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Thermodynamics III
For more about surface tension, which can be quite tricky, see section 9.3 of Wang and Ricardo,

volume 1, or Kalda’s thermodynamics handout, which also covers humidity. Phase transitions

are covered clearly in section 4.5 of Wang and Ricardo, volume 2. For more detail, chapter 17 of

Blundell and Blundell covers various types of thermodynamic work, chapter 26 covers liquid-gas

phase transitions, and chapter 28 covers phase transitions in general. There is a total of 78 points.

1 Surface Tension

Thermodynamics applies to many systems that aren’t ideal gases, or even gases at all; in such

systems the work is not necessarily d̄W = −PdV . The most important example is surface tension,

which we saw in M2 and M7. We begin with the microscopic origin of surface tension.

Idea 1

For a liquid surface in air, there is an associated energy γA where A is the area of the surface.

This leads to a contribution to the work

d̄W = γ dA.

The surface tension γ is also the force per length exerted along the surface.

The energy γA comes from the fact that liquid molecules at the surface are “missing” neigh-

bors, and hence cannot lower their energy as much by forming cohesive bonds. (Technically,

the same is true for the air molecules too, but air is very sparse compared to liquid, so we

just ignore it.)

[3] Problem 1. Here, we use the above idea to very roughly estimate the surface tension of water.

(a) Estimate the spacing between water molecules. (Hint: you could use known atomic distance

scales, or reverse engineer this from the known density of water.)

(b) Estimate the energy of a hydrogen bond. (Hint: the energy of any kind of chemical bond will

be close enough.)

(c) Using these results, estimate the surface tension of water, and compare this to actual value

γ = 0.073 N/m.

(d) Estimate the typical height of a droplet of water on a flat surface.

Solution. (a) The size of one hydrogen atom is about 10−10 m, also known as an angstrom. Since

water is H2O and oxygen atoms are a bit bigger, we can estimate the distance between water

molecules to be 10−9 m.

(b) The typical energy of a chemical bond is about 1 eV. There are a few ways to do this. You

can remember that the binding energy of an electron in a hydrogen atom is 13.6 eV, and the

chemical bond energies are a bit smaller. Or, you can recall that the electrons in batteries are

pushed by chemical reactions, and a typical battery voltage is 1 V.
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(c) The number of water molecules in an area of 1 m2 is about 1018, and the energy of each missing

bond is 1 eV = 1.6× 10−19 J, giving an estimate of about 0.1 J/m2. This is fairly close to the

true value of 0.07 J/m2.

(d) By dimensional analysis, this must be h ∼
√
σ/gρ where ρ is the density of water. (This can

also be obtained by heuristically minimizing the sum of gravitational potential energy and

surface tension, where the first favors a small height and the second favors a large height.)

Plugging in numbers, we get h ∼ 3 mm, which is quite reasonable.

Another way of saying this is that there’s only one dimensionless quantity you can build out

of the given variables, gρh2/σ. This is known as the Eotvos number, and quantifies the ratio

of the importance of gravitational and surface tension forces (just like the Reynolds number

you found in M7 quantities the ratio of inertial and viscous forces). Since a droplet requires

these forces to balance, the Eotvos number should be of order 1, recovering the answer.

Next, we consider problems that combine surface tension with ideas in thermodynamics.

[2] Problem 2 (PPP 62). Two soap bubbles of radii R1 and R2 are joined by a straw. Air goes from

one bubble to the other and a single bubble of radius R3 is formed isothermally. The atmospheric

pressure is P .

(a) If R1 < R2, which bubble loses air and which bubble gains it?

(b) Show that if γ is zero, then R3
3 = R3

1 +R3
2.

(c) When γ is nonzero, the relation in part (b) is modified. Solve for γ in terms of R1, R2, R3,

and P . Is this a practical way to measure γ for typical soap bubbles?

Solution. We use the fact, derived in M2, that a bubble with radius R has excess pressure 4γ/R.

(a) The bubble with a smaller radius has a larger excess pressure. Thus when the bubbles are

connected, bubble 1 will lose air, and bubble 2 will gain it.

(b) All the bubbles have the same temperature, and the number of moles adds, so the ideal gas

law gives

P1V1 + P2V2 = P3V3.

If there is no surface tension, then all the Pi are equal to P , so V3 = V1 + V2.

(c) Accounting for the excess pressure, we have(
P +

4γ

R1

)
R3

1 +

(
P +

4γ

R2

)
R3

2 =

(
P +

4γ

R3

)
R3

3

and solving for γ gives

γ =
P

4

R3
3 −R3

1 −R3
2

R2
1 +R2

2 −R2
3

.

Since γ is small, the numerator will be quite small relative to the radii of the bubbles, so

the answer will have a large relative error even if each length is determined precisely. So this

method isn’t very practical.
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[2] Problem 3 (Cahn). A tightly closed jar is completely filled with water. At the bottom of the jar

are two small air bubbles. The pressure at the top of the jar is P0, the radius of each bubble is R0,

and the surface tension is γ. The two bubbles then merge isothermally. Calculate the new pressure

at the top of the jar.

Solution. Since the air-water surface has only one “side”, the excess pressure is ∆P = 2γ/R0. The

process is isothermal and the number of moles of gas stays the same, so by the ideal gas law,(
P1 +

2γ

R1

)
R3

1 = 2

(
P0 +

2γ

R0

)
R3

0.

Since water is incompressible, the volume of gas should also stay the same, R3
1 = 2R3

0, which gives

P1 = P0 +
γ

R0
(2− 22/3).

[3] Problem 4. �W10 USAPhO 2007, problem A3.

[3] Problem 5. �̂10 IPhO 2014, problem 1B.

Idea 2

One can also have liquid, solid, and air in the same problem, which leads to some complications.

Let Al and As be the surface areas of the liquid and solid exposed to the air, and Asl be the

surface area of the liquid-solid interface. Then there are three terms in the work,

d̄W = γl dAl + γs dAs + γsl dAsl.

In other words, there are three surface tensions, one associated with each kind of interface.

Both γl and γs arise from the fact that cohesive liquid-liquid or solid-solid bonds are broken

to form a surface. However, γsl is determined by the adhesive forces between the liquid and

solid, which may lead to a positive or negative contribution to the energy.

Specifically, let’s define the energy of adhesion Usl to be the work needed, per area, to separate

a liquid from a solid, thereby turning a liquid-solid interface into a liquid-air and solid-air

interface. By the definitions above,

Usl = γs + γl − γsl.

Now, Usl can be computed in terms of microscopic chemical bond energies, like γs and γl,

so this result can also be thought of as an microscopic definition of γsl. When a liquid is in

contact with a solid, the solid exerts a force per length of Usl on the boundary of the liquid,

along the solid.
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Example 1

The surface of a drop of water makes a contact angle θ with a solid, as shown.

When θ is acute, the surface is said to be hydrophilic. If θ is obtuse, it is hydrophobic. Find

an expression for θ in terms of the relevant surface tensions.

Solution

If the liquid drop expands outward by δx, the areas of various surfaces change, as shown.

The change in energy is

dU ∝ γsl δx+ γl cos θ δx− γs δx

and this must be equal to zero in equilibrium. Thus,

cos θ =
γs − γsl
γl

=
Usl
γl
− 1.

This is Young’s equation. The liquid surface tension γl must be positive; otherwise the

liquid could not exist stably at all, but rather would disperse into gas. Thus, the surface is

hydrophilic when Usl > γl and hydrophobic when Usl < γl.

As extreme cases, note that there is no solution for θ when Usl > 2γl. In this limit, the

surface is so hydrophilic that the liquid spreads out and coats the entire solid; this is

known as perfect wetting. There is also no solution when Usl < 0, in which case the liquid

disperses into many tiny nearly spherical drops, each with a tiny area of contact with the solid.

This derivation was in terms of energy, which is typically easier for surface tension. The

same result can be derived in terms of forces, but it’s more subtle than it looks; the standard

derivation in textbooks is wrong. For a clear derivation, see section 9.3 of Wang and Ricardo.

Example 2

A very thin, hollow glass tube of radius r is dipped vertically inside a container of water.
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Find the height to which water can climb in the tube.

Solution

We first encountered this problem in M7, where we solved it by using Pascal’s principle,

giving an answer in terms of the contact angle. The derivation above of the contact angle

completes this solution. However, we can also solve the problem using energy or force.

In terms of energy, if we move the height of the water up by δh, then

dU = ρπr2gh δh+ (γsl − γs)2πr δh = 0

and solving gives

h =
2(γs − γsl)

ρgr
=

2γl cos θ

ρgr

using Young’s equation. Alternatively, in terms of force, consider the vertical forces acting

on the column of water inside the tube. There is an upward force of adhesion from the solid

wall of 2πrUsl, and a downward surface tension force from the liquid below of 2πrγl. Then

F = 2πr(Usl − γl)− ρπr2gh = 0

which yields precisely the same result.

Example 3

Fill a dish with water, and sprinkle something small over it, such as ground pepper. If you

place a drop of detergent in the middle of the dish, then the pepper will “flee” away to the

edges. Why does this happen?

Solution

Detergent is a surfactant, meaning that it decreases the surface tension of water. When one

places the detergent in the middle of the dish, it diffuses outward, making the surface tension

temporarily higher near edges of the dish. This leads to an unbalanced surface tension force

on the pepper grains, pulling them to the edges.
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This phenomenon is called the Marangoni effect. Of course, the force vanishes once the

detergent becomes uniform distributed, and the surface tension is uniform again.

Remark

Here’s a neat fact: the number of atoms that fit into a drop of water is comparable to the

number of drops of water that fit inside the tallest mountains. We can show this using rough

estimates, in the style of P1. Let Eb be the energy of a typical chemical bond, let m be the

mass of an atom, and let d be the typical distance between atoms.

The size ` of a droplet of water, such as one that drips from a leaky ceiling, is the size where

surface tension forces balance gravitational ones. By dimensional analysis, we must have

` ∼
√
γ/ρg

as we showed in M7. Now, ρ ∼ m/d3, and the logic of problem 1 implies γ ∼ Eb/d2, so

` ∼
√
Ebd/mg.

Now consider the height H of the tallest mountains. The height of mountains is limited by

the rigidity of rock; if the pressure is too great, then the rock underneath the mountain will

deform, causing it to sink into the ground. Let’s consider an atom-thick column of this rock.

If it sunk down by a distance d, then the gravitational potential energy harvested would be

mgH. However, the atom at the bottom would have to break its chemical bonds with its

horizontal neighbors, which takes energy Eb. Balancing these gives a maximum height

H ∼ Eb/mg.

We have therefore shown that

` ∼
√
Hd

which implies the original statement, within a few orders of magnitude.

2 Melting, Freezing, Boiling, Evaporation, and Condensation

Idea 3

A phase transition is a sudden, dramatic change in a system as thermodynamic variables

such as the temperature are varied. Most of the ones you’ll see have a latent heat

Q = mL.

For example, if ice is heated up, its temperature will gradually increase until it hits 0 ◦C. At

that point, the temperature will remain constant until all of the ice is melted, i.e. when the

full latent heat has been supplied.
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Remark

We can roughly estimate the latent heats of melting and evaporation. In general, the latent

heat can go into either in breaking molecular bonds, or increasing the entropy.

When a solid melts into a liquid, the molecules stay right next to each other, so changing

bond energy isn’t the dominant effect. Instead, it’s the increase in entropy as the liquid

molecules become free to rotate. Let’s suppose that the molecules each gain a few extra

possible quantum states. This corresponds to an entropy increase per molecule ∆S ∼ kB,

which means a latent heat per mass of

L =
T∆S

mmol
∼ kBT

mmol
=
RT

µ

where µ is the molar mass, or equivalently a latent heat per mole L ∼ RT . For water, we

get L ∼ 2×105 J/kg, which is of the same order of magnitude as the true value 3.3×105 J/kg.

When a liquid becomes a gas, the dominant effect is typically the huge increase in entropy

kB log(Vgas/Vliq) per molecule because they get much more space to move. The ratio inside

the logarithm is huge, which means that while the volumes per molecule Vgas and Vliq vary by

order-one amounts between phase transitions, the logarithm of their ratio is always around

the same value, which turns out to be about 10. This gives a latent heat per mass of

L ∼ 10kBT

mmol
=

10RT

µ
.

This result is called Trouton’s rule, and it is surprisingly accurate for most liquids. However,

the latent heat of vaporization for water is noticeably higher, L = 2.26 × 106 J/kg. This is

because of the extra energy needed to break hydrogen bonds.

[3] Problem 6. The temperature T at which a phase transition happens depends on the pressure P ,

yielding a “coexistence curve” P (T ) where the two phases can be in equilibrium with each other.

The exact relationship is given by the Clausius–Clapeyron equation

dP

dT
=

L

T (V2 − V1)

where L is the total latent heat for some amount of material, and V2 and V1 are the corresponding

volumes of that material when it is in each of the phases. (Depending on convention, L could be

the latent heat per mole, in which case the Vi are volumes per mole, or both quantities could be per

unit mass, in which case the Vi become densities.) In this problem, you will derive this equation.

(a) Consider an infinitesimal Carnot cycle operating between temperatures T and T + dT , and

pressures P and P + dP , chosen so that the isothermal heating and cooling steps involve

supplying latent heat. Compute the work done by the cycle.

(b) Argue that we may ignore all heat transfer except for the latent heat.

(c) Derive the Clausius–Clapeyron equation by setting the efficiency equal to the Carnot efficiency.

This classic setup is also considered in the second half of USAPhO 2023, problem A3.
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Solution. (a) Almost all the work is done in the isothermal processes, due to the changes in

volume in the phase transitions. (The adiabatic steps are negligible, because not only is the

temperature change infinitesimal, but the volume change is also infinitesimal!) The positive

work is thus (P + dP )(V2 − V1) and the negative work is P (V2 − V1), giving

W = (V2 − V1) dP.

(b) The non-latent heat transfer is infinitesimal compared to the latent heat, since it is proportional

to dT , so we only need to count the latent heat Qin = L. (This is also very nearly the same

as Qout, with the difference being the infinitesimal amount of work done.)

(c) The efficiency ε = W/Qin is equal to dT/T by expanding the Carnot efficiency, so

dT

T
=

(V2 − V1) dP
L

which is just what we want after a little rearranging.

[3] Problem 7. [A] In this exercise you’ll find a quicker, more advanced derivation of the Clausius–

Clapeyron equation.

(a) The Gibbs free energy is defined as G = U + PV − TS. Show that for reversible processes,

dG = V dP − S dT.

Two phases can only be in thermodynamic equilibrium if they have the same Gibbs free energy

per molecule. Otherwise, turning one phase to the other would reduce the Gibbs free energy,

which turns out to be equivalent to increasing the entropy of the universe. (For more details,

see section 16.5 of Blundell and Blundell.)

(b) Suppose that the Gibbs free energies per molecule G/N for two phases are equal at temperature

T0 and pressure P0. Derive the Clausius–Clapeyron equation by demanding this is also true

at temperature T0 + dT and P0 + dP .

Solution. (a) By the first law, we have dQ = dU + dW , where d̄W = PdV and, by reversibility,

d̄Q = TdS. Differentiating the definition of Gibbs free energy, we have

dG = dU + PdV + V dP − TdS − SdT = TdS − PdV + PdV + V dP − TdS − SdT

which simplifies to the desired answer.

(b) Consider a sample of the first phase with a given total particle number N . The change in

Gibbs free energy along the coexistence curve is

dG1 = V1 dP − S1 dT.

Similarly, for the second phase,

dG2 = V2 dP − S2 dT.

By the definition of the coexistence curve, these two must be equal, so

(V1 − V2) dP = (S1 − S2) dT.

We also know that S1 − S2 is precisely L/T , so rearranging gives the desired result.
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Remark: Thermodynamic Potentials

You might sometimes see the Clausius–Clapeyron equation written in terms of a difference in

enthalpy ∆H rather than a latent heat. The enthalpy is the state function H = U + PV , so

dH = V dP + d̄Q.

This is useful because many lab experiments happen at constant pressure, dP = 0, leaving

dH = d̄Q. That is, only heat changes the enthalpy, so the latent heat of a phase transition

must be the difference in enthalpies of the two phases, L = ∆H. That in turn is useful

because enthalpy is a state function, so given a new phase transition you can calculate L by

just looking up the enthalpy values for each of the phases in a table.

We’ve now covered all the classic “thermodynamic potentials”. As we just saw, the

enthalpy H is useful for bookkeeping heat. As we saw in T2, the Helmholtz free en-

ergy F is minimized in thermodynamic equilibrium, given constant temperature and

volume. (This is the relative of the statement that the system’s internal energy U is

minimized in equilibrium, given constant entropy and volume, which is just the usual

statement of mechanical equilibrium.) And as we saw in the problem above, the Gibbs free en-

ergy G is minimized in thermodynamic equilibrium, given constant temperature and pressure.

More generally, what’s going on is that the number of possibly useful potentials doubles

every time we add another pair of “thermodynamic conjugate variables”. Before learning

about thermodynamics, we just had U . When we learned about temperature and entropy,

we additionally cared about F . And now upon accounting for pressure and volume, we have

H and G. If we had another pair, such as magnetization and external magnetic field, we

could define 4 more potentials, which would each be useful in different situations.

[2] Problem 8. Ice skaters can move with little friction because they actually glide on a thin layer

of water. Estimate how heavy an ice skater has to be to melt ice by just standing on their skates,

assuming the ice is at temperature −5 ◦C.

Solution. To melt the ice, we need to apply enough pressure to reach the water-ice equilibrium

point, which we can find with the Clausius–Clapeyron equation. We need to reach 0◦C, so

∆T = 5◦C = 5 K, T = 273 K.

The Clausius–Clapeyron equation gives

P =
∆T

T
L

(
1

ρi
− 1

ρw

)−1
≈ 6.76× 107 Pa

where we used

ρi = 917 kg/m3, ρw = 1000 kg/m3, L = 334000 J/kg.

Ice skate blades have a thickness of around 1 mm and a length of around 25 cm, so the total area

with two feet will be around 5× 10−4 m2. The weight PA needed will then be around 3× 104 N,

corresponding to a weight of about 300 kg. Thus, unless you are very massive, or the ice is very

close to melting already, pressure alone is not enough to melt the ice. Remarkably, scientists are

still arguing over the true explanation; you can see a recent review here.
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Now we focus on the specifics of liquid-gas phase transitions.

[3] Problem 9. Suppose that at pressure P0, a liquid-gas phase transition takes place at temperature

T0. Assume the gas obeys the ideal gas law, and neglect the volume of the liquid.

(a) Assuming the latent heat is temperature-independent, compute the coexistence curve P (T ).

(b) In reality, the latent heat has a mild dependence on temperature, changing the results. As

a crude model, suppose that the latent heat per molecule for a monatomic liquid-gas phase

transition has two components: a fixed energy E0 required to break the bonds with other

molecules in the liquid, and the P dV work that must be done to “push” the rest of the gas

away, since the new gas molecule takes up space. Under these assumptions, what is the latent

heat per molecule, and qualitatively how does the dependence P (T ) change?

(c) A closed container of constant volume contains both liquid and gas in equilibrium, at temper-

ature T . Let the latent heat of vaporization per mole be L, and neglect the volume of the

liquid. If the temperature is increased by a very small amount ∆T , by what factor does the

number of moles in gas form change?

Solution. (a) We have V2 = nRT/P and V1 can be ignored, so

dP

dT
=

L

NkB

P

T 2
.

Separating and integrating, ∫ P

P0

dP

P
=

∫ T

T0

L

nRT 2
dT

which gives

P (T ) = P0e
− L

nR

(
1
T
− 1

T0

)
∝ e−L/nRT .

(b) The latent heat per molecule is now

L = E0 + P ∆V

where ∆V is the change in volume due to that molecule. But ∆V = V/N , so

L = E0 +
PV

N
= E0 + kBT.

The total latent heat is L = NL. The Clausius–Clapeyron equation now looks like

dP

dT
=
E0

kB

P

T 2
+
P

T
.

Separating and integrating gives∫
dP

P
=
E0

kB

∫
dT

T 2
+

∫
dT

T

which gives

P (T ) = P0

(
T

T0

)
e
−E0

kB

(
1
T
− 1

T0

)
.

In other words, compared to part (a) where we neglected the P ∆V contribution, there is now

an additional linear temperature dependence.
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(c) We apply the Clausius–Clapeyron equation to a small temperature change,

∆P

∆T
≈ L
TV

where L and V are the latent heat per mole and volume per mole. By the ideal gas, V = RT/P .

Then
∆P

∆T
=

L
RT 2/P

which solves to give
∆P

P
=
L
RT

∆T

T
.

The ideal gas law tells us that P ∝ nT , which means for small changes,

∆P

P
≈ ∆n

n
+

∆T

T
.

Combining these results,

n+ ∆n

n
= 1 +

∆P

P
− ∆T

T
= 1 +

∆T

T

(
L
RT
− 1

)
.

In other words, while the pressure and temperature of the vapor both certainly go up, whether

the number of moles goes up or down depends on the specific substance! However, most

liquids obey Trouton’s rule, L ≈ 10RT , as explained in a remark above, so that L/RT − 1 is

positive and the number of moles of gas goes up.

Example 4: APhO 2004.3

A cylinder is divided into two parts by a mobile partition, which is free to move and conducts

heat well. One compartment contains one mole of water vapor, and the other contains

one mole of nitrogen gas. Initially, both compartments have volume V0, pressure 0.5 atm,

and temperature 373 K. A piston is then slowly inserted, compressing the system isothermally.

Sketch the P (V ) curve.

Solution

The answer is shown below.
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Initially, we just have an ordinary isothermal compression. Both the water vapor and nitrogen

gas compartments are compressed at the same rate, since they must have equal pressures and

temperatures. When the total volume is halved, the pressure in both reaches one atmosphere.

Now, water condenses at temperature 373 K at pressure p = 1 atm. Thus, as the volume

continues to decrease, the pressure stays constant, the nitrogen compartment’s volume stays

the same, and the water compartment shrinks, as the vapor gradually condenses to liquid.

This process completes once all the vapor is condensed, which is roughly when the total

volume has halved again. After this point, we again have ordinary isothermal compression,

of the nitrogen gas alone.

[3] Problem 10. NBPhO 2016, day 2, problem 2. A problem on phase transitions with data analysis.

Solution. See the official solutions here.

[3] Problem 11. �̂10 USAPhO 2015, problem A4. A heat engine with phase transitions.

In practice, water on Earth is more subtle because there are three substances at play: liquid water,

water vapor, and the rest of the atmosphere.

Idea 4: Humidity

Consider a box at constant temperature T containing only water, and let P (T ) be the liquid

water-water vapor coexistence curve. In equilibrium, if we apply any pressure below P (T ),

all of the water will be in vapor form, and if we apply any pressure above P (T ), all of the

water will be in liquid form. Physically, applying a higher pressure forces the water vapor to

condense into liquid, as it packs the molecules closer together, and applying a lower pressure

forces the liquid to evaporate into vapor, as it cannot hold itself together against the thermal

motion of the molecules. Coexistence is impossible, except at exactly the pressure P (T ).

However, in everyday life, the two easily coexist over a wide range of pressures. The subtlety

is that the total air pressure has two contributions,

Ptot = Patm + Pvap

where the first is the pressure due to atmospheric gases, such as nitrogen and oxygen, and the

second is the pressure due to water vapor in the air. In everyday conditions, Patm is about
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100 times larger than Pvap, and the liquid water feels the pressure Ptot. But water vapor evap-

orates and condenses independently of the air, so Patm has no effect on it at all. As a result,

in equilibrium liquid water and water vapor can coexist, with the vapor having a pressure

Pvap = P (T ). The coexistence curve P (T ) is thus also called the (equilibrium) vapor pressure.

The relative humidity φ is defined as

φ = Pvap/P (T )

and quantifies how saturated the air is with water vapor. In equilibrium, φ = 1, while for

φ < 1 people can cool down by sweating. It is also possible to have φ > 1, which occurs in

humid air high in the atmosphere just before it condenses into a cloud.

The dew point Td satisfies

P (Td) = Pvap

and represents the temperature at which water would begin condensing out of a given parcel

of air, cooled at constant pressure.

The boiling temperature Tb satisfies

P (Tb) = Patm.

This is the temperature at which a bubble of pure water vapor, which forms inside the liquid,

has a high enough pressure to push the liquid away and continue to expand. Beyond this

temperature, liquid water can’t exist; it all turns to vapor. This is why pressure cookers

are useful: they increase Patm, thereby increasing Tb and allowing food to cook faster.

(Technically, we should have Ptot rather than Patm on the right-hand side, but in practice

whenever we boil things, we let the resulting water vapor fly away. So the actual vapor

pressure Pvap never gets that high.)

At the interface between two liquids, boiling can start at a significantly lower temperature

than the boiling temperature of either liquid, because both of the liquids contribute to the

vapor pressure. This is called border boiling, and is treated in IZhO 2020, problem 2.

Example 5

How does alcohol distillation work?

Solution

Let alcohol and water have coexistence curves/equilibrium vapor pressures of Pa(T ) and

Pw(T ). The vapor pressure of alcohol is higher, with pure alcohol boiling at about 80◦C.

Consider heating a mixture of alcohol and water, with mole fractions Xa and Xw, with

Xa + Xw = 1. If a small bubble of gas forms inside, then Raoult’s law states that both

alcohol and water vapor will be present, and contribute independently in proportion to their
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mole fractions. Then the boiling point satisfies

XaPa(Tb) +XwPw(Tb) = Patm.

This is in between the boiling points of alcohol and water individually. By the ideal gas law,

the ratio of mole fractions of alcohol and water in the vapor is the ratio of vapor pressures, so

X ′a
X ′w

=
Xa

Xw

Pa(Tb)

Pw(Tb)
.

Since the fraction is greater than one, the alcohol in the distilled vapor is more concentrated

than in the liquid.

By the above logic, we could get completely pure alcohol by just repeating the distillation

procedure several times. Actually, it’s more complicated than that because the alcohol and

water molecules will interact, causing Raoult’s law to break down; our calculation above only

applies for an “ideal mixture”. For more about distillation, see these notes.

[3] Problem 12. Kalda Thermodynamics, problem 22. A problem on practically measuring humidity.

Solution. (a) The dry bulb thermometer is just at room temperature, T0 = 20 ◦C. Meanwhile,

the wet bulb thermometer is cooled down by evaporation. In this part, we are neglecting heat

conduction, so equilibrium is only reached when evaporation from the wet bulb stops. This

occurs when the relative humidity at the wet bulb thermometer itself reaches is 100%.

Let ps(T ) be the saturation pressure as shown in the graph. The vapor pressure of water

vapor in the room is

pa = rps(T0) = (0.9)(2.3 kPa) = 2.07 kPa

by reading off the graph. The wet bulb temperature T satisfies

pa = ps(T )

and from the graph we read off T = 18.5 ◦C. Thus, the difference is 1.5 ◦C.

(b) We balance the heat flowing in and out of the wet bulb thermometer,

a(T0 − T ) = b(ps(T )− pa).

In this part, pa is zero, so we have

−65 Pa/K =
ps(T )

T − T0
.

Therefore, to find T , we draw a line on the graph passing through p = 0 and T = 20 ◦C and

slope −65 Pa/K. The solution is where this line intersects the curve ps(T ), giving 6.5 ◦C.
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(c) The temperature we’re looking for satisfies

−65 Pa/K =
ps(T )− rps(T0)

T − T0
.

The solution will be near T0 itself, which means it suffices to approximate ps(T ) near T0 = 20 ◦C.

By reading off the graph again, we have the linear approximation

ps(T ) ≈ 2.3 kPa + (T − T0)(0.14 kPa/◦C).

Plugging in and simplifying, we find the temperature difference obeys

∆T ≈ (11 ◦C)(1− r).

Any answer within ∼ 15% of this is good enough.

(d) The way evaporation works is that every water vapor molecule on the laundry has some

probability per time of jumping off, while every water vapor molecule in the surrounding air

has some probability per time for sticking to the laundry. The two processes balance when

the humidity is 100%. Thus, the net rate of evaporation is proportional to 1− r, which means

the laundry in 80% humidity dries 4 times faster.

[3] Problem 13. EFPhO 2006, problem 1. (Note that the comma in the density of air in part 4

denotes a decimal point.)

Solution. See the official solutions here.

3 General Phase Transitions

In this section we’ll illustrate some of the ideas needed to analyze phase transitions in general.
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Idea 5

A nonideal gas can be described by the van der Waals equation of state,(
P +

an2

V 2

)
(V − nb) = nRT.

You derived the pressure correction in T1 assuming weak attractive intermolecular forces;

the modification of the volume accounts for the fact that the molecules can’t overlap each

other. Remarkably, this equation of state also contains a liquid-gas phase transition!

To see this, consider a plot of the isotherms on a PV diagram.

At low temperatures, the isotherms can have negative compressibility, meaning that the

pressure decreases as the volume decreases. This is unphysical, and means that the fluid is

unstable at these points: if you push on it, it’ll just keep shrinking, until it condenses into a

dense liquid. Therefore, parts of these isotherms should be replaced with horizontal lines;

along these horizontal parts liquid and gas coexist, in varying proportions.

Specifically, everything underneath the dotted line should be replaced with horizontal lines.

As described in more detail in section 26.1 of Blundell, this can be shown by demanding

that the liquid and gas have equal Gibbs free energy. As a result, the total area on the PV

diagram of the isotherm that goes underneath the horizontal line equals the area that goes

above it; this is called Maxwell’s equal area rule.

There is a critical isotherm marked in bold above. Above this temperature, there is no

liquid-gas phase transition at all; instead we just have one phase, called a supercritical fluid.

Specifically, this is the temperature of the first isotherm that no longer has a local minimum
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in pressure, which means (
∂P

∂V

)
T

=

(
∂2P

∂V 2

)
T

= 0

at the critical temperature T = Tc. As you will see in problem 14, this occurs at

Vc = 3nb, Tc =
8a

27Rb
, Pc =

a

27b2
.

This point, marked above, is called the critical point.

Remark

The van der Waals equation of state is accurate for a sparse gas with weak attractive inter-

actions; you shouldn’t expect it to be accurate for dense gases or the liquid state. However,

it still is extremely important because it is one of the simplest equations of state that gives

a liquid-gas phase transition. What’s more, if you zoom in near the critical point and write

the pressure, volume, and temperature as multiples of the critical pressures, volumes, and

temperatures, it turns out that all equations of state give the same results! This deep phe-

nomenon is known as universality, but unfortunately I can’t explain the reason why without

using statistical field theory.

[3] Problem 14. INPhO 2018, problem 6. A series of exercises on the van der Waals gas. Feel free

to look up definitions for part (a).

Solution. See the official solutions here.

[4] Problem 15. [A] Here we’ll introduce a simple model for a ferromagnetic phase transition. Consider

N electrons, which may have spins si = ±1. The energy of a configuration is

E = −B
∑
i

si −
J

2N

∑
i 6=j

sisj .

The first term represents the effect of an external magnetic field B, while the second term represents

an interaction, with strength described by the constant J , which tries to make the spins parallel.

(In this simple model, we suppose all distinct pairs of spins interact equally. We could also make

spins only interact with their neighbors, but this would complicate the analysis.)

(a) Define the average magnetization as m =
∑

i si/N . Find E(m), the energy in terms of m and

the other constants in the problem.

(b) For a fixed value of m, write down the number of states Ω(m) with that magnetization.

(c) The probability of having a given value of m is proportional to e−βE(m)Ω(m). Argue that this

probability is maximized for the value of m that minimizes the free energy

F = E − TS.

Hence the equilibrium configuration minimizes the free energy. This is the statistical mechan-

ical way to argue that F is minimized; the thermodynamic way was covered in T2.
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(d) Assuming that N � 1 and applying Stirling’s approximation (introduced in T2), show that

the free energy F (m) is minimized when

m = tanh(βB + βJm), β =
1

kBT
.

(e) For a fixed B > 0, plot m(T ). This should match with Curie’s law, which you proved in T1.

(f) Now let B = 0. Show that there exists a critical temperature Tc, above which m(T ) is exactly

zero and below which it is nonzero; also find an approximate expression for the magnetization

just below Tc.

This is a phase transition where the material spontaneously becomes magnetized, and the simplest

example of a phase transition which can be understood analytically.

Solution. (a) The first term is easy,

−B
∑
i

si = −NmB.

To do the second term, we note that

∑
i 6=j

sisj =
∑
i

∑
j

sisj −
∑
i

sisi =

(∑
i

si

)2

−
∑
i

s2i = N2m2 −N.

We hence have

E = −NmB − 1

2
JNm2 +

1

2
J.

(b) Of all N electrons, N+ have si = +1 and N− have si = −1, where N+ + N− = N and

mN = N+−N−. Thus N+ = N/2 +mN/2 and N− = N/2−mN/2. The number of states is

N choose N+.

Ω(m) =
N !(

N
2 (1 +m)

)
!
(
N
2 (1−m)

)
!
.

(c) The probability P (m) = e−βE(m)Ω(m) is found with Boltzmann’s theorem, where each state

has a probability of e−E/kBT , so β = 1/kBT . Maximizing P (m) is the same as maximizing

log(P (m)), which gives

log(P (m)) = − E

kBT
+ log(Ω(m)).

Since we’re optimizing with respect to m, we can multiply both sides by −kBT and maximize

P (m) by minimizing −kBT log(P (m)).

−kBT log(P (m)) = E − TkB log(Ω(m)) = E − TS.

This is just the expression for free energy, thus minimizing free energy for a given value of m

will maximize the probability.
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(d) Stirling’s approximation gives

log

(
N !(

N
2 (1 +m)

)
!
(
N
2 (1−m)

)
!

)
≈ N logN−N

2
(1+m) log

N(1 +m)

2
−N

2
(1−m) log

N(1−m)

2
.

To simplify this, we can expand the logarithms to get

N

(
logN − 1 +m

2

(
logN + log

1 +m

2

)
− 1−m

2

(
logN + log

1−m
2

))
and various factors cancel to give

−N
(

1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)
.

Setting dF/dm to zero gives

0 = −NB −NJm− T ∂S
∂m

which is equivalent to

N(B + Jm) = −kBT
∂ log Ω

∂m
= NkBT

(
1

2
log

1 +m

2
− 1

2
log

1−m
2

)
.

Then we have

βB + βJm =
1

2
log

1 +m

1−m
= tanh−1m

which gives the desired result.

(e) The graph should look something like this:

(f) With B = 0, for the magnetization to be nonzero, we need a non-zero solution to

m = tanh

(
Jm

kBT

)
.

Since the second derivative of tanh(ax), −2a2 sech2(ax) tanh(ax) is always negative for x > 0,

that means that the slope of tanh(ax) will always be decreasing for x > 0. In order for the

graphs of x and tanh(ax) to intersect again after x = 0, the slope of tanh(ax) must be greater

than the slope of x, which is 1. Thus the critical value is where a = 1, so

Tc =
J

kB
.
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To find what happens just below Tc, we Taylor expand the hyperbolic tangent about zero,

which is useful because m will be small,

tanh(x) = x− x3

3
+O(x5).

Letting T = (1− ε)Tc, we have Jm/kBT = m/(1− ε), giving

m ≈ m

1− ε
− 1

3

m3

(1− ε)3

which means that at lowest order at epsilon,

m ≈
√

3ε =

(
3(Tc − T )

Tc

)1/2

.

[5] Problem 16. �h10 APhO 2011, problem 3. A nice problem on a real-world mechanical phase

transition. Some of the intuition you gained studying the var der Waals gas will be useful.

4 Thermodynamic Systems

Now that we know all about the different methods of heat transfer, as well as phase transitions, we

consider some questions involving a mix of these concepts as well as mechanics.

Example 6: IPhO 1967.3

Consider two identical homogeneous balls with the same initial temperatures. One of them

is at rest on a horizontal plane, while the other hangs on a thread.

The same quantity of heat is supplied to both balls. Which has the higher final temperature?

Solution

This infamous problem, which appeared on the first IPhO, was the original “troll” Olympiad

question. The balls are different because the one on the plane thermally expands upward,

while the one on a thread thermally expands downward. This tiny change in gravitational

potential energy means that the ball on the thread ends up hotter.

This is an incredible solution – in the sense that it is not credible. About fifty years after

it was written, physicists at Oxford showed that it is wrong! Suppose the logic above were

actually right. Then a heat engine can be constructed with these four steps:

1. Heat the ball on the plane, therefore raising its center of mass.
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2. Attach the ball to a thread and remove the plane.

3. Cool the ball on the thread, therefore raising its center of mass.

4. Put a plane just under the ball’s new position and remove the thread.

This is a heat engine, where the work goes into raising the ball. If the ball is only heated

and cooled a tiny amount dT , then the heat supplied is proportional to dT , but the distance

through which the ball rises is also proportional to dT . Therefore, the efficiency of the cycle

becomes a constant as dT goes to zero, which exceeds the Carnot efficiency (which instead

goes to zero) and hence violates the second law of thermodynamics.

A real ball doesn’t violate the second law, because it also stretches while hanging on the

thread, and squashes while on the plane. The slick solution neglects these effects and considers

only thermal expansion, but the above argument shows that this assumption is inconsistent:

you can’t have the latter without the former. This is an example of how thermodynamic

considerations alone can, perhaps surprisingly, yield information about mechanical properties.

The paper linked above performs a careful analysis and shows that, for most materials, the

ball on the thread instead ends up colder.

Example 7

Why does a breeze cool you down, and why do clothes make you warmer?

Solution

Like most gases, air has a very small thermal conductivity, and enough viscosity so that you

carry around a thin layer of warm air with you wherever you go. (The main reason you

cool down is because this warm air rises away from you, by convection.) When a breeze is

blowing, it strips off this cushion of warm air, which is why you feel colder.

When you’re sweaty, the same logic applies. The layer of air you carry around is also moist,

saturated with water vapor from your sweat. Again, a breeze removes this layer, allowing

more evaporation to happen, cooling you down.

Clothing material itself actually has a higher thermal conductivity than air. Its real purpose

is to trap the layer of warm, moist air around you, preventing it from being blown away by

breezes or rising from convection. (That’s also how greenhouses keep plants warm: the sun

warms air near the ground, and the glass room prevents that air from rising away. Confusingly,

this has nothing to do with the atmospheric “greenhouse effect.”)

Example 8

Can you boil water in a pot by putting it into a bigger pot of boiling water?
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Solution

No, because boiling is a phase transition that requires latent heat. The water in the small

pot can get heated up to boiling temperature, but it can’t start boiling, because at that point

it’ll be at the same temperature as the bigger pot, and no more heat can flow.

[1] Problem 17 (IPhO 1996). A thermally insulated piece of metal is heated under atmospheric

pressure by an electric current so that it receive a constant power P . The temperature is

T (t) = T0(1 + a(t− t0))1/4

where T0, t0, and a are constants. Find the heat capacity C(T ).

Solution. By definition, C(T ) = dQ/dT . With constant power P , dQ = P dt, and

dT

dt
=

P

C(T )
=

1

4
T0 (1 + a(t− t0))−3/4 a =

aT 4
0

4T 3
.

This gives the answer,

C(T ) =
4T 3P

aT 4
0

.

[3] Problem 18. EFPhO 2011, problem 8. A tricky data analysis problem.

Solution. See the official solutions here.

[3] Problem 19. EFPhO 2014, problem 9. A nice problem reviewing radiation and kinetic theory.

Solution. See the official solutions here.

[4] Problem 20. �@10 EuPhO 2019, problem 1.

Solution. See the official solutions here.

5 Thermodynamic Fluids

In this section, we focus on problems combining thermodynamics with fluids, as covered in M7.

We begin with some questions which only require fluid statics.

[5] Problem 21. �h10 IPhO 1998, problem 2. A very nice real-world fluids/thermo question.

[5] Problem 22. �h10 APhO 2009, problem 3. Another nice, simple model of a real-world phenomenon.

Idea 6

In M7 we considered Bernoulli’s principle for incompressible liquids with no temperature.

However, in general fluids are compressible and carry internal energy. To derive Bernoulli’s

principle in this more general context, we apply conservation of energy to a tube of streamlines,

as one mole of ideal gas flows through it. We neglect gravity, since it typically is unimportant
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for such rapid flows. The energy of a mole of gas at the entry of the tube is

1

2
µv21 + cV T1

where µ is the molar mass, and cV is the heat capacity per mole. Similarly, the energy of a

mole of gas at the other end is
1

2
µv22 + cV T2.

Assuming there’s no heat transfer, the difference must be the work done on the tube of fluid

as a mole of gas flows through,

p1δV1 − p2δV2 = R(T1 − T2)

where the δVi are the volumes of a mole of gas at the entry and exit, and we used the ideal

gas law. Combining and using cp = cV +R gives

1

2
µv2 + cpT = const

along a streamline in steady flow.

Remark

You might also see Bernoulli’s principle in the form

1

2
v2 + gh+ cpT = const

where we’ve added on the contribution of gravitational potential energy. In this case, cp is

the heat capacity at constant pressure per unit mass, not per mole. Unfortunately, people

use the letter c or C to denote many different kinds of (specific) heat capacities. Whenever

doing a problem where a heat capacity is given, check the dimensions!

Example 9: Wang

A rocket propels itself by burning fuel to release diatomic gas of temperature T1 in its

combustion chamber, which has cross-sectional area A1. The gas then flows adiabatically

and is expelled out of the nozzle, which has a cross-sectional area A2, at a speed v2 relative

to the rocket, pressure p2, and temperature T2 < T1. In the limit of steady flow, determine

the thrust experienced by the rocket.

Solution

Since the flow is adiabatic and the gas is diatomic,

p1 = p2

(
T1
T2

)7/2

.
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As discussed in M7, mass conservation in steady flow means ρAv must be the same on both

sides of the nozzle. The ideal gas law tells us that ρ ∝ p/T , so

p1A1v1
T1

=
p2A2v2
T2

.

Combining these two gives a relation between the velocities,

v1 = v2
A1

A2

(
T2
T1

)5/2

.

Bernoulli’s principle gives
1

2
µv21 +

7

2
RT1 =

1

2
µv22 +

7

2
RT2

where we neglected the gravitational energy. Combining with our previous relation gives

v22 =
7R(T1 − T2)

µ (1− (A1/A2)2(T2/T1)5)
.

Finally, the thrust is

F =
dp

dt
= ρ2A2v

2
2 =

µp2A2v
2
2

RT2
=

7p2A2(T1 − T2)
T2(1− (A1/A2)2(T2/T1)5)

.

Example 10

How does the Bernoulli’s principle above reduce to the incompressible one used in M7?

Solution

This is trickier than it seems. For simplicity, let’s neglect the gravitational contribution.

Then by the ideal gas law, the compressible Bernoulli’s principle derived above is

1

2
v2 +

γ

γ − 1

P

ρ
= const.

When the flow is incompressible, ρ is constant, but if we just multiply by ρ we get

1

2
ρv2 +

γ

γ − 1
P = const

which is not the expected result!

In fact, there’s something more troubling under the surface. The Bernoulli’s principle

derived in M7 applies to water flow, since water is incompressible. And the compressible

version derived above applies to ideal gas flow, since gas is compressible. But in M7, we

applied the incompressible Bernoulli’s principle to gas flow! How does that even make sense?

The resolution to the two questions is the same: the key assumption needed to get to the

original form of Bernoulli’s principle is not that an ideal gas is incompressible, because that’s
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simply not true. Instead, the key assumption is that the gas flow is much slower than the speed

of sound, v2 � c2s ∼ P/ρ. In this limit, the kinetic energy term in the generalized Bernoulli’s

principle is much smaller than the internal energy term. Thus, in the course of subsonic

flow, the temperature, pressure, and density of the gas can only change by a small relative

amount. For example, the pressure is P (x) = P0 + ∆P (x) where ∆P � P0. (To avoid some

confusion, remember that Bernoulli’s principle always assumes steady flow. The air in my

bike tires has ∆P ≈ 6P0, but that’s because the process of pumping a tire is not a steady flow.)

But if that’s true, then what went wrong with just multiplying our result above by ρ?

The point is that for very subsonic flows, the v2 term is much smaller than the P/ρ term,

so we need to evaluate the P/ρ term to a very good relative precision to get correct

results. (If my bank was careless and randomly misplaced 0.1% of its money, then that

might mean losing 100% of my savings, since my account’s value is small compared to its total.)

Now we’re ready to do the derivation properly. We start from the first equation above, but

we don’t multiply by ρ. Instead, we note that P/ργ is constant because the gas is compressed

adiabatically, since we neglected heat transfer, so we multiply by ρ(P0/P )1/γ , giving(
P0

P

)1/γ 1

2
ρv2 +

γ

γ − 1

(
P

P0

)(γ−1)/γ
P0 = const.

Since the first term is the small one, we can approximate P0 ≈ P there without much error.

As for the second term, we expand P/P0 with the binomial theorem to get

1

2
ρv2 +

γ

γ − 1
P0 + ∆P = const

and subtracting the constant P0/(γ − 1) recovers the “incompressible” Bernoulli’s principle.

In conclusion, the Bernoulli’s principle derived in this problem set works for arbitrarily fast

gas flows, while the incompressible form only works for very subsonic flows. But that doesn’t

mean you should never use the latter. When the flow is subsonic, the incompressible form is

easy to use, while the more general form requires great care to get the correct result. You

should only use the general form when it’s actually necessary, i.e. for the very fast gas flows

considered in the following problems.

[3] Problem 23 (Feynman). Air with density ρ, pressure P , and adiabatic index γ is flowing at

uniform speed v through a smooth pipe of constant cross-sectional area A. It is heated as it passes

a wire grid, which offers negligible resistance to the flow, with a power Q̇. This is a simple model

for a jet engine. For simplicity, suppose the output pressure is also P , though this would not be

true in a high efficiency engine.

(a) Find the speed v′ with which the air exits the tube, in terms of the given parameters.

(b) Find the thrust produced, in terms of v′ and the other parameters.

Solution. (a) We will conserve mass and energy. Denote quantities that leave with a prime, and
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let µ be the molar mass. The rate of mass flow in must match the rate out,

J = ρAv = ρ′Av′.

To apply energy conservation, we use a modified form of Bernoulli’s principle, which accounts

for the inflow of heat,
Q̇

J
=

1

2
(v′2 − v2) +

cP
µ

(T ′ − T ).

The ideal gas law states

ρ =
µP

RT

which we can use to eliminate µ. Additionally using cp = γR/(γ − 1) gives

Q̇

J
=

1

2
(v′2 − v2) +

P

ρT

γ

γ − 1
(T ′ − T ).

Since P = P ′, combining the ideal gas law with mass conservation gives

v

T
=
v′

T ′
.

Using this to eliminate T ′ will give a quadratic equation for v′ in terms of known parameters,

1

2
v′2 +

c20
v
v′ −

(
1

2
v2 + c20 +

Q̇

J

)
= 0, c20 =

γ

γ − 1

P

ρ
.

Using the quadratic equation and taking the physical root,

v′ =

√
(v + c20/v)2 + 2Q̇/J − c20/v.

As a check, note that v′ = v when Q̇ = 0.

(b) By conservation of momentum, the thrust must be

F = J∆v = ρAv(v′ − v)

Incidentally, the power P = Fv can be approximated when Q̇ is small by taking the result of

part (a) and applying the binomial theorem a few times. The result is

P ≈ Q̇

2(1 + c20/v
2)

which is small for low v, and approaches an efficiency of 1/2 as v →∞.

[3] Problem 24 (Wang 2.17). Consider an ideal gas with pressure p, density ρ, and adiabatic index

γ. A density pulse is set up in the gas, traveling along the −x direction with speed c. Inside the

pulse, the gas has local velocity v � c in the lab frame, and a local density ρ+ ∆ρ, where ∆ρ� ρ.

(a) Transform to the reference frame where the pulse is at rest, and find three constraints, using

mass conservation, energy conservation, and the fact that the gas is compressed and expanded

adiabatically when it enters and leaves the pulse (i.e. heat conduction is negligible).
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(b) Combine these relations to find c. Work to lowest order in the small quantities v/c and ∆ρ/ρ.

The quantity c is the adiabatic speed of sound in a gas, which we’ll derive in a different way in W3.

For more about sound waves, see chapter 31 of Blundell, or section 14.1 of Lautrup.

Solution. (a) We work in the reference frame moving to the left with speed c. In this frame, the

gas has velocity c everywhere, except at the pulse, where it has velocity c + v. The density

away from the pulse is ρ and the density at the pulse is ρ+ ∆ρ.

Mass conservation gives

(c+ v)(ρ+ ∆ρ) = cρ.

Using cp = (γ/(γ − 1))R, Bernoulli’s principle gives

1

2
µc2 +

γ

γ − 1
RT =

1

2
µ(c+ v)2 +

γ

γ − 1
R(T + ∆T ).

Finally, since the gas is compressed adiabatically we have

T ∝ ργ−1.

(b) Mass conservation gives the relation
∆ρ

ρ
≈ −v

c

to lowest order. Bernoulli’s principle gives

µcv = − γ

γ − 1
R∆T

to lowest order. Finally, the adiabatic condition to lowest order is

∆T

T
≈ (γ − 1)

∆ρ

ρ
.

Combining this with Bernoulli’s principle to eliminate ∆T gives

µcv ≈ −γRT ∆ρ

ρ
≈ γRT v

c
.

Thus, solving for c, we conclude

c2 =
γRT

µ
=
γpV

µn
=
γp

ρ

which is the adiabatic speed of sound.

Example 11

Show that the kinetic and potential energy of a sinusoidal, adiabatic sound wave are equal.
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Solution

First, we explicitly define our notation. The sound wave profile is

P = P0 + ∆P cos(kx− ωt), ρ = ρ0 + ∆ρ cos(kx− ωt)

and
v

c
=
v0
c

cos(kx− ωt), T = T0 + ∆T cos(kx− ωt).

In problem 24, you derived relations between the parameters (∆P )/P0, (∆ρ)/ρ0, v0/c, and

(∆T )/T0, which are all assumed small, and of the same order of magnitude. The total energy

density of the fluid, up to second order, is

u =
1

2
ρ0v

2 + cvρT

where here cv is the heat capacity per unit mass. The first term is the bulk kinetic energy

density, while the change in the second term is the potential energy density, where we’re

using the usual meaning of potential energy as any energy which isn’t kinetic.

This all looks pretty straightforward, but there’s a reason that most introductory textbooks

never write down this expression. You can see the issue by applying the ideal gas law to the

second term. Since P ∝ ρT , this term is proportional to P , but the average of P is just P0.

This suggests that sound waves have no potential energy density at all, which is wrong. For

instance, if you instantly take out all the macroscopic kinetic energy, setting v to zero, then

there is still energy remaining that can be harvested because the pressure is nonuniform.

Here’s the problem: energy is inherently a second order quantity. If ρ and T were both small

quantities, then it would be good enough to multiply them to get the answer to second

order. But instead, ρ and T are the quantities ρ0 and T0 shifted by small quantities ∆ρ and

∆T . That means that to get the quantity ρT correct to second order, we need to get both ρ

and T individually correct to second order, which is beyond the first order approximations

we started with! This is a conceptual issue that occurs whenever you have a perturbation

that shifts existing properties of a medium. (It doesn’t happen for waves on a string, which

we cover in W1, because those waves are parametrized by y, and y = 0 when there is no wave.)

It’s possible to fix this issue, but we need to be careful. First, let’s use the ideal gas law to

change variables to pressure, so we only have one quantity to deal with,

cvρT =
R

µ

1

γ − 1
ρT =

P

γ − 1
.

The key insight is that we can keep our expression for ρ the same. The reason is that for

the wave equation to continue to be satisfied at second order, we can only add second order

terms that are constant, or also sinusoids. Adding a constant to the density is not allowed

because we know the total number of particles is conserved, so the mass
∫
ρ dV is, and

adding a sinusoid can be absorbed by simply redefining ∆ρ.
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Now, we know that P ∝ ργ , and letting δρ = ∆ρ cos(kx− ωt) for convenience, we have

P

P0
=

(
ρ

ρ0

)γ
= 1 +

γ δρ

ρ0
+
γ(γ − 1)

2

(
δρ

ρ0

)2

.

When we integrate the first term, we get the internal energy of the fluid at rest. The second

term averages to zero, and so can be disregarded. The third term gives the desired result,

u =
1

2
ρ0v

2 +
γP0

2

(
δρ

ρ0

)2

.

Now that the energy is in terms of small quantities squared, we can relax and use first order

results. Using the results derived in problem 24, this can be simplified to

u =
1

2
ρ0v

2 +
1

2
ρ0c

2

(
δρ

ρ0

)2

and the two contributions are equal, because v/c = −δρ/ρ0.

As a check on this result, it is often true that the energy density is equal to the momentum

density times the wave speed, u = pc. (For example, this corresponds to E = pc for photons.)

The momentum density is p = ρv = (ρ0 + δρ)v. The first order term represents the overall

momentum of all of the gas, not the momentum due to the sound wave itself, so it can be

ignored. The second order term is

p = δρ v =
ρ0v

2

c

which is exactly the expected result.

Ironically, while we began this discussion by noting that the energy of a transverse wave

on a string is more straightforward, the longitudinal momentum of a transverse wave on a

string is far more confusing – how can there be any if the string moves only transversely?

Does the above identity u = pc break down for these waves, or do we just need to evaluate

p more carefully? (For one perspective in this ongoing debate, see this paper.) All of this is

too subtle to be relevant to Olympiads; even string theorists get confused about it. It’s just

a reminder that there are always subtleties lurking in even basic physics.

[3] Problem 25. �h10 IPhO 2012, problem 1B. A tricky real-world problem on fluids and condensation.
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