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Relativity III: Fields
Relativity in electromagnetism is covered in chapter 5 of Purcell and then sprinkled in throughout

the rest of the book, notably in sections 6.7 and 9.7, and appendix H. For a more advanced

discussion, see chapter 3 of Schutz for tensors, and chapter 12 of Griffiths and chapters I-34, II-13,

and II-25 through II-28 of the Feynman lectures for relativistic electromagnetism. For a brief taste

of general relativity, see chapter 14 of Morin, and chapter II-42 of the Feynman lectures. For a

great, accessible introduction to tests of general relativity, see Was Einstein Right? by Will. There

is a total of 77 points.

1 Electromagnetic Field Transformations

Idea 1: Field Transformations

If the electromagnetic field is (E,B) in one reference frame, then in a reference frame moving

with velocity v with respect to this frame, the components of the field parallel to v are

E′
∥ = E∥, B′

∥ = B∥

while the components perpendicular are

E′
⊥ = γ(E⊥ + v ×B⊥), B′

⊥ = γ
(
B⊥ − v

c2
×E⊥

)
.

As alluded to in R2, this is the transformation rule for the components of a rank 2

antisymmetric tensor.

Under these transformations, Maxwell’s equations remain true in all inertial frames, and the

Lorentz force transforms properly as well. Furthermore, a Lorentz transformation does not

change the total amount of charge in a system, where total charge is defined by Gauss’s law

via the electric flux through a surface containing the system.

Remark

There are many ways of deriving the field transformations. The tensor method alluded to

above is the mathematically cleanest, but the conceptually clearest is to think about how

some simple setups must Lorentz transform, if Maxwell’s equations are to remain true. For

example, boosting a capacitor increases the charge density on the plates because of length

contraction, which is why E′
⊥ contains γE⊥. (Further examples are given in chapter 5 of

Purcell, which is essential reading for this section.) Another method is to demand that the

Lorentz force obeys the transformation of three-force derived in R2.

[4] Problem 1. Basic facts about the electric and magnetic fields of a moving charge.

(a) Show that the field of a point charge q at the origin moving with constant velocity v is

E =
q

4πϵ0r2
1− v2

(1− v2 sin2 θ)3/2
r̂

in units where c = 1, and θ is the angle from v. In particular, the field is still radial.
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(b) Verify that the charge of this moving charge is still q. It may be useful to consult the integral

table in appendix K of Purcell.

(c) Argue that the magnetic field of this point charge must be exactly

B =
v

c2
×E.

(d) Verify that the previous result is correct in nonrelativistic electromagnetism (i.e. using Coulomb’s

law and the Biot–Savart law).

The result of part (a), first found by Heaviside in 1888, implies that the field lines of a moving

charge “length contract” like they were rigid rods. In fact, since this result came first historiaclly, it

was one of the inspirations for length contraction in the first place! Since it’s very hard to measure

the Coulomb field of a relativistic electron, this prediction was first directly verified in 2022.

[3] Problem 2 (Purcell 5.29). Two protons are moving antiparallel to each other, along lines separated

by a distance r, with the same speed v in the lab frame, as shown.

Consider the moment the protons are a distance r apart.

(a) Show that the three-force experienced by each proton due to the electric field of the other is

F =
γe2

4πϵ0r2
.

(b) Compute the three-force experienced by one of the protons by transforming to its rest frame,

computing the force there, then transforming back to the lab frame. In particular, show that

this is not equal to the result of part (a).

(c) Show that the discrepancy is resolved if the magnetic three-force is also included.

Recall from R2 that the Lorentz three-force is F = q(E + v ×B). You will also have to use the

three-force transformation laws you derived there.

[3] Problem 3. �m10 USAPhO 2014, problem B2. This isn’t the clearest of problems, but it introduces

and justifies the Galilean field transformations we first saw in E4.

[3] Problem 4 (Purcell 5.30). Consider an infinite wire oriented along x̂ with linear charge density λ

and current I. Show that under a Lorentz boost along x̂, (λ, I) transforms like (ct, x).

[2] Problem 5 (Purcell 6.22). A neutral wire carries current I. A stationary charge q is nearby; the

Lorentz force on this charge is zero. Verify this remains true in a frame moving parallel to the wire

with velocity v, by using the Lorentz transformations of the fields.
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[3] Problem 6 (Purcell 6.69). Two very long sticks each have uniform linear proper charge density λ.

One stick is stationary in the lab frame, while the other moves to the left with speed v, as shown.

They are 2r apart, and a stationary point charge q lies midway between them. Find the Lorentz

three-force on the charge in the lab frame, and also in the frame of the bottom stick, and verify the

forces relate properly.

[3] Problem 7. The vectors E and B cannot go into four-vectors, as they transform among each other,

but rather fit together into an antisymmetric rank two tensor. As a result, there is a different set

of associated invariant quantities.

(a) Show that under the relativistic field transformations, the quantities E ·B and E2 −B2 are

both invariant. (Hint: this can be done using vector notation, using E⊥ ·E∥ = B⊥ ·B∥ = 0.)

These are the two basic invariants, out of which all other invariants can be constructed.

(b) Suppose that in an inertial frame, E is zero at a given point and B is nonzero. Is it possible

to find an inertial frame where B is zero at that point?

(c) Recall from E7 that, in units where ϵ0 = µ0 = 1, the energy density of the electromagnetic

field is E = E2/2 + B2/2, and the Poynting vector is S = E × B. Show that E2 − |S|2 is

invariant. (Hint: don’t use the field transformations for this part.)

Remark: Is Magnetism Real?

Purcell’s electromagnetism textbook is exceptional because it shows that a force like

magnetism must exist, if one believes Coulomb’s law and relativity. The idea is simple. We

know how forces transform between frames, and given some reasonable assumptions, can

also deduce how electric fields transform between frames. If electric fields were all there

were, then electric forces would have to transform just like three-forces, but they don’t. So

there must be some other force to make up the difference, and it turns out to be precisely

the magnetic force. We saw an example of this in problem 2.

It is important not to misunderstand this beautiful idea. Many people, upon reading Purcell,

believe that magnetism “doesn’t exist” because it’s all “just electric fields”. Sometimes

people even say that magnetic forces are a “mistake” caused by “forgetting about” relativistic

corrections. This is all totally backwards. Sometimes time dilation in one frame can be

explained in terms of length contraction in another, but that doesn’t mean that length

contraction doesn’t exist, or is a mistake – it’s perfectly real in that particular frame. (Not

to mention that there are plenty of situations where you can’t get rid of the magnetic field

in any frame, as we saw in problem 7!)

The real lesson of relativity isn’t that magnetic fields are a mistake, it’s that electric and

magnetic fields are as intertwined as space and time, as you can see from their transformation
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properties. Just as space and time combine into a four-vector, electric and magnetic fields

combine, in an equal footing, into the electromagnetic field tensor.

Remark: Electromagnetism in Covariant Form

Problem 4 is a first step to showing that Jµ = (ρ,J) is a four-vector, where ρ is the charge

density and J is the current density. Note that the continuity equation for charge, as

mentioned in T2, can be simply written in four-vector notation as

∂µJ
µ = 0.

As another example, you can show that the four-current of a single charged particle q is

Jµ = quµ. We can go even further and write the whole of electromagnetism in terms of

four-vectors and tensors. Maxwell’s equations can be written as

∂µF
µν = Jν .

The invariant quantities found in problem 7 can be written in terms of the field strength

tensor as FµνF
µν and ϵµνρσF

µνF ρσ where ϵµνρσ is the Levi–Civita symbol. These are the

only two ways to “contract all the indices” to get a scalar.

Remark: Elegant Notation

Sometimes people dislike the index notation above because of all the little Greek letters

floating around. If you only want to deal with vectors, vector notation is often better. It

hides all the indices, at the cost of requiring you to introduce special symbols like · and × to

specify the vector operations you want to do. The reason we don’t use a vector-like notation

for tensors is because there are too many operations you can do with them (e.g. “contract the

3rd index of a rank 4 tensor with the 1st index of a rank 2 tensor”) to define separate symbols

for each one; indices are just more efficient. On the other hand, if you only work with totally

antisymmetric tensors, then there are only a few possible operations, and one can use the

elegant, index-free “differential form” notation. In this notation, Maxwell’s equations are

d ⋆ F = J

where d is called the exterior derivative, ⋆ is the Hodge dual, and the fact that the electro-

magnetic fields are derivatives of potentials is expressed as

F = dA.

So is this the best, most true formulation of Maxwell’s equations? Well, as Feynman once

pointed out, you can easily do better. For example, you can define the “unworldliness”

U = |F−ma|2 + (∇ ·E− ρ/ϵ0)
2 + . . . .

Then all physical laws can be expressed in terms of the amazingly simple equation

U = 0.
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But this doesn’t actually help, because to use the equation for anything, you need to plug in

the definition of U , and then you’re back to where you were before. In general, more elegant

notation is often more brittle: it only works well in a smaller set of situations. (For example,

with differential form notation, you just can’t write down the stress-energy tensor of the

electromagnetic field, because that’s symmetric rather than antisymmetric.) Index notation

is great because it works as long as indices are contracted in pairs, which holds as long as

you’re dealing with laws that are independent of coordinate system. In general, there’s no

need to be ideological about notation; it’s just a tool, and we should use the best tool for each

job. If anyone tells you that their preferred notation for vectors or tensors will revolutionize

physics, keep your hand on your wallet.

[4] Problem 8. Consider an electromagnetic wave of the form

E(z, t) = E0 cos(kz − ωt)x̂, B(z, t) = B0 cos(kz − ωt)ŷ.

As usual, you may work in units where c = 1.

(a) What do Maxwell’s equations imply about the relation between E0 and B0, and k and ω?

(b) Now consider a frame moving with velocity v along the ẑ direction. Show that the electromag-

netic wave continues to have the same basic functional form for E′(z′, t′) and B′(z′, t′), but

with new parameters E′
0, B

′
0, k

′, and ω′. Using these results, show that the energy density of

the wave is smaller by a factor of (1− v)/(1 + v).

(c) The energy of a photon in an electromagnetic wave of frequency ω is E = ℏω. Show that for

a finite-sized electromagnetic wave, the initial and boosted frames agree on the number of

photons. This was one of the hints Einstein used to conclude light was made of photons.

(d) Now consider another question Einstein pondered: what does the light wave look like if we

try to “catch up” with it, taking v → c? Is this consistent with the invariants of problem 7?

Idea 2

If a uniformly moving point charge suddenly stops moving, then the field outside a spherical

shell, centered at the charge when it stopped moving, expanding at speed c, is precisely that

calculated in problem 1. The same occurs if the point charge suddenly changes its velocity;

information about the change only propagates at c.

[1] Problem 9 (Purcell 5.18). In the figure below, you see an electron at time t = 0 and the associated

electric field at that instant.
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(a) Describe what has been going on, as quantitatively as you can.

(b) Where was the electron at the time t = −0.75 ns?

[2] Problem 10 (Purcell 5.19). The figure below shows two highly relativistic particles with opposite

charge approaching the origin.

They collide at the origin at time t = 0 and remain there as a neutral entity. Sketch the field lines

at some time t > 0.

[3] Problem 11. Work through the derivation of the Larmor formula in Appendix H of Purcell.

[3] Problem 12 (Purcell H.4). The Larmor formula only applies to particles moving nonrelativistically.

To get a result valid for faster particles, we can simply transform into an inertial frame F ′ where

the particle is nonrelativistic, apply the Larmor formula, then transformed back to the lab frame.

(a) Consider an relativistic electron moving perpendicularly to a magnetic field B. Defining the

radiation power as Prad = dE/dt, find P ′
rad, the power in a frame instantaneously comoving

with the electron.

(b) Argue that in this context, Prad = P ′
rad, and conclude that

Prad =
γ2v2e4B2

6πϵ0m2c3
.
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Thus, the power increases rapidly as v → c. Incidentally, a “relativistic” way to write the

general result is

Prad =
q2

6ϵ0c3

(
1

m

dpµ

dτ

)2

which clearly reduces to the Larmor formula in the nonrelativistic limit.

(c) This radiation is also called synchrotron radiation. Qualitatively, how does its angular distri-

bution differ from radiation from an accelerating nonrelativistic charge?

Remark: Gravitoelectromagnetism

As mentioned in E1, there’s a close analogy between electrostatic fields, which are sourced by

charge density ρe, and gravitational fields, which are sourced by energy density ρ. Therefore,

if you apply the analogy and run the same arguments as in Purcell, you would expect there

to be a “gravitomagnetic” field, which is sourced by momentum density J = ρv. That’s

indeed correct! In the theory of gravitoelectromagnetism, the force on a point mass is

F = m(E+ 4v ×B)

where the gravitoelectric and gravitomagnetic fields E and B satisfy

∇ ·E = 4πGρ, ∇ ·B = 0, ∇×E = −Ḃ, ∇×B = 4πGJ+ Ė.

From this you can draw some interesting conclusions. For example:

• Two masses moving parallel to each other will have an extra attraction due to the

gravitomagnetic force.

• A rotating object will produce a gravitomagnetic field which can cause gyroscopes to

precess; this is called the Lense–Thirring, or frame dragging effect, which has been

measured by satellites such as Gravity Probe B. (There is also a significantly larger

“geodetic” effect caused by the curvature of spacetime around the Earth, but this isn’t

captured within gravitoelectromagnetism.)

• A mass at rest, inside a cylinder which suddenly starts to rotate, will pick up a small

angular velocity in the same direction due to the induction of a gravitoelectric field.

• Gravitational waves are generated by accelerating masses and carry energy, just like

electromagnetic radiation.

Now you might be puzzled by two things: first, how does gravitoelectromagnetism relate

to general relativity, and second, why is there an extra 4 in one of the equations above?

Well, the truth is that Purcell’s arguments don’t really work for gravity. These arguments

crucially depend on electric charge Q =
∫
ρe dx being Lorentz invariant, which in our more

sophisticated language was necessary to ensure jµ = (ρe, ρev) is a four-vector. However,

the total energy E =
∫
ρ dx is not Lorentz invariant – instead it’s itself a component of a

four-vector. Thus, (ρ, ρv) isn’t a four-vector, so none of the arguments really work: the

theory of gravitoelectromagnetism is just not Lorentz invariant at all.
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Instead, gravitoelectromagnetism is properly derived as a limiting case of general relativity,

valid when all the masses involved are moving slowly, v ≪ c. The fact that general relativity

is a theory of a rank 2 tensor field, the metric gµν , is responsible for the extra factors of 2

above. Even though it’s only approximately true, gravitoelectromagnetism is a very useful

tool for analyzing precision tests of general relativity, since it’s much easier to calculate with.

On the other hand, there’s also a lot of nonsense written about it by people who don’t

understand it. For example, a lot of internet luminaries are certain that it can be used to

replace dark matter, even though, using just the basic equations above, you can see that the

gravitomagnetic force is (v/c)2 times smaller than the usual gravitational force. That makes

it about 106 times too small to explain the anomalous rotation of galaxies.

In fact, now is a good time to issue a warning. There’s a concept called Lizardman’s constant,

which is the fact that in any survey, no matter how it’s designed, about 3% of the answers

will be complete nonsense. 3% of people will enthusiastically tell you that they were born

on Mars, that the Moon landing was faked, or that the Earth is run by lizardmen. That’s

because there’s an irreducible fraction of people that are mistaken, crazy, or just plain trolling.

The internet is a wonderful place to learn introductory physics, because it’s relatively straight-

forward, so the sincere and competent outnumber the crazy. But as you go to more advanced

topics, the fraction of people who know what’s going on, and who have the time and energy

to tell you, rapidly drops, while the 3% stays just as large. Now that you’re at the end of

this curriculum, you’re also at the point where the majority of internet commentators on the

topics you’re learning are completely wrong. Fortunately, you’re also learning what sources

are good, and developing the knowledge needed to check things for yourself. As you continue

learning tougher subjects, these skills will keep you on the right track.

2 Charges in Fields

Now we consider some problems in the spirit of E4, using more advanced tools.

[3] Problem 13 (Purcell 5.24). In the rest frame of a particle with charge q, another particle with

charge q is approaching with relativistic velocity v. Assume that both particles are extremely

massive, and hence their velocities are nearly constant. The second particle passes a minimum

distance b from the first.

(a) Show that the impulse acquired by each particle is perpendicular to v with magnitude

q2/2πϵ0vb. (Hint: you can avoid doing a nasty integral by using Gauss’s law.)

(b) If the particles have mass m, roughly how large does m have to be for the above result to be

a good approximation?

[2] Problem 14. When we consider conservation of energy for a particle of charge q, we always

include, along with the kinetic energy mv2/2, the potential energy qϕ. Similarly, when we consider

conservation of momentum, we must consider not only the ordinary momentum Mv, but also the

“potential momentum” qA. The sum of the two is called the canonical momentum.
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Conservation laws are associated with symmetries. When the ϕ and A a particle moves in are

time-independent, the energy Mv2/2 + qϕ is conserved. And when they are time-independent and

space-independent, the canonical momentum Mv + qA is conserved. Unfortunately, this is an

extremely restrictive condition which forces the electric and magnetic fields to be zero, rendering

the full conservation law basically useless in practice. However, in some cases a single component

of this momentum can be conserved, which can be useful.

(a) Check that a vector potential appropriate for a constant field B in the −ẑ direction is

A =
B

2
(yx̂− xŷ).

(b) Now consider a charge tied to the end of a string, executing horizontal uniform circular motion

about the origin with radius r. Suppose a magnetic field −Bẑ is turned on. Show that

L = r× (Mv + qA)

is conserved. This is the conserved quantity due to rotational symmetry about the z-axis.

[3] Problem 15 (Cahn). A charged particle is orbiting in a uniform magnetic field of magnitude B0

in a circular orbit of radius R0. Assume the particle moves much slower than the speed of light, and

that all fields are cylindrically symmetric about the original axis of rotation of the particle. (For

concreteness, the particle could originally be orbiting about the axis of symmetry of a big solenoid.)

(a) The field is slowly changed to B1. What is the new radius R1 of the orbit? (Hint: you can

solve this problem in many ways. For example, you can directly use the Lorentz force, or you

can use conservation of the quantity in problem 14, or you can use the adiabatic theorem,

where the momentum is mv + qA.)

(b) The field is suddenly changed back to B0. What is the final radius R2?

For a more challenging problem along these lines, see Physics Cup 2017, problem 3.

[5] Problem 16. �T10 APhO 2001, problem 2. This tough, rather mathematical problem covers

generalized momentum with vector notation, extending the results of problem 14.

[5] Problem 17. �T10 IPhO 1991, problem 2. A problem on a subtle relativistic effect.

[5] Problem 18. Physics Cup 2021, problem 1. A really tough electromagnetism question.

3 Gravitational Fields

Idea 3

In classical mechanics, you’ve seen that a uniform gravitational field behaves a lot like the

fictitious force due to a uniform acceleration. The equivalence principle states that the two

behave exactly identically, in all possible contexts; it was one of the key ideas that led to the

development of general relativity.
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[4] Problem 19. In this problem, we given one of the classic justifications for gravitational redshift,

the fact that photons redshift when moving against a gravitational field. Suppose that point B is a

height h above point A, in a gravitational field g. A set of electrons and positrons with total rest

mass M are converted into photons of frequency f at point A. The photons fly upward to point B,

where they are converted back into electrons and positrons. Assume throughout that g is small.

(a) Find the total mass M ′ at point B.

(b) Find the frequency f ′ of the photons measured at point B.

(c) Since the frequencies of photons can be used as a clock, the result of part (b) shows that

gravitational fields cause time dilation, which applies to everything, not just photons. Show

that your result in part (b) is equivalent to the statement that times are dilated by a factor

of 1 + ϕ/c2, where ϕ is the gravitational potential and ϕ/c2 ≪ 1.

We should also be able to understand part (b) using the equivalence principle. To confirm this,

suppose that two observers C and D begin at rest, with D a distance h to the right of C. At a

certain moment, both observers begin accelerating to the right with a small acceleration a.

(d) If C emits light of frequency f (in C’s rest frame), show that D observes light of frequency

f ′, where f ′ matches your answer to part (b).

(e) The predicted frequency shift was observed in the 1959 Pound–Rebka experiment, where

gamma rays were transmitted from the top to the bottom of a tower of height h = 22.5m.

What is the fractional change in energy of the photons?

(f) Gamma ray photons of energy 14 keV were used in the Pound–Rebka experiment. According

to the energy-time uncertainty principle, what is the minimum time needed to detect the

effect?

Remark

You might be a little worried that the result of part (c) above does not seem to be invariant

under a large, constant shift of ϕ, even though in Newtonian mechanics we can always do

this. In fact, in that case the same analysis is essentially valid, but the “extra” gravita-

tional time dilation is canceled out by other effects, which unfortunately can’t be explained

without full general relativity. In other words, the analysis above is only valid when ϕ is small.

If you find this confusing, you’re not alone. In 2018, there was some excitement as researchers

claimed to explain a long-standing anomaly in particle physics, making a mistake precisely

along these lines. (A rebuttal is given here.)

[3] Problem 20. In this problem we consider the effects of relativity on a clock on the surface of the

Earth, which has mass M and radius R. It rotates about its axis in time T , as measured by an

observer at infinity who is at rest relative to the center of the planet

(a) Consider a clock C that lies on the surface of the planet at a point on the equator. Compute

the time measured by the clock C after a single rotation of the planet, incorporating both

special relativity and gravitational time dilation. Which effect is bigger?

10

https://knzhou.github.io/
https://arxiv.org/abs/1802.00651


Kevin Zhou Physics Olympiad Handouts

(b) Repeat part (a) for a clock C ′ on a satellite orbiting the planet, in a circular orbit a height h

above the equator.

(c) Using the numbers M = 5.97 × 1024 kg, R = 6.4 × 106m, and h = 2 × 107m, estimate

the difference in time elapsed per day for the two clocks, counting only the effect of special

relativity, or only the effect of gravitational time dilation.

[5] Problem 21. �h10 APhO 2014, problem 3. Gravitational fields bend light; this problem is about

the geometry of gravitational lensing. Print out the official answer sheets and record your answers

on them.

[5] Problem 22. �h10 IPhO 1995, problem 1. This problem is about the applications of gravitational

redshift, and also serves as a nice review of R2.

[3] Problem 23. �@10 IPhO 2023, problem 2, parts C.1 through C.4. A neat problem on how the

Shapiro delay, a classic test of general relativity, can be used to measure the masses of neutron

stars.

Remark: Visualizing Relativity

You’ve probably heard that in general relativity, gravity is explained by the curvature of

spacetime. In other words, freely falling objects always move in straight lines through

spacetime; they only look like they’re accelerating downward because we are constantly being

accelerated upward. This is nicely illustrated here and explained in greater detail in this paper.

There is a common analogy for this involving picturing space as a distorted rubber sheet.

It’s a very bad analogy, because things will only accelerate towards the valleys in the sheets

if you have gravity pointing down the sheet. In other words, the analogy tries to explain

gravity by assuming you have spatial curvature and gravity. This misses the beautiful

key point of relativity, which is that the gravity can be explained by spacetime curvature alone.

The fact that freely falling objects move in straight lines means that an object sitting

on the surface of the Earth is actually being constantly accelerated. But this leads to a

common followup question: in this picture, the surfaces of America and India are constantly

accelerated in opposite directions, so why doesn’t the Earth tear itself apart? Indeed, in

special relativity this would make no sense. It’s only possible because of spacetime curvature.

This can be explained with a spatial curvature analogy. Consider two people walking

east, side by side, with one just north of the equator and the other south. In order to

stay a constant distance apart, the person walking on the north will constantly have to

bear to the right, while the person walking on the south will have to bear to the left,

because the Earth’s surface is spatially curved. Similarly, in a situation with spacetime cur-

vature, America and India need constant opposite accelerations to maintain the same distance.

There’s a dramatically different way to visualize this situation called the “river model”, which

is illustrated here. The basic idea is that we think of space as a river that is constantly flowing

towards the center of the Earth. Observers in America and India constantly need to paddle

in opposite directions against the river to stay in place. This is also a good way to think

11

https://knzhou.github.io/
https://www.youtube.com/watch?v=DdC0QN6f3G4
https://aapt.scitation.org/doi/10.1119/1.4939927
https://arxiv.org/abs/gr-qc/0411060
https://www.youtube.com/watch?v=wrwgIjBUYVc


Kevin Zhou Physics Olympiad Handouts

about the event horizon of a black hole, which is where the river starts to flow faster than light.

In this remark I’ve given three analogies about spacetime, so which of them is “correct”?

None, really. The analogies don’t tell us what spacetime is. They’re just different ways

of verbally describing what the equations of general relativity say. They each imperfectly

describe some aspects of the equations, and fail to capture others. (Any simple analogy

must fail to capture the content of a theory, because if it really were simpler and just as

valid, then that analogy would be the theory instead!) There is no actual spacetime rubber

or river; those are just stories we tell ourselves to make the mathematics more appealing to

our animal-descended minds. Of course, philosophers debate over whether the attitude I’ve

expressed in this paragraph is right. It’s called “anti-realism”, and I wrote about it here.
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