
Kevin Zhou Physics Olympiad Handouts

Practice USAPhO X

INSTRUCTIONS

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN

• Work Part A first. You have 90 minutes to complete all problems. Each problem is worth an

equal number of points, with a total point value of 60. Do not look at Part B during this time.

• After you have completed Part A you may take a break.

• Then work Part B. You have 90 minutes to complete all problems. Each problem is worth an

equal number of points, with a total point value of 60. Do not look at Part A during this time.

• Show all your work. Partial credit will be given. Do not write on the back of any page. Do not

write anything that you wish graded on the question sheets.

• Start each question on a new sheet of paper. Put your AAPT ID number, your proctor’s AAPT

ID number, the question number, and the page number/total pages for this problem, in the

upper right hand corner of each page. For example,

Student AAPT ID #

Proctor AAPT ID #

A1 – 1/3

• A hand-held calculator may be used. Its memory must be cleared of data and programs. You

may use only the basic functions found on a simple scientific calculator. Calculators may not

be shared. Cell phones, PDA’s or cameras may not be used during the exam or while the exam

papers are present. You may not use any tables, books, or collections of formulas.

• Questions with the same point value are not necessarily of the same difficulty.

• In order to maintain exam security, do not communicate any information about the questions

(or their answers/solutions) on this contest.

Possibly Useful Information. You may use this sheet for both parts of the exam.
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Part A

Question A1

In this problem, we analyze the working principle of a speed camera. The transmitter of the speed

camera emits an electromagnetic wave of frequency f0 = 24GHz having waveform cos(2πf0t). The

wave gets reflected from an approaching car moving with speed v. The reflected wave is recorded

by the receiver of the speed camera.

1. What is the frequency f1 of the reflected wave? You may assume that v ≪ c.

2. Inside the circuitry of the speed camera, the received waveform is multiplied with the original

emitted waveform. This product can itself be written as a sum of sinusoids with several

distinct frequencies. Find all the distinct frequencies present.

3. Given that the lowest frequency component present in the multiplied signal is flow = 4.8 kHz,

calculate the speed of the car v.

You may find it useful to use the trigonometric identity

cosα cosβ = (cos(α+ β) + cos(α− β))/2.

Solution. This is NBPhO 2018, problem 2. The official solutions are here, an outline is:

1. (8) The Doppler shift formula effectively has to be used twice, once because the car is moving

towards the transmitter, and again because the car is moving towards the receiver. The

answer is

f1 = f0
1 + v/c

1− v/c
≈ f0(1 + 2v/c).

2. (6) Using the provided identity, the frequencies present are f0 + f1 and f1 − f0, which means

f0(2 + 2v/c) and 2f0v/c. (That’s a general principle – multiplication causes frequencies to

add and subtract.)

3. (6) We have flow = 2f0v/c, and solving gives v = 30m/s.

Question A2

Wood burns in a fireplace on the ground, producing smoke with temperature T1 = 40 ◦C, which

slowly rises through the atmosphere. Neglect the exchange of heat between the smoke and the

surrounding air, and suppose the atmosphere has pressure p0 = 100 kPa at the ground, and uniform

temperature T0 = 20 ◦C. Treat both the smoke and atmosphere as diatomic ideal gases of molar

mass µ = 29 g/mol, and recall that 0 ◦C = 273K. To within 10%, how high does the smoke column

rise?

Solution. This is EFPhO 2008, problem 7. The official solutions are here. The smoke stops rising

once it reaches the same density as the air. The ideal gas law tells us that pV = nRT , which

means the density of a gas is proportional to p/T . The smoke and air always are in mechanical

equilibrium, i.e. they have the same pressure p, so they have the same density once they have the

same temperature, i.e. when the smoke column cools to temperature T0.
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Since the smoke does not exchange heat with its surroundings, it expands and cools adiabatically

as it rises, which means pV γ is constant. Combining this with the ideal gas law, we have pγ−1 ∝ T γ ,

which means the final pressure obeys
pγ−1
f

T γ
0

=
pγ−1
0

T γ
1

.

Plugging in the numbers with γ = 7/5 for a diatomic gas, we find

pf = 79 kPa.

When the atmospheric pressure falls to pf , the smoke column will stop. Now, we know that for an

atmosphere with constant temperature T0, hydrostatic equilibrium implies

dp

dz
= −ρg, ρ =

µn

V
=

pµ

RT0
.

We therefore have

p(z) = p0e
−µgz/RT0

and the final height h is when p(h) = pf . Solving gives h = 2000m.

Question A3

Consider a particle of mass m confined to a one-dimensional box of length L. We consider the

quantum mechanics of this system. For simplicity, express your answers in terms of the quantity

α = h2/8m as much as possible.

1. In each energy level, the particle may be represented by a standing wave, where the wavefunc-

tion is zero at the walls. Find the wavelength λ for the nth energy level.

2. Using the de Broglie relation p = h/λ, find the energy En of the nth energy level.

3. Electrons are fermions, meaning that each energy level can only be occupied with two electrons

(one with spin up, and one with spin down). Let there be N electrons of mass m in this box,

where N is an even number. Find the lowest possible total energy U0 of the system, i.e. the

ground state energy of the system. You may neglect the Coulomb interaction between the

electrons, and you may use the identity

m∑
n=1

n2 =
m(m+ 1)(2m+ 1)

6

4. Write the total energy U1 in terms of U0 and relevant quantities when the system is in the

first excited state. Do the same for the total energy U2 of the second excited state.

5. In the ground state, find the magnitude of the force F on each wall in terms of U0.

6. In some astrophysical systems, the size L is free to vary, and in equilibrium the outward force

found in part (5) balances the inward gravitational force. We can get a rough estimate for

the equilibrium value of L by equating the total energy U0 to the total gravitational potential

energy. Make a very rough estimate for the gravitational potential energy using dimensional

analysis, treating the box as having uniform density. Equate this to U0 and find a rough

estimate for the equilibrium length L in terms of N and other quantities.
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Solution. This is INPhO 2019, problem 2. The official solutions are here, an outline is:

1. (2) λ = 2L/n for n ≥ 1.

2. (3) The de Broglie relation p = h/λ means that

En =
p2

2m
=

n2h2

8mL2
=

αn2

L2
.

3. (4) The energy levels from n = 1 up to n = N/2 are all occupied by two electrons. Thus,

U0 =
2α

L2

N/2∑
n=1

n2 =
α

12L2
N(N + 1)(N + 2).

4. (6) To get to the first excited state, we remove one electron from the n = N/2 state, and put

it in the n = N/2 + 1 state. That means

U1 = U0 −
α

L2

(
N

2

)2

+
α

L2

(
N

2
+ 1

)2

= U0 +
α

L2
(N + 1).

To get to the second excited state from the first excited state, we can then remove one electron

from the n = N/2− 1 state and put it in the n = N/2 state, since it now has an empty slot.

The net change from the ground state is that one electron has been moved from n = N/2− 1

to n = N/2 + 1, giving

U2 = U0 −
α

L2

(
N

2
− 1

)2

+
α

L2

(
N

2
+ 1

)2

= U0 +
α

L2
2N.

5. (2) By the definition of force,

F = −dU0

dL
=

2U0

L
.

6. (3) Our extremely rough estimate is

UG ∼ GM2
tot

L
∼ GN2m2

L
.

Setting this equal to U0 ∼ αN3/L2, we have

L ∼ αN

Gm2
.
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Part B

Question B1

A submarine of unknown nationality is traveling near the bottom of the Baltic sea, at the depth

of h = 300m. Its interior is one big room of volume V = 10m3 filled with air (M = 29 g/mol) at

pressure p0 = 100 kPa and temperature t0 = 20 ◦C. Suddenly it hits a rock and a large hole of area

A = 20 cm2 is formed at the bottom of the submarine. As a result, the submarine sinks to the

bottom and most of it is filled fast with water, leaving a bubble of air at increased pressure (no

air escapes the submarine). The density of water is ρ = 1000 kg/m3 and free fall acceleration is

g = 9.81m/s2. Treat the air as a diatomic ideal gas.

1. What is the volume rate (in m3/s) at which the water flows into the submarine immediately

after the formation of the hole?

2. The flow rate is so large that the submarine is filled with water so fast that heat exchange

between the gas and the water can be neglected, in both this part and the next part. What

is the volume of the air bubble once water flow has stopped?

3. At this point, what is the change in internal energy of the air?

4. The water stream rushing into the submarine creates a turbulent flow, which ultimately causes

energy to be dissipated as heat. How much total energy is dissipated to heat within the water,

once the inflow has stopped due to equalized pressures?

Solution. This is NBPhO 2018, problem 8. The official solutions are here, an outline is:

1. (5) According to Bernoulli’s principle, the flow rate through the hole is

v =

√
2∆P

ρ
=

√
2gh = 76.7m/s.

The rate of volume flow is

Q = Av = 0.153m3/s.

2. (5) The air in the submarine is adiabatically compressed. The initial pressure is p0, and the

flow stops once its pressure is equal to the outside water pressure, pf ≈ ρgh = 3.0× 106 Pa.

Since γ = 7/5 for a diatomic gas,

Vf = Vi

(
p0
pf

)5/7

= 0.9m3.

3. (5) The change in internal energy is

∆Uair =
5

2
nR∆T.

Using the ideal gas law, we have n = 410. The change in temperature can be found using

Tf = Ti

(
pf
p0

)1−1/γ

= Ti

(
pf
p0

)2/7

= 770K.

Plugging in the numbers,

∆Uair = 4× 106 J.
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4. (5) We use energy conservation. The work done on the submarine by the external water is

W = pf∆V = pf (Vi − Vf ) = 2.7× 107 J.

If this isn’t totally clear, you can also note that the total decrease in gravitational potential

energy of the water is ρgh∆V . But since h is large, we have ρgh ≈ pf in hydrostatic equilibrium,

recovering the result above.

This energy goes into heating up the water in the submarine, and heating the air. But we

only want the heat in the water, which is

Q = W −∆Uair = 2.3× 107 J.

Any answer within 10% of this is acceptable.

Question B2

Consider a modification of Coulomb’s law by replacing it with

F =
q1q2
4πϵ0

(
1

r2
+

β

r3

)
r̂

where β is a constant. The usual Bohr quantization condition L = nℏ still holds. Simplify your

answers as much as possible, and express them in terms of the Bohr radius a0 = 4πϵ0ℏ2/me2, so

that ℏ does not appear explicitly in your answers.

1. Find the radii rn of the electron orbits in hydrogen, under this modified law.

2. Find the corresponding energy levels En.

3. Find the transition energy ∆E from n = 2 to n = 1 for this modified law. For simplicity, you

may assume β is small and ignore terms of order β2 and higher.

Solution. This is INPhO 2011, problem 4. There are no official solutions, but the answers are:

1. (7) The calculations are simple classical mechanics; the only trouble is keeping things clean.

We have

F =
mv2

r
=

L2

mr3
=

n2ℏ2

mr3
.

Equating this with the force given, we find

e2

4πϵ0

(
1

r2
+

β

r3

)
=

n2ℏ2

mr3

and solving for r gives the radius of the nth orbit,

rn = n2a0 − β.

2. (9) The trick here is getting to the answer without messy algebra. The potential energy is

U = − e2

4πϵ0

(
1

r
+

β

2r2

)
.
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It’s best to write the kinetic energy as

K =
1

2
mv2 =

L2

2mr2
=

n2ℏ2

2mr2
=

e2

4πϵ0

n2a0
2r2

.

Adding the two, we have the nice result

En =
e2

4πϵ0

(
n2a0
2r2n

− 1

rn
− β

2r2n

)
=

e2

4πϵ0rn

(
1

2
− 1

)
= − e2

8πϵ0

1

n2a0 − β
.

3. (4) By definition, we have

∆E =
e2

8πϵ0

(
1

a0 − β
− 1

4a0 − β

)
.

Using the binomial approximation, since β ≪ a0, gives

∆E ≈ e2

8πϵ0a0

(
3

4
+

15

16

β

a0

)
.

Question B3

A detector of radio waves is placed on the sea beach at height h = 2m above sea level. A star,

which radiates electromagnetic waves of wavelength λ = 21 cm, begins to rise over the horizon. As

a result, the detector senses alternating maxima and minima in the intensity of the waves. The

waves are polarized parallel to the sea surface, which is flat.

1. Let the star be an angle α above the horizon. Determine the angles α where the detector

registers intensity maxima, and minima.

2. When the star just passes the horizon (i.e. when α = 0), is the intensity increasing or

decreasing?

3. Determine the ratio of the intensity at the first maximum to the next minimum. Note that

upon reflection of the wave on the water surface, the ratio of the magnitudes of the electric

fields of the reflected and incident waves is

Er

Ei
=

n− cosφ

n+ cosφ

where n = 9 is the refractive index of water at this wavelength, and φ is the incident angle of

the wave from the normal.

4. Does the ratio of intensities of consecutive maxima and minima increase or decrease as the

star rises?

Solution. This is IPhO 1981, problem 3. A brief outline of the official solution is:

1. (8) The interference maxima and minima occur because of the interference of two rays, as

shown.
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By doing a little trigonometry, we find that the path length difference is

h

sinα
− h cos 2α

sinα
= 2h sinα.

In addition, the path that bounces off the water has an additional phase shift π because of

the reflection. Thus, the condition for an interference maximum is

2h sinα = (m− 1/2)λ, sinα =
λ

4h
(2m− 1)

while the condition for an interference minimum is

2h sinα = mλ, sinα =
mλ

2h

Incidentally, the total number of maxima and minima is ⌊2h/λ⌋ = 19.

2. (2) At α = 0, the phase difference is π, so we are at a minimum. Thus, as α changes away

from zero, the intensity increases.

3. (7) At the maxima the field strength is Ei+Er, while at the minima it is Ei−Er. Furthermore,

by definition cosφ = sinα. Thus, at the first maximum,

Ei + Er =

(
1 +

n− sinα

n+ sinα

)
Ei =

2nEi

n+ sinα
=

2nEi

n+ λ/4h
.

At the first minimum after that, we have field

Ei − Er =

(
1− n− sinα

n+ sinα

)
Ei =

2Ei sinα

n+ sinα
=

Eiλ/h

n+ λ/2h
.

The ratio of intensities is

Imax

Imin
=

(
Ei + Er

Ei − Er

)2

=

(
2nh

λ

)2(n+ λ/2h

n+ λ/4h

)2

= 3× 104.

4. (3) When α is small, Ei and Er are almost equal, which means that Imin is very small. As

α increases, their difference increases, increasing Imin. Thus, the ratio of the intensities of

consecutive maxima and minima decreases.

As you can see, the IPhO was a lot easier back then! This method, used in Australia in the 1940s,

is called sea interferometry.
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