ∝

√
x,

giving the result µ ∝ ρd2
√
gh. This is a good estimate as long as the orifice isn’t so small

that viscosity starts to dominate.

But this isn’t how sand works: measurements show that the pressure at the orifice doesn’t

actually depend on the height of the sand, an empirical result known as Janssen’s law. That’s

because sand is a granular material whose motion is dominated by the friction between sand

grains, and this friction prevents the additional pressure from propagating downward. The
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resulting flow rate is independent of h, as can be confirmed by watching an hourglass run.

Then f(x) is a constant, giving µ ∝ ρ
√
gd5. This neat, experimentally verified result is called

Beverloo’s law, and it’s essential in industry to design grain hoppers and corn silos.

Remark

One has to be a little careful with the Buckingham Pi theorem. For example, if all we had

were 3 speeds vi, we can form two dimensionless quantities: v1/v2 and v1/v3. (The quantity

v2/v3 is not independent, since it is the quotient of these two.) But there are 3 quantities

with 2 dimensions (length and time), so we expect only 1 dimensionless quantity.

The problem is that the two dimensions really aren’t independent: for any quantity built

from the vi, a power of length always comes with an inverse power of time, so there’s only

one independent dimension. These considerations can be put on a more rigorous footing in

linear algebra, where the Buckingham Pi theorem is merely a special case of the rank-nullity

theorem. If you’re ever in doubt, you can just forget about the theorem and play with the

equations directly.

Remark

Dimensional analysis is an incredibly common tool in Olympiad physics because it lets you

say a lot even without much advanced knowledge. If a problem ever says to find some

quantity “up to a constant/dimensionless factor”, or how that quantity scales as another

quantity changes, or what that quantity is proportional to, it’s almost certainly asking you

to do dimensional analysis. Another giveaway is if the problem looks extremely technical and

advanced, because they can’t actually be.

[3] Problem 10 (Insight). In this problem we’ll do one of the most famous dimensional analyses of

all time: estimating the yield of the first atomic bomb blast. Such a blast will create a shockwave

of air, which reaches a radius R at time t after the blast. The air density is ρ, and we want to

estimate the blast energy E.

(a) Declassified photographs of the blast indicate that R ≈ 100m at time t ≈ 15ms. The density

of air is ρ ≈ 1 kg/m3. Estimate the blast energy E.

(b) How much mass-energy (in grams) was used up in this blast?

(c) If we measure the entire function R(t), what general form would we expect it to have, if this

dimensional analysis argument is correct?

Remark

The British physicist G. I. Taylor performed the dimensional analysis in problem 10 upon

seeing a picture of the first atomic blast in a magazine. The result was so good that the

physicists at the Manhattan project thought their security had been breached!

During World War II, the exact value of the critical mass needed to set off a nuclear explosion

was important and nontrivial information. The Nazi effort to make a bomb had been stopped
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by Werner Heisenberg’s huge overestimation of this quantity, and after the war, the specific

value was kept a closely guarded secret. That is, it was until 1947, when a Chinese physicist

got the answer using a rough estimate that took four lines of algebra.

[5] Problem 11. We now consider the Schrodinger equation for the hydrogen atom in greater depth.

We begin by switching to dimensionless variables, which is useful for the same reason that writing

integrals in terms of dimensionless variables is: it highlights what is independent of unit choices.

(a) Define a dimensionless length variable r̃ = r/a0, where a0 is the length scale found in example 4.

The ∇2 term in the Schrodinger equation is a second derivative, the 3D generalization of

d2/dx2. Using the chain rule, argue that

∇̃2 = a20∇2

where ∇̃ is the gradient with respect to r̃.

(b) Similarly define a dimensionless energy Ẽ = E/E0, using the energy scale E0 found in

problem 9. Show that the Schrodinger equation can be written in a form like

−∇̃2ψ − 1

r̃
ψ = Ẽψ

Here I’ve suppressed all dimensionless constants, like factors of 2, because they depend on

how you choose to define E0 and don’t really matter at this level of precision.

The result of this part confirms what we concluded above: solutions to the Schrodinger

equation don’t qualitatively depend on the values of the parameters, because they all come

from scaling a solution to this one dimensionless equation appropriately.

(c) This is no longer true in relativity, where the total energy is

E =
√
p2c2 +m2c4.

Assuming p≪ mc, perform a Taylor expansion to show that the next term is Ap4, and find

the coefficient A. (If you don’t know how to do this, work through the next section first.)

(d) In quantum mechanics, the momentum is represented by a gradient, p→ −iℏ∇. (We will see

why in X1.) Show that the Schrodinger equation with the first relativistic correction is

− ℏ2

2m
∇2ψ − e2

4πϵ0r
ψ + ℏ4A∇4ψ = Eψ.

(e) Since there is now one more dimensionful quantity in the game, it is possible to combine the

quantities to form a dimensionless one. Create a dimensionless quantity α that is proportional

to e2/4π, then numerically evaluate it. This is called the fine structure constant. It serves as

an objective measure of the strength of the electromagnetic force, because it is dimensionless,

and hence its value doesn’t depend on an arbitrary unit system.

(f) As the number of protons in the nucleus increases, the relativistic correction becomes more

important. Estimate the atomic number Z where the correction becomes very important.
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You probably won’t see any differential equations as complex as the ones in the above problem

anywhere in Olympiad physics, but the key idea of using dimensionless quantities to simplify and

clarify the physics can be used everywhere.

[5] Problem 12. �h10 IPhO 2007, problem “blue”. This problem applies thermodynamics and dimen-

sional analysis in some exotic contexts.

Example 7

Estimate the Young’s modulus for a material with interatomic separation a and typical atomic

bond energy Eb. Use this to estimate the spring constant of a rod of area A and length L,

as well as the speed of sound, if each atom has mass m.

Solution

This example is to get you comfortable with the Young’s modulus Y , which occasionally

comes up. It is defined in terms of how much a material stretches as it is pulled apart,

Y =
stress

strain
=

restoring force/cross-sectional area

change in length/length
.

The Young’s modulus is a useful way to characterize materials, because unlike the spring

constant, it doesn’t depend on the shape of the material. For example, putting two identical

springs side-by-side doubles the spring constant, because they both contribute to the force.

But since the stress is the force per area, it’s unchanged. Similarly, putting two identical

springs end-to-end halves the spring constants, because they both stretch, but since the

strain is change in length per length, it’s unchanged. So you would quote a material’s

Young’s modulus instead of its spring constant, for the same reason you would quote a

material’s resistivity instead of its resistance.

We note that Y has the dimensions of energy per length cubed, so

Y ∼ Eb

a3

solely by dimensional analysis. (Of course, for this dimensional analysis to work, one

has to understand why Eb and a are the only relevant quantities. It’s because Y , or

equivalently the spring constant k, determines the energy stored in a stretched spring.

But microscopically this comes from the energy stored in interatomic bonds when

they’re stretched. So the relevant energy scale is the bond energy Eb, and the relevant

distance scale is a, because that determines how many bonds get stretched, and by how much.)

To relate Y to the spring constant of a rod, note that

Y =
F/A

∆L/L
=
L

A

F

∆L
= k

L

A

for a rod, giving the estimate k ∼ AEb/La
3. This is correct to within an order of magnitude!

To relate Y to the speed of sound, note that the sound speed, like most wave speeds, depends

on the material’s inertia and its restoring force against distortions. Since the speed of
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sound doesn’t depend on the extrinsic features of a metal object, such as a length, both of

these should be measured intrinsically. The intrinsic measure of inertia is the mass density

ρ ∼ m/a3, while the intrinsic measure of restoring force is just Y . By dimensional analysis,

v ∼

√
Y

ρ
∼

√
Eb/a3

m/a3
∼

√
Eb

m
.

This is also reasonably accurate. For example, in diamond, Eb ∼ 1 eV (a typical atomic energy

scale), while a carbon nucleus contains 12 nucleons, so to the nearest order of magnitude,

m ∼ 10mp, where a useful fact is mp ∼ 1GeV/c2. Thus,

v ∼
√

1 eV

1010 eV
c ∼ 10−5 c ∼ 3 km/s

which is the right order of magnitude. (The true answer is 12 km/s.)

Amazingly, we can get an even rougher estimate of v for any solid in terms of nothing besides

fundamental constants. To be very rough, the binding energy is on the order of that of

hydrogen. As you found in problem 9, this is, by dimensional analysis,

Eb ∼
1

4πϵ0

e2

a0
∼ me

(
e2

4πϵ0ℏ

)2

.

We take the nuclear mass to be very roughly the proton mass mp, which gives

v

c
∼

√
me

mp

(
e2

4πϵ0ℏc

)2

∼ α

√
me

mp

where α is as found in problem 11. This expresses the speed of sound in terms of the

dimensionless strength of electromagnetism α, the electron to proton mass ratio, and the

speed of light. Of course, the approximations we have made here have been so rough that

now the answer is off by two orders of magnitude, but now we know how the answer would

change if the fundamental constants did.

Estimates as simple as these can be surprising to even seasoned physicists: in 2020, the

simple estimate above was rediscovered and published in one of the top journals in science.

If you want to learn how to do more of these estimates, this paper is a good starting point.

Remark

A warning: from these examples, you could get the idea that dimensional analysis gives you

nearly godlike powers, and the ability to write down the answer to most physics problems

instantly. In reality, it only works if you’re pretty sure your physical system depends on

only about 3 or 4 variables – and the hard part is often finding which variables matter.

For example, as we saw above, you can’t get Kepler’s third law for free because that

requires knowing the dimensions of G, which require knowing that gravity is an inverse
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square law in the first place, a luxury Kepler didn’t have. And as another example, we

couldn’t have figured out E = mc2 long before Einstein, as who would have thought that

the speed of light had anything to do with the energy of a lump of matter? Without the

framework of relativity, it seems as irrelevant as the speed of sound or the speed of water waves.

Fortunately, carrying out dimensional analysis in practice is usually fairly straightforward.

Often, on exams, you’ll simply be told which variables matter. And in general, you should

get into the habit of doing it constantly, to check your work.

Example 8

Cutting-edge archeological research has found that the famed T. Rex was essentially a gigantic

chicken. Suppose a T. Rex is about N = 20 times larger in scale than a chicken. How much

larger is its weight, cross-sectional area of bone, and walking speed?

Solution

These kinds of biological scaling arguments are fun to think about, though the reliability of

the results is somewhat questionable – the data is extremely noisy, and if any given scaling law

doesn’t quite match it, you can always think a bit more, and come up with a new argument

yielding a different scaling. But here are a few simple examples:

• Since the densities should match, the weight should scale with the volume, so as N3.

• Since the maximum compressive pressure that bone can take should be the same, the

bone area should scale with the weight, so also as N3. That is, the width of the bones

scales as N3/2, while their length L scales only as N . This is the reason small animals

are strong relative to their weight, while large ones need to be very bony to even stand.

The largest animals today are whales, as they don’t need to support their own weight.

• As a very crude model of walking, we can think of the legs as swinging like a free

pendulum. The length of one step is proportional to L, while the period of the steps is

proportional to
√
L. Thus, the walking speed scales as

√
L ∝

√
N .

There’s an entire literature on these arguments. For instance, this delightful paper discusses

how furry mammals shake to dry themselves off. This is an increasingly severe problem for

smaller mammals, since a relatively larger amount of water will cling to them after getting

wet, which can cause hypothermia. Using elementary fluid mechanics, the paper argues that

the optimal frequency the mammal will shake to dry itself off scales as f ∝ m−3/16.

Example 9

How does the maximum jump height of an animal depend on its length scale L? How about

the gravitational acceleration g?
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Solution

The maximum jump height h satisfies E = mgh where E is the energy supplied by the

muscles. But both the total mass m and the animal’s muscle mass (which determines E)

scale as L3, so we have h ∝ L0. So the jump height doesn’t scale with size: a dinosaur

can’t jump much higher than a human – and indeed, we can’t jump much higher than fleas can!

The other half of the problem seems very simple: we must have h ∝ 1/g because neither

E or m depend on g. But this is completely wrong! In gravity 10g, a person wouldn’t be

able to jump at all; they’d be so crushed by their own weight that they wouldn’t even be

able to stand. Mathematically, the dimensional analysis argument fails here because the

answer depends on the detailed biomechanics of muscle and bone, which involve many more

dimensionful quantities. By contrast, the result h ∝ L0 works well because the animals

we were comparing all evolved so that their muscles would work reasonably well in Earth’s

gravity, releasing a decent fraction of their stored energy in the short time required for a

jump. So, as remarked above, you can’t solve every problem by just listing a few quantities

and doing dimensional analysis – you really have to understand the system each time.

2 Approximations

Idea 4: Taylor Series

For small x, a function f(x) may be approximated as

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(0) + . . .+

xn

n!
f (n)(0) +O(xn+1)

where O(xn+1) stands for an error term which grows at most as fast as xn+1.

There are a few Taylor series that are essential to know. The most important are

exp(x) = 1 + x+
x2

2
+
x3

6
+O(x4), log(1 + x) = x− x2

2
+
x3

3
−O(x4)

and the small angle approximations

sinx = x− x3

6
+O(x5), cosx = 1− x2

2
+O(x4).

Another Taylor series you learned long before calculus class is

1

1− x
= 1 + x+ x2 + x3 +O(x4).

Usually you’ll only need the first one or two terms, but for practice we’ll do examples with

more. If any of these results aren’t familiar, you should rederive them!

12

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Example 10

Find the Taylor series for tanx up to, and including the fourth order term.

Solution

By the fourth order term, we mean the term proportional to x4. (Not the fourth nonzero

term, which would be O(x7).) Of course, tanx is an odd function, so the O(x4) term is

zero, which means we only need to expand up to O(x3). That means we can neglect O(x4)

terms and higher everywhere in the computation, subject to some caveats we’ll point out later.

By definition, we have

tanx =
sinx

cosx
=
x− x3/6 +O(x5)

1− x2/2 +O(x4)
.

However, it’s a little tricky because we have a Taylor series in a denominator. There are

two ways to deal with this. We could multiply both sides by cosx, and expand tanx in

a Taylor series with unknown coefficients. Then we would get a system of equations that

will allow us to solve for the coefficients recursively, a technique known as “reversion of series”.

A faster method is to use the Taylor series for 1/(1− x). We have

1

1− u
= 1 + u+O(u2)

and substituting u = x2/2−O(x4) gives

1

cosx
= 1 +

x2

2
+O(x4).

Therefore, we conclude

tanx = (x− x3/6 +O(x5))(1 + x2/2 +O(x4)) = x+ x3/3 +O(x5).

Here I was fairly careful with writing out all the error terms and intermediate steps, but as

you get better at this process, you’ll be able to do it faster. (Of course, one could also have

done this example by just directly computing the Taylor series of tanx from its derivatives.

This is possible, but for more complicated situations it’s generally not a good idea, because

computing high derivatives of a complex expression tends to get very messy. It’s better to

just Taylor expand the individual pieces and combine the results, as we did here.)

Remark

Finding series up to a given order can be subtle. For example, if you want to compute an

O(x4) term, it is not always enough to expand everything up to O(x4), because powers of x

might cancel. To illustrate this, the last step here is wrong:

tanx =
x3 sinx

x3 cosx
=
x4 +O(x6)

x3 +O(x5)
̸= x+O(x5).
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[2] Problem 13. Find the Taylor series for 1/ cosx up to and including the fourth order (O(x4)) term.

[2] Problem 14. Extend the computation above to get the x5 term in the Taylor series for tanx.

[3] Problem 15. For small x, approximate the quantity

x2ex

(ex − 1)2
− 1

to lowest order. That is, find the first nonzero term in the Taylor series. (Hint: if you don’t

take enough terms in the Taylor series to begin with, you’ll get an answer of zero, indicating you

approximated too loosely. But if you take too many, the computation will get extremely messy.)

[3] Problem 16. The function cos−1(1− x) does not have a Taylor series about x = 0. However, it

does have a series expansion about x = 0 in a different variable.

(a) What is this variable, and what’s the first term in the series?

(b) ⋆ What’s the next nontrivial term in the series?

Idea 5: Binomial Theorem

When the quantity xn is small, it is useful to use the binomial theorem,

(1 + x)n = 1 + xn+O(x2n2).

It applies even when n is not an integer. In particular, n can be very large, very small, or

even negative. The extra terms will be small as long as xn is small. If desired, one can find

higher terms using binomial coefficients,

(1 + x)n =

∞∑
m=0

(
n

m

)
xm

where the definition of the binomial coefficient is formally extended to arbitrary real n.

The binomial theorem is one of the most common approximations in physics. It’s really just taking

the first two terms in the Taylor series of (1 + x)n, but we give it a name because it’s so useful.

[1] Problem 17. Suppose the period of a pendulum is one second, and recall that

T = 2π

√
L

g
.

If the length is increased by 3% and g is increased by 1%, use the binomial theorem to estimate

how much the period changes. This kind of thinking is extremely useful when doing experimental

physics, and you should be able to do it in your head.

[1] Problem 18. Consider an electric charge q placed at x = 0 and a charge −q placed at x = d. The

electric field along the x axis is then

E(x) =
q

4πϵ0

(
1

x2
− 1

(x− d)2

)
.

For large x, use the binomial theorem to approximate the field.
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[3] Problem 19. Some exercises involving square roots.

(a) Manually find the Taylor series for
√
1 + x up to second order, and verify they agree with the

binomial theorem.

(b) Approximate
√
1 + 2x+ x2 for small x using the binomial theorem. Does the result match

what you expect? If not, how can you correct it?

Example 11: Birthday Paradox

If you have n people in a room, around how large does n have to be for there to be at least

a 50% chance of two people sharing the same birthday?

Solution

Imagine adding people one at a time. The second person has a 1/365 chance of sharing a

birthday with the first. If they don’t share a birthday, the third person has a 2/365 chance

of sharing a birthday with either, and so on. So a decent estimate for n is the n where(
1− 1

365

)(
1− 2

365

)
. . .

(
1− n

365

)
≈ 1

2
.

The surprising point of the birthday paradox is that n ≪ 365. So we can use the binomial

theorem in reverse, approximating the left-hand side as(
1− 1

365

)(
1− 1

365

)2

. . .

(
1− 1

365

)n

≈
(
1− 1

365

)n2/2

which is valid since n/365 is small. It’s tempting to use the binomial theorem again to write(
1− 1

365

)n2/2

≈ 1− n2

2 · 365
=

1

2

which gives n = 19. However, this is a bad approximation, because the binomial theorem only

works if (n2/2)(1/365) is very small, but here we’ve set it to 1/2, which isn’t particularly small.

Since the series expansion variable is 1/2, each term in the series expansion is roughly 1/2 as

big as the last (ignoring numerical coefficients), so we expect to be off by about (1/2)2 = 25%.

The binomial theorem is an expansion for (1 + x)y which works when xy is small. Here xy

isn’t small, and we instead want an approximation that works when only x is small. One

trick to dealing with an annoying exponent is to take the logarithm, since that just turns it

into a multiplicative factor. Note that

log((1 + x)y) = y log(1 + x) ≈ yx

by Taylor series, which implies that

(1 + x)y ≈ eyx

when x is small, an important fact which you should remember. So we have(
1− 1

365

)n2/2

≈ e−n2/2(365) =
1

2

and solving gives n = 22.5. We should round up since n is actually an integer, giving n = 23,

which is indeed the exact answer.
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Remark

Precisely how accurate is the approximation (1+x)y ≈ eyx? Note that the only approximate

step used to derive it was taking log(1 + x) ≈ x, which means we can get the corrections by

expanding to higher order. If we take the next term, log(1 + x) ≈ x− x2/2, then we find

(1 + x)y ≈ eyxe−x2y/2.

Note that because we are approximating the logarithm of the quantity we want, the next

correction is multiplicative rather than additive. Our approximation has good fractional

precision as long as x2y ≪ 1. In the previous example, x2y/2 = (22.5/365)2/4 = 0.1%, so

our answer was quite accurate.

[2] Problem 20. Find a series approximation for xy, given that y is small and x is neither small nor

exponentially huge. (Hint: to check if you have it right, you can try concrete numbers, such as

y = 0.01 and x = 10. The series expansion variable may look a bit unusual.)

Remark

As you’ve seen above, there are lots of qualitatively different types of series approximations.

There are many we haven’t even mentioned at all. For example, Fourier series will be

important in W1, and the Pade approximant is a twist on a Taylor series which instead

approximates a function with a ratio of polynomials.

Fortunately, 90% of approximations on the USAPhO and IPhO just boil down to using

sinx ≈ x, cosx ≈ 1− x2/2, (1 + x)n ≈ 1 + xn, ex ≈ 1 + x, log(1 + x) ≈ x.

These are the only results that you have to know by heart. Almost all situations where you

will use these will look like problem 17 or problem 18.

Remark

Just for fun, here are some more examples of tough series expansions. First, in the “Lindhard”

theory of electrical shielding in metals, one has to perform the small x expansion

1

2
+
x2 − 1

4x
log

(
1 + x

1− x

)
≈ x2

3
+O(x4).

Since there’s a 1/x in front of the second term, you have to expand the logarithm to third

order to get the right prefactor, like in problem 15, but the algebra’s a lot messier.

The Soviet mathematician V.I. Arnold used to say that math has gone downhill since Newton,

because people in that time could supposedly quickly evaluate the limit

lim
x→0

sin(tan(x))− tan(sin(x))

arcsin(arctan(x))− arctan(arcsin(x))
.
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The first terms that don’t cancel are O(x7), giving

lim
x→0

−55x7

1008 + 107x7

5040 +O(x9)

−341x7

1008 + 173x7

5040 +O(x9)
= 1.

This amazingly simple answer can be found with a very tricky geometric argument, of the

style common in Newton’s Principia, though it’s hard to make it totally rigorous.

Finally, as we will see in E2, the capacitance of two spheres of radius a separated by r ≫ a

can be written as an infinite series in a/r. In his Treatise on Electricity and Magnetism (1891,

section 146), Maxwell manually evaluated this series out to order (a/r)22! I don’t even know

what the point of that was, but it illustrates why physicists took decades to fully comprehend

the implications of Maxwell’s Treatise. Today, we teach the conceptual essentials of Newton

and Maxwell’s physics, but the reason they’re giants is because they put their theories to

work, in tough calculations we barely hear about today.

3 Numeric Solutions

Idea 6

In Olympiads, you may have to find numeric solutions for equations that can’t be solved

analytically. A simple but reliable method is to “guess and check”, starting with a reasonable

first guess (e.g. derived by solving an approximated version of the equation, or sketching the

graphs of both sides), plugging it into both sides, then proceeding with binary search.

[3] Problem 21. Sometimes, you can get an accurate numeric answer very quickly on a basic calculator

by using the method of iteration, which solves equations of the form x = f(x).

(a) Take a scientific calculator (in radians), put in any number, and press the “cos” button many

times. Convince yourself that the final number you get is the unique solution to x = cosx.

(b) What are the key features of the graphs of x and cosx that made this work? For example, why

doesn’t pressing cos−1 repeatedly give the same result? As another example, since x = sinx

has a unique solution, why does repeatedly pressing sin not work so well?

(c) Find a nonzero solution for x = tan(x/2).

(d) Find a nonzero solution for ex − 1 = 2x.

(e) Find a positive solution for xx = e.

[2] Problem 22. [A] Newton’s method is a more sophisticated method for solving equations, which

converges substantially faster than binary search. Suppose we want to solve the equation f(x) = 0.

Starting with a nearby guess x0, we evaluate f(x0) and f
′(x0), then find our next guess by applying

the tangent line approximation at this point,

x1 = x0 −
f(x0)

f ′(x0)
.

The process repeats until we get a suitably accurate answer.
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(a) Use Newton’s method to solve x = cosx.

(b) Newton’s method converges quadratically, in the sense that for typical functions, if your

current guess is ϵ away from the answer, the next guess will be O(ϵ2) away. (This implies that

the number of correct digits in the answer roughly doubles with each iteration!) Explain why,

and then find an example where Newton’s method doesn’t converge this fast.

Newton’s method is very important in general, but it’s not that useful on Olympiads. It takes a

while to set up, especially if the derivative f ′ is complicated, and you usually don’t need that many

significant figures in your answer anyway. (There are alternatives to Newton’s method, such as

Halley’s method, that converge even faster, but the tradeoff is the same: each iteration takes more

effort to calculate, as higher derivatives of f must be computed.)

Remark

You’ve seen several numeric methods above, and going forward, you should feel free to use

whichever looks best in each situation. However, if you’re solving problems using the same

calculator you use for schoolwork, you should make sure to not rely on its more advanced

features. In Olympiads, you’re generally only allowed to use an extremely basic scientific

calculator, with a tiny display and no memory except for the “Ans” key.

Example 12

In units where c = 1, the Lorentz factor is defined as

γ =
1√

1− v2
.

Suppose that a particle traveling very close to the speed of light has γ = 108. Find the

difference ∆v between its speed and the speed of light.

Solution

This problem looks easy; by some trivial algebra we find

∆v = 1−
√
1− 1/γ2.

But when you plug this into a cheap scientific calculator, you get zero, or something that’s

quite far from the right result. The problem is that we are trying to find a small quantity ∆v

by subtracting two nearby, much larger quantities. But the calculator has limited precision,

and it ends up rounding 1− 1/γ2 = 1− 10−16 a bit, giving a completely wrong answer!

Instead, we can apply the binomial theorem to find

∆v ≈ 1

2γ2
+O(1/γ4).

This is no longer the exact answer, but it’s a great approximation, because the error term is

around 1/γ2 ∼ 10−16 times as small as the answer, and it’s easy for a calculator to evaluate.

The lesson, which we’ll see over and over again in later handouts, is that an exact theoretical

expression can often be less intuitive, less useful, and less accurate than a well-chosen

approximate one. The art of physics is knowing how to make such approximations.
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[1] Problem 23. Find the solutions of the equation x2 − 1020x+ 1 = 0 to reasonable accuracy.

[4] Problem 24. [A] Consider the equation ϵx3 − x2 + 1 = 0, where ϵ is small. Find approximate

expressions for all three roots of this equation, up to and including terms of order ϵ.

4 Limiting Cases

Idea 7

Limiting cases can be used to infer how the answer to a physical problem depends on its

parameters. It is primarily useful for remembering the forms of formulas, but can also be

powerful enough to solve multiple choice questions by itself.

Example 13

What is the horizontal range of a rock thrown with speed v at an angle θ to the horizontal?

Solution

This result is easy to derive, but dimensional analysis and extreme cases can be used to

recover the answer too. It can only depend on v, g, and θ, so by dimensional analysis it is

proportional to v2/g. This is sensible, since the range increases with v and decreases with g.

Now, the range is zero in the extreme cases θ = 0 and θ = π/2, but not anywhere in between,

so if we remember the range contains a simple trigonometric function, it must be sin(2θ), so

R ∝ v2

g
sin(2θ).

We can also get the prefactor by a simple limiting case, the case θ ≪ 1. In this case, by the

small angle approximation,

vx ≈ v, vy ≈ vθ.

The time taken is t = 2vy/g, so the range is

R ≈ vxt =
2v2

g
θ.

Thus there is no proportionality constant; the answer is

R =
v2

g
sin(2θ).

In reality, it’s probably faster to go through the full derivation than all of this reasoning, but

if you’re just not sure about whether it’s a sine or a cosine, or what the prefactor is, then

limiting cases can be quickly used to recover that piece. Also note that the approximations

we used above are frequently useful for evaluating limiting cases.
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Example 14

Consider an Atwood’s machine with masses m and M , and a massless pulley. Find the

tension in the string.

Solution

Since the equations involved are all linear equations, we expect the answer should also

be simple. It can only depend on g, m, and M , so by dimensional analysis, it must be

proportional to g. By dimensional analysis, this must be multiplied by something with one

net power of mass. Since the answer remains the same if we switch the masses, it should be

symmetric in m and M .

Given all of this, the simplest possible answer would be

T ∝ g(m+M).

To test this, we consider some limiting cases. If M ≫ m, the mass M is essentially in freefall,

so the mass m accelerates upward with acceleration g. Then the tension is approximately

2mg. Similarly, in the case M ≪ m, the tension is approximately 2Mg. These can’t be

satisfied by the form above.

The next simplest option is a quadratic divided by a linear expression. Both of these must

be symmetric, so the most general possibility is

T = g
A(m2 +M2) +BmM

m+M
.

Then the limiting cases can be satisfied if A = 0 and B = 2, giving

T =
2gmM

m+M
.

[1] Problem 25. Find the perimeter of a regular N -gon, if L is the distance from the center to any

of the vertices. By considering a limiting case, use this to derive the circumference of a circle.

[1] Problem 26. Use similar reasoning to find the acceleration of the Atwood’s machine. (We will

show an even easier way to do this, using “generalized coordinates”, in M4.)

[2] Problem 27 (Morin 1.6). A person throws a ball (at an angle of her choosing, to achieve the

maximum distance) with speed v from the edge of a cliff of height h. Which of the below could be

an expression for the maximal range?

gh2

v2
,

v2

g
,

√
v2h

g
,

v2

g

√
1 +

2gh

v2
,

v2

g

(
1 +

2gh

v2

)
,

v2/g

1− 2gh/v2
.

If desired, try Morin problems 1.13, 1.14, and 1.15 for additional practice.

[2] Problem 28. Consider a triangle with side lengths a, b, and c. It turns out the area of its incircle

can be expressed purely by multiplying and dividing combinations of these lengths. Moreover,
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the answer is the simplest possible one consistent with limiting cases, dimensional analysis, and

symmetry. Guess it!

While we won’t have more questions that are explicitly about dimensional analysis or limiting

cases, these are not techniques but ways of life. For all future problems you solve, you should be

constantly checking the dimensions and limiting cases to make sure everything makes sense.

5 Manipulating Differentials

You might have been taught in math class that manipulating differentials like they’re just small,

finite quantities, and treating derivatives like fractions is “illegal”. But it’s also very useful.

Idea 8

Derivatives can be treated like fractions, if all functions have a single argument.

The reason is simply the chain rule. The motion of a single particle only depends on a single

parameter, so the chain rule is just the same as fraction cancellation. For example,

dv

dt
=

d

dt
v(x(t)) =

dv

dx

dx

dt

which show that “canceling a dx” is valid. Similarly, you can show that

dy

dx

dx

dy
= 1

by considering the derivative with respect to x of the function x(y(x)) = x.

As a warning, for functions of multiple arguments, the idea above breaks down. For example,

for a function f(x(t), y(t)), the chain rule says

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

where there are two terms, representing the change in f from changes only in x, and only

in y. Therefore, when we start studying thermodynamics, where multivariable functions are

common, we will treat differentials more carefully. But for now the basic rules will do.

Remark: Rigorous Notation

Math students tend to get extremely upset about the above idea: they say we shouldn’t use

convenient notation if it hides what’s “really” going on. And they’re right, if your goal is

to put calculus on a rigorous footing. But in physics we have no time to luxuriate in such

rigor, because we want to figure out how specific things work. The point of notation is to

help us do that by suppressing mathematical clutter. A good notation suppresses as much

as possible while still giving correct results in the context it’s used.
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To illustrate the point, note that elementary school arithmetic is itself an “unrigorous” nota-

tion that hides implementation details. If we wanted to be rigorous about, say, defining the

number 2, we would write it as S(1) where S is the successor function, obeying properties

specified by the Peano axioms. And 4 is just a shorthand for S(S(S(1))), so 2+ 2 = 4 means

S(1) + S(1) = S(S(S(1))).

Even this is not “rigorous”, because the Peano axioms don’t specify how the numbers or

the successor function are defined, just what properties they have to obey. To go deeper,

we could define the integers as sets, and operations like + in terms of set operations. For

example, in one formulation, we start with nothing but the empty set ∅ and define

4 = S(S(S(1))) = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}.

People have seriously advocated for 1st grade math to be taught this way, which has always

struck me as insane. You can always add more arbitrary layers of structure underneath the

current foundation, so such layers should only be added when absolutely necessary.

Here’s another example, inspired by the physics education research literature. For uniformly

accelerated motion starting from rest, v(t) = at, what is v(x)? Physics students would say

that v(x) =
√
2ax by the kinematic equations, while math students would say v(x) = ax

by the definition of a function. Who is correct? The point is that basic physics and math

courses use functions differently. In introductory physics, we often denote several distinct

mathematical functions with the same symbol, if they all represent the same physical

quantity. (Otherwise, the simplest projectile motion problem would need half the alphabet.)

By contrast, basic math courses carefully distinguish functions, but then denote distinct

physical quantities with the same symbol: 1m, 1 cm, and 1 s are all written as 1.

The crucial point is that nobody is wrong. There is no One True Definition of notation, which

is ultimately just squiggly marks people make by dragging graphite cylinders against sheets

of wood pulp. Every community makes its own notation for its own needs. And any notation

system has to forget about something, or else it would be too clunky to do anything.

Remark: Advanced Notation

As an addendum to the previous remark, it turns out that as you get deeper into math and

physics, notation tends to converge. For example:

• The physicist’s “wrong” use of v(t) and v(x) can be formalized by differential geometry:

here v is a scalar field defined on the particle’s path, which is a one-dimensional manifold,

and v(t) and v(x) are parametrizations of it in different coordinate charts.

• In math classes, vectors are anything you can take linear combinations of, but in physics

classes we also require that they specify a direction in physical space, which math students

often criticize as wrong, or meaningless. But the physicist is actually using more advanced

math, which the math student doesn’t know yet: the physicist’s vector is a element of a

vector space carrying the fundamental representation of SO(3).
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• Most vectors flip sign under an inversion of space, r → −r and p → −p, but “axial vectors”

such as L = r×p don’t. This also strikes many math students as a blatant inconsistency,

but the reality is again that an axial vector is just a more advanced mathematical object

they haven’t met yet, specifically a rank 2 differential form, as discussed in M8.

• More generally, the “unrigorous” manipulations of differentials above, which we showed

give you the right answer anyway, gain a rigorous footing in terms of differential forms.

In fact, they become the preferred way to denote integration on general manifolds.

Arguments about notation are mostly raised by beginning students, who see the one way

they know as the only possible way. Professionals know it both ways, and adjust as needed.

Example 15

Derive the work-kinetic energy theorem, dW = F dx.

Solution

Canceling the mass from both sides, we wish to show

1

2
d(v2) = a dx.

To do this, note that
1

2
d(v2) = v dv =

dx

dt
dv =

dv

dt
dx = a dx

as desired. If you’re not satisfied with this derivation, because of the bare differentials floating

around, we can equivalently prove that F = dW/dx, by noting

dW

dx
= mv

dv

dx
= mv

dv

dt

dt

dx
= m

dv

dt
= F.

[2] Problem 29. Some more about power.

(a) Use similar reasoning to derive P = Fv.

(b) An electric train has a power line that can deliver power P (x), where x is the distance along

the track. If the train starts at rest at x = 0, find its speed at point x0 in terms of an integral

of P (x). (Hint: try to get rid of the dt’s to avoid having to think about the time dependence.)

Example 16

A particle is initially at rest, at a distance r0 from a star of mass M . Write the time it takes

the particle to collide with the star, due to gravitational attraction, as a single integral.

Solution

If the particle has mass m, then conservation of energy gives

1

2
mv2 − GMm

r
= −GMm

r0
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so that its radial velocity is

dr

dt
= −

√
2GM

(
1

r
− 1

r0

)
.

We can write the time taken to collide as

T =

∫
dt =

∫ 0

r0

dr
dt

dr
=

1√
2GM

∫ r0

0

dr√
1/r − 1/r0

.

It’s good practice to write the integral in dimensionless form, so that the dependence of the

answer on the dimensionful quantities is manifest. To do this, substitute x = r/r0 to get

T =

√
r30

2GM

∫ 1

0

√
x

1− x
dx.

This lets us read off T 2 ∝ r30, in accordance with Kepler’s third law, and required by dimen-

sional analysis as shown in problem 2. In case you’re wondering, the value of the remaining

integral is π/2, as can be shown by substituting x = sin2 θ.

[2] Problem 30 (Kalda). The deceleration of a boat in water due to drag is given by a function a(v).

Given an initial velocity v0, write the total distance the boat travels as a single integral.

[5] Problem 31. A particle in a potential well.

(a) Consider a particle of mass m and energy E with potential energy V (x), which performs

periodic motion. Write the period of the motion in terms of a single integral over x.

(b) Suppose the potential well has the form V (x) = V0(x/a)
n for n > 0. If the period of the motion

is T0 when it has amplitude A0, find the period when the amplitude is A, by considering how

the integral you found in part (a) scales with A.

(c) Find a special case where you can check your answer to part (b). (In fact, there are two more

special cases you can check, one which requires negative n and negative V0, and one which

requires V (x) to be replaced with its absolute value.)

(d) Using a similar method to part (a), write down an integral over θ giving the period of a

pendulum with length L in gravity g, without the small angle approximation. Using this,

compute the period of the pendulum with amplitude θ0, up to order θ20. (This result was first

published by Bernoulli, in 1749.)

(e) ⋆ Part (d) is the kind of involved computation you might see in a graduate mechanics course.

But if you think you’re really tough, you can go one step further. Consider a massm oscillating

on a spring of spring constant k with amplitude A. Calculate its period of oscillation up to

order A2, accounting for special relativity. (Concretely, assume that the spring force doesn’t

change the rest mass m, and has a potential U = kx2/2. In relativity, the force F = −dU/dx
still obeys F = dp/dt, but now E = γmc2 and p = γmv, where γ = 1/

√
1− v2/c2.)
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6 Multiple Integrals

It’s also useful to know how to set up multiple integrals. This is fairly straightforward, though

technically an “advanced” topic, so we’ll demonstrate it by example. For further examples, see

chapter 2 of Wang and Ricardo, volume 1, or MIT OCW 18.02, lectures 16, 17, 25, and 26.

Idea 9

In most Olympiad problems, multiple integrals can be reduced to single integrals by symmetry.

Example 17

Calculate the area of a circle of radius R.

Solution

The area A is the integral of dA, i.e. the sum of the infinitesimal areas of pieces we break the

circle into. As a first example, let’s consider using Cartesian coordinates. Then the pieces

will be the rectangular regions centered at (x, y) with sides (dx, dy), which have area dx dy.

The area is thus

A =

∫
dA =

∫
dx

∫
dy.

The only tricky thing about setting up the integral is writing down the bounds. The inner

integral is done first, so its bounds depend on the value of x. Since the boundary of the circle

is x2 + y2 = R2, the bounds are y = ±
√
R2 − x2. Thus we have

A =

∫ R

−R
dx

∫ √
R2−x2

−
√
R2−x2

dy.

We then just do the integrals one at a time, from the inside out, like regular integrals,

A =

∫ R

−R
2
√
R2 − x2 dx = 2R2

∫ 1

−1

√
1− u2 du = 2R2

∫ π/2

−π/2
cos2 θ dθ = πR2

where we nondimensionalized the integral by letting u = x/R, and then did the trigonometric

substitution u = sin θ. (To do the final integral trivially, notice that the average value of

cos2 θ along any of its periods is 1/2.)

We can also use polar coordinates. We break the circle into regions bounded by radii r and

r + dr, and angles θ and θ + dθ. These regions are rectangular, with side lengths of dr and

r dθ, so the area element is dA = r dr dθ. Then we have

A =

∫ R

0
r dr

∫ 2π

0
dθ = 2π

∫ R

0
r dr = πR2

which is quite a bit easier. In fact, it’s so much easier that we didn’t even need to use double

integrals at all. We could have decomposed the circle into a bunch of thin circular shells,

argued that each shell contributed area (2πr) dr, then integrated over them,

A =

∫ R

0
2πr dr = πR2.
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In Olympiad physics, there’s usually a method like this, that allows you to get the answer

without explicitly writing down any multiple integrals.

Example 18

Calculate the moment of inertia of the circle above, about the y axis, if it has total mass M

and uniform density.

Solution

The moment of inertia of a small piece of the circle is

dI = x2 dm = x2σ dA =
x2M

πR2
dA

where x2 appears because x is the distance to the rotation axis, and σ is the mass density

per unit area. Using Cartesian coordinates, we have

I =
M

πR2

∫ R

−R
dx

∫ √
R2−x2

−
√
R2−x2

x2 dy.

The inner integral is still trivial; the x2 doesn’t change anything, because from the perspective

of the dy integral, x is just some constant. However, the remaining integral becomes a bit

nasty. In general, when this happens, we can try flipping the order of integration, giving

I =
M

πR2

∫ R

−R
dy

∫ √
R2−y2

−
√

R2−y2
x2 dx.

Unfortunately, this is equally difficult. Both of these integrals can be done with trigonometric

substitutions, as you’ll check below, but there’s also a clever symmetry argument.

Notice that I is also equal to the moment of inertia about the x axis, by symmetry. So if we

add them together, we get

2I =

∫
(x2 + y2) dm =

∫
r2 dm.

The r2 factor has no dependence on θ at all, so the angular integral in polar coordinates is

trivial. We end up with

2I =
M

πR2

∫ R

0
2πr r2 dr =

1

2
MR2

which gives an answer of I =MR2/4, as expected.

[2] Problem 32. Calculate I in the previous example by explicitly performing either Cartesian integral.

[3] Problem 33. In this problem we’ll generalize some of the ideas above to three dimensions, where

we need triple integrals. Consider a ball of radius R.

(a) In Cartesian coordinates, the volume element is dV = dx dy dz. Set up an appropriate triple
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integral for the volume.

(b) The inner two integrals might look a bit nasty, but we already have essentially done them.

Using the result we already know, perform the inner two integrals in a single step, and then

perform the remaining integral to derive the volume of a sphere.

(c) In cylindrical coordinates, the volume element is dV = r dr dθ dz. Set up a triple integral for

the volume, and perform it. (Hint: this can either be hard, or a trivial extension of part (b),

depending on what order of integration you choose.)

(d) In spherical coordinates, the volume element is dV = r2 dr sinϕdϕ dθ. Set up a triple integral

for the volume, and perform it.

(e) Let the ball have uniform density and total mass M . Compute its moment of inertia about

the z-axis. (Hint: this can be reduced to a single integral if you use an appropriate trick.)

[2] Problem 34. Consider a spherical cap that is formed by slicing a sphere of radius R by a plane,

so that the altitude from the vertex to the base is h. Find the area of its curved surface using an

appropriate integral.

[3] Problem 35. As you learned in calculus class, we may approximate the area under a function

using a lot of rectangles, and in the limit where the rectangles become very thin, we recover the

true area. This is how integration is defined. However, you can also use the reasoning in reverse: a

sum over many elements of a slowly varying function can be approximated with an integral.

(a) For n≫ 1, find both an underestimate and an overestimate for
∑n

k=1 k by replacing it with

appropriate integrals. How does the fractional error of your approximations scale with n?

(b) For n ≫ 1, find a reasonable way to approximately evaluate
∑n

k=1 log k. How does the

fractional error of your approximation scale with n? How good of a result can you get?

We’ll use these kinds of approximations in several later problem sets.

Remark

You might be wondering how good you have to be at integration to do Olympiad physics.

The answer is: not at all! You need to understand how to set up integrals, but you almost

never have to perform a nontrivial integral. There will almost always be a way to solve the

problem without doing explicit integration at all, or an approximation you can do to render

the integral trivial, or the integral will be given to you in the problem statement. The Asian

Physics Olympiad takes this really far: despite having some of the hardest problems ever

written, they often provide information like “
∫
xn dx = xn+1/(n + 1) + C” as a hint! This

is because physics competitions are generally written to make students think hard about

physical systems, and the integrals are just viewed as baggage.

In fact, plain old AP Calculus probably has harder integrals than Olympiad physics. For

example, in those classes everybody has to learn the integral∫
secx dx = log |secx+ tanx|+ C
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which has a long history. When I was in high school, I was shocked by how the trick for doing

this integral came out of nowhere; it seemed miles harder than anything else taught in the

class. And it is! Historically, it arose in 1569 from Mercator’s projection, where it gives the

vertical distance on the map from the equator to a given latitude. For decades, cartographers

simply looked up the numeric value of the integral in tables, where the Riemann sums had

been done by hand. (They had no chance of solving it analytically anyway, since Napier only

invented logarithms in 1614.) Gradually, tabulated values of the logarithms of trigonometric

functions became available, and in 1645, Bond conjectured the correct result by noticing the

close agreement of tabulated values of each side of the equation. Finally, Gregory proved the

result in 1668, using what Halley called “a long train of Consequences and Complications of

Proportions.” So it took almost a hundred years for this integral to be sorted out! (Though to

their credit, they had the handicap of not knowing about differentiation or the fundamental

theorem of calculus; they were finding the area under the curve with just Euclidean geometry.)

Even though Olympiad physics tries to avoid tough integrals, doing more advanced physics

tends to produce them, so physicists often get quite good at integration. By contrast,

Spivak’s calculus textbook for math majors only covers integration techniques in a single

chapter towards the end of the book. He justifies the inclusion of this material by saying:

Every once in a while you might actually need to evaluate an integral [...] For

example, you might take a physics course [...] Even if you intend to forget how to

integrate (and you probably will forget some details the first time through), you

must never forget the basic methods.

That attitude is why physics students frequently win the MIT Integration Bee.
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