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Relativity I: Kinematics

Chapter 11 of Morin is a clear, comprehensive, highly recommended introduction to relativistic

kinematics. Also read sections 13.1–13.3 for four-vectors, and see appendices F, G, H, and I for

enrichment. Alternatively, see chapter 12 and sections 14.1–14.3 of Kleppner and Kolenkow, chapter

11 of Wang and Ricardo, volume 2, or Morin’s newer book, Special Relativity: For the Enthusiastic

Beginner, which covers similar ground with slightly more detail. An entertaining introduction is

also given in chapters I-15 through I-17 of the Feynman lectures. To learn about tests of special

relativity, see The Special Theory of Relativity by Christodoulides. There is a total of 81 points.

1 Lorentz Transformations

Idea 1: Lorentz Transformation

Let S′ be the frame of an observer moving to the right with velocity vx̂ with respect to the

frame S. Then the coordinates in S and S′ are related by the Lorentz transformation

t′ = γ(t− vx/c2), x′ = γ(x− vt), y′ = y, z′ = z, γ =
1√

1− v2/c2
.

This implies that the lengths of moving objects are contracted by γ, moving clocks run slow

by a factor of γ, and that if two clocks are synchronized in the frame S′ and separated by a

distance L, then in the frame S the rear clock is ahead by Lv/c2.

[2] Problem 1 (Morin 11.2). Two planets, A and B, are at rest with respect to each other, a distance

L apart, with synchronized clocks. A spaceship flies at speed v past planet A toward planet B and

synchronizes its clock with A’s right when it passes A (they both set their clocks to zero). The

spaceship eventually flies past planet B and compares its clock with B’s. We know, from working

in the planets’ frame, that when the spaceship reaches B, B’s clock reads L/v. And the spaceship’s

clock reads L/γv, because it runs slow by a factor of γ when viewed in the planets’ frame.

How would someone on the spaceship quantitatively explain to you why B’s clock reads L/v

(which is more than its own L/γv), considering that the spaceship sees B’s clock running slow?

[2] Problem 2 (Morin 11.4). A stick of (proper) length L moves past you at speed v. There is a time

interval between the front end coinciding with you and the back end coinciding with you. What is

this time interval in:

(a) your frame? (Calculate this by working in your frame.)

(b) the stick’s frame? (Work in the stick’s frame.)

(c) your frame? (Work in the stick’s frame.)

(d) the stick’s frame? (Work in your frame. This is the tricky one.)

[2] Problem 3 (Morin 11.9). Two balls move with speed v along a line toward two people standing

along the same line. The proper distance between the balls is γL, and the proper distance between

the people is L. Due to length contraction, the people measure the distance between the balls to

be L, so the balls pass the people simultaneously (as measured by the people), as shown.
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Assume that the people’s clocks both read zero at this time. If the people catch the balls, then

the resulting proper distance between the balls becomes L, which is shorter than the initial proper

distance of γL. Your task is to explain how the proper distance between the balls decreases from

γL to L, by working in the frame where the balls are initially at rest.

(a) Draw the beginning and ending pictures for the process. Indicate the readings on both clocks

in the two pictures, and label all relevant lengths.

(b) Explain in words how the proper distance between the balls decreases from γL to L.

[3] Problem 4. �W10 USAPhO 2016, problem A3. Print out the custom answer sheet before starting.

[5] Problem 5. �h10 IPhO 2006, problem 2. A nice problem about relativistic visual effects.

2 Velocity Addition

Idea 2: Velocity Addition

Again, let frame S′ moves with velocity vx̂ with respect to frame S. If an object has velocity

(u′x, u
′
y) in frame S′, then the velocity in S is

ux =
u′x + v

1 + u′xv/c
2
, uy =

u′y
γ(1 + u′xv/c

2)

where γ = 1/
√
1− v2/c2 as usual.

Idea 3: Relativistic Doppler Shift

If a light source with (proper) frequency f ′ is moving directly towards you at speed v, then

naively one would have, in nonrelativistic physics,

fnaive =
f ′

1− v/c
.

In relativity, we also need to account for the source being time dilated, so

f =
fnaive
γ

=

√
1 + v/c

1− v/c
f ′.

This additional, second-order correction was first measured by Ives and Stilwell, in the late

1930s. (The transverse Doppler effect is more subtle, and we’ll come back to it in problem 21.)
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Example 1

A reference frame is a formal object made of rulers and synchronized clocks. The length of

an object in a given reference frame isn’t necessarily the same thing as how long the object

looks, to somebody at rest in the frame using their own eyes. That is different, because one

has to account for the time the light needs to travel to the eyes.

Consider a train of rest length L moving with speed v in the ground frame. How long does

the train look to somebody standing on the ground directly in front of it, or behind it?

Solution

Both ends of the train continually emit light. Suppose two flashes of light, one from each

end, hit an observer’s eyes simultaneously. Then the apparent length of the train Lapp is the

distance between the points where the light flashes were originally launched.

For somebody in front of the train, the pulse from the back of the train had to travel an

extra distance Lapp, so it must have been emitted a time Lapp/c earlier. At this time, the

back of the train was vLapp/c behind where it is when the pulse from the front of the train

hits the observer. So the apparent length is

Lapp =
L

γ
+

v

c
Lapp.

Solving this for Lapp gives

Lapp = L

√
1 + v/c

1− v/c
.

For somebody behind the train, similar reasoning gives

Lapp =
L

γ
− v

c
Lapp

which yields

Lapp = L

√
1− v/c

1 + v/c
.

These expressions should look suspiciously similar to the relativistic Doppler shift. In fact,

they can also be derived that way. Imagine a light source at one end of the train shoots light

of wavelength λ = L towards the other, in the train’s frame. In the ground frame, we have

λ′ = Lapp, because the light wave goes through one cycle by the time it gets from the back

of the train to the front. But the transformation of λ can also be found using the relativistic

Doppler shift and c = fλ, giving the same result.

Remark

In most of the problems below, we’ll focus on how objects are measured in inertial reference

frames, not on how they physically appear to an observer’s eyes. This is a complicated but

fascinating subject. For instance, it turns out that once one accounts for the light travel
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time delay, moving objects appear to be rotated. For an interactive simulation, check out

the game A Slower Speed of Light (3D) and Velocity Raptor (2D only).

[2] Problem 6 (KK 12.6). A rod of proper length ℓ0 oriented parallel to the x axis moves with velocity

ux̂ in frame S. What is the length measured by an observer in frame S′, which, as usual, moves

with velocity vx̂ with respect to S?

[4] Problem 7. An object at rest at the origin in frame S′ emits a flash of light uniformly in all

directions.

(a) In frame S′, the expanding shell of radiation is a perfect sphere. Explain why it is also a

perfect sphere, at any moment, in any other frame S.

(b) Let frames S and S′ be related as usual. Consider the light emitted at an angle θ0 with respect

to the x′ axis in S′. Show that the angle θ it makes with respect to the x axis in S obeys

cos θ =
cos θ0 + v/c

1 + (v/c) cos θ0
.

(c) Therefore, if the object has an ultrarelativistic speed v ≈ c in frame S, argue that in this frame,

most of its radiation comes out in a narrow cone of opening angle 1/γ along the direction of

travel. This “relativistic beaming” effect is important in the Large Hadron Collider, where

high-energy particles decay into lower-energy particles concentrated in narrow “jets”.

Now consider the case where the object is at rest, but the light is viewed by a very distant, slowly

moving observer going in a circle, with momentarily comoving frame S. Because of your result in

part (b), the observer will see the object perform an apparent circular motion. When the object is

a star and the observer is a telescope on the Earth, this phenomenon is known as stellar aberration.

(d) Suppose that the displacement from the sun to the distant star is perpendicular to the plane of

orbit of the Earth. If the Earth performs a circular orbit with speed v ≪ c, find the apparent

angular radius θA of the circle the star moves in.

(e) There is another independent effect at play here, which is that the star will also seem to move

in a circle due to parallax. Parallax exists even if the speed of light is taken to infinity; it is

the result of the Earth moving in its orbit, and hence seeing the star from different angles.

If the Earth orbits with radius r, and the star of part (d) is a distance d ≫ r away, find the

apparent angular radius θP of the circle the star moves in.

(f) For a typical star in the galaxy, which is larger, θA or θP ?

The fact that both aberration and parallax escaped detection over centuries of effort was a strong

early piece of evidence against heliocentrism. Today we know that they are hard to observe because

c and d are very large.

[2] Problem 8. The frequency of light reflected from a moving mirror gets a Doppler shift.

(a) Find the frequency of light reflected directly back from a mirror which is approaching the

observer with speed v, if the light originally had frequency ω.
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(b) Show that this is the same as if the light were sourced with frequency ω by an object moving

at speed 2v/(1 + v2/c2) towards the observer. Can you find an intuitive reason for this?

[3] Problem 9 (Morin 11.16). In frame S′, a particle moves with velocity (0, u′) as shown at left.

Frame S moves to the left with speed v, so the situation in S is as shown at right, with the y speed

now u. Consider a series of equally spaced dotted lines, as shown. By considering the rate at which

the particle crosses the dotted lines in each frame, find u in terms of u′ and v, and confirm the

result agrees with the velocity addition formula.

[3] Problem 10 (KK 12.9). A slab of glass moves to the right with speed v ≪ c. A flash of light is

emitted from A and passes through the glass to arrive at B, a distance L away.

In the rest frame of the glass, it has thickness D and the speed of light in the glass is c/n.

(a) If you were a 19th century physicist, who didn’t know relativity but did know about the index

of refraction and Galilean velocity addition, how long would you expect it to take the light to

go from A to B? Keep the lowest order term in v/c.

(b) How long does it actually take the light to go from A to B, again to lowest order in v/c?

This kind of setup could be part of an interference experiment, which would allow the tiny time

difference to be effectively measured. Before the advent of special relativity, experiments like these

which require relativistic velocity addition were very puzzling. They were interpreted by imagining

that materials that slowed down light also partially “dragged” the ether along with it.

[3] Problem 11. �̂10 USAPhO 2021, problem A2. A simple, elegant problem with a useful punchline.

[3] Problem 12 (Morin 11.58). A person walks very slowly at speed u from the back of a train of

proper length L to the front. The total time dilation effect in the train frame can be made arbitrarily

small by picking u to be sufficiently small, so that if a person’s watch agrees with a clock at the

back of the train when he starts, then it also agrees with a clock at the front when he finishes, to

arbitrary accuracy.

Now consider this setup in the ground frame, where the train moves at speed v. The rear clock

reads Lv/c2 more than the front, so in view of the preceding paragraph, the time gained by the

person’s watch during the process must be Lv/c2 less than the time gained by the front clock. By

working in the ground frame, explain why this is the case. Assume u ≪ v.
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3 Paradoxes

Now you’re prepared to confront some classic relativistic paradoxes. They won’t appear in compe-

titions, but your understanding of relativity will be deeper if you grapple with them. (Also, now

that we’ve got the basics out of the way, we’ll start setting c = 1 for most problems.)

Example 2

Bob moves away from Alice at constant speed. According to special relativity, each sees the

other as aging slower. (This is true both in terms of their reference frames, and in terms of

what they see with their eyes.) How can that possibly be self-consistent? Shouldn’t time be

running slower for one or the other?

Solution

The first thing to point out about this paradox, and many other relativistic paradoxes,

is that they rely on slipping in nonrelativistic assumptions using tricky wording. If

you’re fine with the idea of time being relative, there’s nothing paradoxical about peo-

ple disagreeing on whose clock runs slower. It’s not really more confusing than the fact

that when I walk away from you, I see you getting smaller, but you also see me getting smaller.

More seriously, though, the reason time dilation can be symmetric is the loss of simultaneity

effect, as beautifully shown in Tatsu Takeuchi’s Illustrated Guide to Relativity.
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[2] Problem 13. The Lorentz transformations treat x and t completely symmetrically. So why is it

that lengths contract while times dilate? Shouldn’t both do the same thing?

[3] Problem 14. A scientist is trying to drill through a piece of wood of thickness 2L, but the longest

drill bit they own has a length L. The scientist decides to move the wood relativistically fast, so

that it length contracts to a thickness less than L. Then the drill can be held in the path of the

wood, and pulled out once it goes through. Can this really be done without harming the drill bit

or ruining the wood? If not, what’s wrong? If yes, then what does it look like in the rest frame of

the wood?

[3] Problem 15. A headlight is constructed by putting a light source inside a spherical cavity.

The opening of the cavity has angular width θ, so a beam of light comes out with width θ. The

headlight is mounted on the front of a car, which then moves forward at a relativistic speed. The

new width of the headlight’s beam is θ′, in the frame of the Earth. Consider the following two

arguments.

The headlight length contracts, increasing the cavity opening angle. Therefore, θ′ > θ.

By relativistic velocity addition, the light must have a greater forward velocity in the

Earth’s frame than in the car frame, because the car is moving forward. So the light

must come out at a shallower angle in the Earth’s frame. Therefore, θ′ < θ.

Which argument is right?

[3] Problem 16 (Morin 11.45). A stick of proper length L moves at speed v along its length. It passes

over an infinitesimally thin sheet that has a hole of diameter L cut in it. As the stick passes over

the hole, the sheet is raised.

In the lab frame, the stick’s length is contracted to L/γ, so it appears to easily make it through

the hole. But in the stick frame, the hole is contracted to L/γ, so it appears that the stick does

not make it through the hole (or rather, the hole doesn’t make it around the stick, since the hole

is what is moving in the stick frame). Does the stick end up on the other side of the sheet or not?

(For a similar idea, see Morin 11.8.)

[4] Problem 17. Here is the statement of the traditional twin paradox.

Bob is an astronaut who leaves home on a rocket with speed v. Alice stays home. After

time T in Alice’s frame, Bob reverses direction and travels home with speed v. Who, if

either, has aged more?

The obvious answer is that Alice has aged more by time dilation. The trouble is explaining why we

can’t just work in Bob’s frame and conclude that Bob has aged more by time dilation.
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(a) Draw a Minkowski diagram for Alice and Bob where Alice’s worldline is x = 0.

(b) The reason that working in Bob’s frame is subtle is that it is not a single inertial frame. Draw

x′ and t′ axes for Bob at several points on Bob’s worldline. Argue that when Bob turns around,

thereby moving to a different inertial frame, Alice’s age jumps upward. (Using the results of

chapter 11 of Morin, you can even show that the amount of aging is exactly what is needed,

using the Minkowski diagram alone.)

This illustrates why the situation is not symmetric between Alice and Bob. But this resolution of

the twin paradox is a little unphysical. It does explain what goes wrong working in Bob’s frame,

but it’s not related to what Bob actually physically sees, which is determined by when photons

from Earth reach his eyes; nothing about that changes discontinuously when he turns around.

(c) More physically, let us suppose that Bob continually emits radiation of frequency f (in his

frame) towards Alice. Suppose that in Alice’s frame, Bob travels with speed v, reaches a

maximum distance L from Alice, and accelerates quickly to return with speed v. If Alice sees

Nb wave crests in total during Bob’s trip, then Bob has aged by Nb/f . Use the relativistic

Doppler effect to compute Nb/f , working entirely from Alice’s perspective.

(d) Now suppose Alice continually emits radiation of frequency f (in her frame) towards Bob. If

Bob sees Na wave crests, use the relativistic Doppler effect to compute Na/f , working entirely

from Bob’s perspective. If you’re careful, this should differ from the answer to (c).

(e) [A] Now consider a trickier example. Suppose Alice and Bob live on a torus, i.e. a spacetime

where the point (x, y, z) is the same as the point (x+ L, y, z). Alice stays home, while Bob

leaves on a rocket with velocity vx̂. After a while, Bob returns home, without having done

any acceleration along the way! It seems like the resolution above does not apply, so who, if

either, has aged more? Can you explain the results from Bob’s reference frame?

Remark

The above problem on the twin paradox is quite long. Every physics textbook that covers

relativity mentions the twin paradox, and Morin even has a whole appendix with five

different resolutions of it. But it’s not that hard to resolve, so why spend so much energy on it?

The answer is that seemingly intelligent people really can get stuck on these things for

years, or even decades. As an example, consider the case of Herbert Dingle, one of

the foremost science popularizers in the mid-20th century. Dingle was an experimental

physicist and philosopher of science, but he was best known for his eloquent, equation-

free explanations of relativity, which made him the Brian Greene of his day. But soon

after Einstein’s death, he suddenly realized that relativity could not explain the twin paradox.

Here is one version of Dingle’s argument. We write down the Lorentz transformations

x′ = γ(x− vt), t′ = γ(t− vx), x = γ(x′ + vt′), t = γ(t′ + vx′).

Then we notice that if we set x = 0, then t′ = γt, while if we set x′ = 0, then t = γt′. This

“implies” that aging must always be symmetric. In fact, if we combine the equations, we con-

clude γ = 1/γ, which implies time dilation can’t even happen at all! Thus, relativity collapses.
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Dingle continued pushing this for the rest of his life, writing endless letters and articles,

and even publishing a book, Science at the Crossroads, which warned of the grave societal

dangers of trusting relativity. Today, it is a favorite of flat Earthers. And it’s far from the

only example. For instance, there was a book published in Nazi Germany called A Hundred

Authors Against Einstein, where a vast array of philosophers argued that relativity had to be

wrong, because it contradicted the metaphysical system of the native German, 18th century

philosopher Immanuel Kant. Kant’s ideas about space and time, they said, could be proven

true by pure reason alone, so any theory or experiment saying otherwise had to be wrong.

If there’s a lesson to be drawn from this bizarre history, it’s that the ability to write or speak

is not the same as the ability to think. Like GPT-3, one can churn out pages of flowing prose

without having a single coherent thought. This haze of vague reasoning is a dark cave we’re

all born in. Physicists escape the cave by solving problems mathematically; many others

never escape, and eventually grow to believe that nothing can exist outside it.

4 Four-Vectors

Idea 4

A four-vector V µ is a set of four quantities (V 0, V 1, V 2, V 3) that transform in the same

manner as (ct, x, y, z). The inner product of two four-vectors is defined as

V ·W = V 0W 0 − V 1W 1 − V 2W 2 − V 3W 3.

It is invariant under Lorentz transformations. By convention, V ·W is also written as V µWµ.

[2] Problem 18. Show explicitly that the norm of the displacement four-vector is invariant under

Lorentz transformations, i.e. that

(∆s)2 = ∆s ·∆s = (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

is Lorentz invariant. Since all four-vectors transform the same way, this proves it for all of them.

Example 3

Find a four-vector representing the velocity of a particle with position x(t).

Solution

Just as multiplying an ordinary vector with a rotational invariant produces another vector,

multiplying or dividing a four-vector with a Lorentz invariant gives another four-vector. In

this case, the appropriate four-vector is found by dividing displacement by the proper time

experienced by the particle,

uµ =
dxµ

dτ
= γ

dxµ

dt
= (γ, γv)

where v = dx/dt is the spatial velocity and γ = 1/
√
1− v2 as usual. Since its spatial part

reduces to the spatial velocity in the limit of low speeds, it is the relativistic generalization

9

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

of the spatial velocity. Finally, we define the four-momentum as pµ = muµ = (E,p), where

E = γm and p = γmv are the relativistic energy and momentum.

Example 4

Give a simple interpretation of the squared norm of a particle’s four-velocity, u · u, and its

four-momentum, p · p.

Solution

The answers have to be simple, because they must be invariants that only depend on the

intrinsic properties of the particle, i.e. only on the invariant mass m. For the four-velocity,

u · u = γ2 − γ2v2 = 1

which is clearly invariant. For the four-momentum we have p · p = m2.

Remark

Pop-science books usually describe the result u · u = 1 by saying that “particles always move

with the same speed through spacetime”, just like how a particle in uniform circular motion

always has the same spatial speed. However, this is very misleading, because it makes people

think that if dx/dτ increases in magnitude, then dt/dτ decreases. In fact it’s the opposite:

time dilation means more time passes for each tick of a moving clock, so dt/dτ increases.

The analogy can’t work, because inner products of four-vectors have terms with minus signs,

while ordinary inner products of three-vectors don’t. The point, as always, is that there are

a lot of simple things in physics which are almost impossible to explain properly with fuzzy

math-free analogies. With math, relativity can make sense to high school students. Without

math, it can’t really make sense to anyone.

Example 5

Give a simple interpretation of the inner product of two momentum four-vectors, p1 · p2.

Solution

By definition, this is equal to m1m2u1 · u2, and since the inner product is invariant, we can

evaluate u1 · u2 in any frame. Suppose we work in the frame of the first particle, where

uµ1 = (1,0), uµ2 =

(
1√

1− v2
,

v√
1− v2

)
.

Carrying out the inner product, we have the relatively simple result

p1 · p2 =
m1m2√
1− v2

where v is the relative speed, meaning the speed of one particle in the frame of the other.
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[2] Problem 19. In your inertial frame, there is a particle with four-momentum pµ, and an observer

moving with four-velocity uµ. The observer measures the particle in their inertial frame.

(a) Show that the energy they measure is p · u.

(b) Show that the momentum they measure has magnitude
√

(p · u)2 − p · p.

(c) What is the speed that they measure?

Don’t use Lorentz transformations here; everything can be done with four-vectors alone.

[3] Problem 20. In A’s frame, B has speed u, and C has speed v.

(a) Suppose B and C have velocities in opposite directions. Find the speed of B with respect to

C using four-vectors, by computing the inner product vB · vC in two different frames.

(b) The answer of part (a) should look familiar, but with four-vectors we can easily go further.

Generalize part (a) to the case where B and C have velocities an angle θ apart.

[3] Problem 21. Four-vectors provide a quick derivation of the relativistic Doppler effect. Given a

plane wave, define kµ = (ω,k). Then the plane wave is proportional to eiϕ, where the phase is

ϕ = ωt− k · x = k · x.

Since the phase ϕ is Lorentz invariant, and we know xµ is a four-vector, kµ is a four-vector as well.

(a) Show that for light, kµkµ = 0.

(b) Consider a light ray with frequency ω traveling along the x axis, and an observer moving with

speed v along the x-axis. Use an explicit Lorentz transformation to find the frequency ω′ the

observer sees, thus rederiving the longitudinal Doppler shift for light.

(c) Now it’s easy to go further. Repeat the previous part for a light ray traveling at an arbitrary

angle θ to the x axis. You can do this using either an explicit Lorentz transformation, or just

properties of four-vectors.

(d) One subtlety with the general relativistic Doppler effect is the definition of θ, because it has

different values in the source’s frame, and in the observer’s frame. The previous two parts

started in the source’s frame, but the usual formula defines θ in the observer’s frame.

To recover this formula, repeat the previous part, but now suppose we’re already in the

observer’s frame, where the source moves with velocity −vx̂, and the light ray is traveling at

an angle θ to the x-axis. Find the relationship between ω′ and ω.

The result of part (d) should look familiar: it’s the final result of USAPhO 2021, problem A2. For

more on the general Doppler effect, see section 11.8.2 of Morin. (By the way, now that we have the

four-vector formalism set up, it’s not that much harder to compute the Doppler effect for waves that

travel at general speeds. You probably won’t need that result, but it’s an example of something

that’s a total nightmare to derive without four-vectors.)

11

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Example 6: Woodhouse 6.6

Four distant stars Si are observed. Let θij denote the observed angle between the directions

to Si and Sj . Show that the ratio

(1− cos θ12)(1− cos θ34)

(1− cos θ13)(1− cos θ24)

is independent of the motion of the observer.

Solution

This Oxford undergraduate exam question is too technical to be relevant to Olympiads, but

it shows how four-vectors can be essential. The θij depend on the motion of the observer

because of the aberration effect in problem 7. That is, when you Lorentz transform to a

moving observer’s frame, it changes the direction of the incoming light. A direct attack on the

question would thus require applying the full, four-dimensional Lorentz transformations to

four vectors with arbitrary orientations, which would be a nightmare. Here’s an alternative:

let kµi be the wave vectors of an incoming photon from each star. Then

ki · kj = ωiωj − ki · kj = ωiωj(1− cos θij)

where we used ωi = |ki|. Therefore, the ratio is

(k1 · k2)(k3 · k4)/ω1ω2ω3ω4

(k1 · k3)(k2 · k4)/ω1ω2ω3ω4
=

(k1 · k2)(k3 · k4)
(k1 · k3)(k2 · k4)

which is manifestly independent of frame.

[4] Problem 22. In this problem we’ll construct a four-vector aµ for the acceleration of a particle,

and use it to derive the Lorentz transformation of the ordinary three-vector acceleration a = dv/dt.

(a) Explain why aµ = duµ/dτ is a four-vector, and why u · a is always zero.

(b) Show that when v = vx̂, the components of aµ are

aµ = (γ4vax, γ
4ax, γ

2ay, γ
2az)

where γ = 1/
√
1− v2 as usual. As a check, what is the meaning of a · a?

(c) Now let S′ be the momentary rest frame of a particle, i.e. the inertial frame that, at a

given moment, is moving with the same velocity as the particle. Let the particle have three-

acceleration a′ in that frame. Show that in this frame, aµ
′
= (0, a′x, a

′
y, a

′
z).

(d) By Lorentz transforming to S and using part (b), show that the acceleration in frame S is

a = (a′x/γ
3, a′y/γ

2, a′z/γ
2).

As you can see, transformations of three-vector quantities can get quite nasty!
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Remark

We can rewrite a lot of our results in terms of three-vectors. First, the Lorentz transformations

for general v are, using the same notation as in idea 1,

t′ = γ(t− v · r), r′ = r− γvt+ (γ − 1)(v̂ · r)v̂.

The velocity addition formula for general v and u′ is, using the same notation as in idea 2,

u =
1

1 + v · u′

(
v +

u′

γ
+

(
1− 1

γ

)
v̂(v̂ · u′)

)
.

The first result of problem 22 is

aµ = (γ4a · u, γ4(a+ u× (u× a)))

and the second result, for the transformation of acceleration, is

a =
a′

γ2
− v̂(v̂ · a′)(γ − 1)

γ3
.

As you can see, these aren’t very enlightening, and they don’t tend to be useful in solving

problems. The reason is that in relativity, there’s nothing special about three-vectors. For

concrete problems, you’ll typically either want to do everything in terms of four-vectors, or

descend all the way down to individual components – in which case you would align your

axes so that v points along one of them, rather than considering a completely general v.

On the other hand, you can get practice with three-vectors by staring at the above expressions

until you see how they reduce to the component forms we had earlier. If you do this, you’ll

learn how to translate just about any component expression into three-vector notation.

5 Acceleration and Rapidity

Idea 5

The geometry of special relativity is much like ordinary geometry, except that the dot product

is replaced with an inner product, which has some minus signs. Lorentz transformations

can be thought of as “generalized rotations” which mix up time and space, just as ordinary

rotations mix up different spatial axes. The generalized angle is the rapidity ϕ = tanh−1 v.

[3] Problem 23 (Morin 11.27). In this problem, we’ll see the meaning of the rapidity more precisely.

(a) Show that a Lorentz transformation may be written as(
x

t

)
=

(
coshϕ sinhϕ

sinhϕ coshϕ

)(
x′

t′

)
.

(b) Show that the composition of Lorentz transformations with rapidity ϕ1 and ϕ2 is a Lorentz

transformation with rapidity ϕ1 + ϕ2. This makes rapidity extremely useful in kinematics

problems with multiple boosts, such as problems involving acceleration.
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(c) An ordinary rotation of spatial axes has the form(
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x′

y′

)
.

Show that a Lorentz transformation is essentially an ordinary rotation between space and

time, if we treat time as like “imaginary space” and the rotation as by an imaginary angle.

This was one of the ways the founders of relativity thought about it.

Remark

We know from M8 that if we do multiple rotations in a row, the final result depends on the

order the rotations are performed. The analogy between boosts and rotations gives intuition

for the analogous result for boosts: the order matters. For example, the difference between

boosting along the x-axis and then the y-axis, or vice versa, is a rotation in the xy plane.

Therefore, if an object is boosted in a circle in the xy plane, it will have an extra rotation in

that plane. This subtle phenomenon is called Thomas precession.

Idea 6

The next few questions will deal with accelerating objects. In Newtonian mechanics, a

common strategy is to work in the accelerating frame of the object, but that’s not a good

idea at this stage of your education. (There’s nothing wrong with doing so, but it brings in

complications that one usually needs a course in general relativity to fully appreciate.)

Instead, we will describe accelerating objects using inertial frames. In principle we could do

everything in the lab frame, but it is also often useful to work in a momentarily comoving

frame, i.e. the inertial frame that, at some time t, moves with the same velocity as the object.

[4] Problem 24. A rocket starts from rest in the lab frame at the origin, then accelerates in a straight

line at constant rate a0 as measured by an accelerometer on the ship; that is, the proper acceleration

is always a0.

(a) Show that the acceleration measured in the lab frame is a0/γ
3. (We already proved this more

generally in problem 22, but try to do this more explicitly by working in the comoving frame,

then going back to the lab frame.)

(b) Find the speed of the rocket ship in the lab frame as a function of time t in the lab frame.

(c) Find the speed of the rocket ship in the lab frame as a function of the proper time τ elapsed

on the rocket. Can you explain the simplicity of your result using rapidity?

(d) To conclude, find expressions for t(τ), x(t), and x(τ), and comment on their limits.

[3] Problem 25. �̂10 USAPhO 2020, problem A3. An unusual problem that tests your understanding

of momentarily comoving frames, and higher-dimensional Lorentz transformations. As a warning,

this question requires you to make an unstated assumption. The fact that uniformly moving clocks

have their time dilated by a factor of γ follows directly from the postulates of special relativity.

But here you’ll have to assume this also holds for accelerating clocks, even though clocks can tell if

they’re accelerating, and may tick differently. This is called the clock hypothesis. For example, on

a roller coaster, a pendulum clock doesn’t obey the clock hypothesis, but a quartz watch does.
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[3] Problem 26 (Morin 11.26). The following problem is called Bell’s spaceship paradox. It caused a

stir at CERN when many particle physicists could not agree on the answer.

Two spaceships float in space and are at rest relative to each other. They are connected by a

string. The string is strong, but it cannot withstand an arbitrary amount of stretching.

At a given instant, the spaceships simultaneously (with respect to their initial inertial frame) start

accelerating in the same direction along the line between them, with the same constant proper

acceleration. In other words, assume they bought identical engines from the same store, and they

put them on the same setting. Will the string eventually break?

[5] Problem 27. �h10 APhO 2013, problem 2. This is a challenging question that ties together

everything you’ve learned about kinematics.
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