
Kevin Zhou Physics Olympiad Handouts

Waves II: Interference and Diffraction

Interference and diffraction are covered in chapters 41, 42, and 43 of Halliday and Resnick, and

chapter 14 of Wang and Ricardo, volume 1. For more mathematical detail, see chapter 9 of Crawford.

For lighter reading with neat examples, see chapters I-29 and I-30 of the Feynman lectures. For

much more, see chapters 9 and 10 of Optics by Hecht, a well-written but somewhat long-winded

university level text. There is a total of 80 points.

1 Double Slit Interference

Remark: Coherence

We introduced interference in W1. However, in many cases interference can’t be observed

at all, because the relative phase between the two waves will oscillate rapidly, making the

interference term cancel out. This will even occur with two light sources which are both

seemingly the same color; the phase always has an extra “jitter” on top. In practice, one can

only observe interference between rays of light from the same source; the phase fluctuations

of the two will cancel out.

Even this is not enough, because light emitted at different angles will typically have

independent “jitter”. In the 19th century, the usual technique for avoiding this was to

put a small pinhole between the light source and the actual experiment; if the pinhole is

smaller than the light source’s coherence length, then the light going through the pinhole is

coherent with itself and suitable for use. For sunlight, such pinholes need to be a fraction of

a millimeter in size, explaining why the double slit experiment took so long to be carried out

properly.

Today, one often uses lasers, which are much more coherent than other light sources; there is

no need for the pinhole. Using lasers, it’s possible, though challenging, to observe interference

between two different lasers of the same color. For the problems below we’ll generally assume

coherence is perfect, but one should remember it’s an important practical consideration in

real setups.

Example 1

Derive the far-field intensity pattern for the double slit experiment.

Solution

We suppose a plane wave with wavenumber k is incident on two small slits. Using Huygens’

principle, the screen absorbs all wavelets except the ones at the slits, so it’s as if we have

two spherical waves coming from each slit. They produce an interference pattern on a screen

a distance D away because they have a phase difference depending on their path length

difference.
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The amplitude of the light on the screen at some height y is

A(t) ∝ ei(kr1−ωt) + ei(kr2−ωt)

where we’ve switch to complex notation, and the quantities r1 and r2 depend on y. In

principle the two terms don’t need to have the same magnitude, e.g. if the two slits are not

equal in size. Additionally, as you saw in W1, for spherical waves the amplitude actually

falls as 1/r. However, in the far-field limit we have r1 ≈ r2, so we neglect this effect.

At each point on the screen, the amplitude will be some constant times the time-varying

phase,

A(t) ∝ (eikr1 + eikr2)e−iωt = A0e
−iωt.

The brightness of the light we see at that point is proportional to |A0|2, using the results

about wave energy from W1. Since only the coefficient squared matters, we can factor out a

common phase to get

A0 ∼ e−ik∆r/2 + eik∆r/2, ∆r = r2 − r1

and the intensity is

I ∝ |A0|2 ∝ |e−ik∆r/2 + eik∆r/2|2 = |2 cos(k∆r/2)|2 ∝ cos2(k∆r/2).

Next, we find the path length difference ∆r. For far-field diffraction, using D ≫ d,

∆r = r2 − r1 ≈ d sin θ

where θ is the angle from the slits to the point on the screen we’re looking at. Therefore,

I(θ) ∝ cos2(kd(sin θ)/2).

This yields a series of bright and dark bands on the screen. Most of the time, we’ll only be

concerned with the few most central minima and maxima, which for typical parameter values

lie at θ ≪ 1. Then we may use the small angle approximation sin θ ≈ tan θ = y/D, giving

I(y) ∝ cos2
kdy

2D
.

We have a periodic pattern of dark and light fringes. The separation between the minima

and between the maxima on the screen is Dλ/d.
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The set of approximations made above gives us the theory of Fraunhofer, or far field diffraction.

For example, when we calculated the path length difference, which was of order d, we neglected

a higher order term of order d(d/D). This is acceptable as long as this is small compared to the

wavelength λ. Thus, defining the Fresnel number F = d2/Dλ, we have far field (Fraunhofer)

diffraction when F ≪ 1. When F ≫ 1 we can ignore diffraction entirely (why?) and use

geometrical optics, as covered in W3, while for F ∼ 1 we must use the more complicated

near field (Fresnel) diffraction.

[2] Problem 1. Sketch the intensity on the screen as a function of θ if kd = 8. What are the bounds

on θ? How many completely dark points exist?

[5] Problem 2. Some basic but important questions about the double slit result.

(a) Explain intuitively how the pattern on the screen changes if the slits are brought closer

together. Do the same if the wavelength of the light is increased.

(b) Suppose the light going through the top slit has a small additional phase shift of θ, e.g. because

it passes through a piece of glass in the slit. Describe how the interference pattern changes.

(c) Now suppose the top slit is twice as wide. Describe the interference pattern.

(d) Suppose that coherent white light is passed through the slits. Describe the interference pattern.

(e) It’s important to be able to rederive these results quickly. Without looking at the above

results, find the spacing between the minima on the screen.

(f) Usually, the double slit experiment is done by shining a laser on both slits. Now suppose a

different laser was aimed on each slit. Assume, somewhat unrealistically, that the lasers have

very precisely calibrated but slightly different frequencies, say ∆ω = 1 rad/s. Describe what

the interference pattern would look like.

[3] Problem 3. �W10 USAPhO 1999, problem A3. A triple slit experiment.

[2] Problem 4. A pair of slits is separated by a distance d1, and two of these pairs are separated by a

larger distance d2, so that d2 ≫ d1 ≫ λ. Sketch the intensity pattern on the screen for this four-slit

apparatus. (Hint: to avoid a complicated computation, factor the expression for the amplitude.)

Idea 1: Image Sources

Some interference problems have complex arrangements of mirrors and lenses. In these cases,

actually computing the path length differences can be a nightmare. For instance, you’d have

to account for the detailed shape of every lens. Also, you won’t just have to compute the

path length, but rather than optical path length, which is the ordinary path length weighted

by the index of refraction. This is because the index of refraction affects the wavelength and

hence the phase difference.

However, there’s a trick which makes everything much simpler: any point image can be

treated like its own light source. That means you can compute path length differences by

starting from the images, rather than having to go all the way back to the original objects.
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For real images, there’s a very simple way to see why this works. For instance, consider the

setup below, where an object o is focused with a lens to an image i.

Fermat’s principle of least time tells us that all of the paths shown take the same time, and

since phases are directly related to time by ∆ϕ = ω∆t, it means that all of the rays arrive

at the image with the same phase. That means they leave the image with the same phase,

so the image can be treated just like a coherent source. (That is, the phase of the light

coming from the image doesn’t depend on the direction it comes out.) To find the phase of

the waves at i, you can pick any of the paths, most conveniently the one on the symmetry axis.

We can also consider virtual images, as shown below.

Here, the Fermat’s principle argument doesn’t work because the rays never actually meet

at i, but we can use Huygens’ principle. The key ideas are that (1) light locally propagates

perpendicularly to wavefronts, and (2) the phase on a wavefront is always uniform, by

definition. The first point implies the outgoing wavefronts are spheres centered on i. The

second point implies that the phase only depends on the distance from i, so it can again be

treated just like a source. In this way, seemingly impossible questions can be solved instantly.

Example 2: Kalda 17

Consider the optical setup shown below.

Many light and dark bands appear on the screen, with dark bands separated by distance d.

Assuming that α ≪ 1, find the wavelength λ of the light.
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Solution

This is actually just a double slit interference problem! Each mirror produces a (virtual)

image source reflected behind it, and the pattern on the screen results from the interference

between the two image sources, just as if there were two slits at those points.

Specifically, let the light source have coordinates (0, 0), with the screen at x = a. Then the

image sources are located at (−a,±2αa), so we have a double slit setup with sources 4αa

apart from each other, a distance 3a from the screen. Using our existing results,

λ = (4αa)
d

3a
=

4αd

3
.

Note that reflection from a mirror changes the phase by π, but that didn’t matter in this

problem, because both image sources pick up the same phase.

[3] Problem 5. �̂10 USAPhO 2020, problem B2. A problem on interference with images.

2 Thin Film Interference

Idea 2

In general, the phase of a wave is unaffected by reflection from a rarer medium, and flipped

by 180◦ when reflected from a denser medium; here a “denser” medium is defined as one

where the wave speed is lower, e.g. one with a higher index of refraction for light. This is

analogous to the result for wave reflection in a string derived in W1, and is derived starting

from Maxwell’s equations in E8.

Example 3

A very thin soap film on a wire loop looks dark when viewed from above, while a very thin

oil film floating on water appears bright when viewed from above. Explain the difference.

Solution

For the soap film, we consider interference between two paths for the light: bouncing off

the top surface, or transmitting through and bouncing off the bottom surface. These have

almost the same phase, since the soap film is thin, but the former has an extra 180◦ phase

shift. So the two destructively interfere, making the soap film look dark.

For the oil film, the analysis is similar, but both paths have a 180◦ phase shift, so they

interfere constructively, making the oil film look bright.

Remark

This is the usual high school textbook analysis, but the real situation is a bit more subtle.

First off, there are actually infinitely many possible paths for the light to take, and sometimes

many of these paths are important, as you saw in W1 for the Fabry-Perot interferometer
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for r ≈ 1. However, in both cases above, the two paths we chose were indeed the most

important by far.

Second off, the amplitudes upon reflection and transmission must be computed using the

results you found in W1, and generally won’t have the same magnitude. This means that

generically we don’t get complete destructive interference for the soap film case, just a

lowered intensity. Finally, these reflection and transmission coefficients will vary significantly

with angle according to Fresnel’s equations, as shown in E8. We typically ignore this by

focusing on normal incidence.

By the way, you might be wondering why we’re specializing to thin films; why isn’t there

thick film interference? Technically there could be interference fringes, but they would be

too close to see even if everything was perfect. And in reality, they would then get blurred

together due to imperfections in the surfaces, and the spread of frequencies and incidence

directions in the incoming light.

[2] Problem 6. �Y10 AuPhO 2008, problem 15. A simple data analysis problem.

[2] Problem 7. The anti-reflection coating on your glasses consists of a thin layer of material whose

index of refraction is between that of air (n = 1) and glass (n = 1.5). The coating is designed to

eliminate the reflection of green light, λ = 550 nm. (improve question)

(a) Accounting for only the two most significant paths for the light, find the minimum possible

thickness of the coating, and its index of refraction. (You’ll have to use results for reflection

and transmission coefficients derived in W1.)

(b) Roughly how much error do we make in neglecting the next most significant path?

[2] Problem 8 (EFPhO 2004). A thick glass plate is coated by a thin transparent film. The emission

spectrum of the system at normal incidence is as shown.

The refractive index of the film is n = 1.3. Find the thickness of the film.
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[2] Problem 9. Newton’s rings are an interference pattern formed when a lens is placed on a flat

glass surface and illuminated from above by light of wavelength λ. For concreteness, suppose the

side of the lens touching the surface is spherical, with radius of curvature R. When viewed from

above, one sees an interference pattern with circular fringes.

The most important reflection paths are (1) reflection off the top surface of the lens, (2) reflection

off the bottom surface of the lens, and (3) reflection off the flat surface. However, the first reflection

path has a very different path length from the other two, which means it won’t give rise to visible

interference fringes, as explained in the remark above. Instead, the first reflection path just adds

some background intensity everywhere, preventing the dark fringes from being perfectly dark. Thus,

in this problem we’ll only consider the second and third paths.

(a) Explain why the center of the pattern is dark.

(b) Find the radii of the bright and dark fringes, i.e. the values of r where there is a local minimum

or maximum of the intensity. For simplicity, assume r ≪ R.

[3] Problem 10 (Kalda). A hall of a contemporary art installation has white walls and a white ceiling,

lit with a monochromatic green light of wavelength λ = 550 nm. The floor of the hall is made of

flat transparent glass plates. The lower surfaces of the glass plates are matte and painted black; the

upper surfaces are polished and covered with thin transparent film. A visitor standing in the room

will see circular concentric bright and dark strips on the floor, centered around himself. A curious

visitor observes that the stripe pattern depends on their height, and upon lowering themselves, sees

a maximum of 20 stripes. The film’s index of refraction is 1.4 and the glass’s is 1.6. Determine the

thickness of the film.

3 Diffraction

Next, we turn to diffraction.

Example 4

Find the interference pattern of a diffraction grating, a set of N identical slits in a row, each

separated by a distance d.

Solution

Defining ∆r = d sin θ as before, the amplitude is

A ∼ 1 + eik∆r + e2ik∆r + . . .+ e(N−1)ik∆r =
eikN∆r − 1

eik∆r − 1
.
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Factoring out a common phase, we have

A ∼ eikN∆r/2 − e−ikN∆r/2

eik∆r/2 − e−ik∆r/2
=

sin(Nk∆r/2)

sin(k∆r/2)

so the intensity is

I ∝ sin2(Nk∆r/2)

sin2(k∆r/2)
.

The normalized intensity is plotted below as a function of θ.

The numerator yields rapid oscillations which aren’t very visible; their envelope is given by

the slow oscillations in the denominator. These slow oscillations are the ones we care about;

they are the diffraction peaks and occur when

k∆r

2
= nπ, d sin θ =

2πn

k
= nλ, n ∈ Z.

This is intuitive, because at the maxima, the contributions from each slit are in phase, as

the path length difference between adjacent slits is a multiple of λ.

[3] Problem 11. For practical applications of diffraction gratings, we usually focus on the intensity

maxima. However, around each maximum there are also secondary maxima.

(a) Argue that the first minimum occurs when there is a phase difference of 2π/N between

adjacent slits, then compute its angle. This is easiest to see using phasors, i.e. by drawing the

individual terms in the amplitude A as vectors in the complex plane.

(b) Show that each secondary maximum is half as wide as the central maximum.

(c) Let the intensity at the central maximum be I0. Assuming N ≫ 1, use phasors to show that

the intensity at the kth adjacent secondary maximum is roughly I0/((k + 1/2)2π2).

This final result shows that in general, the secondary maxima are much dimmer, and can be

neglected; we will ignore them for almost all problems below.

Example 5

Use the previous example to get the interference pattern for a single wide slit of width a.
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Solution

We can think of a single slit as the limit of a diffraction grating with Nd = a, where N → ∞
and d → 0. Taking these two limits simultaneously is a bit delicate. Starting with our

previous result

A ∼ sin(Nkd sin θ/2)

sin(kd sin θ/2)

we may substitute Nd = a in the numerator. Only d remains in the denominator, so the

d → 0 limit allows us to use the small angle approximation. We thus have

A ∼ sin(ka sin θ/2)

kd sin θ/2
.

But as d → 0 the expression blows up, because we’re taking the number of slits to infinity

while keeping the amplitude from each slit constant. To get a consistent limit, we normalize

by dividing the amplitude by N , giving Nd = a in the denominator for

A ∼ sinβ

β
β =

ka sin θ

2

The amplitude is proportional to the sinc function, shown below.

What we’re really doing here is zooming in on the central maximum of the diffraction grating;

the other maxima have been removed by sending the slit spacing to zero.

Remark: Uncertainty Principle

There’s a neat way to rephrase our results. In the far field limit and small angle approxima-

tion, an opening at height z gives a wave with amplitude ei(k/D)yz at height y on the screen.

If we think of a “slit function” f(z) which is equal to one at holes and zero elsewhere, then

the amplitude at the screen is simply the Fourier transform of y! Phasors are just a visual

way to compute the Fourier transform.

We won’t use this language explicitly below, but it can add some intuition if you know

it. For example, we know from W1 that the products of the widths of any function and

its Fourier transform are bounded. For example, a wavepacket of width ∆x with Fourier

components of width ∆k obeys ∆x∆k ≳ 1.
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In this case, the Fourier pair is screen height y and the scaled slit height (k/D)z. (Don’t

get confused with the notation here; now k is fixed while z varies.) Hence the uncertainty

principle says

∆y∆z ≳
D

k
∼ Dλ

which you can check holds for all the examples we’ve seen so far. The uncertainty prin-

ciple provides a simple explanation for why making the slits narrower makes the pattern wider.

In fact, this is equivalent to the Heisenberg uncertainty relation ∆y∆py ≳ ℏ for photons

passing through the slit, as you can verify. This makes sense, as we should be able to calculate

the diffraction pattern in terms of either the whole light wave, or in terms of what happens

to each of the photons in the light wave.

Remark

If we take the limit a → ∞ for the single slit, the central maximum becomes an infinitely

sharp, bright point. But in reality, a light will just uniformly illuminate the screen.

The problem is that when a gets too high, the approximations of Fraunhofer diffraction break

down, and we must switch to Fresnel diffraction. Fresnel diffraction augments Fraunhofer

diffraction with two additional effects.

1. The amplitude of each wavelet falls off as 1/r.

2. The amplitude of each wavelet is proportional to the “obliquity factor” (1 + cos θ)/2,

where θ is the angle from its original forward direction of propagation. (Strictly speaking,

this factor appears in Fraunhofer diffraction too, but in that case it’s not too important,

because all the wavelets that reach a given point of the screen have about the same θ.)

Both effects matter, but it suffices to consider the first to fix the problem. This amplitude

falloff implies that in the case a ≫ D, the illumination at each point on the screen mostly

comes from points on the slit within a distance D, not from the entire slit. Since every point

on the screen can see such a range of points, the screen is uniformly illuminated.

For points on the screen near the edge of the slit, there is a gradual shadow, along with some

interference bands from “edge diffraction”. In the limit D ≫ λ these residual diffraction

peaks get very close and blur together, leaving only a smooth shadow. This is just as

expected, as in this case we have F ≫ 1 and geometrical optics should apply.

For a derivation of Fresnel diffraction starting from the wave equation, see section 10.4 of

Hecht. Incidentally, Fresnel diffraction came first historically, since reaching the simpler

Fraunhofer regime F ≪ 1 requires manufacturing tiny optical instruments. (That’s why the

“Arago spot” is always called a prediction of Fresnel diffraction, even though it also appears in

Fraunhofer diffraction; it was one of the first successful predictions of any diffraction theory.)

This is yet another example of how the textbook treatment we enjoy today is easier. We can

start with the simple case, but the pioneers had to get it all right at once.
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Remark: Interference vs. Diffraction

Interference is the name for the fact that when waves superpose, their energy doesn’t just

add; it can become larger than the sum (constructive interference) or smaller (destructive

interference). Diffraction is the name for the fact that waves do not need to keep going in a

straight line when they hit an obstacle.

What’s confusing is that double slit “interference”, single slit “diffraction”, and a many-slit

“diffraction” grating all involve both interference and diffraction. Why is it called diffraction

when there are one or many holes, but not when there’s two? I was very confused about

this in high school, but I’m pretty sure there is no difference; it’s just historical convention.

(However, one pattern is that things that have maxima at larger angles tend to be called

“diffraction”, because it’s more apparent that the direction of the light has been changed.)

[2] Problem 12. Comparing the single and double slit.

(a) Show that the minima for the single slit occur when

a sin θ = nλ, n ̸= 0.

(b) Note that this looks almost identical to the result for the maxima of a double slit with

separation a. Explain the difference using phasors.

(c) In our analysis of the double slit, we didn’t account for the small but nonzero width of each

slit. Using the idea of problem 4, sketch the diffraction pattern accounting for this.

[2] Problem 13. Practical measurements using diffraction tools.

(a) Suppose you are given a diffraction grating with known parameters and a light source with

unknown wavelength. Describe how you would determine this wavelength as accurately as

possible. (Be specific: exactly what features of the diffraction pattern would you measure?)

(b) Now suppose you are given a light source with known wavelength and a single slit with

unknown width. Describe how you would determine this width as accurately as possible.

[3] Problem 14 (MPPP 123). Some imperfect diffraction gratings. For this problem, you can ignore

secondary maxima. Use the small angle approximation throughout, and neglect any diffraction

effects from the finite widths of the slits.

(a) In an imperfect diffraction grating, the slits have equal widths, but the distances between the

slits are alternately d and 3d. Sketch the resulting diffraction pattern, indicating the relative

heights of the maxima.

(b) In another imperfect diffraction grating, the slits are evenly spaced, but their widths are

alternatively a and b, where a ≈ b. Sketch the resulting diffraction pattern, indicating the

relative heights of the maxima.

It may be useful to refer to the technique introduced in problem 4.

4 Higher Dimensions

In these problems we tackle interference and diffraction effects in more than one dimension.
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Idea 3

We’ve shown that in a single narrow, tall slit, the central maximum is a tall band, bounded

by minima at θ = ±λ/d. If we instead had a circular slit, the central maximum is a

circle, bounded by minima at θ ≈ 1.22λ/d. The radii of the higher-order minima then

get closer and closer spaced as one moves outward. The resulting pattern is called an Airy disc.

You can straightforwardly write down an integral that gives the intensity I(r), but the integral

can only be performed in terms of special functions, called Bessel functions.

Idea 4: Babinet’s Principle

Consider all of the rays R that strike a point P on the screen. If the intensity at P is zero,

then the rays must completely destructively interfere. That means that if we split R into

two sets of rays R1 and R2 in any way, then the amplitudes due to the rays R1 and the rays

R2 must be equal and opposite, which means either set of rays alone would produce the

same intensity at P . This is Babinet’s principle.

As a concrete example, consider shining a laser pointer at a wall. There will be a bright spot

on the wall at the exact location the laser hits, and darkness everywhere else. Consider some

dark point P . If we had instead passed the laser through two slits, we would only get the

rays R1 going through the slits, and we would generally get some nonzero intensity at P , due

to the double slit interference pattern. Babinet’s principle tells us we would get the exact

same intensity at P if we put two slit-shaped obstacles in the way, because then we would

get precisely the rays R2 which don’t hit the slits.

Example 6: BPhO 2016.5

When a laser pointer hits a spring, the following pattern is produced on a screen behind it.
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Explain why this happens, and what we can learn about the spring.

Solution

If we look at the spring along the direction the laser pointer is going, it’s essentially two sets

of obstructions, one going up and to the right (the front of the spring, in the picture), and

one going up and to the left (the back of the spring). By Babinet’s principle, the resulting

diffraction pattern should be the same as if we had two sets of openings instead. Thus, we

expect to see two independent diffraction patterns, one due to each of these obstructions.

The angle between these two patterns is twice the angle that the spiral path of the spring

makes with the horizontal.

Now focus on one interference pattern. By Babinet’s principle, it’s basically a single slit

pattern, which is indeed what we see. However, from the reflection of the laser in the picture,

we see that the laser beam is wide enough to hit two separate turns of the spring. The result

is a double slit pattern multiplied by a single slit pattern, where the latter yields a minimum

at approximately every 5 double slit minima. The spacing between the single slit minima

tells us the thickness of the wire, and the spacing between the double slit minima tells us

the spacing between the turns in the spring. Combining this with what we know about the

angle of the spring tells us about the radius of the spring. Thus, we can figure out essentially

everything about its 3D shape.

The coolest thing about this problem is that all the logic here applies to diffraction off any

helical structure. For example, below is the X-ray diffraction pattern of DNA, taken by

Rosalind Franklin in 1952.
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As discussed in detail here, such data was used to discover the structure of DNA.

Example 7: MPPP 125

An opaque sheet is perforated by many small holes arranged in a square grid of side length

d. It is illuminated by light of wavelength λ, and a screen lies a distance D behind it.

Assuming D ≫ d ≫ λ, find the locations of the primary diffraction maxima on the screen.

Solution

Let (x, y) denote coordinates on the sheet, and (x′, y′) denote coordinates on the screen, with

the same center. When we considered one-dimensional diffraction gratings, we found that

light which originates from y and hits point y′ on the screen has a path length difference

yy′/D relative to light that came from point y = 0. A similar argument shows light which

comes from (x′, y′) gets a path length difference

∆ℓ =
xx′ + yy′

D

relative to light coming from x = y = 0.

14

https://knzhou.github.io/
https://pubs.aip.org/aapt/ajp/article/86/2/95/1057814/Rosalind-Franklin-s-X-ray-photo-of-DNA-as-an


Kevin Zhou Physics Olympiad Handouts

For a square grid, (x, y) = (nd,md) for integers n and m, giving a path length difference

∆ℓn,m =
d

D
(nx′ +my′).

We get a diffraction maximum at (x′, y′) when the light from each hole arrives in phase, which

means this quantity must be a multiple of λ for all n and m. This occurs precisely when

x′ =
λD

d
n′, y′ =

λD

d
m′

for integers n′ and m′. That is, the diffraction maxima also form a square grid of side length

λD/d. Notice again that the diffraction pattern is “inverse” to the pattern on the sheet. It

gets bigger when the sheet gets smaller; for instance, if the sheet is compressed horizontally,

the maxima on the screen are stretched horizontally.

[3] Problem 15 (MPPP 126). Continuing on the previous example, suppose the holes are instead

arranged in a triangular grid with side length d.

Find the primary diffraction maxima on the screen. What kind of grid do they form?

[3] Problem 16. AuPhO 2015, problem 14. Print out the relevant part of the answer booklet as well.

This problem contains several instructive examples of higher-dimensional diffraction patterns.

[5] Problem 17. �̂10 APhO 2021, experimental problem 2.

Remark

The previous few problems illustrate how X-ray crystallography can be used to infer the

structure of crystals by diffraction. For an absurdly difficult multi-dimensional diffraction

problem, far beyond the scope of the Olympiad, see Physics Cup 2019, problem 5.
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5 Technological Applications

Example 8

Gratings split light into its components. If a grating can just resolve the two wavelengths λ

and λ+∆λ, its resolving power is R = λ/∆λ. Compute the resolving power of a diffraction

grating with N slits at the nth order maximum.

Solution

Conventionally, we say that two diffraction peaks are distinguishable if the maximum of one

falls outside the first minimum of the other. We know the nth order maximum for wavelength

λ occurs when d sin θ = nλ, as here the path length difference between adjacent slits is nλ.

Furthermore, the first minimum around this maximum occurs when there is a extra net path

length difference of λ across the entire diffraction grating, i.e. when

Nd sin θ = Nnλ+ λ.

Setting the value of sin θ equal to that for wavelength λ+∆λ, we see that we can just resolve

these two wavelengths if

n(λ+∆λ)

d
=

(Nn+ 1)λ

Nd
, R =

λ

∆λ
= Nn.

Note that the resolving power is also the number of wavelengths by which the longest and

shortest possible paths to the diffraction maximum differ (i.e. the paths through the very

top and very bottom slits). The fact that a larger distance may be used to resolve smaller

wavelength differences is another manifestation of the uncertainty principle we met in W1.

[3] Problem 18. Now we consider some more realistic, reflective diffraction gratings.

(a) We may crudely model a reflective diffraction grating as a mirror with N notches, spaced

a distance d apart. The notches do not reflect light, but the rest of the mirror serves as a

source of Huygens’ wavelets when light is incident on the grating. Show that, unlike the

transmission gratings we considered above, the zeroth order maximum of a reflective grating

is much brighter than the others.

(b) This feature is undesirable because the zeroth order maximum is useless for distinguishing

different wavelengths. Instead, most modern diffraction gratings as blazed, as shown.

Suppose that light is incident vertically. How should the blaze angle γ be chosen so that the

mth order maximum is the brightest?

In general, reflective diffraction gratings are much easier to make, more flexible, and more common

than the transmission diffraction gratings we introduced above. (CDs/DVDs, “holographic” trading

cards and stickers, and the pieces of chocolate in the linked video are all examples.) The reason

textbooks talk about transmission gratings is just that they make the diagrams a little cleaner.
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[2] Problem 19 (PPP 127). When a particular line spectrum is examined using a diffraction grating

with 300 lines/mm with the light at normal incidence, it is found that a line at 24.46◦ contains both

red (640−750 nm) and blue/violet (360−490 nm) components. Are there any other angles at which

the same would be observed?

[3] Problem 20. Diffraction limits the resolution of optical instruments.

(a) Suppose that light of wavelength λ enters through an aperture of width D. As a result, the

light diffracts, which causes the angle of the light’s propagation to pick up an additional spread

of order θ. Estimate θ.

(b) The diameter of a human pupil is about 3mm. Estimate the size of the smallest text that a

human being could read from 20 ft away.

(c) A typical amateur telescope has an aperture of order 10 cm. The Sun has a radius of 7×108m.

Estimate the furthest possible distance, in light years, that such a telescope could resolve a

Sun-sized star. (Stars further away than this will just show up as blurry points.)

Remark

The effect described in problem 20 motivates astronomers to build ever larger telescopes. The

largest examples are radio telescopes, such as the Arecibo observatory that collapsed in 2020,

because diffraction effects are more significant the larger the wavelength is. However, the

telescope doesn’t have to be one big piece. An array of telescopes can effectively be combined

into a telescope whose radius, for the purposes of the diffraction limit, is the total width of

the array, as in the Very Large Array. The Event Horizon Telescope was able to resolve a

black hole 5× 107 ly away because it combined telescopes spaced around the entire Earth.

Example 9

How close does a Sun-like star have to be in order to see it with the naked eye in daylight?

Solution

Let the distance to the Sun be d, and the distance to the star be D. Then the ratio of

intensities of the two is naively
Istar
ISun

=

(
d

D

)2

.

This suggests the star is hard to see if D > d, which is always true. But this is too pessimistic,

because the light from the Sun comes from all directions in the sky, while the light from the

star comes from only a single direction. The actual ratio we want to calculate is

Istar/Ωstar

ISun/2π
=

(
d

D

)2 2π

Ωstar

where Ωstar is the apparent solid angle of the star in the sky.

This in turn is given by the diffraction limit: if your pupils have radius r, then

Ωstar ∼ (∆θ)2 ∼ (λ/r)2.
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The star should be visible above daylight if the ratio above is at least one or so, which means

the maximum distance is

D ∼ r

λ
d ∼ 3mm

600 nm
(1AU) ∼ 5× 103AU ∼ 0.1 ly.

This is still closer than the closest other star, so you would need a telescope to see any.

Notice how this differs from a microscope! Microscopes are used to resolve finer details on a

small object. But most telescopes can’t resolve any of the details of any but the nearest stars.

Increasing the size of the telescope has two benefits: increasing the amount of light that goes

through, and improving the contrast due to decreasing the blurring due to diffraction.

[3] Problem 21 (PPP 126). A compact disc contains approximately 650MB of information. Estimate

the size of one bit on a CD using an ordinary ruler. Confirm your estimate using a laser pointer.

(If you can’t find a CD, a DVD will also work.)

[4] Problem 22. EFPhO 2005, problem 5. A subtle interference problem.

6 Real World Examples

These questions are not neat and self contained – they illustrate real physical phenomena, for which

you’ll have to guess an appropriate physical model. Of course, you have the massive advantage of

knowing that all of the problems involve interference and diffraction (or do they?).

[4] Problem 23. This problem is about some neat atmospheric phenomena. For some parts, it will

be useful to use Babinet’s principle: for all directions except for θ = 0, the diffraction pattern from

an obstacle is precisely the same as the diffraction pattern from an identically shaped slit.

(a) On a foggy night, there are many tiny water droplets in the air. On such nights one can see a

ring around the moon, called a lunar corona, shown at left above. The ring is usually reddish

in color. If one looks very carefully on a good night, one can see a blue ring outside the red

ring and a blueish-white region inside the red ring. On other nights, one can only see a white

haze around the moon. Explain these observations.

(b) The size of the corona depends on the atmospheric conditions. Estimate the size of the water

droplets in the air if the red ring around the moon appears to have a diameter 1.5 times that

of the moon. The angular diameter of the moon in the sky is 0.5◦.
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(c) On a cold night, there are many thin hexagonal ice crystals in the air. On such nights one

can see a much larger, sharper ring around the moon, called a 22◦ halo, shown at right above.

The size of the halo does not depend on the size of the crystals. Explain these observations.

(d) In the photo used in part (c), the moon is shaped like an octagon. Why?

(e) On a cold and exceptionally calm night, the results will be different.

Instead of a circle, one will see two “moon dogs”, bright spots displaced about 22◦ from

the moon horizontally. In addition, lights on the ground will produce vertical “light pillars”.

Explain these observations.

[2] Problem 24 (Povey). Consider a reflective metal tube, such as a length of copper pipe, with length

L and radius r. If you place a diffuse light source at one end of the tube, on the axis of symmetry,

and look at it from the other end, with your eye also on the axis of symmetry, then you will see

both the light source and bright circular rings around it. Why does this happen? Assuming the

light has wavelength λ, calculate the angles of the bright rings.

[2] Problem 25. Take a pair of glasses, exhale on them to fog them up, and put them on and look at

a light. You should see something strange; why does it happen?

[2] Problem 26. Some rare clouds display iridescence, as shown.

What is the explanation for this phenomenon? Why do only a few rare clouds display it? While

you’re at it, what’s going on with the sun in this photo?
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[3] Problem 27. While under lockdown, a student noticed an odd pattern when the light from a

streetlamp shined through their open window. The window is fitted with a metal mesh screen and

a curtain. Photos were taken with the curtain up (left) and down (right).

For scale, the streetlamp was about 30m away, the distance between the metal wires was 1.4mm,

the diameter of each wire was 0.4mm, and the curtain was woven from fibers whose width was

comparable to that of a human hair.

(a) Explain everything you can about the pattern on the left.

(b) Explain everything you can about the pattern on the right.

(c) What, if anything, can we learn about the streetlamp from either picture?

[5] Problem 28. One day, somebody sent me a photo of a weird pattern on their phone.

The phone was about a third of a meter away from the camera.

(a) Is the desk light fluorescent (sharp peaks in spectrum), or LED (roughly continuous spectrum)?

(b) Qualitatively explain everything about the pattern seen. In particular, explain the geometrical

pattern of the colored dots, the way the colors are distributed, why the colored dots cover the

entire phone even though the white central dot only covers a small part of it, and why the

central dot is white.

(c) How are the pixels on the phone laid out?
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(d) Estimate the pixel spacing on the phone, looking up or estimating any numbers necessary.

(e) Using a suitable source of light, such as a laser pointer, determine the resolution of your own

phone screen as accurately as possible. (You can look up relevant wavelengths of light; also

note that it won’t work with all phones; older ones may fare better.) Prepare a lab report

with a data table and an uncertainty estimate, as explained in P2, and compare your result

against the advertised value.
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