
Kevin Zhou Physics Olympiad Handouts

Relativity I: Kinematics
Chapter 11 of Morin is a clear, comprehensive, highly recommended introduction to relativistic

kinematics. Also read sections 13.1–13.3 for four-vectors, and see appendices F, G, H, and I for

enrichment. Alternatively, see chapter 12 and sections 14.1–14.3 of Kleppner and Kolenkow, chapter

11 of Wang and Ricardo, volume 2, or Morin’s newer book, Special Relativity: For the Enthusiastic

Beginner, which covers similar ground with slightly more detail. An entertaining introduction is

also given in chapters I-15 through I-17 of the Feynman lectures. To learn about tests of special

relativity, see The Special Theory of Relativity by Christodoulides. There is a total of 84 points.

1 Lorentz Transformations

Special relativity is uniquely subtle among introductory physics topics, and requires a solid, detailed

introduction. This problem set assumes you’ve already done that, by reading chapter 11 of Morin or

the equivalent in another book. (The short chapter in Halliday, Resnick, and Krane is not sufficient.)

Idea 1: Lorentz Transformation

Let S′ be the frame of an observer moving to the right with velocity vx̂ with respect to the

frame S. Then the coordinates in S and S′ are related by the Lorentz transformation

t′ = γ(t− vx/c2), x′ = γ(x− vt), y′ = y, z′ = z, γ =
1√

1− v2/c2
.

This implies that the lengths of moving objects are contracted by γ, moving clocks run slow

by a factor of γ, and that if two clocks are synchronized in the frame S′ and separated by a

distance L, then in the frame S the rear clock is ahead by Lv/c2.

[2] Problem 1 (Morin 11.2). Two planets, A and B, are at rest with respect to each other, a distance

L apart, with synchronized clocks. A spaceship flies at speed v past planet A toward planet B and

synchronizes its clock with A’s right when it passes A (they both set their clocks to zero). The

spaceship eventually flies past planet B and compares its clock with B’s. We know, from working

in the planets’ frame, that when the spaceship reaches B, B’s clock reads L/v. And the spaceship’s

clock reads L/γv, because it runs slow by a factor of γ when viewed in the planets’ frame.

How would someone on the spaceship quantitatively explain to you why B’s clock reads L/v

(which is more than its own L/γv), considering that the spaceship sees B’s clock running slow?

Solution. Let us work in the frame of the spaceship. Since AB is moving to the left with v, when

the ship is at A, the clock at B reads Lv/c2. Now, the time it takes for B to reach the spaceship is

(L/γ)/v, so the time on B’s clock is

L

γ2v
+

Lv

c2
=

L

v

(
1− v2

c2
+

v2

c2

)
=

L

v
.

[2] Problem 2 (Morin 11.4). A stick of (proper) length L moves past you at speed v. There is a time

interval between the front end coinciding with you and the back end coinciding with you. What is

this time interval in:

(a) your frame? (Calculate this by working in your frame.)
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(b) the stick’s frame? (Work in the stick’s frame.)

(c) your frame? (Work in the stick’s frame.)

(d) the stick’s frame? (Work in your frame. This is the tricky one.)

Solution. (a) The stick is length contracted to L/γ, so it takes time L/γv for the stick to pass.

(b) The stick has length L and you move past it at speed v, so it takes time L/v.

(c) The same reasoning as part (b) applies. But in the stick’s frame, your clock is running slow

by a factor of γ, so the time measured by your clock is L/γv.

(d) The time measured in your frame is L/γv from part (a), but the clocks on the ends of the

stick are running slow. In addition, those clocks are not synchronized in your frame. Thus,

the time measured in the stick’s frame is

1

γ

L

γv
+

Lv

c2
=

L

v

just as in the previous problem.

[2] Problem 3 (Morin 11.9). Two balls move with speed v along a line toward two people standing

along the same line. The proper distance between the balls is γL, and the proper distance between

the people is L. Due to length contraction, the people measure the distance between the balls to

be L, so the balls pass the people simultaneously (as measured by the people), as shown.

Assume that the people’s clocks both read zero at this time. If the people catch the balls, then

the resulting proper distance between the balls becomes L, which is shorter than the initial proper

distance of γL. Your task is to explain how the proper distance between the balls decreases from

γL to L, by working in the frame where the balls are initially at rest.

(a) Draw the beginning and ending pictures for the process. Indicate the readings on both clocks

in the two pictures, and label all relevant lengths.

(b) Explain in words how the proper distance between the balls decreases from γL to L.
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Solution. (a) Call the person on the left A, and the person on the right B. Here’s the diagram.

(b) The amount of time it takes B to get to his ball is (γL−L/γ)/v = Lγ(1− 1/γ2)/v = Lγv/c2.

This means that B catches his ball when his clock reads 0, since time for him runs a factor

of γ slower, which makes sense. Therefore, at the end, the distance between the balls is L/γ,

but since they are moving at v, their proper distance is L.

The point is that since we lose simultaneity, by the time B catches his ball in his frame, A

has dragged his ball closer to B’s ball, reducing their distance in the process.

[3] Problem 4. �W10 USAPhO 2016, problem A3. Print out the custom answer sheet before starting.

[5] Problem 5. �h10 IPhO 2006, problem 2. A nice problem about relativistic visual effects.

2 Velocity Addition

Idea 2: Velocity Addition

Again, let frame S′ moves with velocity vx̂ with respect to frame S. If an object has velocity

(u′x, u
′
y) in frame S′, then the velocity in S is

ux =
u′x + v

1 + u′xv/c
2
, uy =

u′y
γ(1 + u′xv/c

2)

where γ = 1/
√
1− v2/c2 as usual.

Idea 3: Relativistic Doppler Shift

If a light source with (proper) frequency f ′ is moving directly towards you at speed v, then

in nonrelativistic physics, we would measure a frequency

fnr =
f ′

1− v/c
.
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In relativity, we also need to account for the source being time dilated, so

f =
fnr
γ

=

√
1 + v/c

1− v/c
f ′.

This additional, second-order correction was first measured by Ives and Stilwell, in the late

1930s. (The transverse Doppler effect is more subtle, and we’ll come back to it in problem 22.)

Example 1

A reference frame is a formal object made of rulers and synchronized clocks. The length of

an object in a given reference frame isn’t necessarily the same thing as how long the object

looks, to somebody at rest in the frame using their own eyes. That is different, because one

has to account for the time the light needs to travel to the eyes.

Consider a train of rest length L moving with speed v to the right in the ground frame. How

long does the train look to somebody standing on the ground directly to the right of it?

Solution

Both ends of the train continually emit light. Suppose two flashes of light, one from each

end, hit an observer’s eyes simultaneously. Then the apparent length of the train Lapp is the

distance between the points where the light flashes were originally launched.

For somebody to the right of the train, the pulse from the left end of the train had to travel

an extra distance Lapp, so it must have been emitted a time Lapp/c earlier. At this time, the

left end of the train was vLapp/c behind where it is when the pulse from the right end of the

train hits the observer. So the apparent length is

Lapp =
L

γ
+

v

c
Lapp.

Solving this for Lapp gives

Lapp = L

√
1 + v/c

1− v/c
.

Unlike the abstract lab frame length L/γ, this directly observable length is larger than L.

We can also derive this result using the relativistic Doppler shift. In the frame of the train,

suppose light is emitted from the left end of the train with wavelength λ = L. Then when

it passes by the right end, its phase has changed by 2π. In the lab frame this must be

remain true, so λ′ = Lapp. But the relativistic Doppler shfit tells us that in the lab frame,

λ′ = L
√

(1 + v/c)/(1− v/c), giving the same result.

To check you understand these arguments, you can try them to the case where the person

stands to the left of the train. In that case, we instead have Lapp = L
√
(1− v/c)/(1 + v/c).
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Remark

In most of the problems below, we’ll focus on how objects are measured in inertial reference

frames, not on how they physically appear to an observer’s eyes. This is a complicated but

fascinating subject. For instance, it turns out that once one accounts for the light travel

time delay, moving objects appear to be rotated. For an interactive simulation, check out

the game A Slower Speed of Light (3D) and Velocity Raptor (2D only).

[1] Problem 6 (KK 12.6). A rod of proper length ℓ0 oriented parallel to the x axis moves with velocity

ux̂ in frame S. What is the length measured by an observer in frame S′, which, as usual, moves

with velocity vx̂ with respect to S?

Solution. The speed of the rod measured by an observer in S′ is

u′ =
u− v

1− uv/c2
.

The length contraction will result in an observed length of

ℓ′ = ℓ

√
1−

(
u− v

c− uv/c

)2

.

[4] Problem 7. An object at rest at the origin in frame S′ emits a flash of light uniformly in all

directions.

(a) In frame S′, the expanding shell of radiation is a perfect sphere. Explain why it is also a

perfect sphere, at any moment, in any other frame S.

(b) Let frames S and S′ be related as usual. Consider the light emitted at an angle θ0 with respect

to the x′ axis in S′. Show that the angle θ it makes with respect to the x axis in S obeys

cos θ =
cos θ0 + v/c

1 + (v/c) cos θ0
.

(c) Therefore, if the object has an ultrarelativistic speed v ≈ c in frame S, argue that in this frame,

most of its radiation comes out in a narrow cone of opening angle 1/γ along the direction of

travel. This “relativistic beaming” effect is important in the Large Hadron Collider, where

high-energy particles decay into lower-energy particles concentrated in narrow “jets”.

Now consider the case where the object is at rest, but the light is viewed by a very distant, slowly

moving observer going in a circle, with momentarily comoving frame S. Because of your result in

part (b), the observer will see the object perform an apparent circular motion. When the object is

a star and the observer is a telescope on the Earth, this phenomenon is known as stellar aberration.

(d) Suppose that the displacement from the sun to the distant star is perpendicular to the plane of

orbit of the Earth. If the Earth performs a circular orbit with speed v ≪ c, find the apparent

angular radius θA of the circle the star moves in.

(e) There is another independent effect at play here, which is that the star will also seem to move

in a circle due to parallax. Parallax exists even if the speed of light is taken to infinity; it is

the result of the Earth moving in its orbit, and hence seeing the star from different angles.

If the Earth orbits with radius r, and the star of part (d) is a distance d ≫ r away, find the

apparent angular radius θP of the circle the star moves in.

5

https://knzhou.github.io/
https://en.wikipedia.org/wiki/Terrell_rotation
http://gamelab.mit.edu/games/a-slower-speed-of-light/
https://testtubegames.com/velocityraptor.html


Kevin Zhou Physics Olympiad Handouts

(f) For a typical star in the galaxy, which is larger, θA or θP ?

The fact that both aberration and parallax escaped detection over centuries of effort was a strong

early piece of evidence against heliocentrism. Today we know that they are hard to observe because

c and d are very large.

Solution. (a) Since the radiation is emitted from a single point, all the light is emitted at the

same time in any frame. From that point on, the shell of radiation is a sphere because the

speed of light is the same in all frames.

(b) In S′, the end of the light beam is described by x′ = ct′ cos θ0. Lorentz transforming to S, we

see that

(ct, x) = γct′(1 + (v/c) cos θ0, v/c+ cos θ0).

Therefore, the angle is

cos θ =
x

ct
=

cos θ0 + v/c

1 + (v/c) cos θ0
.

This conclusion can also be reached using relativistic velocity addition.

(c) In frame S′, half of the radiation comes out at an angle |θ0| ≤ 90◦. So let’s consider how the

radiation at θ0 = 90◦ comes out, in frame S. Plugging in cos θ0 = 0, we find

cos θ =
v

c
=
√
1− 1/γ2.

Using the usual right triangle trick, these corresponds to

sin θ =
1

γ

which is a small angle! (In fact, more than half the radiation power comes out within this

small angle, because the radiation going forward in S is blueshifted, while the radiation going

backwards is redshifted, as one can see with the relativistic Doppler effect.)

(d) Let the star by displaced relative to the Earth along the z axis, and let the Earth’s velocity

be along its x axis. Then the formula in part (b) applies, where θ0 = π/2. We thus have

cos θ = v/c, where θ = θ0 + θA, and applying the small angle approximation gives θA = v/c.

(If you find the geometry of the effect confusing, see this diagram.)

(e) Using the small angle approximation, the answer is straightforwardly θP = r/d.

(f) Earth’s orbit speed is about 30 km/s, so v/c ∼ 10−4. By contrast, r is a few light-minutes,

while d is at the minimum a few light-years, so r/d ≲ 10−6 even for the closest stars. So the

aberration effect is much larger. Aberration was first seen by Bradley in 1725, while parallax

was not seen until the mid 1800s. (By the way, aberration applies to the Sun too; the actual

position of the Sun, in an inertial frame on Earth, is an angle 10−4 away from where it appears

in the sky. But this deflection isn’t so practical to measure.)

[4] Problem 8. In his original 1905 paper on relativity, Einstein considered how light reflected from

a moving mirror is Doppler shifted.

(a) Find the frequency of light reflected directly back from a mirror which is approaching the

observer with speed v, if the light originally had frequency f .
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(b) Show that this is the same as if the light were sourced with frequency f by an object moving

at speed 2v/(1 + v2/c2) towards the observer. Can you find an intuitive reason for this?

(c) Confirm that the energy gained by the light is equal to the loss of the kinetic energy of the

mirror. For simplicity, assume the mirror is very heavy. You’ll have to use the fact that the

energy carried by a pulse of light is related to its momentum by E = pc.

(d) What happens if the mirror is moving along its own length? Concretely, suppose the mirror

lies at x = 0, light hits it traveling in the x̂ direction, and the mirror has a velocity v ŷ. After

reflection, which way does the light travel, and what is its new frequency?

Solution. (a) Consider the frame of the mirror. In this frame, the light comes in with frequency

f1 =

√
1 + v/c

1− v/c
f

by the Doppler shift, and it bounces off with the same frequency f1. Now go back to the frame

of the observer. By using the Doppler shift formula again, the observer sees a frequency

f2 =
1 + v/c

1− v/c
f.

That is, a moving mirror causes a double Doppler shift.

(b) Let u = 2v/(1 + v2/c2). Then verifying the claim boils down to showing that

f2 =

√
1 + u/c

1− u/c
f

which is equivalent to (setting c = 1),

(1 + v)2

(1− v)2
=

1 + u

1− u
.

This holds because
1 + u

1− u
=

1 + 2v
1+v2

1− 2v
1+v2

=
1 + v2 + 2v

1 + v2 − 2v
.

The intuition is that we can think of the reflected wave as being sourced by an image. Both the

source and the image have speed v relative to the mirror, so by relativistic velocity addition,

the image has speed 2v/(1 + v2) relative to the source.

(c) Let ∆p be the momentum transferred to the mirror, and let p0 be the momentum of the initial

pulse of light. Then the change in the mirror’s kinetic energy is

∆K = v∆p = −p0v

(
1 +

1 + v/c

1− v/c

)
= −p0

2v

1− v/c
.

On the other hand, the change in the light’s energy is

∆E = p0c

(
1 + v/c

1− v/c
− 1

)
= p0

2v

1− v/c
.

These are precisely opposite, so energy is conserved.
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(d) Nothing nontrivial happens. To see this, consider boosting into the mirror’s frame, then

computing the reflection as usual, and then boosting back into the original frame. Initially,

the light has four-velocity (c, 0). After boosting to the mirror’s frame, it has some four-velocity

(ux, uy). Reflection simply flips the sign of ux. But then boosting back to the original frame

will just yield a four-velocity (−c, 0). In other words, the light ray bounces back the way it

came, with no modification to its direction, and no modification to its frequency. There’s no

Doppler shift from a mirror moving along its own length.

We can also understand this fact from the standpoint of energy conservation. The reflection

process does no work on the mirror, because the change in momentum is perpendicular to the

mirror’s velocity, so the light’s energy remains the same as well.

[2] Problem 9 (Morin 11.16). In frame S′, a particle moves with velocity (0, u′) as shown at left.

Frame S moves to the left with speed v, so the situation in S is as shown at right, with the y speed

now u. Consider a series of equally spaced dotted lines, as shown. By considering the rate at which

the particle crosses the dotted lines in each frame, find u in terms of u′ and v, and confirm the

result agrees with the velocity addition formula.

Solution. Before starting, let’s recall how the time dilation formula works. Suppose we have two

events with the same x coordinate (such as the ticking of a clock at rest in frame S), separated

by time ∆t. Then applying the Lorentz transformation yields ∆t′ = γ∆t for the time separation

in the primed frame. Conversely, if we had two events with the same x′ coordinate (such as the

ticking of a clock at rest in frame S′), then ∆t = γ∆t′.

In this problem, the particle isn’t at rest in either frame S or S′. But the Lorentz transformations

don’t do anything to the y coordinate, so the motion in the y-direction doesn’t matter for the

purposes of the above argument. Suppose that in frames S and S′, there is an interval ∆t and ∆t′

between crossing adjacent dotted lines, respectively. Since these occur at the same x′ coordinate in

frame S′, we have

∆t = γ∆t′.

Moreover, length in the y-direction isn’t contracted at all, so

γ =
∆t

∆t′
=

u′

u
.

Thus, we have

uy =
u′y
γ

which agrees with the velocity addition formula, when we plug in u′x = 0.

[3] Problem 10 (KK 12.9). A slab of glass moves to the right with speed v ≪ c. A flash of light is

emitted from A and passes through the glass to arrive at B, a distance L away.
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In the rest frame of the glass, it has thickness D and the speed of light in the glass is c/n. Suppose

n is a constant independent of light frequency.

(a) If you were a 19th century physicist, who didn’t know relativity but did know about the index

of refraction and Galilean velocity addition, how long would you expect it to take the light to

go from A to B? Keep the lowest order term in v/c.

(b) How long does it actually take the light to go from A to B, again to lowest order in v/c?

This kind of setup could be part of an interference experiment, which would allow the tiny time

difference to be effectively measured. Before the advent of special relativity, experiments like these

which require relativistic velocity addition were very puzzling. They were interpreted by imagining

that materials that slowed down light also partially “dragged” the ether along with it.

Solution. (a) Naively, the light moves with speed c in free space, and speed vin = c/n+ v inside

the slab, by Galilean velocity addition. So when the light is in the slab, the relative speed of

the light and slab is exactly

vrel =
c

n
.

Therefore, by routine kinematics, the time spent in the slab is

tin =
D

vrel

during which the light moves forward by D + vtin. The rest of the time is

tout =
L−D − vtin

c
.

Adding these together gives a total time of

T =
L

c
+D

(
1

vrel
− 1

c
− v

cvrel

)
=

L

c
+

D

c

(
n− 1− vn

c

)
.

(b) The slab length contracts, but this is second order in v/c, while we’re just interested in the

first order effect. The key difference is that because of relativistic velocity addition, the light

in the slab moves with speed

vin =
c/n+ v

1 + v/nc
=

c

n
+

(
1− 1

n2

)
v +O(v2/c).

Thus, to leading order in v/c, when the light is in the slab, the relative speed of the light and

slab is, in the lab frame,

vrel ≈
c

n
− v

n2
.
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The rest of the above derivation goes through unchanged, giving

T =
L

c
+D

(
1

vrel
− 1

c
− v

cvrel

)
≈ L

c
+

D

c

(
n− 1− v(n− 1)

c

)
again to first order in v/c. (Before the advent of relativity, this result was explained by an

“ether drag” coefficient of 1− 1/n2.)

[3] Problem 11. �̂10 USAPhO 2021, problem A2. A simple, elegant problem with a useful punchline.

[3] Problem 12. In relativity, objects that change their direction of motion also automatically rotate,

even if they experience no torque in their own frames. Concretely, suppose an object is moving along

the x-axis with speed v ≪ c. In its own frame, it experiences an impulse along the y-axis, which

doesn’t rotate it, but does change its velocity in that direction by u ≪ v. To keep things simple,

you should set c = 1, and throw away terms smaller than either v2 or uv. Under this approximation,

the final velocity of the object in the lab frame is just (u, v).

(a) Starting in the lab frame, with coordinates (t, x, y), go into the object’s frame by performing

a Lorentz boost of v along x̂, and then of u along ŷ. That is, express the object’s coordinates

(to, xo, yo) in terms of t, x, and y.

(b) To compare the orientation of this frame to that of the lab frame, start again in the lab frame

and go into the object’s frame using a single Lorentz boost of v = (v, u). You’ll need the

formula for a Lorentz transformation in an arbitrary direction, which is

t′ = γ(t− v · r), r′ = r− γvt+ (γ − 1)(v̂ · r)v̂.

(c) Your two frames will differ in orientation by a small angle ∆θ. What is ∆θ? More generally,

if the object performs uniform circular motion with angular velocity ω and speed v in the lab

frame, what spin rotation rate ωs is induced by this effect?

(d) Suppose the object accelerated by momentarily firing an array of rockets on its back. How

would an observer in the lab frame explain why the object rotated?

This subtle phenomenon goes by several names. When we think about it kinematically, as the

result of composing Lorentz transformations, it’s usually called Wigner rotation, while when we

think about it dynamically, e.g. by tracking the orientation of an orbiting particle, it’s usually called

Thomas precession. In this problem, we considered the most concrete, straightforward derivation of

this effect. For a beautifully geometric but more advanced derivation, see this article. For a rather

messy application of Wigner rotation, see Physics Cup 2023, problem 4.

Solution. (a) After the first Lorentz transformation, we have coordinates

t1 ≈ (1 + v2/2)t− vx, x1 ≈ (1 + v2/2)x− vt, y1 = y

where we threw out some small terms, e.g. by approximating γ ≈ 1 + v2/2. After the second

Lorentz transformation, throwing out other small terms (or order v3, u2, uv2, etc.) gives

to ≈ (1 + v2/2)t− vx− uy

and

xo ≈ (1 + v2/2)x− vt, yo ≈ y − ut+ uvx.
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(b) To evaluate the result, we note that v̂ ≈ (1, u/v), so that

(γ − 1)(v̂ · r)v̂ ≈ (v2/2)(x+ uy/v)(1, u/v) ≈ 1

2
(v2x+ uvy, uvx)

to the order at which we’re working. Then the Lorentz transformation gives

t′ ≈ (1 + v2/2)t− vx− uy

and

x′ ≈ (1 + v2/2)x− vt+
1

2
uvy, y′ ≈ y − ut+

1

2
uvx

(c) By comparing our results and thinking about the form of a small rotation matrix, we see that

the orientation difference is ∆θ = uv/2. If the object keeps moving in a circle, then

ωs =
∆θ

∆t
=

v

2

∆u

∆t
=

v

2
ωv =

v2

2
ω.

So rotations receive a relativistic correction at order v2, like lengths or times. This effect is

important for the dynamics of electrons in atoms; if you don’t account for it, the “spin-orbit”

interaction is off by a factor of 2.

(d) As usual, the culprit is loss of simultaneity. If the rockets are fired simultaneously in the

object’s frame, then the object won’t turn in its own frame. But in the lab frame, the rockets

won’t be fired simultaneously, so that the object will momentarily experience a torque about

its center, and turn.

[3] Problem 13 (Morin 11.58). A person walks very slowly at speed u from the back of a train of

proper length L to the front. The total time dilation effect in the train frame can be made arbitrarily

small by picking u to be sufficiently small, so that if a person’s watch agrees with a clock at the

back of the train when he starts, then it also agrees with a clock at the front when he finishes, to

arbitrary accuracy.

Now consider this setup in the ground frame, where the train moves at speed v. The rear clock

reads Lv/c2 more than the front, so in view of the preceding paragraph, the time gained by the

person’s watch during the process must be Lv/c2 less than the time gained by the front clock. By

working in the ground frame, explain why this is the case. Assume u ≪ v.

Solution. This is a tricky issue: even though the extra time dilation effect can be made arbitrarily

small by making u smaller, doing so would make the effect last for a longer time. In this particular

situation, that means the effect doesn’t go away even as u → 0! In this respect, it has something in

common with the more subtle approximation problems in P1.

Setting c = 1, the person in the ground frame has speed and Lorentz factor

w =
u+ v

1 + uv
, γw = γuγv(1 + uv)

so that the time it takes for them to walk across the train is

∆t =
L

γv

1

w − v
.
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The difference in time dilation factors, on the person’s clock versus the train’s clocks, leads to a

relative change in time reading of

∆τ =

(
1

γw
− 1

γv

)
∆t =

(
1

γu(1 + uv)
− 1

)(
L

γ2v

1

w − v

)
.

To simplify the second factor, note that

1

γ2v(w − v)
=

1

γ2v

1 + uv

u(1− v2)
=

1 + uv

u

so that we have

∆τ =
L

u

(
1

γu
− 1− uv

)
.

We need to be a bit careful in approximating this expression, since the 1/γu and 1 terms will almost

cancel out. So we instead write 1/γu = 1 +O(u2), giving

∆τ =
L

u

(
1 +O(u2)− 1− uv

)
= −L(v +O(u)) ≈ −Lv

since we are assuming u ≪ v. This is precisely the expected result.

3 Paradoxes

Now you’re prepared to confront some classic relativistic paradoxes. They won’t appear in compe-

titions, but your understanding of relativity will be deeper if you grapple with them. (Also, now

that we’ve got the basics out of the way, we’ll start setting c = 1 for most problems.)

Example 2

Bob moves away from Alice at constant speed. According to special relativity, each sees the

other as aging slower. (This is true both in terms of their reference frames, and in terms of

what they see with their eyes.) How can that possibly be self-consistent? Shouldn’t time be

running slower for one or the other?

Solution

The first thing to point out about this paradox, and many other relativistic paradoxes,

is that they rely on slipping in nonrelativistic assumptions using tricky wording. If

you’re fine with the idea of time being relative, there’s nothing paradoxical about peo-

ple disagreeing on whose clock runs slower. It’s not really more confusing than the fact

that when I walk away from you, I see you getting smaller, but you also see me getting smaller.

More seriously, though, the reason time dilation can be symmetric is the loss of simultaneity

effect, as beautifully shown in Tatsu Takeuchi’s Illustrated Guide to Relativity.
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[2] Problem 14. The Lorentz transformations treat x and t completely symmetrically. So why is it

that lengths contract while times dilate? Shouldn’t both do the same thing?

Solution. This comes down to a difference in how lengths and times are measured. Let S be the

lab frame and let S′ be the frame of a moving rod and clock, and watch the primes below carefully!

• In frame S′, consider two events occupied by the clock. Then by definition ∆x′ = 0 and the

proper time read by the clock is ∆t′. In our frame, for these same two events, we have ∆t = γ∆t′,

so a greater amount of time passes on the lab clock; we interpret this as time dilating for the

moving clock.

• In frame S′, consider the opposite ends of the ruler at the same time. Then by definition ∆t′ = 0

and the proper time is ∆x′. In our frame, for these same two events, we have ∆x = γ∆x′. So

naively it looks like the story is the same.

• The difference comes down to how we define “time measured” and “length measured” in the

lab frame S. The time measured on the clock is ∆t, where the events must have ∆x′ = 0 so

that we follow the clock. But by contrast, the length measured in the lab frame is ∆x, where

we must have ∆t = 0 so that we measure the locations of both ends at the same time. The

fundamental difference is that in frame S, time measurements can be done in different places

(since we have, conceptually, a network of synchronized clocks) but length measurements must

be done at the same time.
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• Therefore, if we impose ∆t = 0, we can use an inverse Lorentz transform to yield ∆x′ = γ∆x,

which is length contraction.

[3] Problem 15. A scientist is trying to drill through a piece of wood of thickness 2L, but the longest

drill bit they own has a length L. The scientist decides to move the wood relativistically fast, so

that it length contracts to a thickness less than L. Then the drill can be held in the path of the

wood, and pulled out once it goes through. Can this really be done without harming the drill bit

or ruining the wood? If not, what’s wrong? If yes, then what does it look like in the rest frame of

the wood?

Solution. This is a harder version of the ladder, or barn-pole paradox. The answer is that it’s not

possible to pull the drill bit out in time without destroying it. The point is that, as you saw in

problem 3, length contraction happens to fast-moving objects because of loss of simultaneity. In

other words, if we pull the drill out without changing the proper length of any piece of it, then

the tip of the drill bit has to start moving backwards first. The backward velocity propagates back

through the drill bit, but it can’t get to the back of the drill bit before it collides with the wood.

Here’s an extreme example: suppose we try to pull the drill bit out at the speed of light. This

means it has to length contract to zero, which means the tip of the drill bit and the motion both

propagate backward at speed c. Suppose for concreteness that γ = 4, so that the piece of wood

has thickness L/2 and speed v = (
√
15/4)c. At the moment the tip of the drill bit goes through

the wood, we start moving the tip backwards. It takes a time L/c for this backwards motion to

propagate to the back of the drill bit. During this time, the piece of wood has moved backwards

a distance vL/c > L/2, which means it has already smashed into the back of the drill bit, ruining

the wood.

For a more detailed discussion, with many nice diagrams, see section 6.3 of Understanding

Relativity by Sartori.

[3] Problem 16. A headlight is constructed by putting a light source inside a spherical cavity.

The opening of the cavity has angular width θ, so a beam of light comes out with width θ. The

headlight is mounted on the front of a car, which then moves forward at a relativistic speed. The

new width of the headlight’s beam is θ′, in the frame of the Earth. Consider the following two

arguments.

The headlight length contracts, increasing the cavity opening angle. Therefore, θ′ > θ.

By relativistic velocity addition, the light must have a greater forward velocity in the

Earth’s frame than in the car frame, because the car is moving forward. So the light

must come out at a shallower angle in the Earth’s frame. Therefore, θ′ < θ.

Which argument is right?
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Solution. The second argument is right; it’s just the relativistic beaming effect from problem 7.

The problem with the first argument is that, even though the cavity opening angle is bigger, that

isn’t the same thing as the beam’s opening angle, because the light that gets to the cavity opening

was emitted when the light source was further back.

Visually, here’s a snapshot of the situation.

The two definitions of θ′ correspond to the two arguments, but it’s the smaller θ′ that corresponds

to the beam angle, as measured from far away. (Of course, if you take the first argument and

account for the fact that the relevant light is further back, you can get precisely the same θ′ as in

the second argument, though the algebra to show this is a bit messy.)

[3] Problem 17. In the lab frame, a horizontal stick of proper length L has horizontal speed v. There

is a horizontal thin sheet which has a hole of length L. Since the stick’s length is contracted to L/γ,

it easily passes through the hole in the sheet, if the sheet is moved vertically. But in the frame of

the stick, the sheet is moving horizontally, so the hole is length contracted instead. Qualitatively

explain how the stick can still pass through the hole in this frame, in the following two cases:

(a) The sheet has a uniform vertical velocity in the lab frame.

(b) The sheet begins at rest at the lab frame, but is pushed upward a small amount when the

stick passes over the hole, then ends at rest again.

Solution. The idea behind this classic problem was first proposed by Rindler in 1961, then refined

by Shaw in 1962, and incorporated into many textbooks. A detailed solution of Rindler’s original

version, with illustrations, is given in section 6.4 of Understanding Relativity by Sartori.

(a) The resolution is that the sheet is not horizontal in the stick’s frame. The simplest way to see

this is to let the z-axis be vertical, and consider when different points in the sheet cross the

point z = 0. In the lab frame, these events are all simultaneous, so they’re not simultaneous in

the stick’s frame, which means that in the stick’s frame the sheet is rotated; you can calculate

the angle with the Lorentz transformation. (This rotation is closely related to the Thomas

precession effect mentioned in problem 12.) Since the sheet isn’t horizontal, the hole passes

around the stick at an angle, so it fits. For a detailed quantitative solution, see this paper.

(b) The resolution is that the sheet is not straight in the stick’s frame. Again, the simplest way to

see this is to consider when different points in the sheet start to be raised. In the lab frame,

these events are all simultaneous, so they’re not simultaneous in the stick’s frame. At any

given moment in the stick’s frame, part of the sheet is still at the lower position, part of the

sheet is already at the upper position, and part in between is moving upward while slanted,

as in part (a). So, as the sheet moves horizontally, the hole appears to “bend around” the

stick, letting it pass through.
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This might seem very disturbing. The sheet is always perfectly straight in the lab frame, but

it has two kinks in the stick’s frame! But this is no more paradoxical than length contraction

is. To decide whether a piece of an object is actually deformed, we need to look at it in its

rest frame. An rod that’s severely length contracted in one frame is in no danger of breaking,

and this sheet, which is severely kinked in some frames, is in no danger of tearing.

Here’s another example: suppose you have a uniformly rotating cylinder. Then in the frame

of an object moving along the axis of the cylinder, the cylinder is twisted because of the loss

of simultaneity effect. (But it’s not really twisted, in the sense that if you work in the frame

locally moving with any piece of the cylinder, it will have no shear stress.)

The lesson is that the classical definition of a rigid body from M8, i.e. that angles and lengths

between points on the body always remain the same, doesn’t work in special relativity; even

if those conditions hold in one frame, they won’t necessarily in another.

[4] Problem 18. Here is the statement of the traditional twin paradox.

Bob is an astronaut who leaves home on a rocket with speed v. Alice stays home. After

time T in Alice’s frame, Bob reverses direction and travels home with speed v. Who, if

either, has aged more?

The obvious answer is that Alice has aged more by time dilation. The trouble is explaining why we

can’t just work in Bob’s frame and conclude that Bob has aged more by time dilation.

(a) Draw a Minkowski diagram for Alice and Bob where Alice’s worldline is x = 0.

(b) The reason that working in Bob’s frame is subtle is that it is not a single inertial frame. Draw

x′ and t′ axes for Bob at several points on Bob’s worldline. Argue that when Bob turns around,

thereby moving to a different inertial frame, Alice’s age jumps upward. (Using the results of

chapter 11 of Morin, you can even show that the amount of aging is exactly what is needed,

using the Minkowski diagram alone.)

This illustrates why the situation is not symmetric between Alice and Bob. But this resolution of

the twin paradox is a little unphysical. It does explain what goes wrong working in Bob’s frame,

but it’s not related to what Bob actually physically sees, which is determined by when photons

from Earth reach his eyes; nothing about that changes discontinuously when he turns around.

(c) More physically, let us suppose that Bob continually emits radiation of frequency f (in his

frame) towards Alice. Suppose that in Alice’s frame, Bob travels with speed v, reaches a

maximum distance L from Alice, and accelerates quickly to return with speed v. If Alice sees

Nb wave crests in total during Bob’s trip, then Bob has aged by Nb/f . Use the relativistic

Doppler effect to compute Nb/f , working entirely from Alice’s perspective.

(d) Now suppose Alice continually emits radiation of frequency f (in her frame) towards Bob. If

Bob sees Na wave crests, use the relativistic Doppler effect to compute Na/f , working entirely

from Bob’s perspective. If you’re careful, this should differ from the answer to (c).

(e) [A] Now consider a trickier example. Suppose Alice and Bob live on a torus, i.e. a spacetime

where the point (x, y, z, t) is the same as the point (x + L, y, z, t). Alice stays home, while

Bob leaves on a rocket with velocity vx̂. After a while, Bob returns home, without having

done any acceleration along the way! It seems like the resolution above does not apply, so

who, if either, has aged more? Can you explain the results from Bob’s reference frame?
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Solution. (a) Here’s the result.

(b) Bob’s x′ and ct′ axes before and after the acceleration are also displayed. We see that as these

axes rotate during the acceleration, Alice’s age changes extremely quickly.

This might feel strange, but it’s really just an artifact of changing reference frames. As a

simpler example, suppose you were a surveyor trying to measure the height of a mountain,

which can be done by measuring the angle to its summit with respect to a horizontal level. If

the surveyor then gets on an accelerating car, their horizontal level will tilt, causing the height

reading to change extremely quickly. But that doesn’t mean people living on the mountain

will be flung off! They don’t feel anything; it’s just the surveyor’s notion of horizontal that

changed. Similarly, when Bob turns around, his definition of time changes, so that Alice’s age

“right now” (according to Bob) suddenly changes.

(c) The radiation that was emitted while Bob was moving away from Alice is received by Alice

with redshifted frequency

fr =

√
1− v

1 + v
f.

The radiation that was emitted while Bob was moving towards Alice is received by Alice with

blueshifted frequency

fb =

√
1 + v

1− v
f.

Suppose that Alice sees these frequencies for times tr and tb. Then the answer is

Nb = trfr + tbfb.

It remains to compute tr and tb. Naively we would say tr = tb = L/v, because that’s how

long Bob spends moving towards and away from Alice respectively, but this question is about

what Alice sees with her eyeballs. The transition point between the two phases is when the

radiation that Bob emitted while turning around gets to Alice. In other words,

tr =
L

v
+

L

c
, tb =

L

v
− L

c
.
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Then we have

Nb =
Lf

v

(
(v + 1)

√
1− v

1 + v
+ (1− v)

√
1 + v

1− v

)
=

2Lf

v

√
1− v2

so Bob has aged by 2L/γv, exactly as expected. Physically, Alice sees Bob aging in slow

motion for more than half the time, and aging in fast motion for less than half the time, with

the overall effect of Alice aging more.

(d) Let’s define all the terms as in the previous part. Bob turns around when he is a distance

L/γ (according to him) from Alice. The fundamental difference is that Bob starts seeing the

higher frequency the instant he turns around, so

tr = tb =
L

γv
.

Therefore, we have

Na =
Lf

γv

(√
1− v

1 + v
+

√
1 + v

1− v

)
=

2Lf

γv

1√
1− v2

so Alice has aged by 2L/v, exactly as expected. Physically, Bob sees Alice aging in slow

motion for half the time, and aging in fast motion for half the time, with the overall effect of

Alice aging more. Again, note that the fundamental asymmetry is due to Bob being the one

accelerating, which is baked into how we computed the tr and tb.

(e) In this exotic spacetime, there really is a notion of absolute rest: we can unambiguously say

that Bob moved and Alice didn’t, so Alice has aged more. The reason is that the torus itself

picks out a special frame. Only in Alice’s frame is it true that when you wrap around the edge

of the torus, you emerge on the other end at the same time. In Bob’s frame, this isn’t true,

by loss of simultaneity. In Bob’s frame, Alice gets to the edge of the torus, then emerges out

the other edge at a later time, which ultimately makes her older than Bob when she returns.

The more general lesson is that while special relativity restricts the forms of physical laws to

have certain symmetries, it doesn’t mean that the solutions of the corresponding equations

must always have the same symmetry. The dynamics of salt molecules in solution obey

perfect rotational symmetry, but when they crystallize, the faces of the crystal pick out

special directions. Likewise, as far as we’ve ever measured, all of the dynamics in our universe

perfectly obey the Lorentz symmetry of special relativity, but the cosmic microwave background

radiation does provide an absolute rest frame.

Remark

The above problem on the twin paradox is quite long. Every physics textbook that covers

relativity mentions the twin paradox, and Morin even has a whole appendix with five

different resolutions of it. But it’s not that hard to resolve, so why spend so much energy on it?

The answer is that seemingly intelligent people really can get stuck on these things for

years, or even decades. As an example, consider the honored English astronomer and

philosopher Herbert Dingle. Dingle wrote several textbooks, served as president of the Royal
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Astronomical Society, and even wrote popular essays introducing relativity. But late in life,

he started to believe that relativity could not explain the twin paradox.

Dingle’s arguments contained thousands of words of vague, equation-free prose. Here’s the

simplest mathematical formalization of what he meant. In the Lorentz transformations

x′ = γ(x− vt), t′ = γ(t− vx), x = γ(x′ + vt′), t = γ(t′ + vx′),

we notice that if we set x = 0, then t′ = γt, while if we set x′ = 0, then t = γt′. Therefore,

aging in the twin paradox must be symmetric, γ = 1/γ. However, this implies γ = 1, so that

time dilation doesn’t happen at all, and relativity collapses.

Dingle continued pushing this for the rest of his life, writing endless letters and articles,

and even publishing a rambling book, Science at the Crossroads, which warned of the grave

dangers of trusting relativity. Today, it is a favorite of flat Earthers. And it’s far from the

only example. For instance, there was a book published in Nazi Germany called A Hundred

Authors Against Einstein, where a vast array of philosophers argued that relativity had to be

wrong, because it contradicted the metaphysical system of the native German, 18th century

philosopher Immanuel Kant. Kant’s ideas about space and time, they said, could be proven

true by verbal reasoning alone, so any theory or experiment saying otherwise had to be wrong.

If there’s a lesson to be drawn from this bizarre history, it’s that the ability to write or speak is

not the same as the ability to think. People can churn out pages of flowing prose without ever

having a single coherent thought. Physicists learn to think by solving well-defined problems

mathematically. Many others never gain this skill, and spend their whole lives drunkenly

stumbling from word to word. The real tragedy is that such people often grow to believe

that no better method of reasoning can exist.

4 Four-Vectors

Idea 4

A four-vector V µ is a set of four quantities (V 0, V 1, V 2, V 3) that transform in the same

manner as (ct, x, y, z). The inner product of two four-vectors is defined as

V ·W = V 0W 0 − V 1W 1 − V 2W 2 − V 3W 3.

It is invariant under Lorentz transformations. By convention, V ·W is also written as V µWµ.

[2] Problem 19. Show explicitly that the norm of the displacement four-vector is invariant under

Lorentz transformations, i.e. that

(∆s)2 = ∆s ·∆s = (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

is Lorentz invariant. Since all four-vectors transform the same way, this proves it for all of them.
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Solution. Plugging in the Lorentz transformations, we have

(∆s′)2 = (∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2

= γ2(∆t− v∆x)2 − γ2(∆x− v∆t)2 − (∆y)2 − (∆z)2

= γ2(1− v2)(∆t)2 − γ2(1− v2)(∆x)2 − (∆y)2 − (∆z)2

= (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

as desired.

Example 3

Find a four-vector representing the velocity of a particle with position x(t).

Solution

Just as multiplying an ordinary vector with a rotational invariant produces another vector,

multiplying or dividing a four-vector with a Lorentz invariant gives another four-vector. In

this case, the appropriate four-vector is found by dividing displacement by the proper time

experienced by the particle,

uµ =
dxµ

dτ
= γ

dxµ

dt
= (γ, γv)

where v = dx/dt is the spatial velocity and γ = 1/
√
1− v2 as usual. Since its spatial part

reduces to the spatial velocity in the limit of low speeds, it is the relativistic generalization

of the spatial velocity. Finally, we define the four-momentum as pµ = muµ = (E,p), where

E = γm and p = γmv are the relativistic energy and momentum.

Example 4

Give a simple interpretation of the squared norm of a particle’s four-velocity, u · u, and its

four-momentum, p · p.

Solution

The answers have to be simple, because they must be invariants that only depend on the

intrinsic properties of the particle, i.e. only on the invariant mass m. For the four-velocity,

u · u = γ2 − γ2v2 = 1

which is clearly invariant. For the four-momentum we have p · p = m2.

Remark

Pop-science books usually describe the result u · u = 1 by saying that “particles always move

with the same speed through spacetime”, just like how a particle in uniform circular motion

always has the same spatial speed. However, this is very misleading, because it makes people

think that if dx/dτ increases in magnitude, then dt/dτ decreases. In fact it’s the opposite:

time dilation means more time passes for each tick of a moving clock, so dt/dτ increases.
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The analogy can’t work, because inner products of four-vectors have terms with minus signs,

while ordinary inner products of three-vectors don’t. The point, as always, is that there are

a lot of simple things in physics which are almost impossible to explain properly with fuzzy

math-free analogies. With math, relativity can make sense to high school students. Without

math, it can’t really make sense to anyone.

Example 5

Give a simple interpretation of the inner product of two momentum four-vectors, p1 · p2.

Solution

By definition, this is equal to m1m2u1 · u2, and since the inner product is invariant, we can

evaluate u1 · u2 in any frame. Suppose we work in the frame of the first particle, where

uµ1 = (1,0), uµ2 =

(
1√

1− v2
,

v√
1− v2

)
.

Carrying out the inner product, we have the relatively simple result

p1 · p2 =
m1m2√
1− v2

where v is the relative speed, meaning the speed of one particle in the frame of the other.

[2] Problem 20. In your inertial frame, there is a particle with four-momentum pµ, and an observer

moving with four-velocity uµ. The observer measures the particle in their inertial frame.

(a) Show that the energy they measure is p · u.

(b) Show that the momentum they measure has magnitude
√

(p · u)2 − p · p.

(c) What is the speed that they measure?

Don’t use Lorentz transformations here; everything can be done with four-vectors alone.

Solution. (a) We can evaluate p ·u in the observer’s frame. In that case, uµ = (1, 0, 0, 0), so p ·u
just picks out the first component of pµ in that frame, which is by definition the energy the

observer measures.

(b) Continuing to work in the observer’s frame, and writing pµ = (E,p), where E and p are the

energy and momentum in the observer’s frame, we have

(p · u)2 − p · p = E2 − (E2 − |p|2) = |p|2

which gives the desired result.

(c) Note that E = γm and p = γmv, so the speed they measure is the ratio

|v| = |p|
E

=

√
(p · u)2 − p · p

p · u
=

√
1− p · p

(p · u)2
.

A nice feature of this result is that it’s immediately clear that |v| ≤ 1.
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[3] Problem 21. In A’s frame, B has speed u, and C has speed v.

(a) Suppose B and C have velocities in opposite directions. Find the speed of B with respect to

C using four-vectors, by computing the inner product vB · vC in two different frames.

(b) The answer of part (a) should look familiar, but with four-vectors we can easily go further.

Generalize part (a) to the case where B and C have velocities an angle θ apart.

Solution. (a) In A’s frame, the four-velocities are

vB = (γu, γuu), vC = (γv,−γvv).

Let w be the desired answer. Then in C’s frame,

vB = (γw, γww), vC = (1, 0).

The inner product of vB and vC should be independent of frame, so

γuγv(1 + uv) = γw

or equivalently
1 + uv√

1− u2
√
1− v2

=
1√

1− w2
.

Solving for w gives the expected result,

w =
u+ v

1 + uv
.

(b) Taking vB to be along the x-axis for concreteness,

vB = (γu, γuu, 0), vC = (γv, γvv cos θ, γvv sin θ).

By the same logic as in part (a), we have

γuγv(1− uv cos θ) = γw

and solving for w gives the complicated result

w =

√
u2 + v2 − 2uv cos θ − u2v2 sin2 θ

1− uv cos θ
.

This reduces to the usual velocity addition formula for θ = 0 and θ = π. If we didn’t use

the tool of four-vectors and just applied the Lorentz transformations directly, this could have

been quite a mess, but instead it wasn’t much harder than part (a)!

[3] Problem 22. Four-vectors provide a quick derivation of the relativistic Doppler effect. Given a

plane wave, define kµ = (ω,k). Then the plane wave is proportional to eiϕ, where the phase is

ϕ = ωt− k · x = k · x.

Since the phase ϕ is Lorentz invariant, and we know xµ is a four-vector, kµ is a four-vector as well.

(a) Show that for light, kµkµ = 0.
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(b) Consider a light ray with angular frequency ω traveling along the x axis, and an observer

moving with speed v along the x-axis. Use an explicit Lorentz transformation to find the

angular frequency ω′ the observer sees, thus rederiving the longitudinal Doppler shift for light.

(c) Now it’s easy to go further. Repeat the previous part for a light ray traveling at an arbitrary

angle θ to the x axis. You can do this using either an explicit Lorentz transformation, or just

properties of four-vectors.

(d) The angle θ has different values in the source’s frame and the observer’s frame. In part (c),

we defined it in the source’s frame, but the most common form of the result defines θ in the

observer’s frame. To get this formula, repeat part (c), but now suppose we’re already in the

observer’s frame, where the source moves with velocity −vx̂, and the light ray is traveling at

an angle θ to the x-axis. Find the relationship between ω′ and ω.

The answer to part (d) is also the final result of USAPhO 2021, problem A2. For more on the

relativistic Doppler effect, see section 11.8.2 of Morin. (By the way, now that we have the four-vector

formalism set up, it’s not that much harder to compute the Doppler effect for waves that travel at

general speeds. You probably won’t need that result, but it’s an example of something that’s fairly

annoying to derive without four-vectors.)

Solution. (a) For plane waves ω = vk, where v = c for light. Thus the norm is ω2 − k2 = 0.

(b) Setting c = 1 now, a light ray traveling along the x axis has kµ = (ω, ω, 0, 0). Applying a

boost along the x axis, the new angular frequency is

ω′ = (k′)0 = γ(ω − vω) =

√
1− v

1 + v
ω

which is precisely the longitudinal Doppler effect. The vω term above is just what we would

expect from Galilean physics, while the relativistic factor of γ modifies the effect to second

order in v.

(c) For variety, we’ll do this part with four-vectors. We have

kµ = (ω, ω cos θ, ω sin θ, 0), vµ = (γ, γv, 0, 0)

and by slightly modifying part (a) of problem 20, we have

ω′ = k · v = γω − γωv cos θ =
1− v cos θ√

1− v2
ω.

(d) In this case, let vµ be the four-velocity of the source. In the observer’s frame,

kµ = (ω′, ω′ cos θ, ω′ sin θ, 0), vµ = (γ,−γv, 0, 0)

and the angular frequency measured in the source’s frame is

ω = k · v = γω′ + γω′v cos θ =
1 + v cos θ√

1− v2
ω′.

Rearranging, we conclude that

ω′ =

√
1− v2

1 + v cos θ
ω

which differs from the result of part (c) by second-order terms.
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Example 6: Woodhouse 6.6

Four distant stars Si are observed. Let θij denote the observed angle between the directions

to Si and Sj . Show that the ratio

(1− cos θ12)(1− cos θ34)

(1− cos θ13)(1− cos θ24)

is independent of the motion of the observer.

Solution

This Oxford undergraduate exam question is too technical to be relevant to Olympiads, but

it shows how four-vectors can be essential. The θij depend on the motion of the observer

because of the aberration effect in problem 7. That is, when you Lorentz transform to a

moving observer’s frame, it changes the direction of the incoming light. A direct attack on the

question would thus require applying the full, four-dimensional Lorentz transformations to

four vectors with arbitrary orientations, which would be a nightmare. Here’s an alternative:

let kµi be the wave vectors of an incoming photon from each star. Then

ki · kj = ωiωj − ki · kj = ωiωj(1− cos θij)

where we used ωi = |ki|. Therefore, the ratio is

(k1 · k2)(k3 · k4)/ω1ω2ω3ω4

(k1 · k3)(k2 · k4)/ω1ω2ω3ω4
=

(k1 · k2)(k3 · k4)
(k1 · k3)(k2 · k4)

which is manifestly independent of frame.

[4] Problem 23. In this problem we’ll construct a four-vector aµ for the acceleration of a particle,

and use it to derive the Lorentz transformation of the ordinary three-vector acceleration a = dv/dt.

(a) Explain why aµ = duµ/dτ is a four-vector, and why u · a is always zero.

(b) Show that when v = vx̂, the components of aµ are

aµ = (γ4vax, γ
4ax, γ

2ay, γ
2az)

where γ = 1/
√
1− v2 as usual. As a check, what is the meaning of a · a?

(c) Now let S′ be the momentary rest frame of a particle, i.e. the inertial frame that, at a

given moment, is moving with the same velocity as the particle. Let the particle have three-

acceleration a′ in that frame. Show that in this frame, aµ
′
= (0, a′x, a

′
y, a

′
z).

(d) By Lorentz transforming to S and using part (b), show that the acceleration in frame S is

a = (a′x/γ
3, a′y/γ

2, a′z/γ
2).

As you can see, transformations of three-vector quantities can get quite nasty!

Solution. (a) We know that uµ is a four-vector, and dτ is Lorentz invariant, so duµ/dτ = aµ is

a four-vector. Next, we know from an example that u · u is constant, so

d

dτ
(u · u) = 2u · a = 0.
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(b) The four-velocity will be (γ, γv). Since dτ = dt/γ, we have aµ = duµ/dτ = γduµ/dt, and

dγ

dt
= (1− v2)−3/2(−1/2)(−2vax) = γ3vax.

Here we used the fact that instantaneous acceleration in the y and z components doesn’t

change the magnitude of the speed, and thus won’t change γ. Then we have

aµ = γ
d

dt
(γ, γv) = γ(γ3vax, γ

3axv
2 + γax, γay, γaz) = (γ4vax, γ

4ax, γ
2ay, γ

2az).

To understand a · a, we evaluate it in the momentary rest frame,

a · a = (0, ax, ay, az) · (0, ax, ay, az) = −|a|2.

That is, it indicates the magnitude of the three-acceleration in that frame.

(c) This follows immediately from part (b), since v = 0 and γ = 1 in this frame. Generally,

four-vector properties take their obvious values in a frame where the particle is at rest.

(d) Applying a Lorentz transformation to aµ
′
, we have

aµ = (γ(0 + va′x), γ(a
′
x + 0), a′y, a

′
z) = (γ4vax, γ

4ax, γ
2ay, γ

2az)

We therefore read off the desired result,

a = (a′x/γ
3, a′y/γ

2, a′z/γ
2).

Of course, in the low velocity limit we recover a′i = ai, as expected from Galilean relativity.

Remark

We can rewrite a lot of our results in terms of three-vectors. First, the Lorentz transformations

for general v are, using the same notation as in idea 1,

t′ = γ(t− v · r), r′ = r− γvt+ (γ − 1)(v̂ · r)v̂.

The velocity addition formula for general v and u′ is, using the same notation as in idea 2,

u =
1

1 + v · u′

(
v +

u′

γ
+

(
1− 1

γ

)
v̂(v̂ · u′)

)
.

The first result of problem 23 is

aµ = (γ4a · u, γ4(a+ u× (u× a)))

and the second result, for the transformation of acceleration, is

a =
a′

γ2
− v̂(v̂ · a′)(γ − 1)

γ3
.

As you can see, these aren’t very enlightening, and they don’t tend to be useful in solving

problems. The reason is that in relativity, there’s nothing special about three-vectors. For

concrete problems, you’ll typically either want to do everything in terms of four-vectors, or
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descend all the way down to individual components – in which case you would align your

axes so that v points along one of them, rather than considering a completely general v.

On the other hand, you can get practice with three-vectors by staring at the above expressions

until you see how they reduce to the component forms we had earlier. If you do this, you’ll

learn how to translate just about any component expression into three-vector notation.

5 Acceleration and Rapidity

Idea 5

The geometry of special relativity is much like ordinary geometry, except that the dot product

is replaced with an inner product, which has some minus signs. Lorentz transformations

can be thought of as “generalized rotations” which mix up time and space, just as ordinary

rotations mix up different spatial axes. The generalized angle is the rapidity ϕ = tanh−1 v.

[3] Problem 24 (Morin 11.27). In this problem, we’ll see the meaning of the rapidity more precisely.

(a) Show that a Lorentz transformation may be written as(
x

t

)
=

(
coshϕ sinhϕ

sinhϕ coshϕ

)(
x′

t′

)
.

(b) Show that the composition of Lorentz transformations with rapidity ϕ1 and ϕ2 is a Lorentz

transformation with rapidity ϕ1 + ϕ2. This makes rapidity extremely useful in kinematics

problems with multiple boosts, such as problems involving acceleration.

(c) An ordinary rotation of spatial axes has the form(
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x′

y′

)
.

Show that a Lorentz transformation is essentially an ordinary rotation between space and

time, if we treat time as like “imaginary space” and the rotation as by an imaginary angle.

This was one of the ways the founders of relativity thought about it.

Solution. (a) The rapidity ϕ is defined by tanhϕ = v. Then using tanhϕ = sinhϕ/ coshϕ and

cosh2 ϕ− sinh2 ϕ = 1, we have

sinhϕ = γv, coshϕ = γ.

On the other hand, the Lorentz transformations are

t = γ(t′ + vx′), x = γ(x′ + vt′)

which are exactly of the desired form.
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(b) Explicitly, we have (
coshϕ1 sinhϕ1

sinhϕ1 coshϕ1

)(
coshϕ2 sinhϕ2

sinhϕ2 coshϕ2

)
=

(
A B

B A

)
where

A = coshϕ1 coshϕ2 + sinhϕ1 sinhϕ2, B = coshϕ1 sinhϕ2 + sinhϕ1 coshϕ2.

By using the hyperbolic trig sum rules, we have

A = cosh(ϕ1 + ϕ2), B = sinh(ϕ1 + ϕ2)

as desired.

(c) Let us substitute θ = iϕ and y = it. Then the rotation becomes(
x

it

)
=

(
cos(iϕ) − sin(iϕ)

sin(iϕ) cos(iϕ)

)(
x′

it′

)
.

This can be converted to a transformation between (x, t) and (x′, t′),(
x

t

)
=

(
cos(iϕ) −i sin(iϕ)

−i sin(iϕ) cos(iϕ)

)(
x′

t′

)
.

However, the quantities on and off the diagonal are simply the definitions of cosh(ϕ) and

sinh(−ϕ), so we’re done! (Up to an annoying overall sign on v, which was just up to our

conventions for rotation matrices.)

Remark

We know from M8 that if we do multiple rotations in a row, the final result depends on the

order the rotations are performed. The analogy between boosts and rotations gives intuition

for the analogous result for boosts: the order matters. For example, the difference between

boosting along the x-axis and then the y-axis, or vice versa, is a rotation in the xy plane.

Therefore, if an object is boosted in a circle in the xy plane, it will have an extra rotation in

that plane. This subtle phenomenon is called Thomas precession.

Idea 6

The next few questions will deal with accelerating objects. In Newtonian mechanics, a

common strategy is to work in the accelerating frame of the object, but that’s not a good

idea at this stage of your education. (There’s nothing wrong with doing so, but it brings in

complications that one usually needs a course in general relativity to fully appreciate.)

Instead, we will describe accelerating objects using inertial frames. In principle we could do

everything in the lab frame, but it is also often useful to work in a momentarily comoving

frame, i.e. the inertial frame that, at some time t, moves with the same velocity as the object.

[4] Problem 25. A rocket starts from rest in the lab frame at the origin, then accelerates in a straight

line at constant rate a0 as measured by an accelerometer on the ship; that is, the proper acceleration

is always a0.
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(a) Show that the acceleration measured in the lab frame is a0/γ
3. (We already proved this more

generally in problem 23, but try to do this more explicitly by working in the comoving frame,

then going back to the lab frame.)

(b) Find the speed of the rocket ship in the lab frame as a function of time t in the lab frame.

(c) Find the speed of the rocket ship in the lab frame as a function of the proper time τ elapsed

on the rocket. Can you explain the simplicity of your result using rapidity?

(d) To conclude, find expressions for t(τ), x(t), and x(τ), and comment on their limits.

Solution. (a) Suppose the rocket has speed v in the lab frame, and now consider the momentarily

comoving frame S′ moving with speed v. In that frame, in time dt′, the rocket accelerates

from zero speed to speed a0 dt
′. Then the new speed in the lab frame is the sum of v and

a0 dt, which is
v + a0 dt

′

1 + va0 dt′
= v + a0 dt

′ − v2a0 dt
′ +O(dt2).

Therefore, we have
dv

dt
= a0(1− v2)

dt′

dt
= a0(1− v2)3/2 =

a0
γ3

as desired.

(b) Separating and integrating, we have

a0t =

∫ v

0

dv

(1− v2)3/2
=

v√
1− v2

by a trigonometric substitution. (Here and below, we’re using an abuse of notation mentioned

in M1, where the integration variable is denoted by the same letter as its upper bound.) Then

v(t) =
a0t√

1 + (a0t)2
.

(c) Note that the increment of proper time measured by the rocket is dτ = dt′, because dt′ is

always defined in the frame momentarily moving with the rocket. Therefore

dv

dτ
= a0(1− v2), a0τ =

∫ v

0

dv

1− v2
.

Using hyperbolic trig substitution, we have

v(τ) = tanh(a0τ)

which just tells us that the rapidity changes at rate a0.

(d) It’s easy to crank these out given the above results. First, note that

dt = γ dτ =
dτ√

1− tanh2(a0τ)
= cosh(a0τ) dτ.

Integrating both sides gives

t(τ) =
sinh(a0τ)

a0
.
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Next, we integrating the answer to part (b),

x(t) =

∫ t

0

a0t√
1 + (a0t)2

dt =

√
1 + (a0t)2 − 1

a0
.

Finally, plugging in our expression for t(τ) gives

x(τ) =

√
1 + sinh2(a0τ)− 1

a0
=

cosh(a0τ)− 1

a0
.

This results make sense. At small t and τ , they just reduce to the familiar results t = τ and

x = a0t
2/2. At large t, x(t) increases linearly, since the speed of the rocket approaches the

speed of light. What is perhaps most interesting is that at large τ , x(τ) increases exponentially,

because of how quickly the time dilation effect increases. If it’s possible to make it to another

star in a human lifetime, it’s actually not that much harder to cross the whole galaxy! This is

a neat result, recently highlighted in the 2022 IPhO and the popular book Project Hail Mary.

[3] Problem 26. �̂10 USAPhO 2020, problem A3. An unusual problem that tests your understanding

of momentarily comoving frames, and higher-dimensional Lorentz transformations. As a warning,

this question requires you to make an unstated assumption. The fact that uniformly moving clocks

have their time dilated by a factor of γ follows directly from the postulates of special relativity.

But here you’ll have to assume this also holds for accelerating clocks, even though clocks can tell

if they’re accelerating, and may tick differently. This is called the clock hypothesis. For example,

on a roller coaster, a pendulum clock doesn’t obey the clock hypothesis, but a quartz watch does.

Also, the solution is a bit misleading, so don’t worry if you thought about the problem differently

as long as you got the same final answers.

[3] Problem 27 (Morin 11.26). The following problem is called Bell’s spaceship paradox. It caused a

stir at CERN when many particle physicists could not agree on the answer.

Two spaceships float in space and are at rest relative to each other. They are connected by a

string. The string is strong, but it cannot withstand an arbitrary amount of stretching.

At a given instant, the spaceships simultaneously (with respect to their initial inertial frame) start

accelerating in the same direction along the line between them, with the same constant proper

acceleration. In other words, assume they bought identical engines from the same store, and they

put them on the same setting. Will the string eventually break?

Solution. The two conflicting ideas is that in the lab frame, length contraction would indicate

that the distance between the two rockets is γL in the co-moving frame, indicating that the string

stretches and breaks. The other idea is that in the rocket frame, they both accelerate with the same

proper acceleration, and the relative velocity stays as 0.

The correct answer is that the string will eventually break. The second line of reasoning fails

because of the relativity of simultaneity. We can consider, at each moment, the inertial frame

comoving with the rear rocket, whose axes are as shown.
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Over time, the x′ axis of this set of inertial frames tilts upward, so the rear rocket sees the front

rocket accelerating faster, and hence moving away.

If this isn’t clear from the diagram, one can consider discretizing the acceleration, i.e. converting

it into a series of rocket pulses. Since the clocks of the rockets are synchronized, the first pulses

are simultaneous according to both rockets. But because of the relativity of simultaneity, within

the frame moving with the rear rocket after the first pulse, the front rocket does the second pulse

earlier, and hence starts to move away. (For a neat visual explanation, see this video.)

[5] Problem 28. �h10 APhO 2013, problem 2. This is a challenging question that ties together

everything you’ve learned about kinematics.
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