
Kevin Zhou Physics Olympiad Handouts

Waves I: The Wave Equation
The basics of waves are covered in chapter 18 of Halliday and Resnick, and the rest of the material

needed for Olympiad physics can be found in chapter 13 of Wang and Ricardo, volume 1. For more

on Fourier series, see chapter 6 of Vibrations and Waves by French, and for waves in general, see

chapters 7 and 8. For a more advanced perspective, see chapter 16 of Taylor. For many physical

examples, see chapters 4 and 6 of Crawford’s Waves. For more about the physics of music, see

these lecture notes. For more fun, see chapters I-47 through I-50 of the Feynman lectures. There is

a total of 79 points.

1 Traveling Waves

Waves is a vast subject, ranging from the humble wave on a string to electromagnetic waves,

gravitational waves, and quantum matter waves. The math used to analyze waves will appear in

just about every physics class you’ll ever take. But more importantly, the subject is rich in examples,

because waves are the physics of the everyday world.

Example 1

Consider a string with mass µ per unit length, under tension T . The transverse displacement

of the string is given by the wave function y(x, t), and for simplicity we assume the wave is

shallow, i.e. ∂y/∂x≪ 1. What’s the equation of motion for y?

Solution

Consider a segment of length ∆x. At each end of the segment, the tension provides horizontal

and vertical forces

Tx =
T√

1 + y′2
≈ T, Ty =

Ty′√
1 + y′2

≈ Ty′

where we’re expanding to first order in y′. Therefore the total force is

Fy = ∆Ty = Ty′′∆x.

This mass of this segment is µ∆x, again to first order, so by Newton’s Second Law,

T∆x
∂2y

∂x2
= µ∆x

∂2y

∂t2

Cleaning this up a bit, we have the wave equation

∂2y

∂t2
= v2

∂2y

∂x2
, v2 =

T

µ
.

Physically, this simply says the string tries to straighten out curvature (represented by

∂2y/∂x2). The wave equation is the simplest possible equation of motion for waves. Even in

more complicated situations, we often start with this equation and treat the extra terms as

perturbations. The wave equation thus occupies a position like that of the simple harmonic

oscillator.
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Idea 1

We may factor the wave equation as a difference of squares,

(∂2t − v2∂2x)y = (∂t − v∂x)(∂t + v∂x)y = 0.

Therefore, functions that satisfy (∂t ± v∂x)y = 0 solve the wave equation. It is simple to

verify that these are functions of the form

y(x, t) = f(x± vt).

Since the wave equation is linear, superpositions of solutions to the wave equation are also

solutions to the wave equation. The general solution is of the form f(x− vt) + g(x+ vt) for

arbitrary functions f and g.

[1] Problem 1. Waves of the form y(x, t) = f(x± vt) simply translate with uniform velocity v. Does

a wave of the form y(x, t) = f(x+ vt) move to the left or the right?

[2] Problem 2. Consider a string with the following shape.

(a) If this is a traveling wave moving to the right with velocity v, carefully draw the velocity and

acceleration of every point on the string.

(b) Now suppose the string is held in place, with zero velocity. If it is suddenly relased, sketch

the subsequent behavior of the string.

[2] Problem 3. A uniform rope of mass m and length L hangs from a ceiling.

(a) Show that the time it takes for a transverse wave pulse to travel from the bottom of the rope

to the top is approximately 2
√
L/g. Under what circumstances is this approximation good?

(b) Does the pulse get longer or shorter as it travels?

[3] Problem 4. [A] At time t = 0, the position and transverse velocity of a string obeying the wave

equation are given by y(x) and vy(x). Find an explicit expression for y(x, t) in terms of these

functions; this is called d’Alembert’s solution. (Hint: construct solutions with initial position y(x)

and zero initial velocity, and vice versa, and add them together.)

[3] Problem 5. Flexible strings, ropes, and chains can display some counterintuitive behavior. Suppose

a string carries a small traveling wave on it, moving with speed v =
√
T/µ to the right. Then in

the frame that’s also moving with speed v to the right, the string maintains a constant shape, while

moving along this shape with speed v, like a snake.

(a) In fact, this phenomenon is extremely general. Show that if we have a flexible chain loop

floating in zero gravity with any shape, then it is possible for that chain to move along its

length while maintaining a constant shape, if its speed satisfies v =
√
T/µ.
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(b) This is the principle behind the popular “string shooter” toy, which seems to levitate in the

air while maintaining a constant shape. A loop of string is shot upward through spinning

wheels with fixed high speed v. One interesting feature, which you can see in the linked video,

is that if you apply a pulse at the bottom, it will smoothly travel down and away from the

wheels with a slow speed u. Explain why, and roughly estimate u in terms of g, v, and the

height ∆z of the loop. Neglect air resistance.

There are many other tricky questions involving flexible chains; people still write papers disagreeing

about the explanation of the chain fountain.

Idea 2

A sinusoidal wave has the form

y(x, t) = A cos(kx− ωt+ ϕ), v =
ω

k

where k is the wavenumber and ω is the angular frequency. They are related to the wavelength

and period by

k =
2π

λ
, ω =

2π

T
.

Sinusoidal waves will be especially useful because the wave equation is linear. Fourier analysis

tells us that any initial condition can be written in terms of a sum of sinusoids, so if we know

what happens to the sinusoids, we know what happens in general by superposition. This is

just a generalization of ideas we’ve seen in M4 and E6. Just as we saw there, it can also be

useful to promote y to a complex number, where the physical value of y is the real part; for

a sinusoidal wave we would have y(x, t) = y0e
i(kx−ωt).

Remark

Physicists almost universally use k and ω rather than λ, f , and T . A nice way of thinking of

these variables is that they represent how quickly the phase ϕ changes, in space or time,

k =
dϕ

dx
, ω =

dϕ

dt
.

If we use a little special relativity, we can even combine these into a single equation,

kµ = ∂µϕ.

The fundamental relation between particle and wave properties in quantum mechanics is

pµ = ℏkµ.

These are the de Broglie relations, which we’ll cover in X1.

[4] Problem 6. For a wave on a string, there are two contributions to the energy: potential energy

from stretching, and kinetic energy from transverse motion.

(a) Find the kinetic and potential energy density (i.e. energy per unit length) of the string in

terms of T , µ, y, and its derivatives.
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(b) Evaluate the above quantities for y = A cos(kx− ωt). Is the total energy density uniform?

(c) Show that for a general traveling wave of the form y = f(x−vt), the total kinetic and potential

energy are equal.

(d) Show that for any wave function y, total energy is conserved. This will require some integration

by parts, as well as the wave equation itself; you should assume y goes to zero at infinity.

(e) Compute the energy of the static configuration in problem 2(b), assuming the triangle has

height h and base L, where h≪ L.

One warning: as we saw in E6, energy is quadratic, so it does not obey the superposition principle.

Locally, the amount of energy can be more or less than the sum of the energies of the superposed

waves, due to interference.

[2] Problem 7 (French 7.23). One end of a stretched string is moved transversely at constant velocity

u for a time τ , and is moved back to its starting point with velocity −u during the next interval τ .

As a result, a triangular pulse is set up on the string and moves along it with speed v. Show that

the total energy of the pulse is equal to the work done on the string, working to lowest order in u/v.

Remark

How can we account for damping in the wave equation? The simplest thing would be to add

a force proportional to vy, which e.g. could be due to air drag. Then

∂2t y = v2∂2xy +A∂ty.

But what if the string is in a vacuum? Then the simplest kind of damping would be due to

the energy lost in bending and unbending of the string, which takes the form

∂2t y = v2∂2xy +A∂t∂
2
xy

because ∂2xy describes the bending. This is called Kelvin–Voigt damping.

In both cases, it’s straightforward to handle the damping since the wave equation remains

linear; we just plug in a solution of the form ei(kx−ωt) and find the new relation between ω

and k. If we pick k to be a real number, we will generally find ω to be complex, with its

imaginary part corresponding to exponential decay of the wave over time.

[3] Problem 8. [A] With a little vector calculus, the results above can be generalized to an arbitrary

number of dimensions. For example, ideal waves in three dimensions obey

∂2ψ

∂t2
= v2

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= v2∇2ψ

where the function ψ(r, t) could stand for a variety of things, such as the pressure, density, or

temperature (for a sound wave) or the electric or magnetic field (for an electromagnetic wave).

(a) For simplicity, let’s restrict to waves which have spherical symmetry, so that ψ only depends

on r and t. Plug such a spherical wave into the wave equation, and simplify until you get an

equation only in terms of the partial derivatives of ψ(r, t).
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(b) Because the area of a sphere goes as r2, we expect the energy density of a spherical wave

to fall as 1/r2, and therefore expect the amplitude to fall as 1/r. Therefore, it is useful to

consider the quantity rψ, which has this falloff factored out. By considering the differential

equation that rψ obeys, find the general solution for ψ(r, t).

2 Standing Waves

Idea 3

A standing wave is a solution to the wave equation of the form

y(x, t) = f(x) cos(ωt).

Typically, only discrete values of ω are possible, with the allowed values depending on the

boundary conditions. If the setup is translationally symmetric, then f(x) will be sinusoidal.

If you want to get some intuition, try playing with this PhET simulation.

[2] Problem 9. Consider a string of length L and wave speed v.

(a) Suppose the ends of the string are fixed, i.e. y(x, t) = 0 at x = 0 and x = L. Find the standing

wave angular frequencies and sketch the configurations.

(b) Do the same if the ends of the string are free, i.e. ∂y/∂x = 0 at x = 0 and x = L.

(c) Do the same if one end is fixed and one end is free.

[2] Problem 10. �W10 USAPhO 1997, problem A1.

Idea 4

When a musical instrument plays a note, typically multiple standing waves are excited, so

the resulting sound is composed of multiple frequencies. As you saw in problem 9, often the

standing wave frequencies are all multiples of a single, lowest frequency. This frequency f0 is

called the fundamental, or first harmonic, while the multiple nf0 is called the nth harmonic.

The fundamental frequency determines the pitch we perceive, while the distribution of energy

among the harmonics determines the timbre, or tonal quality, of the instrument.

[2] Problem 11 (Feynman). Pinch a single length of rubber band about 5 cm long between the

fingernails of your two hands, and twang it in the middle to observe the pitch. Then stretch it to

several times its original length, observing the pitch as you proceed. Make a simple physical model

to explain the observed results.

[5] Problem 12. Some instruments, such as xylophones and marimbas, are made with rigid rods

instead of strings. The equation that describes transverse vibrations is instead

∂2y

∂t2
= −A∂

4y

∂x4

for a constant A that depends on the material and cross-sectional area.
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(a) For a xylophone bar of length L, find the standing wave solutions and their angular frequencies.

For simplicity, pretend that the solutions are sinusoidal in space, and that the bar has free

ends just like a string, even though this is not true in reality.

(b) When the bar in part (a) is hit, a certain note is sounded. What is the length of the bar that

makes a note one octave higher?

(c) [A] ⋆ The actual boundary conditions for a free bar are

∂2y

∂x2
=
∂3y

∂x3
= 0

at the endpoints, and the solutions aren’t purely sinusoidal in space. Compute the lowest few

standing wave angular frequencies and compare them to those you found in part (a). You’ll

have to use a calculator or computer to do this.

(d) A guitar or piano string satisfies the wave equation with a small additional fourth-order term,

∂2y

∂t2
= v2

∂2y

∂x2
−A

∂4y

∂x4
.

Show that the standing wave frequencies are not linearly spaced, as they would be for an ideal

string, but instead are slightly more spaced out. This effect is called inharmonicity. (Hint:

the spatial profiles of the standing waves are still sinusoidal.)

We perceived two notes to be “in tune” when the component frequencies in the notes line up

with each other. But since the frequencies are more spread out than ideal harmonics, a piano

feels more in tune when the fundamental frequencies are spread out a little bit more. This

“stretch tuning” is significant and adds up to about an entire semitone across the piano!

Remark: Beam Theory

Where does the strange fourth-order equation for transverse vibrations above come from?

Since force is the derivative of energy, it’s easier to think about how the energy stored in a

rigid rod differs from that of a string. When a string with tension T , mass per length λ, and

length ℓ is plucked, giving it a transverse displacement y, then

kinetic energy

length
∼ λẏ2,

potential energy

length
∼ T∆ℓ

ℓ
∼ Ty2

ℓ2

where our expression for ∆ℓ comes from the Pythagorean theorem. As we know from M4,

the ratio of the coefficients gives ω2, so ωℓ ∼
√
T/λ. For a general wave with wavenumber k,

we would replace ℓ with 1/k above, giving ω ∝ k as expected.

Now, a rod is characterized by a Young’s modulus Y , mass density ρ, length ℓ, width w, and

vertical thickness h. If the transverse displacement is y, then

kinetic energy

volume
∼ ρẏ2,

potential energy

volume
∼ Y (strain)2.

The tricky part is understanding the strain. If you naively used the same logic as for the

string, then all parts of the rod would be stretched, with typical strain (y/ℓ)2. This is correct
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in the limit of large displacements, y ≫ h, where the rod’s thickness is negligible. But for

small displacements, it’s an overestimate.

As the rod is displaced vertically, it slightly shrinks horizontally. As a result, there is a

“neutral line” in the middle of the rod that is neither stretched or compressed. Bonds above

the line are stretched, and bonds below the line are compressed.

The neutral line has radius of curvature R ∼ ℓ2/y. Thus, the strain at the top and bottom

of the rod is of order h/R ∼ hy/ℓ2. Plugging this in gives

ω ∼

√
Y

ρ

h

ℓ2
.

Again, for a general wavenumber we would replace ℓ with 1/k, giving the ω ∝ k2 scaling. For

a derivation of this result by dimensional analysis, see section 9.2.3 of The Art of Insight.

There’s another neat bit of physics we can get here. Consider a horizontal rod with one end

fixed at a wall. What is the vertical deflection of the other end of the rod, due to its own

weight? The gravitational and internal potential energy densities both have “reasonable”,

power-law dependence on the deflection y. Thus, when their derivatives match, so that forces

balance, their absolute values should match within an order of magnitude,

elastic potential energy

volume
∼ gravitational potential energy

volume
∼ ρgy.

Solving for the deflection gives

y ∼ ρgℓ4

Y h2

which is the fundamental result of Euler–Bernoulli beam theory. (For a proper derivation in

terms of force and torque balance, see chapters 9 and 10 of Lautrup.)

Example 2

How are the sounds of a violin, a trumpet, and a person different in a room full of helium?

Solution

As we saw in T3, the speed of sound in air is
√
γp/ρ. When the air is replaced with helium,

ρ decreases, increasing the speed of sound.

The standing wave frequencies of a violin are determined by properties of the strings, which

aren’t affected by the helium. The only difference will be that the way the violin’s sound
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reverberates will be subtly changed.

For the trumpet, the standing wave frequencies are proportional to v/L where L is the

length of the air column inside the trumpet. Thus, the standing wave frequencies go up, and

the trumpet makes higher-pitched notes.

The human voice is more subtle. A wind instrument works by exciting standing waves inside

it. But the source of the human voice is the vibrations of the vocal folds, whose fundamental

vibration frequency is directly controlled by your muscles. The entire rest of your vocal tract

does not affect what frequencies are present, but rather affects how energy is distributed

between those frequencies. (For instance, vowels are characterized by having extra energy

near two particular frequencies, called formants.) Helium changes the resonant frequencies of

the vocal tract and thus changes which frequencies emitted by the vocal folds are emphasized.

It thus changes the timbre, but not the pitch.

[3] Problem 13. Some questions about musical instruments.

(a) A piano makes sound by quickly striking a string with a hammer. The seventh harmonic

doesn’t fit in with the rest that well. If you want to eliminate the seventh harmonic, at what

point(s) can you put the hammer?

(b) A violinist can make the note from an open string sound an octave higher by lightly touching

it at a point while bowing it somewhere else. Which point(s) should be touched?

(c) Suppose a string has its ends attached to walls. A person can set up a standing wave by

holding the string at some point and moving it side to side, sinusoidally with fixed amplitude.

At which point(s) should the string be driven to maximize the amplitude of a given standing

wave? Assume the string experiences very little damping.

[5] Problem 14. �@10 EuPhO 2017, problem 1. (Hint: don’t try to use fancy math here. EuPhO

problems are designed to be solved with only elementary math and graph reading.)

Idea 5

Standing wave solutions also exist for waves in more than one spatial dimension. In the special

case where the wave medium is uniform, and shaped like a rectangle (in two dimensions) or

a rectangular prism (in three dimensions), all the standing wave solutions can be found by

separation of variables. That is, they can all be written as

ψ(x, y, z, t) = f(x)g(y)h(z) cos(ωt)

where f , g, and h are sinusoids.

[3] Problem 15. The top of a drum is like a string, in that it has a uniform surface mass density σ

and surface tension γ.

(a) Waves on the drum can be described by its height z(x, y, t). Find the wave equation for a

drum. What is the speed of traveling waves?
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(b) Consider a square drum of side length L, where the boundaries are fixed to z = 0. Find the

standing wave solutions and the corresponding ω. What’s the lowest standing wave angular

frequency?

The frequencies will not be multiples of a fundamental frequency, so they are called overtones,

rather than harmonics; that’s why drums don’t sound like they’re playing notes. (Special

examples, such as the timpani, are designed to mostly excite the harmonic frequencies.)

(c) Why does a drum sound different if you hit it near the edge, versus at the center?

[4] Problem 16. When sand is sprinkled on a vibrating metal plate, it forms Chladni patterns. Sup-

pose we (unrealistically) model the plate as a square elastic membrane, as in problem 15, of side

length L obeying the wave equation with wave speed v. Unlike in problem 15, we now assume the

boundaries of the plate are free.

(a) Do Chladni patterns form at the nodes or antinodes of a standing wave?

(b) Find the general standing wave solutions z(x, y, t) and their angular frequencies.

(c) The plate is also fixed in the middle by the support, so z = ∂z/∂x = ∂z/∂y = 0 there, which

removes many of the standing wave solutions. Find the lowest and second-lowest angular

frequencies of allowed standing waves.

(d) Sketch the Chladni pattern for the lowest standing wave frequency.

(e) For the second-lowest standing wave frequency, there will be two independent standing waves

with that frequency. What superpositions of them will yield Chladni patterns with 90◦

rotational symmetry? (If you want to see these patterns, you’ll need a computer.)

Remark: Plate Theory

The treatment of problem 16 is inaccurate because the restoring force in a metal plate is

rigidity, not tension. The waves actually satisfy the two-dimensional analogue of the fourth-

order equation considered in problem 12, which is called the biharmonic equation,

−∂
2z

∂t2
∝ ∇4z = ∇2∇2z =

(
∂2x + ∂2y

) (
∂2x + ∂2y

)
z =

∂4z

∂x4
+ 2

∂4z

∂x2∂y2
+
∂4z

∂y4
.
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Of course, I didn’t ask you to consider this, because it would have been quite a slog! But if

you want to learn more about this thrilling subject, see Plates, by Bhaskar and Varadan.

Remark: Wavepackets

Purely sinusoidal traveling waves of the form ei(kx−ωt) are unrealistic, because they have

infinite spatial extent. A realistic alternative is a wavepacket, which looks like a sinusoid

with wavenumber k but with a finite envelope, as shown below.

To understand how sinusoids are constructed, consider the superposition of two traveling

waves with wavenumbers k ±∆k. The wavefunction is

ei((k−∆k)x−(ω−∆ω)t) + ei(k+∆k)x−(ω+∆ω)t) = 2ei(kx−ωt) cos(∆k z −∆ω t).

This is simply a sinusoid of wavenumber k with a slowly varying envelope, whose character-

istic size is 1/∆k, reflecting how the two component waves slowly move in and out of phase.

The wave is still infinite in size, but this can be remedied by superposing infinitely many

wavenumbers; in this case the component sinusoids never get back in phase again.

If the wavenumbers occupy a region ∆k, then the size of the envelope is of order 1/∆k,

because this is the distance required for the component waves to get out of phase with each

other. This yields an “uncertainty principle” for waves,

∆x∆k ≳ 1.

In quantum mechanics, particles are described by waves with p = ℏk. Substituting this in

immediately gives the Heisenberg uncertainty principle; it fundamentally holds because one

cannot get a finite wave without superposing different wavenumbers.

Alternatively, if we had worked with angular frequencies instead, we would have had

∆t∆ω ≳ 1.

This is an “acoustic uncertainty principle”, also important in digital signal processing, where

it is called the Gabor limit. Upon using the de Broglie relations, one finds the energy-time

uncertainty principle.

Idea 6

The dispersion relation of a system is the function ω(k) relating the angular frequency and

wavenumber of sinusoidal waves. The phase and group velocity

vp =
ω

k
, vg =

dω

dk

describe the velocities of sinusoidal waves of wavenumber k and the envelopes of wavepackets

built from sinusoids near wavenumber k, respectively. We can see the latter result from the
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remark above: the peak of the envelope is the point where the components are in phase, and

this point travels at speed ∆ω/∆k ≈ dω/dk.

For ideal waves, the dispersion relation is linear, the group and phase velocities are constant

and equal, and waves travel while maintaining their shape. When the dispersion relation

isn’t linear, the group and phase velocities depend on k, so wavepackets gradually fall apart

(i.e. they disperse). For more discussion of these topics, see chapter 6 of Morin.

Remark

In R1, you learned that nothing can go faster than the speed of light. But the phase velocity

can exceed it; for instance, in problem 17 you will find a phase velocity that can be infinite!

This is compatible with relativity, because the phase velocity isn’t the speed of an actual

object. It’s just a formal quantity, namely the rate of change of the position of points of

constant phase in an infinite plane wave. To reinforce the point, suppose we arranged to

stand at different places and clap at the same time. Then we could say “the clap moved

from me to you at infinite speed”, but clearly nothing about this contradicts relativity.

In some textbooks, you’ll read that while the phase velocity can be faster than light,

the group velocity can’t be, because it’s the speed of an actual pulse. But that’s not

quite true in general either, because that result follows from an approximation. For

instance, in materials with really weird dispersion relations, a single pulse can split

up into two, in which case the speed of “the” peak or “the” envelope isn’t even well-

defined. Accordingly, in these cases the group velocity can be formally faster than light, but

it doesn’t contradict relativity because the group velocity ceases to have its intuitive meaning.

If you’re mathematically minded, you might be bothered by the argument that a superluminal

phase velocity is okay because no “actual object” moves faster than light, since it seems hard

to rigorously define the term “actual object”. Luckily, there’s a simple and perfectly rigorous

definition of the light speed limit: the observable effects of an action must lie in the future

light cone of the action. Suppose you change the value of a field at the origin, at time t = 0.

Then at time t, the field at all points r > ct must be the same as if you didn’t make the

change at all. The maximum speed at which changes of the field propagate is called the

signal velocity, and it can never exceed c.

[3] Problem 17. Consider transverse waves on a horizontal string with tension T and mass density

µ. The string is attached to the ceiling by a large number of vertical springs, so that if the entire

string is pulled down, it will oscillate with angular frequency ω0.

(a) Find the wave equation for waves on this string.

(b) By guessing sinusoidal solutions, find ω(k) and the minimum possible angular frequency.

(c) Compute the phase and group velocity for wavepackets of angular frequency ω.

(d) What actually happens if you grab one end of the string and try to wiggle it at a frequency

below the minimum possible frequency?
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If we treat the string as a quantum system, excitations of the string are particles with E(p)

determined by the function ω(k) you found, along with the de Broglie relations E = ℏω and p = ℏk.
Therefore, there is a minimum energy for excitations. In a relativistic and quantum context, this

means that all the particles must be massive; the minimum energy is mc2. This is a toy model for

how the Higgs field gives particles mass.

[2] Problem 18. The motion of ripples of short wavelength (less than 1 cm) on water is controlled by

the surface tension γ and density ρ.

(a) Use dimensional analysis to constrain the phase velocity vp of ripples with wavenumber k.

(b) Show that vg = (3/2)vp.

3 Reflection and Transmission

When we considered standing waves in the previous section, we were only considering “steady state”

behavior. Now we consider the dynamics of a wave hitting an obstacle more explicitly.

Example 3

Suppose a string defined for x < 0 ends at a hard wall at x = 0. Show that any wave directed

towards the wall will be reflected back upside-down.

Solution

We suppose that we send in a wave of the form

yin(x, t) = f(kx− ωt).

Let the reflected wave be a general wave traveling backward,

yr(x, t) = g(−kx− ωt).

Both of these expressions only have physical meaning for x < 0, since the string only exists

there. Now, the boundary condition is y(0, t) = 0, so we have

f(−ωt) + g(−ωt) = 0.

This tells us precisely that g = −f , so the wave is reflected upside-down but otherwise

unchanged.

There’s an easy way to visualize what’s going on here. We can imagine that there really is

string for x > 0, but that the point x = 0 stays fixed for some reason. Then this situation

corresponds to an incoming wave coming from the left, and a flipped wave coming from the

right. The two meet and cancel at x = 0, and the flipped wave continues on going to the

left, where the physical string is. Fundamentally, this story works for the same reason as the

method of images in electromagnetism: as long as you satisfy the boundary conditions, you

can do whatever you want beyond the boundary.
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[1] Problem 19. Another type of boundary condition is the “soft” boundary condition, which requires

dy/dx = 0 at x = 0. Show that waves are reflected from this boundary but not flipped.

[3] Problem 20. Consider the triangular “plucked” shape of problem 2 again, but suppose that the

string starts at rest, and its two outer corners are always held fixed.

(a) Sketch what happens after the string is released. What is the period of the motion?

(b) Confirm explicitly that the initial potential energy of the string is equal to the kinetic energy

of the string when it is purely horizontal.

(c) What would prevent a real string from achieving this ideal motion? What will the string look

like after a few oscillations?

(d) To further build your intuition, try to visualize what happens if the string begins with the

“pluck” off-center. Also, consider what happens if the string starts horizontal and at rest, but

it instantaneously receives an impulse at its center.

[4] Problem 21. [A] The general, turn-the-crank method to find the time evolution of an arbitrary

wave on a string of length L is Fourier series. In this method, we write the initial shape y0(x) of

the wave as a combination of standing waves,

y0(x) =
∑
n

cn sin
πnx

L
, 0 ≤ x ≤ L.

We know how each standing wave oscillates in time, so by linearity, the entire wave evolves as

y(x, t) =
∑
n

cn sin
πnx

L
cos(ωnt)

where ωn is the angular frequency of the nth harmonic.

(a) The coefficients cn can be extracted by integrating y0(x) against another sine,

cn ∝
∫ L

0
dx y0(x) sin

πnx

L
.

Explain why this works, and find the constant of proportionality.

(b) Now let’s consider the plucked string considered in part (a) of problem 20. If the pluck is

centered at the middle of the string and has height h, find the coefficients cn. (If you’re so

inclined, you can use a computer to see how the resulting y(x, t) approaches the answer to

problem 20 as more terms are included.)

(c) Argue that in general, we have ∫ L

0
y20(x) dx =

L

2

∑
n

|cn|2.

By applying this result to the plucked string, show that the Riemann zeta function has value

ζ(4) =
∞∑
n=1

1

n4
=
π4

90
.

In fact, this is one of the simplest ways to compute ζ(4).

We’ll use the idea of Fourier series to illustrate some conceptual points in W2.
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Idea 7

More generally, the relation between the incoming and reflected waves may depend on the

exact form of the incoming wave. In this case, it’s useful to consider sinusoidal solution. Let

yin(x, t) = ei(kx−ωt).

Almost all boundary conditions will state that something at the boundary is constant in time,

which is only possible if the reflected wave has the same frequency. So in general we have

yr(x, t) = rei(−kx−ωt)

where r is the reflection coefficient. If the medium exists for x > 0, there is also a transmitted

wave there, of the form

yt(x, t) = tei(k
′x−ωt)

where k′ might differ from k, and t is the transmission coefficient. In general, both r and t

may depend on k as well as the boundary conditions. Note that the phases of r and t depend

on the conventions we used to define yr(x, t) and yt(x, t), though the magnitudes don’t.

[4] Problem 22. Suppose the string at x < 0 has a tension T1 and mass density µ1, while the string

at x > 0 has a tension T2 and mass density µ2. (If you were doing this at home, it would be difficult

to have T1 ̸= T2 since the whole setup would accelerate longitudinally. But for the sake of the

problem, suppose the two strings are attached at x = 0 by a massless ring which slides on a vertical

frictionless pole, so that the normal force from the pole balances the longitudinal force T2 − T1.) As

above, let yin(x, t) = ei(kx−ωt).

(a) Write down k′ and the boundary conditions at x = 0.

(b) Show that the reflection and transmission coefficients are

r =
Z1 − Z2

Z1 + Z2
, t =

2Z1

Z1 + Z2
, Zi =

√
µiTi.

The quantity Zi is called the impedance.

(c) What limiting cases correspond to hard and soft boundary conditions? Verify that the reflection

coefficients match the results above.

(d) Suppose the incoming wave has the exponential form above, but only lasts for a long but finite

time τ . After a long time, the incoming wave is gone, and we have a reflected and transmitted

wave. Verify that energy has been conserved. (Be careful: it’s not simply |r|2 + |t|2 = 1.)

The great thing about the coefficients r and t is that they contain all the information about the

reflection and transmission. For complicated problems with multiple interfaces, it’s best to work

purely in terms of r and t, as solving the wave equation as a whole can get messy.

Remark

In the previous problem, you found that a discontinuity in the wave medium can cause

reflection, if the impedances of the two sides are different. This reflection is often wasteful,
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and can be reduced by insertion of “impedance matching” devices which soften the

discontinuity. For example, a conical megaphone helps match the air column of the mouth

and throat to the air outside the mouth.

The language of “impedance matching” comes from circuitry. In E7 you found that trans-

mission lines have a characteristic impedance Z. When two transmission lines are attached,

wave reflection occurs if the impedances mismatch. The point here is that the same ideas

apply to many kinds of waves, as long as one generalizes the notion of impedance.

Remark

You can generalize the methodology of the previous problem to a large variety of similar

problems. For example, suppose the ring at x = 0 wasn’t massless. Then the boundary

conditions would have been changed; instead of the transverse force on the ring vanishing,

the transverse force would have had to be equal to its mass times its transverse acceleration.

(You may recall that setup from the preliminary problem set.) You could even put the ring

on a spring, or give it a damping force (in which case the wave energy is no longer conserved).

In all cases, the technique is just to take exponential solutions on both sides and apply the

relevant boundary conditions. I won’t assign such problems, since they usually involve lots

of messy algebra, but the idea is very important in physics.

4 Interference

Idea 8

The intensity of a wave is proportional to its amplitude squared, so if two waves with

amplitudes A1 and A2 are superposed, the resultant intensity is

I ∝ (A1 +A2)
2.

This differs from the sum of the intensities by an interference term,

I = I1 + I2 + 2
√
I1I2 cos θ

where θ is the phase difference between the waves.

[3] Problem 23. Consider a symmetric, thin mirror with air on both sides. When an electromagnetic

wave whose electric field has amplitude A hits the mirror from either side, there is a transmitted

wave of amplitude tA and a reflected wave of amplitude rA. Here, t and r are generally complex

numbers, with their phase determining the phase shift of the transmitted or reflected wave. Assume

that no energy is absorbed in the mirror itself.

(a) Suppose light hits the mirror from one side. Using energy conservation, show that |r|2+|t|2 = 1.

(b) By considering a situation where light hits the mirror from both sides, show that r∗t+ t∗r = 0.

Show that this means r and t differ in phase by π/2.
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(c) Alternatively, one can argue that the amplitude of the electric field must be continuous at

the mirror. (This isn’t quite right, as the charges in the mirror will make a big electric

field confined to the mirror, but it’s reasonable for other situations, such as problem 26, and

happens to give the right answer here.) Using this assumption, show again that r∗t+ t∗r = 0.

(d) Why don’t these results apply to the situation in problem 22?

(e) ⋆ What can we say about an asymmetric mirror, which has coefficients r and t from one side,

and r′ and t′ from the other? Continue to assume that no energy is absorbed in the mirror.

[4] Problem 24. Consider two identical, thin, symmetric mirrors, with reflection and transmission

coefficients r and t, placed a distance L apart, with air in between them and outside them. This

system is called a Fabry–Perot interferometer. A wave with wavenumber k hits the apparatus; we

want to find the reflection and transmission coefficients rnet and tnet of the entire system.

(a) Draw all paths that the light could take to be reflected, and to be transmitted.

(b) By applying the principle of superposition and summing a geometric series, show that

rnet = r +
rt2e2ikL

1− r2e2ikL
, tnet =

t2eikL

1− r2e2ikL
.

Note that your answers may differ by phases, depending on your conventions for rnet and tnet.

(c) Show that all the light is transmitted for some special values of L, even if r ≈ 1. That is,

nearly ideal mirrors can become perfectly transparent! This is called resonant transmission,

and it occurs because the reflected waves perfectly destructively interfere.

For the rest of the problem, assume that L takes one of the special values found in part (c).

(d) Using energy conservation, recover the result of problem 23(b).

(e) Suppose that a laser with power P has been fired at the interferometer for a long time. Then,

at a certain moment, the laser is suddenly switched off. Find the total energy of the light

that travels from the interferometer back towards the laser after the laser is switched off. For

simplicity, suppose that |t| ≪ 1, and give your answer in terms of P , L, |t|, and c.

(f) Estimate the duration of the light pulse that travels back towards the laser.

[3] Problem 25. �W10 USAPhO 2004, problem A3.

[3] Problem 26 (Kalda). In fiber optics, devices called equal ratio splitters are often used; these are

devices where two optical fibers are brought into such a contact so that if an electromagnetic wave

is propagating in one fiber, it splits into two equal amplitude waves traveling in each of the fibers.

Assume that all waves propagate with the same polarization, i.e. that all electric fields are parallel.
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(a) Show that whenever a wave enters the splitter, from either fiber, one of the outgoing waves is

advanced in phase by π/4, while the other is retarded by π/4.

(b) From part (a) alone, it’s ambiguous which wave is advanced and which wave is retarded. Let’s

suppose that the fibers are set up so that, when a wave enters along fiber 1, the wave that

exits along fiber 1 is advanced. If a wave enters along fiber 2, is the wave that exits along

fiber 1 advanced or retarded?

(c) Now consider two sequentially positioned, identical equal ratio splitters, as shown.

This is called a Mach–Zehnder interferometer. The optical path difference between the inter-

splitter segments of the two fibers is 30µm. Assuming the wavelength of the incoming

monochromatic light varies from 610 nm to 660 nm, for what wavelengths is all the light

energy directed into fiber 2?

Remark

Above, we’ve focused on cases where light can only exit a given optical element in two

ways. But in general, you could have n “ports”, in which case you would need an

entire n × n matrix of coefficients S to relate the n input amplitudes to the n output

amplitudes. Generalizing problem 23 to this case shows that S is a unitary matrix, S† = S−1.

All of the optical elements we’ve seen so far obey optical reciprocity, i.e. the principle that

“if I can see you, then you can see me”, related to time reversal symmetry. However, we can

violate reciprocity by using special materials, such as permanent magnets. For example, a

circulator is an optical element with 3 ports, so that all light entering port 1 exits from port

2, light in port 2 exits from port 3, and light in port 3 exits from port 1. Though it’s strange,

you can check that there’s no way to use it to violate the second law of thermodynamics.

[3] Problem 27. The Sagnac effect is a phase shift observed when an interferometer rotates. Originally

it was used as a test of special relativity, and today it is used to make sensitive gyroscopes.

To illustrate the effect, consider a thin ring of radius R, rotating uniformly about its axis of

symmetry with a small angular velocity Ω. Light of angular frequency ω is inserted at a point P

on the ring, and travels both clockwise and counterclockwise along it. When the two light beams

arrive at point P again, after a full revolution, their phase is compared.

(a) If the ring is hollow, what is the phase difference between the beams when they meet?

(b) What if the ring contains a material with index of refraction n?

To solve this problem, you will need prior exposure to R1.
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Remark: Interference and Energy Conservation

People sometimes get the impression that interference violates energy conservation, but it

doesn’t. For instance, in the double slit experiment, you get destructive interference in some

places, and constructive interference in other places, so that the total energy stays the same.

A natural followup question is: what if you could engineer waves to have destructive

interference everywhere? Wouldn’t that unambiguously violate energy conservation?

Actually, it still won’t, but the reason is a bit subtle and depends on the details.

For simplicity, suppose we start with a long string at rest. You hold one end, and your friend

holds the string some distance away. You wiggle your hand, using energy E, to produce a

wave pulse traveling towards your friend. Then you ask your friend to wiggle their hand in

the exact “opposite” way when the wave passes by them, which should also require energy

E, but which should create a wave which perfectly destructively interferes with yours. So

doesn’t an energy 2E just vanish into nowhere?

The subtlety is that your friend will be trying to move the string at the precise moment that

your wave pulse is passing by them. There are two simple limiting cases we can consider.

• If you created the wave by exerting a vertical force profile F (t), then your friend exerts

a force −F (t). But in this case, your friend will be doing negative work on the string,

because it’ll be moving opposite the force they exert. They’re just absorbing the pulse

you put in, so conservation of energy is satisfied because E − E = 0.

• If you created the wave by displacing the rope vertically by y(t), then your friend displaces

it by −y(t). But in this case, the net displacement of the rope at your friend’s hand

will just be zero, because their displacement cancels with the displacement of your wave

pulse passing by. In this case, your friend is acting like a hard wall boundary condition.

They don’t do any work, since their hand doesn’t move. The forward-moving pulse is

indeed completely destroyed, but it is replaced with a reflected pulse of equal energy, so

conservation of energy is still satisfied because E + 0 = E.

We can also try to route around this issue. For example, suppose you and your friend tied

together some strings into a Y shape, and you each held one of the prongs of the Y, and

made opposite pulses at the same time. Now there’s no issue like the one above, and once

the pulses meet at the vertex, they’ll perfectly destructively interfere, leaving no energy in

the “neck” of the Y. But the waves will also reflect off the vertex, and transmit from one

prong to the other. If you carry out the analysis, you’ll find that all the energy will get

redirected into waves going back up the prongs. Similar arguments hold for electromagnetic

waves encountering optical elements, like beam splitters.

All of this is not surprising, because interference comes from wave equations, which in turn

are derived from Newton’s laws or Maxwell’s equations, which obey energy conservation.
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