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5 1. Introduction

1 Introduction

In this course, we will investigate symmetries in physical laws and their mathematical representations.

First, we consider how symmetries arise in nature.

• In general, we will consider a symmetry to be a mapping of the physical states of a system

which leaves the dynamics invariant.

• Solutions of variational problems are often symmetrical. For example, soap bubbles are spherical

because they minimize their area, giving SO(3) symmetry. Similarly, paths x(t) that minimize

the action for a rotationally symmetric Lagrangian remain valid paths when rotated.

• Exact symmetries can arise from redundancies in our description, e.g. gauge symmetries.

– Coordinate transformations contain rotations SO(3), or more generally Lorentz transfor-

mations SO(3, 1), or even more generally Poincare transformations. In general relativity

we will also include arbitrary diffeomorphisms. These symmetries are collectively called

spacetime symmetries; all others are called internal symmetries.

– We also have gauge symmetries from the U(1), SU(2), and SU(3) gauge groups. These are

not truly ‘symmetries’ in the sense we have defined since they map a physical state to a

different description of the exact same state.

– The Coleman–Mandula theorem says that spacetime and internal symmetries cannot be

combined nontrivially in relativistic quantum field theory. The famous exception is super-

symmetry.

• Approximate symmetries can arise from neglecting the difference between two things. For

example, isospin symmetry holds for up and down quarks if we neglect their charges and the

difference in their masses, giving an SU(2) symmetry. Adding the strange quark gives SU(3),

realized in the Eightfold Way.

As shown above, many of the groups relevant in physics are Lie groups.

• A Lie group is a group G which is also a smooth manifold, where the group operation is

compatible with the smooth structure.

• The above definition is strongly constraining. A Lie group is nearly determined by its tangent

space at the identity Te(G), which defines a Lie algebra g = L(G) when equipped with a bracket

operation. In this course we will work with matrix Lie groups (G ⊂ GL(n,F)) for which the

bracket is the matrix commutator.

• The Cartan classification states that all finite-dimensional semi-simple Lie algebras overC belong

to four infinite families, An, Bn, Cn, and Dn (for positive integer n) and the five exceptional

cases E6, E7, E8, G2, and F4.

• In classical mechanics, Lie groups and Lie algebras correspond to finite and infinitesimal sym-

metry transformations, which yield conserved quantities by Noether’s theorem.

– In Lagrangian mechanics, symmetries preserve the action, and the conserved quantity can

be read off from the Euler-Lagrange equations.
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– In Hamiltonian mechanics, symmetries are phase space flows which preserve the Hamiltonian

H, and they are generated by quantities G(q, p) which are conserved. Mathematically, we

require the Poisson bracket of G and H to vanish.

• Quantum mechanics is similar to Hamiltonian mechanics; groups and algebras correspond to

unitary and Hermitian operators which commute with the Hamiltonian, and the latter are

exactly the conserved physical quantities.

• The crucial feature is the antisymmetry of the commutator/Poisson bracket. This tells us,

e.g. that rotating a configuration don’t change the energy if and only if time evolution doesn’t

change the angular momentum. This is how symmetry and conservation are generically related.

• There is one more piece to this statement: in classical mechanics, the symmetry generators are

the same as the real-valued observables that we measure. In quantum mechanics, this is not

true, because they must be anti-Hermitian and Hermitian respectively. We instead relate them

by a factor of i, one reason that quantum mechanics requires complex numbers.

• Mathematically, the commutator and Poisson bracket make the set of infinitesimal transforma-

tions into a Lie algebra. Using the Jacobi identity shows that the set of infinitesimal symmetries

is closed under the bracket and is hence a Lie subalgebra.

The link between symmetry and conservation can be somewhat subtle.

• There can be conserved quantities not associated with a continuous symmetry. For example, if

a space is disconnected, the connected component a particle is in is conserved, but there is no

associated continuous symmetry because the components are topologically invariant. Conserved

quantities of this type are called topological charges.

• There can be algebras of symmetries that do not exponentiate to groups of symmetries; these

appear in the study of supersymmetry and quantum groups. However, we still find conserved

quantities, as Noether’s theorem only requires infinitesimal symmetries, not finite ones.

• In both classical and quantum mechanics, continuous symmetries lead to locally conserved

currents by Noether’s theorem, which integrate to conserved charges. In addition, in quantum

mechanics, discrete symmetries also lead to conserved charges; they partition the Hilbert space

into subspaces which evolve independently.

• In simple cases, these conserved quantities can be described in terms of “quantum numbers”. For

example, a continuous U(1) symmetry yields a conserved quantity that adds between particles.

For example, translations, rotations about a single axis, and phase rotations correspond to

momentum, angular momentum, and charge.

• For discrete symmetries, a unitary symmetry operator that is its own inverse is also Hermitian,

and so corresponds to a conserved quantity that multiplies between particles. Examples include

the eigenvalues of parity, charge conjugation, and time reversal. The reason the quantum

numbers from continuous symmetries add instead of multiply is because they are defined via

the eigenvalues of infinitesimal symmetries, which effectively takes a logarithm.

• However, in general symmetries groups can be non-Abelian, where the associated conservation

laws cannot be understood by quantum numbers alone. Instead, particle states can be classi-

fied into irreducible representations of the group, and the allowed processes can be found by
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decomposing the tensor products of representations. For example, this reasoning gives rise to

selection rules associated with angular momentum conservation.

• Another phenomenon occurs with non-Abelian symmetry groups. In general, the Hilbert space is

partitioned into irreducible representations of the symmetry group, and states within each irrep

have the same energy. Since the irreps of abelian groups are one-dimensional, only non-Abelian

symmetries can explain degeneracies. For example, the approximate eight-fold degeneracy in

the baryon spectrum can be explained by an approximate SU(3) flavor symmetry.

Symmetries in quantum mechanics are a bit more subtle because quantum states are only defined

up to phase factors.

• Wigner’s theorem states that symmetries which preserve the norms of inner products must be

either unitary linear or unitary anti-linear; the latter appears for time reversal symmetry.

• Even for unitary operators, we can have projective representations U(g), which satisfy

U(gi)U(gj) = eiγ(gi,gj)U(gigj).

Note that by phase redefinitions we can always set U(e) = I.

• In the case where

γ(gi, gj) = α(gigj)− α(gi)− α(gj)

we can remove all phase factors by redefining U(g) as eiα(g)U(g). If the phase factors are

nontrivial (in a topological sense) they cannot be removed and give an inherently projective

representation.

• Often, but not always, finding the projective representations of G is equivalent to finding the rep-

resentations of the universal cover G̃. This leads to the introduction of spinors, representations

of SU(2), since SU(2) is the universal cover of SO(3).

We will return to these issues in greater detail later.
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2 Finite Groups

2.1 ◦ Representations

We now review the basics of group representation theory.

• A representation of a group G is an action of G on a vector space V by linear transformations,

where the element g corresponds to the linear operator D(g). Equivalently, a representation of

G is a group homomorphism D : G→ GL(V ). The representation is faithful if D(g) is distinct

for every distinct g. Physicists often think of the D(g) as matrices, so we will write many results

below in both notations.

• The dimension of a representation is the dimension of V . In physics, especially in quantum

mechanics, the space V itself may be called the representation because it contains the particle

states, which are often of more interest than the operators D(g).

• Two representations D(g) and D′(g) are equivalent if they are related by D′(g) = SD(g)S−1.

In mathematics, S is called an intertwiner.

• Using Dirac notation for vectors, all groups have the regular representation,

D(g)|g′⟩ = |gg′⟩

which has dimension |G|. Each representation matrix has exactly one 1 in each row and column,

with all other elements zero. As another example, taking the determinant of every D(g) always

gives a one-dimensional representation.

• A representation is real/complex if V is a real/complex vector space. In physics, we’re almost

always interested in the complex case, partly because of quantum mechanics and partly because

we may freely complexify linear problems involving only real quantities. For this section only,

we’ll explicitly state if representations are complex; everywhere else they are implicitly complex.

• A representation is reducible if there is a subspace U ⊂ V so that D(g) keeps U inside itself.

Equivalently, a representation is reducible if the D(g) can be brought into block upper-triangular

form. An irreducible representation is called an irrep.

• A representation is completely reducible if the D(g) can be brought into block-diagonal form,

with each block irreducible.

Example. Not all representations are completely reducible. Consider the representation of Z,

D(n) =

(
1 n

0 1

)
.

It is reducible, but not completely reducible as the D(n) are not diagonalizable for n ̸= 0.

Lemma (Schur). If D1(g) and D2(g) are two irreps, then

SD1(g) = D2(g)S

for all g implies either S = 0 or the irreps are equivalent. Also, for a complex irrep D(g), if

SD(g) = D(g)S

for all g then S ∝ I.
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Proof. For the first part, note that Im(S) and Ker(S) are both invariant subspaces. Since D1 and

D2 are irreps, they must be trivial or the entire space. The only two possibilities are S = 0 or S

invertible, but in the latter case this means the representations are equivalent.

For the second part, note that S must have an eigenvector since we’re working with complex

representations. The fact that D(g) and S commute means that D(g) maps this eigenvector to other

eigenvectors of S with the same eigenvalue. But since D is irreducible, the D(g) act transitively, so

S ∝ I.

Definition. A unitary representation is one where every matrix is unitary,

D(g)† = D(g)−1.

This implies the D(g) preserve the inner product. Equivalently, if we think of the D(g) as linear

transformations, there exists a Hermitian form on V preserved by the D(g),

⟨D(g)v,D(g)w⟩ = ⟨v, w⟩.

This implies all unitary representations are completely reducible, because if a subspace W is

preserved, then W⊥ must be preserved as well.

Prop. For a finite group, all complex representations are equivalent to unitary representations.

Proof. We use the “group averaging trick”. Define

S =
∑
i

D(gi)
†D(gi).

Then we have

SD(g)−1 =
∑
i

D(gi)
†D(gig

−1) =
∑
i

D(gig)
†D(gi) = D(g)†

∑
i

D(gi)
†D(gi) = D(g)†S

where we reindexed in the second step. Now, S is positive definite and thus has a well-defined

square root, and the above shows that D′(g) = S1/2D(g)S−1/2 give a unitary representation.

Alternatively, if we think of the D(g) as linear transformations, we can phrase this proof in terms

of choosing a Hermitian form by averaging. Given any Hermitian form ⟨·, ·⟩0, we define

⟨v, w⟩ =
∑
i

⟨D(gi)v,D(gi)w⟩0.

Then it’s straightforward to see by reindexing that the D(g) preserve this form.

We make some remarks about this result, previewing results to come.

• The key intuition for the result comes from the one-dimensional case. Since all elements of

a finite group have finite order, they must be represented by pure phases, which are unitary.

Similarly, to maintain finite order in higher dimensions, we should only represent by rotations,

not scalings.

• The construction works for real representations as well, replacing ‘unitary’ with ‘orthogonal’.

By combining these results, we have Maschke’s theorem: every real or complex representation

of a finite group is completely reducible.
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• The same proof can be used for a compact continuous group, with integration over a group

measure replacing the sum. Since we’ll deal almost entirely with compact or finite groups, all

representations we consider below will be assumed to be unitary.

• It also turns out that all irreps of a compact group are finite-dimensional, though this is difficult

to prove.

• As a converse, consider a finite-dimensional unitary representation of a non-compact connected

semisimple Lie group G. If G is simple, or more generally if G contains no nontrivial normal

closed subgroups, then the representation must be trivial.

• This results applies to the connected Lorentz group, but this is acceptable because the repre-

sentations used in relativistic field theory are non-unitary; quantum fields are not state vectors.

• In the case of the Poincare group, the translations form a nontrivial normal closed subgroup, so

we can have nontrivial finite-dimensional unitary representations that only respond to transla-

tions. These are uninteresting, and demanding that rotations and boosts act nontrivially forces

the representation to be trivial. This is acceptable because the Hilbert spaces in quantum field

theory are always infinite-dimensional.

Finally, we cover some ways to construct new representations from old.

• We define the direct sum and tensor product of two representations Dr(g) and Ds(g) by

Dr⊕s(g) = Dr(g)⊕Ds(g), Dr⊗s(g) = Dr(g)⊗Ds(g).

Generally, the product of two irreps will not be an irrep. Tensor products are most easily

managed in the physicist’s index notation,

(Dr⊗s(g))iajb = Dr(g)ijD
s(g)ab

where we index components product space with one index from each element in the product.

• We define the dual, or contragradient representation by

(D′(g)ω)(D(g)v) = ω(v), ω ∈ V ∗.

Converting the linear operator to a matrix by working in the dual basis, we have

D′(g) = D(g−1)T .

The dual representation isn’t emphasized in physics because for unitary matrix representations,

the dual representation is the same as the conjugate representation.

• Any representation of G induces a representation of H ⊂ G by restriction. Restricting to a

subgroup can break apart irreps, by “branching”. Similarly, moving to a larger group can

combine irreps together, a key idea behind unification.

• Given a representation D of H ⊆ G on V , we may induce a representation of G. The induced

representation on G acts on |G|/|H| copies of V , one copy for each coset. The elements of this

space are written as vi where i indexes the coset.
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• Taking coset representatives gi, an arbitrary group element g may be written as g = g−1
i gjh,

and it acts as

vi 7→ D(h)vj .

That is, we act as H would have, and also shift the coset accordingly. If D(h) is irreducible, so

is the induced representation. The most important application of induced representations is

Wigner’s classification, which we’ll see below.

• Let Hom(V,W ) be the set of linear maps V →W . Then

Hom(V,W ) ∼=W ⊗ V ′.

Given representations DV and DW of G, we hence have an induced representation

DHom(V,W ) = DW ⊗D′
V .

More explicitly, in mathematical notation a linear operator φ is mapped as

DHom(V,W )(g)(φ) = DW (g) ◦ φ ◦D−1
V (g)

while in the physicist’s notation a matrix M is mapped as

M 7→ DW (g)MDV (g)
−1.

2.2 ◦ Characters and Orthogonality

Character theory will help us identify irreps and decompose general representations. We begin by

proving a powerful orthogonality theorem.

Theorem (Great Orthogonality). Given a d-dimensional irrep D(g) of a finite group G,∑
g

D(g−1)ijD(g)kℓ =
|G|
d
δiℓδ

k
j

Moreover, given two inequivalent irreps Dr(g) and Ds(g),∑
g

Dr(g−1)ijD
s(g)kℓ = 0.

Proof. To prove the first part, we use the reindexing trick. For an arbitrary X, let

A =
∑
g

D(g−1)XD(g).

By reindexing the sum, we find

A = D(g−1)AD(g) for all g ∈ G

which implies that A = λI by Schur’s lemma. Taking the trace of both sides gives λ = (|G|/d) trX.

The theorem follows by setting X to be the matrix with Xjk = 1 and zeroes everywhere else. The

second part of the theorem uses the other half of Schur’s lemma; taking X to be an arbitrary matrix

with the right dimensions, we have A = 0, and setting X as before gives the result.
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Note. The intuition for this result is that all ‘orientational’ information is washed out by averaging

over the group. (This is even more explicit when we integrate over, say, the continuous group of

rotations.) Thus the only possible results for the sum are the ‘invariant tensors’ built from δ. In

the case of inequivalent representations, we cannot form any δ’s at all because the indices ij and

kℓ live in ‘different spaces’ and cannot be contracted, so the result must be zero.

This theorem is especially useful when applied to the characters of a representation.

• Given a representation Dr(g), the character is

χr(g) = trDr(g).

Since the trace is invariant under conjugation, the character is constant on conjugacy classes.

• Under direct sum, tensor product, and dual we have

χr⊕s(g) = χr(g) + χs(g), χr⊗s(g) = χr(g)χs(g), χ′(g) = χ(g)∗.

• Setting i = j and k = l in the orthogonality theorem gives the orthogonality of characters,

⟨χr, χs⟩ ≡
1

|G|
∑
g

(χr(g))∗χs(g) =
∑
c

nc(χ
r(c))∗χs(c) = δrs

where c is a conjugacy class representative and nc is the size of the class. Here we used the fact

that the representations were unitary, so taking the inverse conjugates the character.

• More generally, suppose a reducible representation contains the irrep r, nr times. Then the

norm of the character is ⟨χ, χ⟩ =
∑
n2r , so a representation is reducible only if the norm of its

character is 1. We compute the numbers nr by computing ⟨χ, χr⟩.

• Going back to the orthogonality theorem, we can think of D(g)ij for fixed i and j as a vector

in a |G|-dimensional complex vector space. If we work with unitary representations, then∑
g

D(g)∗jiD(g)kℓ =
|G|
d
δiℓδ

k
j

which tells us that these vectors are all orthogonal. There are
∑

r d
2
r vectors in total, giving

the bound
∑

r d
2
r ≤ |G|.

• Let the group algebra consist of complex linear combinations of the group elements under group

multiplication. The regular representation acts on it by Dreg(g)g′ = gg′ extended by linearity.

An alternate physics-inspired notation is g|g′⟩ = |gg′⟩.

• The characters of all classes but the identity vanish. Carrying out the sum shows that the

regular representation contains every irrep Dr precisely dr times, so
∑

r d
2
r = |G|.

• This tells us that the |G| ‘vectors’ Dr(g)ij form a complete set, so∑
r,i,j

drD
r(g)ijD

r†(g′)ji = |G|δgg′ .

This is the completeness relation that complements the great orthogonality theorem.

• Suppose there are N(C) conjugacy classes and N(R) irreps. Then character orthogonality

implies we must have N(R) ≤ N(C). The completeness relation above can be used to show

that N(R) = N(C).
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2.3 Examples and Applications

Example. Consider an abelian groupG. There are |G| conjugacy classes, so |G| irreps, each of which

must have dimension one. Our results above essentially say the character table is a unitary matrix;

every irrep simply assigns a phase to every group element which adds under group multiplication.

This generalizes the Fourier modes from characters of Zn. More generally, the orthogonality of

characters generalizes Fourier modes to general groups.

Groups and their irreps appear often in quantum mechanics.

• Let the Hamiltonian H have a symmetry group G, represented on the Hilbert space by a

unitary representation D(g) where [H,D(g)] = 0 for all g. Then if |v⟩ is an energy eigenstate

with energy E, so is D(g)|v⟩. Therefore, the Hilbert space breaks into irreps of G containing

degenerate states. We can also see this directly from Schur’s lemma, which implies H must be

proportional to the identity when restricted to each irrep.

• A standard example of this is rotational invariance, where the Hilbert space decomposes into

irreps of G = SU(2). In the case where G is abelian, no degeneracy can result since all irreps

are one-dimensional, but it can still be computationally useful because time evolution will keep

states within one class of irrep by Schur’s lemma. For example, for a Z2 parity symmetry, we

may decompose the Hilbert space into odd and even parts, and an even state remains even for

all times. The same applies to T 2 where T is time reversal.

• We may also have ‘accidental degeneracies’ where distinct irreps may have equal energies.

However, this is often due to fine tuning of parameters, or a consequence of a larger symmetry

group we haven’t taken into account.

Example. For a discrete translational symmetry, the irreps are Bloch wavefunctions, which are

periodic up to a fixed phase factor per translation. This does not yield any degeneracy, but if we have

both translational symmetry and parity symmetry, there are two-dimensional irreps corresponding

to the degeneracy of the ±k states. This also holds for a free particle, where it explains the

degeneracy of e±ikx.

Example. A set of N masses in d dimensions connected by springs has equation of motion

Hx = ω2x

where x is a vector with Nd entries containing all the positions concatenated together. Now suppose

the system has a group of symmetries G. This furnishes an Nd-dimensional representation D(g).

Since H is rotationally invariant, each irrep is a set of normal modes with the same frequency.

As a simple example, consider two atoms connected in one dimension. The atoms can be

exchanged, giving the symmetry group S2 with character table:

class c nc 1 1

e 1 1 1

(12) 1 1 −1

This tells us the normal modes are either even or odd under reflection, corresponding to the 1 and

1 representation. Less trivially, consider three atoms in an equilateral triangle, where there are six

normal modes and the symmetry group is S3, with character table:
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class c nc 1 1 2 phys

e 1 1 1 2 6

(123) 2 1 1 −1 0

(12) 3 1 −1 0 2

Here, the last column denotes the physical representation. We know that χ(e) = 6 since it is

six-dimensional, and χ((123)) = 0 since all atoms are moved by the transformation. However, (12)

fixes the third atom, giving χ((12)) = 2. Taking the inner product gives phys = 1⊕ 1⊕ 2⊕ 2. Thus,

there are two two-fold degeneracies.

The normal modes in 1 must be rotationally invariant, while the normal modes in each 2 must

transform into each other under rotation. Hence the two translations form a 2 with frequency zero,

while uniform rotation and “breathing” are the 1’s. The other 2 contains the “scissoring” modes.

Next, we turn to the Wigner–Eckart theorem.

• Consider the tensor product of two irreps, indexed by µ and ν, whose vectors are indexed by i

and j. The resulting vector space has a basis {|αλℓ⟩}, where |αλℓ⟩ is vector ℓ in occurrence λ

of irrep α. The two bases are related by ‘Clebsch–Gordan coefficients’,

|αλℓ⟩ = |ij⟩⟨ij|αλℓ⟩

where the summation convention is used. The coefficients implicitly depend on µ and ν.

• The two bases transform as

U(g)|ij⟩ = Dµ(g)i′iD
ν(g)j′j |i′j′⟩, U(g)|αλℓ⟩ = Dλ(g)ℓ′ℓ|αλℓ′⟩.

By inserting some copies of the identity, we have

Dµ(g)i′iD
ν(g)j′j = ⟨i′j′|αλℓ′⟩Dλ(g)ℓ′ℓ⟨αλℓ|ij⟩.

Conceptually, this shows how the tensor product representation matrices are decomposed.

Applying it in reverse allows us to construct the matrices for larger irreps from smaller ones.

• Next, consider a general representation in a vector space containing two irreps |µi⟩ and |νj⟩,
where the two irreps are not equivalent. Then we claim the vectors are orthogonal. First,

⟨νj|µi⟩ = ⟨νj|U †(g)U(g)|µi⟩ = ⟨νk|µℓ⟩Dν†(g)jkD
µ(g)ℓi.

Now we average over the group and apply the orthogonality theorem, giving

⟨νj|µi⟩ = 1

|G|
⟨νk|µℓ⟩

∑
g

Dν†(g)jkD
µ(g)ℓi = d−1

µ ⟨νk|µℓ⟩δµν δ
j
i δ
k
ℓ = 0

since µ ̸= ν and dµ is the dimension of µ. In the case where the irreps are equivalent, but not

identically the same, we can apply a change of basis to restore orthogonality.

• This result is a generalization of the fact that eigenvectors of a Hermitian operator with different

eigenvalues are orthogonal. In the case of rotational symmetry, we already knew that states

with distinct values of ℓ are orthogonal because they have different L2 eigenvalues. But the fact

we’ve shown above applies much more generally.



15 2. Finite Groups

• A set of operators Oµi is said to be a set of irreducible operators if

U(g)Oµi U(g)−1 = OµjD
µ(g)ji.

They are also sometimes called irreducible tensors.

• Note that the vectors Oµi |νj⟩ transform under the direct product representation,

U(g)Oµi |νj⟩ = U(g)Oµi U(g)−1U(g)|νj⟩ = Dµ(g)kiD
ν(g)ℓjO

µ
k |νℓ⟩.

Therefore, we may decompose the vectors as

Oµi |νj⟩ = |αλℓ⟩⟨αλℓ|ij⟩.

Acting with ⟨λℓ|, using orthogonality, and reindexing, we have the Wigner–Eckart theorem

⟨λℓ|Oµi |νj⟩ =
∑
α

⟨αλℓ|ij⟩

(
1

dλ

∑
k

⟨λk|αλk⟩

)
.

The quantity in parentheses is called a reduced matrix element; crucially, it only depends on

the on the irrep indices. The remaining factor is purely group-theoretic.

• Note the labeling conventions here: λ indexes irreps in the full space, with different λ values

possibly corresponding to equivalent but distinct irreps, while αλ indexes irreps in the direct

product representation, where different λ values automatically mean inequivalent irreps. These

schemes coincide when no irreps appear multiple times, as happens for simple su(2) setups.

• In many practical contexts, we instead work infinitesimally, i.e. with representations of su(2)

instead of SU(2). Much of the reasoning above goes through unchanged, with conjugation

replaced with commutation with generators. Computationally, the Wigner–Eckart theorem just

says we can move around an irrep by applying raising and lowering operators to both sides.

Example. An explicit su(2) example. Letting α and β be irrep indices, let

⟨1/2, 1/2, α|r3|1/2, 1/2, β⟩ = A, ⟨1/2, 1/2, α|r1|1/2,−1/2, β⟩ = B.

Here, the states ri|1/2,m, β⟩ form the reducible representation 1/2× 1 = 1/2 + 3/2, and our goal

is to relate A and B. To begin, we need to change the ri basis. Since [J3, r3] = 0, we know that r3
carries m = 0, so

r0 = r3.

We can then find the m = 1 and m = −1 operators by raising and lowering,

r1 = −r1 + ir2√
2

, r−1 =
r1 − ir2√

2
.

The operators {r−1, r0, r1} are irreducible tensors, as desired. Thus to complete the problem we

just need to know a Clebsch–Gordan coefficient. Alternatively, for this simple case we can explicitly

compute them using raising and lowering operators. We start with

|3/2, 3/2⟩ = r1|1/2, 1/2, β⟩
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and lower both sides to yield

|3/2, 1/2⟩ =
√

2

3
r0|1/2, 1/2, β⟩+

√
1

3
r1|1/2,−1/2, β⟩.

Finally, using the fact that ⟨1/2, 1/2, α|3/2, 1/2⟩ = 0, we find

0 =

√
2

3
⟨1/2, 1/2, α|r0|1/2, 1/2, β⟩+

√
1

3
⟨1/2, 1/2, α|r1|1/2,−1/2, β⟩.

We thus conclude that A = B.

Note. Note that in the above example, we couldn’t have found |1/2, 1/2⟩ in terms of the β states

by orthogonality with |3/2, 1/2⟩, because we don’t know the norms of the states ri|1/2,m, β⟩.
Instead, we can find |1/2, 1/2⟩ by demanding that it be annihilated by J+. The same goes for

putting operators in the irreducible tensor basis: we simply use the algebra, without the ‘crutch’ of

orthogonality.

2.4 Real and Complex Representations

From this point on, all representations will be complex, as promised earlier. Hence it is useful and

conventional in physics to use the word “complex” to mean something else.

• Given a representation D(g), its conjugate representation is D∗(g) = D(g)∗. A representation is

said to be complex if it is not similar to its conjugate; then every representation with a non-real

character is complex.

• Now suppose an irrep D(g) is not complex. Then

D(g)∗ = SD(g)S−1.

Transposing and using unitarity gives

D(g−1) = S−1TD(g)TST

and plugging this equation into itself gives

D(g) = (S−1ST )−1D(g)(S−1ST ).

By Schur’s lemma, this implies S−1ST = ηI, so

ST = ±S.

If S is symmetric, we say the representation is real; if S is antisymmetric, we say the represen-

tation is pseudoreal, or quaternionic.

• Note that taking the transpose of an antisymmetric n × n matrix keeps its determinant the

same, but also multiplies the determinant by (−1)n. Therefore pseudoreal representations can

only exist in even n since S must be invertible.
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• The matrix S can always be chosen unitary. Solving for S above gives

S = D(g)TSD(g), S† = D(g)†S†D(g)∗.

Multiplying these gives

S†S = D(g)†S†SD(g)

so that S†S is proportional to the identity, again by Schur’s lemma. A bit more work shows that

the proportionality constant is real. Hence we can always scale S by a constant so S†S = I.

• The matrices in a real representation are always equivalent to real matrices. First, note that

since S is unitary and symmetric, we have S = eiH where H is symmetric. Letting W = eiH/2,

we have S =W 2 where W is also unitary and symmetric. Now

W 2D(g)W−2 = D(g)∗

which implies

WD(g)W−1 =W−1D(g)∗W = (WD(g)W−1)∗.

Then the matrices WD(g)W−1 are real as desired.

• Equivalently, we may work with Lie algebra representations, letting D(eiX) = eid(X) for a

generator X, where d(X) is Hermitian. In this case the conjugate representation of d is the

negative conjugate, so for a non-complex representation we have

d(X) = −Sd(X)∗S−1

where S is the same as for the Lie group representation. For real representations, d(X) can be

made pure imaginary, so D(g) is real. For pseudoreal representations, d(X) can be made real.

• Another way of thinking about S is that it is a rank 2 invariant tensor. For example, rearranging

the above equation we have

d(X)S + Sd(X)T = d(X)ki Skj + d(X)kjSik = 0

which is just the infinitesimal transformation of an invariant tensor.

• For a real or pseudoreal representation d, the trivial representation appears exactly once in

d⊗ d. The tensor S projects out the trivial representation, by contraction with it, so d is real

if the trivial representation is in (d× d)s and pseudoreal if it is in (d× d)a.

• Physically, the conjugate representation is important because antiparticles transform in the

conjugate representation. Intuitively, any representation that arises from physical rotations of

coordinates is real.

Next, we build a ‘reality checker’ for general irreps.

• If an irrep is real or pseudoreal, then yTSx is an invariant bilinear, as

yTSx→ yTD(g)TSD(g)x = yTSD(g)†S−1SD(g)x = yTSx.

Conversely, the existence of such an invariant bilinear shows the irrep is real or pseudoreal.
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• Note that y†x is always trivially an invariant since the D(g) are unitary; the difference here is

that we have yT rather than y†. In the simplest case where the matrices of D(g) are already

real, the invariant bilinear is just yTx, i.e. the D(g) are orthogonal.

• To construct S, we use the averaging trick. Define

S =
∑
g

D(g)TXD(g)

for arbitrary X. Then D(g)TSD(g) = S, giving an invariant bilinear as desired. Since we can

always define S this way, we must have S = 0 for a complex representation. If we suppose that

Xiℓ = 1 with all other entries zero, we have∑
g

D(g)ijD(g)ℓk = 0.

Finally set j = ℓ and i = k to find ∑
g

χ(g2) = 0.

This is our test for a complex representation.

• On the other hand, for a pseudoreal representation, ST = ηS, which gives∑
g

D(g)TXTD(g) = η
∑
g

D(g)TXD(g).

Performing the same procedure above, we find∑
g

χ(g2) = η
∑
g

χ(g)2 = η|G|

where we used the fact that the character is real. The quantity
∑

g χ(g
2) is called the Frobenius-

Schur indicator.

Example. The fundamental representation of su(2). The representations of the generators are the

Pauli matrices. They clearly cannot be made pure imaginary by a basis change, since there is only

one antisymmetric pure imaginary 2× 2 matrix. The representation is instead pseudoreal, with

σa = −σ2σ∗aσ2

where σ2 is antisymmetric as expected. The fact that we use σ2 to do the transformation is purely

a matter of convention; it is because the usual phase conventions make σ2 alone non-real. Up to

a phase factor, σ2 is just the invariant tensor ϵab, and the fundamental is pseudoreal because the

antisymmetric combination is in the trivial representation. This latter reasoning makes it easy to

see that all nontrivial representations of su(2) are pseudoreal.

2.5 ◦ The Group Algebra

We return to the group algebra, to prepare for classifying the representations of Sn. For clarity,

we reserve the letter g for group elements, while r and s stand for algebra elements, and write the

group algebra as G̃.
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• Representations of the group yield representations of the group algebra by linearity, and the

group multiplication itself yields the regular representation, which decomposes into irreps as

G̃ =
⊕
µ

Lµ, Lµ =

nµ⊕
a=1

Lµa , nµ = dimDµ

where µ indexes the distinct irreps.

• An subrepresentation L of DR is spanned by a basis |r⟩ so that |sr⟩ ≡ s|r⟩ ∈ L for all s ∈ G̃.

Thinking of the group algebra as a ring, subrepresentations of the regular representation are

left ideals, and irreps Lµa are minimal left ideals. Thus finding all minimal left ideals will give

all inequivalent irreps.

• We define projection operators Pµa onto the minimal left ideals Lµa by

Pµa G̃ = Lµa , Pµa = identity on Lµa , Pµa P
ν
b = δµνδabP

µ
a .

We also define projection operators Pµ onto the left ideals Lµ by Pµ =
∑

a P
µ
a .

• Note that the projection operators commute with all of G̃,

Pµa r = rPµa .

This can be shown by acting on an arbitrary element with decomposition
∑

µ,a|s
µ
a⟩. Intuitively,

it’s because group multiplication can’t take an element in or out of a left ideal.

Next, we construct the projection operators more explicitly.

• Decompose the identity element e as

e =
∑
µ

eµ, eµ ∈ Lµ.

Then we claim the projection operators are given by right-multiplication by eµ,

Pµ|r⟩ = |reµ⟩.

Using right-multiplication is useful, because Pµ automatically commutes with any r since

left-multiplication and right-multiplication commute.

• To show this, consider an arbitrary element r =
∑

µ rµ. Then

r = re =
∑
µ

reµ

but the fact that the Lµ are left-ideals means that rµ = reµ by taking the µ component of both

sides. Hence Pµ is indeed a projector.

• Finally, note that

eν = eνe =
∑
µ

eνeµ

and taking the µ component of both sides gives

eνeµ = δµνeµ.

In particular, eµeµ = eµ. Any algebra element satisfying this relation is called an idempotent

and can be used to define a projection operator onto a left ideal.
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• Similarly we may define eaµ for the Laµ. The e
a
µ are primitive idempotents, generating minimal

left ideals, while the eµ are not, as they can be written as a sum of idempotents, eµ =
∑

a e
a
µ.

• An idempotent ei is primitive if and only if eirei = λrei for all r ∈ G̃, where λr is a scalar.

To prove the forward direction, note that ei generates a minimal left ideal L, and right-

multiplication by eirei is also a projection operator onto L, which commutes with all elements

of G̃. Then by Schur’s lemma, eirei is proportional to the identity on L, giving the result.

To show the converse, suppose that ere = λre and that e decomposes into idempotents as

e = e′ + e′′ where e′e′′ = 0. Then ee′e = e′e = e′ and hence e′ = λe. Then e′ generates exactly

the same left ideal as e does, so e is primitive.

• Two primitive idempotents e1 and e2 generate equivalent irreps if and only if e1re2 ̸= 0 for

some r ∈ G̃.

Let e1 and e2 generate the minimal left ideals L1 and L2. To prove the backward direction,

note that |q⟩ → |qe1re2⟩ is a nonzero linear transformation from L1 to L2 which commutes with

(left-multiplication by) any element of G̃. Then by Schur’s lemma, L1 and L2 are equivalent.

The forward direction is similar.

Example. The reduction of the regular representation of C3. Let the generator be a. The idempo-

tent for the identity representation is always just the average of the group elements,

e1 =
1

3
(e+ a+ a−1).

Next, suppose another idempotent is e2 = xe+ ya+ za−1. We have the constraints

e1e2 = 0, e2e2 = e2

which yield the three solutions

e′ =
1

3
(2e− a− a−1), e+ =

1

3
(e+ ωa+ ω−1a−1), e− =

1

3
(e+ ω−1a+ ωa−1), ω = e2πi/3.

One can see that e′ is not primitive since it is the sum of e+ and e−. To check that e+ and e− are

idempotent, we manually compute e±ae± and e±a
−1e± and apply the above theorem; this is simple

since e± just pick up phase shifts upon multiplication by any group element. We do a similar check

to show that e+ and e− generate inequivalent representations, giving the three irreps of C3.

We can combine the group algebra with character theory to provide alternative proofs of some of

the representation theory results above.

• For each conjugacy class c, we define the class average

K(c) =
1

nc

∑
i

g
(c)
i

in the group algebra. Class averages can be multiplied together using the same operation as

the group algebra, and it can be shown they also form an algebra called the class algebra, with

K(c)K(d) =
∑
e

Γ(c, d; e)K(e)

where the Γ’s are positive integers.
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• The group and class algebra can be realized in representations, where the addition operation is

simply matrix addition. For an irrep D(g), the class average is

D(c) =
1

nc

∑
g∈c

D(g).

By reindexing, we have D(g′−1)D(c)D(g′) = D(c), so by Schur’s lemma

D(c) =
χ(c)

χ(I)
I.

• Therefore, the identity

D(c)D(d) =
∑
e

Γ(c, d; e)D(e)

translates to

χ(c)χ(d) = χ(I)
∑
e

Γ(c, d; e)χ(e).

• Now we restore the irrep index r and sum over all irreps, giving∑
r

χr(c)χr(d) =
∑
e

Γ(c, d; e)
∑
r

χr(I)χr(e) =
∑
e

Γ(c, d; e)χreg(e) = Γ(c, d; I)|G|

where we used the decomposition of the regular representation.

• If c is a conjugacy class, then so is c, the set of inverses of elements of c. Moreover, Γ(c, d; I) is

only nonzero for d = c, giving ∑
r

χr(c)χr(d) ∝ δdc.

Since the representations are unitary, this implies∑
r

χr(c)∗χr(c′) ∝ δcc
′
.

Thus, the rows of the character table are orthogonal, proving that N(R) ≤ N(C).

• A useful result is that in a representation D, the projector onto irreps isomorphic to Di is

Pi =
dimDi

|G|
∑
g

χi(g)
∗D(g).

To see this, note that Pi commutes with all group elements, hPih
−1 = Pi, by reindexing. Thus

Pi is block diagonal, proportional to the identity on each irrep. In particular, restricting to Dj ,

trPi|Dj ∝
∑
g

χi(g)
∗χj(g) ∝ (χi, χj) = δij .

Hence Pi vanishes on all irreps not isomorphic to Di and is the identity otherwise. The projector

Pi works whether it acts on the left or the right.

• For example,
∑

gD(g) projects onto the trivial irrep as we’ve seen above; it yields vectors that

are fixed by the group. For the regular representation, the projectors are the eµ.
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2.6 ◦ Representations of Sn

We now use our machinery to find the irreps of Sn. We warm up with the one-dimensional irreps.

• All transpositions are conjugate, so we must assign them all the same number. Since transpo-

sitions have order 2, the number must be ±1. Since transpositions generate the entire group,

there are only two distinct one-dimensional representations.

• Denote the sign of a permutation p by (−1)p. Then the two one-dimensional representations

map p to one, and p to (−1)p. The corresponding primitive idempotents, up to a constant, are

s =
∑
p

p, a =
∑
p

(−1)pp.

• To check this, note that for any q,

qs = sq = s, qa = aq = (−1)qa, sa = as = 0.

Then we have sqs = ss = n!s and aqa = (−1)qaa = (−1)qn!a, so both are indeed primitives.

The corresponding irreps have basis vectors |qs⟩ and |qa⟩ for some arbitrary q. To check the

irreps are not equivalent, note that sqa = sa = 0 for any q.

For higher-dimensional irreps, it is useful to introduce Young diagrams.

• A partition λ = {λ1, . . . , λr} of n is a sequence of positive integers λi satisfying

λi ≥ λi+1,
r∑
i=1

λi = n.

We say λ > µ if the first nonzero number in the sequence λi − µi is positive.

• A partition λ is represented by a Young diagram, which consists of n squares arranged in r

rows, where row i contains λi squares.

• Partitions of n are in one-to-one correspondence with possible cycle structures of permutations,

where elements that are left alone are regarded as 1-cycles. Then there is one conjugacy class

and hence one irrep for every Young diagram. For example, the identity element is 1+1+ . . .+1,

and a transposition is 2 + 1 + . . .+ 1.

• A Young tableau is obtained by labeling the squares of a Young diagram with the numbers

1 through n, using each number once. The normal Young tableau Θλ associated with λ has

the numbers in left-to-right, top-to-bottom order. A standard Young tableau is one where the

numbers always increase when going down or to the right.

• A permutation acts on a Young tableau by permuting the numbers. Then an arbitrary Young

tableau can be written as pΘλ = Θp
λ.

• Given a Young tableau Θp
λ, the horizontal permutations hpλ are the ones which only permute

numbers within rows, and the vertical permutations vpλ are the ones which only permute numbers

within columns.
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• The symmetrizer spλ, antisymmetrizer apλ, and irreducible symmetrizer or Young symmetrizer

epλ associated with the Young tableau Θp
λ are defined as

spλ =
∑
h

hpλ, apλ =
∑
v

(−1)vλvpλ, epλ = spλa
p
λ =

∑
h,v

(−1)vλhpλv
p
λ.

Our main result will be that epλ is a primitive idempotent. To avoid confusion, note that the

Young symmetry acts on the right, and multiplication of permutations obeys f ⋆ g = f ◦ g when

f, g ∈ Sn are viewed as automorphisms of Sn.

Example. The simple example of S3. There are three Young diagrams, shown below.

Labeling the corresponding normal Young tableaux Θ1, Θ2, and Θ3, we have

• s1 = s, a1 = e, e1 = s.

• s2 = e+ (12), a2 = e− (13), e2 = s2a2 = e+ (12)− (13)− (321).

• s3 = e, a3 = a, e3 = a.

• The fourth standard Young tableau, Θ
(23)
2 , has s

(23)
2 = e + (13), a

(23)
2 = e − (12), and e

(23)
2 =

e+ (13)− (12)− (123).

We note the following features of the example and state they hold generally without proof.

• The horizontal permutations form a subgroup and sλ is its symmetrizer. Then by similar logic

to before, sλ is idempotent with sλsλ = |{hλ}|sλ. Similarly, aλ is idempotent.

• Generally, neither sλ nor aλ are primitive, but eλ is. Moreover, epλ generates an irrep distinct

from but isomorphic to that of eλ. All nonisomorphic irreps correspond to exactly one eλ.

• The four minimal left ideals generated by the idempotents of the standard Young tableaux span

the entire group algebra space S3. Explicitly, e = (1/6)(e1 + 2e2 + 2e
(23)
2 + e3).

• Hence in general, we claim that normal Young tableaux correspond to inequivalent irreps, while

standard Young tableaux decompose the regular representation.

• Since a d-dimensional irrep occurs d times in the regular representation, the dimension of the

irrep corresponding to a Young diagram is the number of standard Young tableaux on it.

• For each box in a Young diagram, a hook is a right angle with vertex in that box, which opens

down and to the right; the length of the hook hi is the number of boxes it contains. For each

hook, the box with the vertex is the smallest number with probability 1/hi so we expect that

dim(eλ irrep) = standard tableaux =
n!∏
i hi

.

This is called the hook length formula.
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• The proof above is incorrect because we cannot simply multiply probabilities for nonindependent

events. However, it serves as a useful mnemonic, since the real proof is much more difficult.

Example. We give a few more details. First, we explicitly construct the irrep generated by e2.

• The irrep certainly contains e2 itself, i.e. e+ (12)− (13)− (321). It is convenient to write the

vectors in terms of the image of the string “123” under the corresponding permutations, so that

e2 = |123⟩+ |213⟩ − |321⟩ − |312⟩.

• The irrep also contains all the vectors |pe2⟩, which can be written in our notation by applying

a permutation p to the numbers in the states. For example, for p = (12), we get

|123⟩+ |213⟩ − |321⟩ − |312⟩ → |213⟩+ |123⟩ − |312⟩ − |321⟩.

while for p = (13) we get

|123⟩+ |213⟩ − |321⟩ − |312⟩ → |321⟩+ |231⟩ − |123⟩ − |132⟩.

Computing the other permutations, we find a two-dimensional irrep, in accordance with the

hook length formula.

• The ordering is a bit confusing. Given a permutation p, the Young symmetrizer is applied on

the right, giving pe2. If the {pe2} are an irrep, then gpe2 is in their span for any g. But to see

how pe2 acts on an element g of the regular representation, we compute pe2g.

Example. Symmetry classes of tensors. Given an m-dimensional real vector space Vm, the tensor

product space V n
m of rank n tensors is acted on by GL(m,R), and we would like to decompose V n

m

into irreps of GL(m,R). The symmetric group enters because Sn acts on GL(m,R) by permuting

the indices, and this commutes with the action of GL(m,R), which does the same thing to each

index. Therefore, irreps of GL(m,R) in V n
m have definite symmetry; specifically they are

{epλ|α⟩ | |α⟩ ∈ V n
m}

for each λ and p. These are tensors of the symmetry class Θp
λ. Tensors of the symmetry type Θλ

correspond are the set of all tensors of the symmetry class Θp
λ for all p.

As an example, consider rank 3 tensors with m = 2, and the same numbering as in the previous

example. Then e3 = a annihilates everything, while e1 = s gives the irrep

{|+++⟩, s|++−⟩, s|+−−⟩, |− − −⟩}

containing all totally symmetric tensors. The irrep given by e2 is spanned by

e2|++−⟩ = 2|++−⟩ − |−++⟩ − |+−+⟩

and

e2|− −+⟩ = 2|− −+⟩ − |+−−⟩ − |−+−⟩

where e2 acting on any other basis element gives zero or one of these two. Finally, e
(23)
2 gives the

last irrep, accounting for all of the states. Note that in general, some irreps will correspond to

non-standard Young tableaux, since nothing here is sensitive to the order of the indices.
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Note. One might be tempted to say the e2 irrep contains tensors symmetric in the first two indices

and antisymmetric in the first and third, but this is wrong: the symmetrization partially destroys

the result of the antisymmetrization. In fact, it’s simply impossible for an index to be simultaneously

symmetrized with one and antisymmetrized with another. If a rank 3 tensor is symmetric in its

first indices and antisymmetric in the last two,

Tabc = Tbac = −Tbca = −Tcba = Tcab = Tacb = −Tabc

so the tensor is identically zero.

Note. Different sources can differ on the action of the eλ in several ways.

• While we antisymmetrize first here, one could also symmetrize first; this also yields irreps.

However, we generally won’t get the same irreps. Our convention above splits the e2 symmetry

class into two irreps both with symmetry in two indices, but we could also split it into two

irreps both with antisymmetry in two indices.

• This alternate splitting is legal, for the same reason that we can choose any basis in a degenerate

subspace: we have two copies of the same irrep, so any “change of basis” between them will

also yield two irreps.

• We have taken the permutations to act on the slots, so that

(23)(12)|ijk⟩ = (23)|jik⟩ = |jki⟩.

However, we could also label the permutation with the same letters we index the basis of V n
m,

then act on the letters. That is, we could have

(jk)(ij)|ijk⟩ = (jk)|jik⟩ = |kij⟩

where in the last step we swapped the letters j and k, not the last two slots.

• The latter is more intuitive if we are thinking in terms of tensor components, where we usually

act on letters (“antisymmetrize i and j”) rather than slots. Swapping between these two

conventions is equivalent to swapping the order of operations: if the first convention is g1g2,

then the second is equivalent to doing (g2g1g
−1
2 )g2 = g2g1. Indeed, we have

(12)(23)|ijk⟩ = (12)|ikj⟩ = |kij⟩.

• Finally, we may phrase everything in terms of transforming the basis states |ijk⟩ or transforming

the tensor components ⟨ijk|α⟩. Generally, these transform oppositely. For example, we have

(α′)ijk = ⟨ijk|(23)(12)|α⟩ = ⟨ikj|(12)|α⟩ = ⟨kij|α⟩ = αkij .

If we wanted to compute this directly by moving the tensor indices around, we would first swap

the second and third indices, then swap the first and second indices. That is, the order of

operations is flipped because we’re acting on |ijk⟩ from the right.

• In summary, there are three possible convention differences, each of which is equivalent to

flipping the order of symmetrization and antisymmetrization. Our convention matches that of

most pure math sources. Most physics sources flip all three, ending up with a net order flip.
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For concrete computations, we’ll generally use the physics convention. The difference between the

two generally won’t matter because we’re mostly concerned with how tensor products of irreps

decompose, or how irreps split upon restricting to subgroups.

Example. Consider the symmetry classes of the Riemann tensor. We know that

Rabcd = −Rbacd, Rabcd = −Rabdc, Rabcd = Rcdab, R[abcd] = 0.

Taking the physics convention, the first two identities indicate that ab and cd have to be in columns,

giving the candidates

a c
b d

a
b
c
d

.

Both satisfy the third identity, but the fourth rules out the second candidate. Hence the Riemann

tensor is a GL(n,R) irrep. Restricting to a subgroup breaks apart irreps, and indeed restricting

to the Lorentz transformations SO(n− 1, 1), the Riemann tensor decomposes into the Ricci scalar,

Ricci tensor, and Weyl tensor.
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3 Lie Groups

3.1 ⊛ Matrix Groups

We review some basic examples of matrix Lie groups.

• Let Mat(n,F) denote the set of n × n matrices with entries in F, which will be R or C. It is

not a group, because not all matrices are invertible, so we define GL(n,F) to be the subset of

invertible matrices.

• We define the special linear group SL(n,F) to be the subset of GL(n,F) with unit determinant.

In general, ‘special’ stands for ‘unit determinant’. Considering these groups as real manifolds,

dimGL(n,R) = n2, dimGL(n,C) = 2n2, dimSL(n,R) = n2−1, dimSL(n,C) = 2n2−2.

The unit determinant constraint detM = 1 is one constraint over R and two constraints over

C, as it sets detM = 1 + 0i.

• A Lie group is a group that is a smooth manifold, where the group operations are smooth;

we’ll skip the proof that the groups above are Lie groups. We define a Lie subgroup to be a

subgroup of a Lie group that is also a smooth submanifold; one can show that Lie subgroups

are Lie groups in themselves.

• The orthogonal group is

O(n) = {M ∈ GL(n,R) |MTM = 1}

which implies detM = ±1. The subset SO(n) is called the proper rotations, and

dimO(n) = dimSO(n) =
n(n− 1)

2
.

To show this, note thatMTM is symmetric, so subtracting the constraints gives n2−n(n+1)/2.

Alternatively, note that n(n− 1)/2 is the number of independent planes in n dimensions.

• More generally, define O(p, q) as the subset of GL(n,R), with n = p+ q, where

MT ηM = η, η =

(
Ip 0

0 −Iq

)
.

For example, the Lorentz group is O(3, 1). It is noncompact, and splits into four components

since we also have time reversal. The dimension is still n(n− 1)/2.

• Define the unitary groups as

U(n) = {U ∈ GL(n,C) |U †U = 1}.

Unitary matrices preserve length and have determinants with unit norm. We have

dimU(n) = n2, dimSU(n) = n2 − 1.

To derive this, note that we start with 2n2 degrees of freedom, and the matrix U †U = 1 is

Hermitian. Then it contains n(n − 1) constraints on the off-diagonal, but only n constraints

on the diagonal, because the diagonal is automatically real. Switching to the special unitary

group gives one constraint since detU is a phase.
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• As a simple example, U(1) ∼= SU(2). This is the first of a few ‘accidental’ Lie group isomorphisms

which we’ll understand later in terms of the classification of Lie algebras.

• The elements of SU(2) can be parametrized as

U = a01 + ia · σ, a20 + a21 + a22 + a23 = 1

where the σ are the Pauli matrices. Thus SU(2) ∼= S3 as a manifold.

• The centers of these groups only contain elements proportional to the identity, by Schur’s lemma

and the fact that the fundamental representation is irreducible. For example, the center of U(n)

is {eiθI} ∼= U(1), while the center of SU(n) is {e2πik/nI} ∼= Zn.

• By varying the metric, we may also define O(p, q), SU(p, q), and U(p, q). Since Lie algebras

only depend on infinitesimal structure, changing the signature doesn’t change the dimension.

The SU(n) and SO(n) groups are often used in particle physics, while SU(p, q) and SO(p, q)

appear more often in string dualities.

• Globally, the (special) unitary groups are all connected and simply connected, and compact

when the signature is definite. The groups SO(n) are connected and compact, but not simply

connected, with double cover Spin(n).

Note. Generally, when we define a subset of Rn by constraint equations, the result is not necessarily

a manifold; we get an object called an algebraic variety which may have singular points. In this case

the group structure forbids this: if there were a singularity at g1, then there must be a singularity

at any other group element g2, since the action of multiplication by g2g
−1
1 is smooth. But varieties

cannot be singular everywhere, so the group must be smooth everywhere.

Example. We consider the possible eigenvalues of M ∈ O(n). Since M is real, eigenvalues come in

complex conjugate pairs. Moreover, since M preserves lengths, they have norm 1. Thus for n = 2

we have eigenvalues e±iθ and for n = 3 we have eigenvalues 1 and e±iθ. The eigenvector with λ = 1

specifies the axis of rotation.

The general group element of SO(3) can be written as

M(n̂, θ)ij = cos θ δij + (1− cos θ)ninj − sin θ ϵijknk.

This is redundant, since M(n̂, 2π − θ) = M(−n̂, θ). To remove this we restrict θ ∈ [0, π] and

identify (n̂, π) with (−n̂, π). Then the SO(3) group manifold is obtained by taking the ball B3 and

identifying antipodal points on the boundary.

Example. There is an embedding of SU(n) in SO(2n). This is intuitive because each complex

dimension can be thought of as two real dimensions. Formally, the map is

U = U1 + iU2 7→
(
U1 −U2

U2 U1

)
where U1 and U2 are real. This is an orthogonal matrix, and it is in SO(2n) since SU(n) is

connected.
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3.2 ⊛ Lie Algebras

We begin with some fundamental definitions.

• A Lie algebra g is a vector space with a bracket operation [·, ·] : g×g → g satisfying antisymmetry,

linearity, and the Jacobi identity,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Its dimension is the dimension of g as a vector space. The Lie algebra is real if it is over R and

complex if it is over C.

• For any vector space V , given an associative linear product ⋆ : V × V → V , the commutator

[X,Y ] = X ⋆ Y − Y ⋆ X is a Lie bracket. For example, for the vector space of matrices such a

product is matrix multiplication.

• For a Lie algebra g over F with basis T a, we define

[T a, T b] = fabcT
c

where the fabc ∈ F are called the structure constants. They are antisymmetric in a and b by

the antisymmetry of the bracket, while the Jacobi identity gives

fabc f
cd
e + fdac f

cb
e + f bdc f

ca
e = 0.

Here one lower index is free, another is contracted, and the rest are cyclically permuted.

• A Lie algebra isomorphism is a map ϕ : g → g′ which is an isomorphism of vector spaces and

preserves the bracket. A Lie algebra homomorphism is defined similarly.

• A subalgebra h ⊂ g is a subspace of g which satisfies [h, h] ⊂ h. An ideal of g is a subalgebra

which satisfies [h, g] ⊂ h. We now give some examples of ideals.

– The empty set and all of g are trivially ideals; all others are nontrivial ideals.

– The center z(g) is the set of elements in g which have vanishing bracket with all of g.

– If h and k are ideals, so are h+ k, h ∩ k, and [h, k].

– The kernel of any Lie algebra homomorphism is an ideal; this is really the motivation

behind the definition. They are analogous to normal subgroups of groups.

• We write g = h⊕ k if this holds considering the Lie algebras as vector spaces, and [h, k] = 0.

• An abelian Lie algebra is one where the bracket identically vanishes, i.e. z(g) = g.

• We say g is simple if it is nonabelian and has no nontrivial ideals, and g is semi-simple if it has

no abelian ideals; then semi-simple Lie algebras are direct sums of simple ones.

Note. For completeness, we’ll say a bit more about the general structure of Lie algebras.

• The derived algebra i = span([g, g]) is the set of linear combinations of brackets in g. A Lie

algebra is perfect if i = g, so all semi-simple Lie algebras are perfect.
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• The derived series is defined by in = span([in−1, in−1]) with i1 = i, and a Lie algebra is solvable

if in is empty for some n. Intuitively a solvable Lie algebra is “almost commutative”, while a

semisimple Lie algebra is the opposite: we could have equivalently defined a semi-simple Lie

algebra as one with no solvable ideals.

• As an example, the subalgebra of upper triangular matrices in gl(n,F) is solvable, as taking

repeated commutators sets more and more diagonals to zero. A theorem due to Lie states that

all representations of a solvable Lie algebra g are upper-triangular in some basis, and moreover

every complex irrep of a solvable Lie algebra is one-dimensional. Hence solvable Lie algebras

behave just like abelian ones in terms of representation theory.

• The radical rad(g) is the sum of all solvable ideals of g. Then there is a short exact sequence

0 → rad(g) → g → g/rad(g) → 0

where g/rad(g) is semisimple.

• Levi’s theorem states that, furthermore, every Lie algebra is the direct sum of a solvable Lie

algebra and a semisimple one, which is in turn the direct sum of simple Lie algebras.

• For example, the Poincare algebra decomposes as R4 ⊕ so(3, 1). Note that the semisimple part

is not an ideal. In all complex irreps, elements in the radical act by scalar multiplication.

We now formally relate Lie groups and Lie algebras, for the case of matrix Lie groups.

• Given an n-dimensional matrix Lie group G, the tangent space g = Te(G) is an n-dimensional

vector space. Given coordinates θ on G, the tangent space is spanned by the vectors

Xi =
∂g(θ)

∂θi

∣∣∣∣
θ=0

.

The bracket operation is simply the matrix commutator, which we know satisfies the axioms.

• The nontrivial step is to show closure under the bracket. Consider two paths

gi(t) = 1 +Xit+Wit
2 +O(t3)

which satisfy

g1(t)g2(t) = 1 + (X1 +X2)t+ (X1X2 +W1 +W2)t
2 +O(t3)

with a similar expression for g2(t)g1(t). Then h(t) = g−1
1 (t)g−1

2 (t)g1(t)g2(t) obeys

g1(t)g2(t) = g2(t)g1(t)h(t)

and hence we have

h(t) = 1 + [X1, X2]t
2 +O(t3).

Then h(
√
t) is a curve with tangent vector [X1, X2], as desired. We see the Lie bracket is the

infinitesimal version of the commutator of group elements.
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We now give some examples of matrix Lie algebras. Note that all these examples are real Lie

algebras even though the matrices are complex; the dimension are real dimensions. A complex Lie

algebra would instead give us a complex Lie group, which lives on a complex manifold; we will not

consider such objects here.

• For GL(n,F), the Lie algebra is Mat(n,F) since the determinant is continuous. Restricting to

SL(n) restricts the Lie algebra to contain matrices with zero trace, because

det expX = exp trX.

This provides an easy way to compute dimGL(n,F), as it is equal to dimMat(n,F).

• For O(n), we have RTR = 1 and setting R = 1+X gives XT = −X. Note that the Lie algebra

of SO(n) is the same, because antisymmetric matrices are automatically traceless.

• Similarly, for U(n), we get X† = −X. We restrict to SU(n) by requiring trX = 0, which counts

as a single constraint since the trace of an anti-Hermitian matrix is imaginary.

• We consider the structure of su(2) in detail. One basis is

T a = − i

2
σa.

This differs from the angular momentum by a factor of i, since it is anti-Hermitian. Now

σaσb = δabI + iϵabcσc

which implies that in our basis, fabc = ϵabc.

• Similarly, we may define the following basis for so(3),

T 1 =

 −1

1

 , T 2 =

 1

−1

 , T 3 =

 −1

1


where has the properties

(T a)bc = −ϵabc, [T a, T b] = ϵabcT
c

which establishes that su(2) ∼= so(3).

Next we define some maps on the Lie group and Lie algebra.

• Left translation Lh is a diffeomorphism of G with corresponds to multiplying by h on the left,

Lhg = hg.

Taking the differential gives a map L∗
h : Tg → Thg.

• For matrix Lie groups, L∗
h is implemented by matrix multiplication. That is, for X ∈ g,

L∗
h(X) = hX ∈ Th.

To prove this explicitly, note that a curve g(t) = I + tX + O(t2) maps by Lh to the curve

h(t) = h+ thX +O(t2) which passes through h with tangent vector hX.
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• Given X ∈ g, we may define the left-invariant vector field V by

V (g) = L∗
g(X).

Conversely, if a manifold has a Lie group structure, this means it has a global field of frames,

which is a strong constraint; it means that S2 cannot be a Lie group.

• An integral curve g(t) of the left-invariant vector field V associated with X ∈ g satisfies

dg(t)

dt
= V (g(t)) = L∗

g(t)(X) = g(t)X, g(t) = exp(tX)

where the exponential for a matrix Lie group is defined as a series.

• The curve exp(tX) defines a one-parameter subgroup with

exp(t1X) exp(t2X) = exp(t2X) exp(t1X) = exp((t1 + t2)X)

by expanding out the series. Note that the subgroup might be isomorphic to either R or U(1).

• Setting t = 1, we have a map exp : g → G which is bijective in a neighborhood of the identity. It

is not injective if G has a U(1) subgroup, and it is obviously not surjective if G is not connected.

• If G is connected, it turns out that the exponential map is not necessarily surjective if G is

not compact, though any group element can still be written as the product of two exponentials.

On the other hand, it turns out that the exponential map is surjective for the Lorentz group,

which isn’t compact, but the proof is difficult and relies on particular properties of that group.

• Writing gX = exp(X), the Baker-Campbell-Hausdorff theorem states

gXgY = gZ , Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . . .

Thus the group multiplication law is encoded in the Lie bracket.

Example. The group SU(2) is a double cover of SO(3) by the map

d : SU(2) → SO(3), d(A)ij =
1

2
tr(σiAσjA

†)

where ker d = {±I}, as can be checked by using the identity∑
i

(σi)αβ(σi)δγ = 2δαγδδβ − δαβδδγ .

The inverse of this map is

A = ±I2 + σiRijσj

2
√
1 + trR

.

http://www.ams.org/mathscinet-getitem?mr=1958589
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3.3 ⊛ Representations

We now define representations for Lie group and Lie algebras. We will be casual with notation,

writing equations that only work for matrix Lie groups.

• A representation D(g) of a Lie group is a homomorphism D : G→ Matn(F), or alternatively an

action of G on V by linear transformations. A representation of a Lie algebra is a linear map

d : g → Matn(F) which preserves the bracket. Here, n is the dimension of the representation,

which may be different from the dimension m of the group and algebra.

• Every representation D of G corresponds to a representation d of g by

d(X) =
d

dt
D(g(t))

∣∣∣∣
t=0

for a curve g(t) passing through the identity at t = 0 with tangent vector X. That is,

D(1m + tX +O(t2)) = 1n + td(X) +O(t2).

• Linearity is easy to see, but checking the bracket is preserved is a bit trickier. Consider curves

g1(t) and g2(t) as defined above. Then as before,

h(t) = g−1
1 (t)g−1

2 (t)g1(t)g2(t) = 1m + t2[X1, X2] +O(t3).

Taking the representation of both sides,

D(h(t)) = 1n + t2d([X1, X2]) +O(t3).

On the other hand, we can also write

D(h(t)) = D(g−1
1 (t))D(g−1

2 (t))D(g1(t))D(g2(t)) = 1n + t2[d(X1), d(X2)] +O(t3)

by the same logic, giving the result.

• Similarly, given a representation d(X), we can define D(g) = exp d(X) where g = expX. Since

the exponential map is not generally bijective, this may not be a representation of G, but it

is at least a representation ‘locally’. To verify it is a representation, note that if g1 = exp(X1)

and g2 = exp(X2),

D(g1g2) = exp

(
d

(
X1 +X2 +

1

2
[X1, X2] + . . .

))
= exp

(
d(X1) + d(X2) +

1

2
[d(X1), d(X2)] + . . .

)
= exp(d(X1)) exp(d(X2)) = D(g1)D(g2)

where we applied the Baker-Campbell-Hausdorff theorem twice.

• The representation space of a representation of a Lie algebra g is also called a g-module. In

general, for a ring R, an R-module is simply a vector space where the scalars are elements of

R. A Lie algebra is a ring where the operation is the bracket, and ‘scalar multiplication’ by X

in the g-module is application of d(X).
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We now give some basic examples of Lie group and Lie algebra representations.

• Starting with the trivial representation D(g) = I, we get the trivial representation d(X) = 0.

• Starting from the fundamental representation D(g) = g, for an n-dimensional matrix Lie group,

we have the fundamental representation d(X) = X, which is also n-dimensional.

• The adjoint representation of G has representation space g, and

D(g)X = (Ad g)X = gXg−1.

To show the action of Ad g is closed, note that if X is the tangent vector of a curve h(t), then

(Ad g)X is the tangent vector of a curve gh(t)g−1.

• The adjoint representation of G corresponds to the adjoint representation of g,

d(X) = adX , adX(Y ) = [X,Y ].

whose dimension is also dim g. Concretely, expand in a basis T a of g, giving

adX(Y ) = [X,Y ] = XaYb[T
a, T b] = XaYbf

ab
cT

c.

Therefore, we have

[adX(Y )]c = (Xaf
ab
c )Yb, (adX)

b
c = Xaf

ab
c .

• If we didn’t know how the adjoint representation was derived, we would have to check that

[adX , adY ] = ad[X,Y ]

where [·, ·] means the commutator on the left and the Lie bracket on the right. This follows

directly from the Jacobi identity, so one might say the point of the Jacobi identity for an

abstract Lie algebra is to ensure that the adjoint representation still exists.

• If g is semi-simple, then the adjoint representation is faithful, because its kernel is the center

of g, i.e. an abelian ideal. If g is simple, then the adjoint representation is irreducible, because

if h ⊂ g were an nontrivial invariant subspace then h would be a nontrivial ideal.

Note. Below are some powerful general results, which we will not prove.

• For every Lie group G there is a bijection between connected Lie subgroups H ⊆ G and Lie

subalgebras h ⊂ g given by the tangent map.

• Any finite-dimensional Lie algebra g is isomorphic to the Lie algebra of a Lie group. Specifically,

there is a unique connected simply-connected Lie group G with Lie algebra g, and all others

are of the form G/Z for a discrete central subgroup Z ⊆ G.

• If G1 and G2 are Lie groups and G1 is connected and simply connected, then Hom(G1, G2) =

Hom(g1, g2). Combining this with the previous point, the categories of finite-dimensional Lie

algebras and connected, simply-connected Lie groups are equivalent.

• A crucial ingredient in the proof of this statement is Ado’s theorem, which states that every Lie

algebra is isomorphic to a matrix Lie algebra. This allows us to focus on matrix Lie algebras

without loss of generality.
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3.4 Integration

In this section, we define a measure for integration over a Lie group.

• Previously, we showed the orthogonality of characters for a finite group. We would like to do

the same for a continuous group, but this requires replacing the sum
∑

g with an integration

measure
∫
dµ(g).

• In the case of a finite group, the crucial step was being able to ‘shift the sum’,

A =
∑
g

D†(g)XD(g) satisfies D†(g)AD(g) = A.

For a Lie group, we have

D†(g)

(∫
dµ(g′)D†(g′)XD(g′)

)
D(g) =

∫
dµ(g′)D†(g′g)XD(g′g) =

∫
dµ(g′g−1)D†(g′)XD(g′).

Then the analogous requirement is dµ(g) = dµ(g′) for any two group elements.

• More concretely, suppose we take a small patch of the group manifold. The patch can be

moved around by multiplication by a group element, and we demand this leaves the measure

of the patch invariant. Alternatively, we are defining a volume form invariant under group

multiplication, which shows that all Lie groups are orientable.

• The ‘volume’ of a group is
∫
dµ(g). Unlike the cardinality of a group, it has no canonical

normalization; it is finite when the group is compact.

• Expanding in terms of coordinates, we are requiring

dµ(g) = dx1 . . . dxnρ(x1, . . . , xn), dx1 . . . dxnρ(x1, . . . , xn) = dx′1 . . . dx′nρ(x′1, . . . , x′n)

where the primed quantities are defined by group multiplication.

• As a first example, consider SO(2). If we parametrize by θ, then the group multiplication law

R(θ)R(θ′) = R(θ + θ′) means that a segment of length δθ is mapped to a segment of length δθ.

Then we have ρ(θ) = ρ(θ′) for any two angles, so dµ(θ) = dθ. In this case, orthogonality of

characters recovers Fourier series.

• Next, consider the restricted Lorentz group SO(1, 1). If we parametrize by rapidity φ, we have

L(φ)L(φ′) = L(φ+ φ′) so dµ(φ) = dφ. On the other hand, if we parametrize by velocity, we

have to calculate. We have

L(u)L(v) = L(v′), v′ =
v + u

1 + vu
.

Now consider the segment [v, v + dv]. A direct computation gives

dv′ =
1− u2

(1 + uv)2
dv, ρ(v) =

1− u2

(1 + uv)2
ρ

(
v + u

1 + uv

)
.

Finally, setting v = 0 gives ρ(u) = ρ(0)/(1− u2). We could also have found this by changing

variables from rapidity, picking up a Jacobian. In both cases, the group volume is infinite.
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• The analogue of the great orthogonality theorem is called the Peter-Weyl theorem, and it

applies to all compact Lie groups. It contains as special cases many of the orthogonality and

completeness results we’ve used.

As an application, we consider the extended example of SO(3).

• We recall that elements SO(3) can be parametrized as R(n, ψ) where ψ is the rotation angle.

Hence SO(3) is a three-dimensional ball with opposite points on the boundary identified. The

equivalence classes are rotations with the same ψ.

• Now consider computing the character of the spin–j representation of SO(3) on the equivalence

class with angle ψ. It is convenient to choose n = z, so that

R(z, ψ)|jm⟩ = eiψJ3 |jm⟩ = eimψ|jm⟩.

Then the character is

χ(j, ψ) =

j∑
m=−j

eimψ =
sin(j + 1/2)ψ

sin(ψ/2)
.

• Choosing coordinates (θ, φ, ψ), the measure on SO(3) has the form

dµ(g) = dΩdψf(ψ), dΩ = dθdφ sin θ

by rotational invariance. For small ψ, we expect f(ψ) ∝ ψ2 since the group is ‘locally Euclidean’.

• The trick is to consider rotations next the identity, expanded as

R(δ, ϵ, σ) = I +

 0 −δ σ

δ 0 −ϵ
−σ ϵ 0

 = I +A.

By direct multiplication, we have R(δ, ϵ, σ)R(δ′, ϵ′, σ′) ≈ R(δ + δ′, ϵ+ ϵ′, σ + σ′) up to second

order terms. Then the measure is dδdϵdσ.

• Next, we transport this result across the group by multiplying it with a finite rotation and

seeing how it changes (θ, φ, ψ). We have

R(n, ψ′) = R(z, ψ)R(δ, ϵ, σ), R(z, ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 .

A long calculation shows that

n1 =
ϵ sinψ + σ(1 + cosψ)

2 sinψ
, n2 = (−σ sinψ + ϵ(1 + cosψ))(2 sinψ), n3 = 1, ψ′ = ψ + δ

to first order.

• Switching back to our original parametrization, we have

dΩdψ = dϵdσ

(
∂(n1, n2)

∂(ϵ, σ)

)
dδ
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where the factor in parentheses is a Jacobian, and we only need to evaluate a 2× 2 Jacobian

because δ only affects ψ. We thus find

dµ(g) = dΩdψ sin2(ψ/2)

which indeed is proportional to ψ2 for small ψ. Thus the integral of a class function F (g) is∫
dµ(g)F (g) =

∫ π

0
dψ sin2(ψ/2)F (ψ).

• Using this result, we can check character orthogonality,∫
dµ(g)χ(k, ψ)∗χ(j, ψ) =

π

2
δjk.

We can also run this argument in reverse; character orthogonality can be used to find the

measure. We can also decompose tensor products of representations, where the characters

multiply, reproducing the usual Clebsch–Gordan decomposition.

Note. The general procedure works as follows. For a matrix Lie group, consider some parametriza-

tion A(ξ) where the coordinates are ξ and A ∈ G. Take a basis Jα of g, and let

A−1∂A

∂ξi
= JαÃ(ξ)

α
i .

Then the weight function for the measure is

ρ(ξ) = det Ã(ξ).

To understand this, note that the vectors ∂A/∂ξi form a parallelopiped at A(ξ) and left multiplying

by A−1 moves it to the identity. Here its volume can be compared to the parallelopiped formed by

the Lie algebra elements Jα, with the conversion factor being the Jacobian of the transformation

between them. We have essentially done this procedure above.

Finally, we turn to the final example of SU(2).

• As we’ve seen, SU(2) is geometrically the sphere S3 by the parametrization

U = t+ ix · σ, t2 + x2 = 1.

By symmetry, the measure on SU(2) is just the rotationally symmetric measure on the sphere.

• To find the measure on the sphere, we define t = cos ζ and parametrize x/|x| by the usual

spherical coordinates. For a fixed value of t, the x coordinates trace out a sphere of radius sin ζ.

Then the measure is sin2 ζ dΩdζ.

• To compare this with our earlier result, note that ψ = 2ζ is the angle of rotation, so the integral

of a class function of SU(2) would be∫ 2π

0
dψ sin2(ψ/2)F (ψ).

This is identical to our result for SO(3), which makes sense since the two are locally isomorphic,

but has double the integration range since SU(2) double covers SO(3).
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• We can now apply a ‘reality check’ to the spin-j representation of SU(2), using

η(j) =
1

|G|
∑
g

χ(j)(g2) =

∫
dµ(g)χ(j, 2ψ)∫

dµ(g)
.

Carrying out the integral shows that the integer spin representations are real and the half-integer

spin representations are pseudoreal.

• Finally, there is a local isomorphism between SO(4) and SU(2)× SU(2) given by

W →W ′ = U †WV

where W , U , and V are in SU(2), and W and W ′ are regarded geometrically as points in S3.

Then two elements of SU(2) yield a rotation of the sphere, and it can be shown that any small

rotation of the sphere can be written this way.
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4 Representations

4.1 ⊛ Representations of su(2)

Now we find the representations of su(2). We begin with some remarks about complexification.

• The standard basis of the Lie algebra is

T a = −1

2
iσa, [T a, T b] = fabcT

c, fabc = ϵabc.

It can also be regarded as the fundamental representation. Note that the representation is

complex, because it contains complex matrices like T z, but the Lie algebra su(2) is real. Finally,

the representation is real in the physical sense since it is similar to its conjugate.

• In general, we will care about complex representations of real Lie algebras g since Hilbert

spaces are complex vector spaces. However, it is much simpler to find and classify complex

representations of their complexifications gC.

• Every complex representation d of g extends to a complex representation dC of gC by

dC(X + iY ) = d(X) + id(Y ).

Conversely, given a representation dC of gC we may define a representation d of g by restriction.

• Given d and dC as defined above, it can be shown that dC is an irrep of gC if and only if d is

an irrep of g. Thus to classify irreps of g it is completely equivalent to classify irreps of gC.

• Given a complex Lie algebra, there are multiple ways to restrict to a real Lie algebra, i.e. to take

a ‘real form’. For example, the complexification of su(n) is the set of n× n traceless complex

matrices, which is sl(n,C). But this has sl(n,R) as a real form, so the representation theory of

sl(n,R) is the same as that of su(n).

• Complexification behaves nicely for Lie algebras, but it is much subtler for Lie groups. A

complex Lie group G is a complex-analytic manifold with a holomorphic group operation, and

we say H ⊆ G is a real form of G if h is a real form of g. However, SL(2,R) is not a real form

of any complex Lie group.

We now turn to finding the irreps of su(2)C. From this point on we’ll suppress the C subscript,

always implicitly working with a complexified Lie algebra.

• It is convenient to work in the Cartan–Weyl basis

H = 2iT 3 =

(
1

−1

)
, E+ = iT 1 + T 2 =

(
1
)
, E− = iT 1 − T 2 =

(
1

)
.

The matrices E± are called the raising and lowering operators.

• The commutation relations are

[H,E±] = ±2E±, [E+, E−] = H

which imply that

adH(E±) = ±2E±, adH(H) = 0.

Therefore, the generators {H,E±} are the eigenvectors of adH : su(2) → su(2). The eigenvalues

{0,±2} are known as the roots of su(2).
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• Now consider a finite-dimensional representation R with representation space V and suppose

that R(H) is diagonalizable, with

R(H)vλ = λvλ.

This will always be the case in quantum mechanics, where R(H) is Hermitian. The eigenvalues

vλ are the weights of the representation R, and they are raised and lowered by 2 by E±.

• There exists a highest weight Λ with

R(H)vΛ = ΛvΛ, R(E+)vΛ = 0.

If the representation is irreducible, then vΛ must be unique, and we must be able to reach all

of V by applying E− repeatedly. Therefore the other eigenvectors are

vΛ−2n = (R(E−))
nvn.

• To see when this chain must terminate, note that

R(E+)vΛ−2n = R(E+)R(E−)vΛ−2n+2 = (R(E−)R(E+) + (Λ− 2n+ 2))vΛ−2n+2.

Therefore we have

R(E+)vΛ−2n = rnvΛ−2n+2, rn = rn−1 + Λ− 2n+ 2, r0 = 0

which, by induction, gives the solution

rn = (Λ + 1− n)n.

Now, let Λ − 2n be the lowest weight, so R(E−)vΛ−2N = 0. Then we must have rN+1 = 0,

which implies Λ = N .

• We have thus shown that finite dimensional irreps RΛ of su(2) are labeled by their highest

weight Λ ∈ Z, with weights SΛ = {−Λ,−Λ + 2, . . . ,Λ− 2,Λ} and dimRΛ = Λ+ 1.

• Decomplexifying back down to su(2)R, R0 is the trivial representation, R1 is the fundamental

representation, and R2 is the adjoint representation.

• We can also decomplexify to sl(2)R. This is easier, as H, E+, and E− are all traceless and real

and hence already form a basis for sl(2)R.

We now relate our results to the familiar theory of angular momentum in quantum mechanics.

• To establish notation, in quantum mechanics we have

J2|jm⟩ = j(j + 1)|jm⟩, J3|jm⟩ = m|jm⟩, J2 = J2
1 + J2

2 + J2
3 = J2

3 +
1

2
(J+J− + J−J+).

Then J3 = R(H)/2, since its eigenvalues are half-integer rather than integer, and J± = R(E±).

The spin value j is Λ/2. We call J2 a ‘quadratic Casimir’. It is not part of the Lie algebra, but

useful for classifying the irreps.
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• Our irreps RΛ(X) exponentiate to representations of SU(2) by

DΛ(A) = expRΛ(X), A = expX.

All of the irreps give representations of SU(2), which in turn yield irreps of SO(3) if DΛ(I) =

DΛ(−I). Now note that −I = exp(iπH) and

DΛ(−I) = exp(iπRΛ(H)).

Plugging in the eigenvalues of RΛ(H), the right-hand side is I for Λ ∈ 2Z and −I otherwise.

Then the former give representations of SO(3), and the latter yield projective representations.

Note. The Casimir operator is not an element of the Lie algebra. Formally, define the universal

enveloping algebra (UEA) of a Lie algebra g to be the algebra generated by elements of g subject

to the relation T aT b − T bT a = fabcT
c.

Casimir operators are elements of the UEA which commute with all other elements. Representa-

tions may be extended from g to the UEA, and by Schur’s lemma, Casimir operators are represented

in irreps by multiples of the identity. The quadratic Casimir is only one of many examples, and we

use it to index irreps.

New representations can be built from our irreps.

• Given a representation R of a real Lie algebra g, the conjugate representation X satisfies

R(X) = R(X)∗.

In this case, there is only one irrep for each dimension, so each irrep is its own conjugate.

• The contragradient representation, or dual representation R∗ is

R∗(X) = −R(X)T .

This is simply the infinitesimal version of D∗(g) = D(g−1)T for Lie groups.

• The direct sum of two Lie algebra representations R1 and R2 is defined as

(R1 ⊕R2)(X) = R1(X)⊕R2(X)

and their tensor product is defined as

(R1 ⊗R2)(X) = R1(X)⊗ I2 + I1 ⊗R2(X).

The latter is simply the infinitesimal version of the definition for Lie groups, because taking

the logarithm of a product yields a sum. That is,

exp(tX1)⊗ exp(tX2) = (1 + tX1)⊗ (1 + tX2) +O(t2) = 1 + t(X1 ⊗ I2 + I1 ⊗X2) +O(t2).

For example, when we consider two particles with spin, the Hilbert space is the tensor product

space, but the angular momentum observable is J1 + J2 (with implicit identities), not J1J2.
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• It can be shown that the tensor product of finite-dimensional irreps of a simple Lie algebra g is

always fully reducible. As an example, we explicitly decompose RΛ ⊗RΛ′ . It is useful to again

work in the Cartan–Weyl basis, where, for example,

(RΛ ⊗RΛ′)(H) = RΛ(H)⊗ I2 + I1 ⊗RΛ′(H).

Then we know the weight set is

SΛ,Λ′ = {λ+ λ′|λ ∈ SΛ, λ
′ ∈ Sλ′}

from which we conclude

RΛ ⊗RΛ′ = RΛ+Λ′ ⊕RΛ+Λ′−2 ⊕ · · · ⊕R|Λ−Λ′|.

• Note that the Cartan–Weyl basis is not unique; as we’ve seen, it corresponds to picking out

Jz, and we can just as well pick Jx. But the decomposition of a representation into irreps is

unique; changing the basis just changes the preferred basis within each irrep.

4.2 The Heisenberg Algebra

As a second example, we consider the infinite-dimensional algebra of creation and annihilation

operators for a bosonic field.

• The Lagrangian density is

L =
1

2
(∂µϕ)

2 − V (ϕ)

and the equal-time canonical commutators are

[ϕ(x), ϕ̇(y)] = iδ(x− y).

• For simplicity, suppose the fields live on the unit circle. Then the modes are the Fourier

components,

ϕ(x) = a0 +
∑
n ̸=0

1

n
ane

2πinx

and applying the equal-time commutators gives

[an, am] = nδn,−m.

This is known as the Heisenberg algebra. It splits into three subalgebras: a0, the creation

operators {an, n ≥ 1}, and the annihilation operators {an, n ≤ −1} where a†n = a−n.

• It is convenient to rescale the operators as

bn =
1√
n
a−n.

Then for every n > 0, the operators bn and b†n form a copy of the algebra of creation and

annihilation operators for a single harmonic oscillator. Using this observation, we can construct

the Fock space starting from a vacuum, assumed to be unique.
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This example has a number of common features with the previous example.

• In both cases, we construct a maximal set of commuting operators, {H} and {a0}, called the

Cartan subalgebra. This is an analogue of a complete set of commuting operators in quantum

mechanics, but we do not allow operators that are not in the algebra, such as L2 or a†nan.

• The rest of the algebra splits into two subalgebras, consisting of raising and lowering operators,

which are related by conjugation. They are also called creation and annihilation operators, or

step operators.

• The representations can be understood by starting from a ‘highest weight’ or ‘vacuum’ vector,

which is annihilated by the annihilation operators, and applying creation operators. Acting with

these operators modify the quantum numbers of the state, i.e. the eigenvalues of the operators

in the Cartan subalgebra, also called the weights.

• The dimension of the Cartan subalgebra is called the rank of the Lie algebra; it is the number

of quantum numbers we have to work with. So far we have only seen rank one, but in the next

section we consider an example with rank two.

4.3 Representations of SO(3)

Now we explore some of the representations of SO(3), with some results generalizing to SO(n).

• The group SO(n) has the vector representation V i → RijV j . Tensors transform in tensor

powers of the vector representation, and we may break them into irreps.

• Note that antisymmetric rank 2 tensors transform to antisymmetric tensors. The same goes

from symmetric tensors, so the rank 2 tensor representation decomposes as 3 + 3 = 3 + 6.

However, the trace is also invariant under rotations (using RT = R−1), so we have the further

decomposition 6 = 5 + 1, where the 5 contains symmetric traceless tensors.

• This decomposition can be expressed in index notation. For the rank 2 tensor T ij , we have

Aij = T ij − T ji, Sij = T ij + T ji, S̃ij = Sij − δijSkk/N.

Then the Aij are the antisymmetric representation, in the sense that the vector space spanned

by the Aij (for all 9 values of (i, j)) is the antisymmetric irrep.

• The exact same reasoning holds for the rank 2 tensor in SO(n).

• The fact that the elements of SO(n) are rotations means that δ is an ‘invariant symbol’, i.e.

δijRikRjl = δkl.

Similarly, we generally have

ϵij...nRipRjq · · ·Rns = ϵpq...s detR

so that ϵ is an invariant symbol. We call these objects symbols instead of tensors because they

are defined by their components.
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• In general, contracting tensors with invariant symbols yields other tensors. For example, the

‘dual tensor’ of Aij is Bk = ϵijkAij . It is a vector, since

Bk → ϵijkRipRjqApq = ϵijk
′
RipRjqRk

′rRkrApq = ϵpqrRkrApq = RkrBr.

Moreover, contraction with invariant tensors projects representations to subrepresentations.

For example, for T ij , contraction with δij gives the 1 and contraction with ϵijk gives the 3. Also

note that contraction with ϵ always removes symmetric parts.

• Contraction with ϵ yields strong constraints on the irreps of SO(3) that appear in the tensor

product representations, because we can always trade two antisymmetric indices for a single

index. We claim the only new irrep for rank n is the traceless totally symmetric rank n tensor.

We have already shown this for n ≤ 2. Now consider T ijk. It splits into the representations

T [ij]k and T {ij}k, and the former is just the rank 2 antisymmetric tensor. Now note that

3T {ij}k = (T {ij}k + T {jk}i + T {ki}j) + (T {ij}k − T {jk}i) + (T {ij}k − T {ki}j)

where the first term is totally symmetric, and the other terms are antisymmetric in ki and kj

respectively. Thus the only new representation is totally symmetric. Finally, given a totally

symmetric tensor Sijk we can always remove all of its traces,

S̃ijk = Sijk − 1

N + 2
(δijShhk + δikShhj + δjkShhi)

leaving only the new irrep, as claimed. A similar proof holds for general n.

• We now count the dimension of these representations. A totally symmetric rank n tensor has(
n+ 2

2

)
degrees of freedom. By symmetry, there is only one independent trace to remove, which is a

totally symmetric rank n− 2 tensor, so the dimension is(
n+ 2

2

)
−
(
n

2

)
= 2n+ 1.

These are, in fact, all of the irreps of SO(3).

• A similar argument holds for SO(2). In this case, the dimensions are all (n+ 1)− (n− 1) = 2.

This is not in contradiction with the fact that the irreps of U(1) ∼= SO(2) are all one-dimensional,

because we are considering real representations.

• For SO(4), contraction with ϵ does not decrease the rank, while for SO(5) and higher contraction

increases the rank. Hence the tricks above fail, and the irreps can have a more complex symmetry

structure. They can be enumerated using Young tableaux, as we’ll see below.

We now make some extra remarks.

• Consider the representation of totally antisymmetric rank n tensors of SO(2n). This represen-

tation is mapped to itself by duality; hence it breaks into two irreps, containing ‘self-dual’ and

‘anti self-dual’ tensors.
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• Consider an irrep of a group G. If we restrict to a subgroup H ⊂ G, then the irrep will generally

not be an irrep in H. For example, the vector representation of O(4) splits into 4 = 3 + 1

when restricting to SO(3), corresponding to the splitting of space and time. The antisymmetric

rank 2 tensor splits into 6 = 3 + 3, corresponding to the splitting of Fµν into E and B. The

symmetric rank 2 tensor splits into 9 = 5 + 3 + 1.

• The adjoint representation of a Lie group G has representation space g, where g ∈ G acts

by conjugation. For SO(n), the adjoint representation is simply the antisymmetric tensor

representation, as

Aij → RipRjqApq = (RAR−1)ij .

For SO(3) only, the adjoint representation coincides with the vector representation. That is,

angular momentum (as a physical quantity) is a vector only in three dimensions.

• Since we are working with SO(n) rather than O(n), we have neglected the difference between

vectors and axial vectors, and so on. Since the metric is Euclidean, we haven’t bother with

raising or lowering indices.

Example. Decomposing P ijk = SijT k where S is symmetric and traceless, in SO(3). First,

construct the symmetric tensor

U ijk = SijT k + SjkT i + SkiT j .

This is a totally symmetric rank 3 tensor, so it decomposes into a traceless part and a trace; the

trace yields the vector representation. The other degrees of freedom are in the antisymmetric part

V iℓ = SijT kϵjkℓ.

The tensor V is neither symmetric nor antisymmetric, but it is traceless. Then it decomposes into

a symmetric traceless and antisymmetric part; the latter is just the vector we have already found.

Hence we have shown 5× 3 = 7 + 5 + 3.

More generally, suppose we multiply two symmetric traceless tensors, with j and j′ indices. Then

we can construct a symmetric traceless tensor with j + j′ indices, as shown above. The remainder

of the degrees of freedom are given by contracting with ϵijk, which leaves j + j′ − 1 indices. We can

then take out the symmetric traceless part again and repeat the procedure, so

j × j′ = (j + j′) + (j + j′ − 1) + . . .+ |j − j′|.

This is simply the usual Clebsch–Gordan decomposition. Note that we have switched notation so

that j is really an irrep of dimension 2j + 1. However, we’ll usually stick to the convention where

the name indicates the dimension.

4.4 Representations of SU(3)

Next, we extend our tensor methods to SU(3). We warm up with SU(2).

• The fundamental representation transforms as

ψi → ψ′i = U ijψj .

By analogy with our earlier work, we consider tensors φi1...in .
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• For example, the totally symmetric tensor φijk of SU(3) has 10 degrees of freedom (correspond-

ing to the baryon decuplet). At this point one might take out the trace, but the trace does not

transform correctly,

δijφijk → (δijU ifU jg)Ukhφfgh.

The quantity in parentheses is UTU , which was the identity for SO(n), but nothing here; we

need an extra complex conjugation.

• To address this, we introduce the conjugate/antifundamental representation ψi = ψi∗. Intro-

ducing upper and lower indices, we have

ψi → U ij ψ
j , ψi → ψj(U

†)ji.

We are allowed to contract upper and lower indices together; for instance, ψiψi is a scalar.

• Formally, for SO(n), the fundamental representation tensored with itself contains the trivial rep-

resentation, but in SU(n), we must tensor the fundamental and antifundamental representation.

Physically, a color singlet meson is made of a quark and an antiquark.

• We can think of a conjugate representation as living in the dual space of the original represen-

tation; our transformation rule for ψi is simply the transformation rule for a bra.

• As a result, we can consider tensors with arbitrary mixed rank (r, s). When both r and s

are nonzero, we can subtract out traces with δ. Finally, since the elements of SU(n) have

determinant one,

ϵi1...iNU
i1
1 · · ·U iNN = ϵi1...iNU1

i1 · · ·U
N
iN

= 1

yielding two more invariant symbols, which allow raising and lowering of indices.

• As an example, the totally symmetric tensor φijk considered earlier is irreducible. However, a

tensor T ijk breaks into four irreps. As usual, the symmetric and antisymmetric parts Sijk and

Aijk (in the upper two indices) form subrepresentations. However, both of these have traces,

which form copies of the fundamental representation. The dimensions are

N3 =

(
1

2
N2(N + 1)−N

)
+

(
1

2
N2(N − 1)−N

)
+N +N.

The naming conventions are somewhat more complex. We will usually stick with naming by

dimension, adding a star for representations with mostly lower indices.

• When we work with the Lie algebra, we will have several types of indices. The generators are

named T a, where a has dimG possible values. If we work in an irrep of dimension d, then each

of the generators is a d× d matrix, so we let p and q index over the irrep, e.g.

δφp = iθa(T a)pqφ
q.

The φp can also be written as traceless tensors with definite symmetry properties, as we did

above; in that case the indices on the ranges i and j range from 1 to N . Note that there is no

meaning to the upstairs or downstairs placement of the other types of indices.

• The adjoint representation turns out to be the antisymmetric (1, 1) tensor representation φij ,

which indeed has dimension N2 − 1.
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Example. All irreps of SU(2). We can use ϵij to raise any downstairs indices, so all the irreps

have solely upstairs indices. Furthermore, the irreps must be totally symmetric, because any

antisymmetric part can be projected out by contraction with ϵij , reducing it to a lower rank tensor.

Hence the irreps are totally symmetric tensors with n upper indices, which have dimension n+ 1.

We can go further and use this to find the representation matrices Ds(R). The fundamental

representation is a two-element spinor, which is multiplied by D1/2. Higher irreps are symmetrized

tensor powers of that spinor, and a rank n tensor transforms with a factor of D1/2 on each index.

Hence it is not surprising that the d-functions dj(β)mm′ are polynomials in cos(β/2) and sin(β/2).

Note that the antifundamental representation does not appear here; it is similar to the funda-

mental representation, which turns out to be pseudoreal. Explicitly, we have

σ2σ
∗
aσ2 = −σa

so the change of basis matrix is σ2 itself. Since σ2 is antisymmetric, the representation is pseudoreal.

Note. Consider a tensor product j ⊗ j′. The resulting j + j′ irrep is symmetric, because its

highest Jz state is symmetric and symmetry is preserved by lowering. Then the j + j′ − 1 irrep is

antisymmetric, since its highest Jz is determined by orthogonality. This pattern continues, with

symmetry alternating between irreps.

Note. Naively, one might say that U(N) = SU(N)× U(1). However, this is incorrect because in

general, N elements of the form eiθI are in SU(N). The actual relationship is

U(N) = (SU(N)/ZN )× U(1).

When one says the Standard Model gauge group is SU(3)×SU(2)×U(1), one is really talking about

the Lie algebra; there are several possibilities for the Lie group and the correct one is unknown.

Next, we turn to the representations of SU(3).

• In this case, we have the invariant symbols ϵijk and ϵijk, and the fundamental and antifunda-

mental representations are not equivalent.

• We claim that all irreps are traceless (m,n) tensors that are totally symmetric in both the upper

and lower indices. The claim is obvious for rank r = m+ n = 1. For r = 2, the antisymmetric

tensors φij and φij are equivalent to vectors, so they give nothing new, and we may subtract

out the trace of φij .

• For the case r = 3, consider the tensor φijk. The antisymmetric part φ[ij]k can be reduced

to rank r = 2. The symmetric part φ(ij)k can be split into a totally symmetric part and

antisymmetric tensors in ki and kj, as shown for SO(3), so the new irrep is totally symmetric.

• Now consider the (m,n) irrep. Without accounting for the traceless condition, the dimension is(
n+ 2

2

)(
m+ 2

2

)
.

The trace of a totally symmetric (m,n) tensor is a totally symmetric (m− 1, n− 1) tensor, so(
n+ 2

2

)(
m+ 2

2

)
−
(
n+ 1

2

)(
m+ 1

2

)
=

1

2
(m+ 1)(n+ 1)(m+ n+ 2).
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• A few of the low-dimensional irreps are

(1, 0) = 3, (0, 1) = 3∗, (1, 1) = 8, (2, 0) = 6, (3, 0) = 10, (2, 1) = 15, (2, 2) = 27.

Many of these numbers play a role in the Eightfold Way.

Next, we derive some multiplication rules for irreps of SU(3).

• Note that (1, 0)× (0, 1) is a general (1, 1) tensor. Subtracting its trace gives

(1, 0)× (0, 1) = (1, 1) + (0, 0), 3× 3∗ = 8 + 1.

• Next, (1, 0)× (1, 0) is a general (2, 0) tensor, so

(1, 0)× (1, 0) = (2, 0) + (0, 1), 3× 3 = 6 + 3∗

where the two terms on the right are simply the symmetric and antisymmetric parts.

• Next, consider (1, 0)× (2, 0), i.e. the tensor ψiφjk. Consider the antisymmetric and symmetric

parts in ij. The antisymmetric part gives a (1, 1) tensor which is automatically traceless. The

symmetric part is symmetric in all three indices, so

(1, 0)× (2, 0) = (3, 0) + (1, 1), 3× 6 = 10 + 8.

Therefore 3× 3× 3 = 10 + 8 + 8 + 1, which we will see applied in the Eightfold Way.

• Finally, consider (1, 1)× (1, 1). The tensor ψijχ
k
ℓ has two distinct traces,

ψijχ
j
ℓ , ψijχ

k
i .

These yield two copies of (1, 1) plus a copy of (0, 0), since their traces are equal. Now consider the

traceless part T ikjℓ . It can be shown that T
[ik]
jℓ is automatically symmetric in j and ℓ, providing

a (0, 3). Similarly antisymmetrizing jℓ gives a (3, 0) and the symmetric remainder is (2, 2), for

(1, 1)× (1, 1) = (2, 2) + (3, 0) + (0, 3) + (1, 1) + (1, 1) + (0, 0).

This computation contains all the ideas necessary for the general case.

Example. Consider the three-dimensional harmonic oscillator. Such a system has an SU(3) sym-

metry; the generators take the form

Qα = a†k[Tα]kℓaℓ, Tα =
λα
2
.

The creation operators transform in the fundamental representation while the lowering operators

transform in the antifundamental. Note that the SU(2) rotational symmetry is a subset; it is

generated by

L3 = 2Q2, L1 = 2Q7, L2 = −2Q5.

The SU(3) symmetry explains additional degeneracy that the SU(2) symmetry does not. For

example, all six n = 2 states are degenerate, even though they split up as 5 + 1 under SU(2).
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Example. Consider two three-dimensional harmonic oscillators. If they are uncoupled, we have an

SU(3)× SU(3) symmetry. Now let

H int = λa†kb
†
kaℓbℓ.

This interaction is designed so it commutes with

Qα = a†k[Tα]kℓaℓ − b†k[T
∗
α]kℓbℓ

so an SU(3) symmetry remains. Here, the a†’s transform in the 3 and the b†’s transform in the 3.

Then we have [Qα, aℓbℓ] = 0 because removing a red quark and red antiquark conserves color. The

Hamiltonian commutes with the number operators, so the energy eigenstates have definite number.

In particular, the highest weight state of an (n,m) irrep is

(a†1)
n(b†3)

m(a† · b†)k|0⟩

for any k, and lowering generates degenerate states.

4.5 The Symplectic Groups

The symplectic groups are the least familiar of the matrix Lie groups.

• The real symplectic group Sp(2n,R) contains real 2n× 2n matrices which satisfy

RTJR = J, J =

(
0 In

−In 0

)
.

That is, they are matrices that preserve the quadratic form J , like how the elements of O(p, q)

preserve diag(Ip,−Iq).

• To count parameters, note that the left-hand side is automatically antisymmetric, so the number

of constraints is (2n)(2n− 1)/2. Then

dimSp(2n,R) = 4n2 − n(2n− 1) = n(2n+ 1).

• Directly from the definition, we see detR = ±1. However, it turns out that we automatically

have detR = 1. For example, for n = 1, the symplectic condition is simply detR = 1, so

Sp(2,R) ∼= SL(2,R).

• The symplectic groups appear in Hamiltonian mechanics. Combining the canonical positions

and momenta into a single vector Z, Hamilton’s equations are

dZa
dt

= Jab
∂H

∂Zb

and the form of the equations are preserved under any symplectic transformation Z → RZ.

• Similarly, one may define the complex symplectic groups Sp(2n,C), where the definition still

contains a transpose rather than a conjugate transpose, RTUR = U .
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• Finally, we define the compact symplectic group

USp(2n) = Sp(2n,C) ∩ U(2n).

This group is sometimes also called Sp(2n) or Sp(n). To count parameters, we write U = I+iH

where H is Hermitian, which gives HTJ + JH = 0. Then the general form of H is

H =

(
P W ∗

W −P T
)
, P † = P, W T =W, dimUSp(2n) = n(2n+ 1).

Note that H is generally traceless, so USp(2n) ⊂ SU(2n). In particular, USp(2) ∼= SU(2).

• The compact symplectic groups will appear in the Cartan classification; they also are involved

when writing down Lagrangians for Majorana spinors.

It is also useful to write an explicit basis for the algebra usp(2n).

• Using tensor product notation, e.g. J = I ⊗ iσ2, we claim that a basis for usp(2n) is given by

iA⊗ I, S1 ⊗ σ1, S2 ⊗ σ2, S3 ⊗ σ3

where A is real antisymmetric and the Si are real symmetric. This can be seen by directly

comparing with our general form above.

• Using this basis, it is easy to check that the algebra closes. For example,

[iA⊗ I, Sa ⊗ σa] = i[A,Sa]⊗ σa = iS′
a ⊗ σa

since the commutator of an antisymmetric and symmetric matrix is symmetric. We also have

[S1 ⊗ σ1, S
′
1 ⊗ σ1] = [S1, S

′
1]⊗ I = i(−iA)⊗ I

as well as

[S1 ⊗ σ1, S2 ⊗ σ2] = iS1S2 ⊗ σ3 + iS2S1 ⊗ σ3 = iS3 ⊗ σ3.

Similarly, it is straightforward to check that the symplectic condition JHJ = HT is satisfied.

• As an example, note that linear combinations of the generators I ⊗ iA and σ3 ⊗ S yield

H = diag(P,−P T ) for Hermitian p. This is the U(n) subgroup of USp(2n).

4.6 Projective Representations

We now consider how projective representations arise in quantum mechanics.

• Naively, symmetries in quantum mechanics are represented by unitary operators U(Ti). However,

since symmetries need only preserve probabilities, the most general possibility allows extra

phases. The most general possibility, by Wigner’s theorem, is

U(T2)U(T1)|n⟩ = eiϕn(T2,T1)U(T2T1)|n⟩

where the extra phase ϕn(T2, T1) is allowed to depend on the state |n⟩, and the U(Ti) may be

unitary or antiunitary. From here on we only consider the unitary case.
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• Now consider a superposition of two states. Then we have

eiϕnmU(T2T1)(|n⟩+ |m⟩) = eiϕnU(T2T1)|n⟩+ eiϕmU(T2T1)|m⟩

where we used linearity. Multiplying by U(T2T1)
−1, we conclude ϕnm = ϕn = ϕm. Hence

U(T2)U(T1) = eiϕ(T2,T1)U(T2T1).

Hence the U(Ti) form a unitary projective representation.

• If ϕn and ϕm were not equal, we could not even have a projective representation, which would

be an annoying mathematical obstacle. The exception is if the states |n⟩ and |m⟩ cannot be
superposed. For example, it is believed that it is impossible to superpose boson and fermion

states; it is forbidden by a “superselection rule”.

• This need not be viewed as a fundamental restriction, because as we will see, a symmetry group

can always be formally enlarged to remove superselection rules. For example, in the Galilean

group, we find that the projective phases picked up by multiplying boosts and translations is

proportional to the mass M , giving a superselection rule for mass. But if we formally add M

to the Galilean algebra, then there is no problem; all the phases ϕn become identically zero.

Hence the set of superselection rules is a matter of convention.

• Now we consider projective representations in detail. Associativity requires

ϕ(T2, T1) + ϕ(T3, T2T1) = ϕ(T3, T2) + ϕ(T3T2, T1).

If the phases have the form

ϕ(T, T ) = α(TT )− α(T )− α(T )

then these conditions are clearly satisfied; in this case all phases can be removed by taking

U(T ) = U(T )eiα(T ). We call the set of equivalence classes of ϕ(T2, T1) up to such phase

definitions two-cocycles.

• Hence we would like to ask when a representation is intrinsically projective, i.e. when it lies in

a nontrivial two-cocycle. Obstructions can come either from the Lie algebra itself, or from the

global topology of the Lie group.

We now focus on the Lie algebra.

• Redefining U(1) to be the identity, we must have

ϕ(T, 1) = ϕ(1, T ) = 0.

Hence when both T and T are near the identity, ϕ(T, T ) is small. At lowest order,

ϕ(T (θ), T (θ)) = fabθ
aθ
b
+ . . .

where the θa parametrize the Lie algebra.
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• This leads to the modified commutation relations

[tb, tc] = ifabc ta + iCbc1, Cbc = fcb − fbc.

The extra terms proportional to the identity are called central charges, and are the signature

of a projective representation at the level of the Lie algebra.

• The Jacobi identity still holds, and leads to the constraint

fabcCad + facdCab + fadbCac = 0.

This is automatically satisfied if Cab = f cabϕc for real constants ϕc. If this is true, we may

eliminate the central charges by switching to the generators t̃a = ta + ϕa.

• It turns out that for finite-dimensional representations, it is always possible to remove the

central charges. More generally, Bargmann’s theorem states that the central charges can always

be eliminated if the Lie algebra cohomology group H2(g,R) is trivial. This group is trivial for

all semisimple Lie algebras, which include the Lorentz algebra but not the Galilean algebra.

It is also trivial for the Poincare algebra; to show this explicitly we can eliminate the central

charges by hand.

• The existence of central charges is tied to the existence of central extensions. A central extension

of g is an exact sequence

0 → a → e → g → 0

so that a is in the center of e. It is nontrivial if the sequence does not split.

Next, we turn to the topology.

• It can be shown that a representation of g with no central charges must lift to a proper

representation of G if G is simply connected. More generally, any projective representation of

G corresponds to a proper representation of the universal cover of G.

• Intuitively, this can be done by simply exponentiating our representation of g naively. We know

the phases should work out near the origin, and the exponential map defines a “standard path”

from the origin to other points in G. We can only run into an inconsistency if there are paths

that cannot be deformed into each other, which correspond to nontrivial loops. We can get all

projective representations by combining a proper representation of G and a one-dimensional

proper representation of π1(G), giving the phases for each nontrivial loop.

• Hence, we can always avoid projective representations by passing to a central extension of

the algebra, exponentiating, then passing to the universal cover of the group. (This is really

the same thing; a universal cover is a central group extension by Zn.) This also removes all

superselection rules. The of symmetry group and superselection rules is really just a matter

of convenience, which depends on which superpositions we know how to prepare, and which

groups we think are easy to work with.

• Topologically, the Lorentz group is R3 × S3/Z2, and its universal/double cover is SL(2,C) =
R3 × S3. Hence the Lorentz group has projective representations. Since we are working with a

double cover, the phases can only be signs, U(Λ)U(Λ) = ±U(ΛΛ). These simply correspond to

integer and half-integer spin.
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5 Physical Applications

5.1 Isospin

We give a historical account of the development of isospin and some of its successes.

• In 1932, the neutron was discovered and found to have a mass very similar to that of the

proton. It was immediately proposed that the neutron and proton form a doublet under

an SU(2) symmetry of the strong interaction, called isospin, with the symmetry broken by

electromagnetic effects.

• We will refer to both the quantum numbers s and m as the ‘spin’. Similarly we refer to both I

and I3 as the isospin.

• In 1935, Yukawa proposed that the nuclear force could be mediated by the exchange of mesons.

In 1947, the charged pions π± were discovered which participated in the processes

p→ n+ π+, n→ p+ π−.

Applying isospin addition, the isospin of the charged pions can be either 0 or 1. Since the

charged pions have nearly the same mass, we suppose they are part of an isospin triplet, leading

to the prediction of a third pion π0 which was found in 1950.

• The Gell-Mann–Nishijima formula is the empirical result

Q = I3 +
Y

2

where Y is the hypercharge, an operator lying outside of SU(2) conserved by strong interactions.

For nucleons, Y = 1, while for pions Y = 0.

• As an example, the deuteron is a bound state of the proton and neutron, and can be produced

in the processes

p+ p→ d+ π+, p+ n→ d+ π0.

Then the isospin of the deuteron is either 0 or 1. In the case of isospin 1, applying the isospin

raising and lowering operators implies the existence of p-p and n-n bound states, which are

not observed. Hence the deuteron has isospin 0. Since the deuteron has zero orbital angular

momentum, it must thus have spin 1 to make the full wavefunction antisymmetric.

• Isospin can also make quantitative predictions. The amplitudes for these two processes are

proportional to the Clebsch–Gordan coefficients〈
1, 1

∣∣∣∣12 , 12 , 12 , 12
〉

= 1,

〈
1, 0

∣∣∣∣12 , 12 , 12 ,−1

2

〉
=

1√
2

respectively. The cross section for the first process is twice as large, as confirmed in 1953.

• As another example, it was found that the cross section for

π+ + p→ π+ + p

had a sharp peak, which could be interpreted as the formation of a short-lived particle, or

‘resonance’, called the N∗. By adding I values, the resonance could have I = 1/2 or I = 3/2,
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but since it has I3 = 3/2 it must have I = 3/2. Then isospin predicts three additional resonances,

which were shortly found. Again, the Clebsch–Gordan coefficients provide simple relationships

between the cross sections.

• Finally, we turn to the couplings between the pions and nucleons. The couplings allowed

by isospin are the two shown above, plus p → π0 + p and n → π0 + n. Using the same

Clebsch–Gordan symbols as above we find

gp,π0p = g, gp,π+n = −
√
2g, gn,π−p =

√
2g, gn,π0n = −g.

Therefore the cross sections for pp and nn scattering are equal, σ ∝ g2. For pn scattering, we

can have either an intermediate π0 or intermediate charged pion (by the u-channel), giving

σ ∝ (2− 1)2g2 = g2. Thus all nucleons are interchangeable under the strong force as expected.

• Note that there aren’t two separate contributions for an intermediate π+ or intermediate π−.

These two possibilities form a single Feynman diagram, where the virtual particle can have

either positive or negative energy.

• Finally, the couplings above can also be found by building an isospin-scalar Lagrangian. The

proton and neutron are combined into fields N i and Ni, while the pions form a traceless tensor

ϕij . Hence the only possible term is ∆L = Niϕ
i
jN

j , which gives the couplings above.

We can also formalize isospin using creation and annihilation operators.

• For the proton and neutron, we define

|p, α⟩ = a†1/2,α|0⟩, |n, α⟩ = a†−1/2,α|0⟩

where the ±1/2 stands for the isospin and α stands for everything else about the state. Since

nucleons are fermions, these creation operators anticommute.

• We can also write the isospin generators in terms of these operators,

Ta =
1

2
a†m′,α(σa)m′mam,α, Ta|m,α⟩ = (J1/2

a )m′m|m′, α⟩ = 1

2
(σa)m′m|m′, α⟩

where there are implicit sums over m, m′, and α.

• Note that |0⟩ is an isospin singlet while the |m,α⟩ states form an isospin doublet. Then the

operators a†±1/2,α are an isospin 1/2 tensor operator, e.g.

[Ta, a
†
m,α] = (J1/2

a )m′ma
†
m′,α.

For more species of particles, we simply augment a† with an extra index and sum over it. Note

that whether the creation operators commute or anticommute depends on the particle, but the

tensor operator relation above always uses commutators.
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5.2 ∗ The Eightfold Way

Next, we introduce the Eightfold Way historically.

• In the early 1950s, a number of new particles were discovered, in particular four pseudoscalar

K mesons. Since the three pions were known, there was a total of seven pseudoscalar mesons,

which were proposed to form an irrep (since all particles in an irrep automatically have the

same parity). Gell-Mann proposed that the irrep was the (1, 1) of SU(3), thus predicting an

eighth particle, the η0. (There is also another octet containing vector mesons.)

• Part of the confusion was that the SU(3) symmetry was much more badly broken than isospin;

the masses of the K mesons were over three times the masses of the pions, though they were

still significantly lighter than any baryons.

• In addition, experimentalists found an isospin triplet of Σ baryons, an isospin doublet of Ξ

baryons, and an isospin singlet ∆ baryon, which Gell-Mann proposed fit with the neutron and

proton in another (1, 1) of SU(3).

• Finally, a number of short-lived hadron resonances were known, including the four N∗ particles

above. They were proposed to form the (3, 0) of SU(3), predicting a tenth resonance, the Ω.

• The triality of the (m,n) irrep of SU(3) is defined as (m − n)(mod 3). Note that all of the

irreps listed above have zero triality. Physically, all of these representations are built from the 3

(containing quarks) and the 3 (containing antiquarks). Thus triality zero ensures that observed

mesons and baryons have integer charge and baryon number. Confinement in QCD ensures

that all observable free particles have zero triality.
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• By restricting to SU(2) ⊂ SU(3), an SU(3) irrep breaks into isospin irreps, e.g. 3 → 2 + 1, so

we can recover isospin from the Eightfold Way. The isospin and hypercharge obey

I3 =
1

2
diag(1,−1, 0), Y =

1

3
diag(1, 1,−2)

so the up and down quark have hypercharge 1/3, and the strange quark has hypercharge

−2/3. Then hypercharge generates a U(1) subgroup and we can think of restricting SU(3) to

SU(2)× U(1), so that every isospin irrep is labeled by a hypercharge.

• We write I3Y to indicate an isospin I irrep with hypercharge Y . Then we have

3 → 21 + 1−2, 3∗ → 2−1 + 12.

For example, decomposing both sides of 3× 3∗ = 8 + 1 yields

8 → 30 + 10 + 23 + 2−3

which reproduces the structure of the meson and baryon octets. This is experimentally useful,

since isospin is a much more accurate symmetry than the SU(3).

• Finally, assigning the quarks charges of (2/3,−1/3, 2/3) and isospin (1/2,−1/2, 0) recovers the

Gell-Mann–Nishijima formula. Physically, a formula like this had to work because electromag-

netic interactions preserve isospin and hypercharge, so the electromagnetic field has to couple

to some combination of I3 and Y , and we call this combination the charge.

5.3 Roots and Weights for su(3)

In this section, we investigate the structure of the Lie algebra su(3).

• The Gell-Mann matrices are

λi =

(
σi

0

)
, λ4 =

 1

1

 , λ5 =

 −i

i


and

λ6 =

 1

1

 , λ7 =

 −i
i

 , λ8 =
1√
3

1

1

−2

 .

The pairs λ4 and λ5 are analogous to σx and σy but act on the first and third column, while the

pair λ6 and λ7 does the same on the second and third column. The matrices are normalized so

that trλaλb = 2δab.

• For concreteness, we work in the fundamental representation of su(3) using the universal physics

normalization convention for the fundamental,

Ta = λa/2, trTaTb =
1

2
δab.

All our results will hold in general, since they depend only on the structure constants of su(3).
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• The Lie algebra contains three copies of the su(2) algebra, defining

I± = T1 ± iT2, U± = T6 ± iT7, V± = T4 ± iT5.

These are the raising and lowering operators for

[I+, I−] = 2I3, [U+, U−] = 2U3, [V+, V−] = 2V3.

There are also nontrivial commutators between distinct raising and lowering operators.

• We identify (the z-component of) isospin with T3 and hypercharge Y with (2/
√
3)T8. Then the

step operators change the isospin and hypercharge by

I± : ±(1, 0), U± : ±(−1/2, 1), V± : ±(1/2, 1).

These vectors are known as the roots of su(3).

• The raising and lowering operators have a simple interpretation in the quark model. Here, I+
replaces a down quark with an up quark, U+ replaces a strange quark with a down quark, and

V+ replaces a strange quark with an up quark.

• Reverting to the ‘mathematical’ normalization (i.e. T8 instead of Y ), the root vectors are

±(1, 0), ±(−1/2,
√
3/2), ±(1/2,

√
3/2).

Then all of the roots have equal length, and they form a regular hexagon.

The root diagram gives us some insight into the structure of the Lie algebra and its representations.

• Given a representation, we may simultaneously diagonalize T3 and T8. Then the weights are

the set of vectors of eigenvalues. Since the raising and lowering operators modify weights by

roots, the weights must form part of a hexagonal lattice.

• The roots give us some commutators for free. For example, [U+, I−] must be proportional to a

step operator with root U++I−, but there is no such root, so the commutator is zero. Similarly,

[U+, I+] must be proportional to V+.

• In general, it turns out all irreps of su(3) have weight sets that are hexagons built around an

equilateral triangle core, with the degeneracy increasing by one every time we go inward by one

hexagonal layer. We’ll prove this later with tensor methods.
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• The simplest examples are the fundamental representation 3 and the antifundamental represen-

tation 3, occupied by the quarks and antiquarks.

• Note that the treatment is completely symmetric between I, U , and V . Previously, we used

isospin and Clebsch–Gordan coefficients to relate cross sections involving particles in the same

isospin irrep. Similarly we can use “U -spin” to relate particles in the same U -spin irrep.

Note. The Schwinger model. We can get intuition for the algebra for su(n) in general using

something like the quark model. First, consider two uncoupled harmonic oscillators of equal

frequency, creation operators a†i , and number operators Ni. Alternatively, these could be the two

components of a two-dimensional harmonic oscillator. Then the operators

J+ = a†1a2, J− = a†2a1, J3 = N1 −N2

form an su(2) algebra. The states |n,m⟩ decompose into su(2) irreps; acting with J− on the highest

weight vector |n, 0⟩ gives the n + 1-dimensional irrep. This is the Schwinger model of angular

momentum. We may physically interpret the state |n,m⟩ as containing n +m identical spin 1/2

particles, symmetrized, with n in the spin up state and m in the spin down state. In the case of

isospin, the excitations of the oscillators are up and down quarks, which have isospin ±1/2. More

generally, the Schwinger model works for su(n), where the raising and lowering operators create

one of n particles and destroy another; the quark model is just the case n = 3.

Next, we apply our results to find mass splittings for the four hadron octets/decuplets.

• We begin with the pseudoscalar meson octet, using the wavefunction technique. First, we

construct the meson states in terms of the quark states. For example,

|π+⟩ = |ud⟩

which means by isospin lowering that

|π0⟩ = 1√
2

(
|uu⟩+ |dd⟩

)
.

We can then infer |η⟩ by orthogonality. None of these manipulations require quarks to actually

exist; we can simply think of them at this stage as a useful notational device.

• Continuing, we find the meson wavefunctions fit into a traceless tensor Φij so that

Φ =

π0/
√
2 + η/

√
6 π+ K+

π− −π0/
√
2 + η/

√
6 K0

K− K
0 −2η/

√
6

 .

Under this notation, we have

Φij |ij⟩ = π0|π0⟩+ . . .+ η|η⟩.

If we wanted to work in more detail, the coefficients of the kets here could be other wavefunctions

that account for, e.g. position degrees of freedom.
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• In principle we could have parametrize the diagonal in a different way. However, mesons with

strange quark content are quite different from those without it, because of the strange quark

mass, so the π0 should be split off on its own. Then the η is determined by orthogonality.

• The utility of this notation is that we can write down Lagrangians or Hamiltonians that are

SU(8) scalars by just properly contracting all the indices. We are interested in mass terms

which are bilinear in Φ, and

8× 8 = 27 + 10 + 10∗ + 8 + 8 + 1.

One has to be careful because matrix and tensor notation conflict. With tensors, the 1 gives

⟨Ĥ0⟩ = Φ
i
jΦ

j
i .

where the bar denotes a bra wavefunction. In matrix notation, taking the bar means taking

the adjoint, giving

⟨Ĥ0⟩ = Φ†i
jΦ

j
i = Φ∗j

iΦ
j
i =

∑
ij

|Φji |
2

where, since we’re no longer working with tensors, the indices no longer line up. All the masses

are the same, as expected. If we worked only with matrices, we could also have constructed the

1 by constructing a valid scalar expression from Φ† and Φ, which here would be trΦ†Φ.

• Next, we break SU(3) while preserving isospin. The situation is simplified because the mesons

are each others’ antiparticles; since antiparticles have the same mass as the corresponding

particles, the perturbing Hamiltonian Ĥ ′ must be symmetric under Φ → Φ†. Thus it must

contain one of the symmetric pieces of 8× 8, leaving only the 27 and 8.

• We guess the 27 does not contribute. Then the Ĥ ′ wavefunction H ′ is in the 8, so it is again a

traceless matrix in flavor space, which must commute with isospin and hypercharge. Thus we

must have

⟨Ĥ ′⟩ = tr((Φ†Φ+ ΦΦ†)H ′) = λ tr((Φ†Φ+ ΦΦ†)T 8).

Since Ĥ0 and Ĥ ′ are described by two parameters and we have three distinct masses (four

isospin triplets, but two related by Ĉ), we expect to get one nontrivial relation.

• For convenience, we may shift H ′ by the identity so only H ′3
3 is nonzero. Switching to matrix

notation, we have

⟨Ĥ ′⟩ ∝
∑
i

|Φi3|2 + |Φ3
i |2 = |K−|2 + |K0|2 + |K0|2 + |K+|2 + 4

3
|η|2

from which we conclude

4mK = 3mη +mπ.

This is reasonably accurate, but becomes much more accurate if we square all the masses. This

is fair, since both expressions hold to first order in the perturbation, and the squared version

can be justified to be more accurate by chiral perturbation theory.

• There’s an easier way to come to this conclusion: if the entire Hamiltonian is determined by two

parameters, those parameters are essentially the up/down quark mass and the strange quark

mass. Then the mass splittings are entirely due to the amount of strange quark content in each

meson. This isn’t true in general but it’s a nice shortcut.
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Now we consider the other octets and decuplets, which present more challenges.

• In the vector meson octet, the analogous formula is wrong, because the mesons we observe

don’t have the naive quark content shown above; mesons with the same quantum numbers can

mix, and the isospin singlet ω mixes with the ϕ so that two of the physical states are

|ss⟩, 1√
2

(
|uu⟩+ |dd⟩

)
.

This makes sense because the mixing is induced by the SU(3)-breaking perturbation.

• Given that mixing can happen, we must explain why the η doesn’t mix with the η′. This has to

do with instanton effects and the axial anomaly, which conspire to make the η′ much heavier.

• Next, consider the baryon octet. The reasoning is similar, with

Φ =

Σ0/
√
2 + Λ/

√
6 Σ+ p

Σ− −Σ0/
√
2 + Λ/

√
6 n

Ξ− Ξ
0 −2Λ/

√
6

 .

The antiparticles sit in a different octet, so we can’t use symmetry. Then we have two terms,

⟨Ĥ ′⟩ = λ1 tr Φ
†ΦT 8 + λ2 tr ΦΦ

†T 8 ∼
∑
i

λ1|Φi3|2 + λ2|Φ3
i |2.

Since the Hamiltonian has three terms and there are four masses, we again have a relation,

2(mp +mΞ) = 3mΛ +mΣ.

This is the Gell-Mann–Okubo formula.

• Finally, we consider the baryon decuplet, also called the ‘hadron resonances’. Given the above

successes we again assume H ′ is in an 8. But since 10× 10× 8 has only one factor of 1, there

is only one term. It must be proportional to the hypercharge, so the splittings are uniform,

mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ −mΞ∗ .

This was used by Gell-Mann to predict the mass of the Ω.

• Given the quark model, the part of the Hamiltonian that is bilinear in the quarks must be in

3× 3 = 8 + 1, justifying the assumption that H ′ is in an 8.

• One final example is the computation of the baryon octet magnetic moments. The magnetic

moment operator must be proportional to the charge Q, so it is in 8 by the Gell-Mann–Nishijima

formula. Thus there are two allowed terms, so all of the magnetic moments can be written in

terms of the proton and neutron magnetic moments.
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6 The Cartan Classification

6.1 ⊛ The Cartan–Weyl Basis

We now introduce the Cartan–Weyl basis. In this section, all Lie algebras are implicitly complex.

• We say X ∈ g is ad-diagonalizable if adX : g → g is diagonalizable. A Cartan subalgebra h of

g is a maximal abelian subalgebra containing only ad-diagonalizable elements. They are not

unique, but their dimension r = dim h is, and is called the rank of g. Physically, the rank is the

number of independent quantum numbers.

• The adjoint maps of the generators H i of a Cartan subalgebra g commute, as

[H i, Hj ] = 0, [adHi , adHj ] = ad[Hi,Hj ] = 0.

Then they are simultaneously diagonalizable, and the rest of the Lie algebra is spanned by

simultaneous eigenvectors Eα, called step operators, which satisfy

[H i, Eα] = αiEα

where α is an r-dimensional complex vector called a root. Note that α is nonzero, because

elements with α = 0 would be in the Cartan subalgebra. A basis consisting of the H i and Eα

is called a Cartan–Weyl basis of g.

• The set of roots Φ of g is called the root space. We can think of each root α as an element of

the dual space h∗, so that α(H) is the eigenvalue of Eα under adH ,

[H,Eα] = αieiE
α = α(H)Eα, H = H iei.

Here the ei ∈ C are the components of H.

Example. As we’ve already seen, for su(2) we have r = 1, where we may take g0 to be spanned by

H = 2iT 3 = diag(1,−1). For su(n) note that we have the commuting operators

(H i)αβ = δαiδβi − δα(i+1)δβ(i+1).

To show that this is indeed a Cartan subalgebra, note that the general element in the span of the

H i has the form H = diag(λ1, . . . , λn) with the λi summing to zero. Then if adH X = µX,

(λℓ − λm)Xℓm = µXℓm

with no summation. The solutions are of the form

X = E(r,s), E
(r,s)
ℓm = δℓrδms, µ = λr − λs

with r ̸= s. Together, the H i and the E(r,s) span the algebra, and all of the roots of the E(r,s) are

nonzero. Hence the H i are a Cartan subalgebra and su(n) has rank n− 1.

Note. In the special case of su(n), the ad-diagonalizable elements are precisely the diagonal elements.

In general, for a matrix Lie algebra, a good guess for a Cartan subalgebra is the elements that are

diagonal or almost diagonal, as we’ll see in more detail below.
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To make further progress, we introduce the Killing form.

• The Killing form is defined as

κ(X,Y ) = tr(adX adY ).

It is symmetric by the cyclic property of the trace, which is a trace for linear operators on g,

and bilinear, so it is an inner product.

• Explicitly, working in a basis {T a}, we have

[X, [Y, Z]] = XaYbZc[T
a, [T b, T c]] = XaYbZcf

ad
e f

bc
dT

e.

Finally, taking the trace contracts the indices e and c together, giving

κ(X,Y ) = κabXaYb, κab = fadc f
bc
d

where the κab are the components of the Killing form.

• The Killing form is invariant under the adjoint action of g,

κ([Z,X], Y ) + κ(X, [Z, Y ]) = 0.

To show this, we simply expand the definitions,

κ([Z,X], Y ) = tr(ad[Z,X] adY ) = tr(adZ adX adY − adX adZ adY ).

This cancels with the other term using the cyclic property of the trace. Intuitively, this is just

the infinitesimal version of the adjoint action of G on g, i.e. conjugation by a group element,

and the two terms come from the product rule. This indicates that the Killing form is ‘the

same’ everywhere in the group.

• For a simple Lie algebra, it can be shown that the properties of symmetry, linearity, and

invariance under the adjoint action determine the inner product up to scalar multiples.

• A real Lie algebra is of compact type if there is a basis where the Killing form is negative

definite. It can be shown that every finite-dimensional complex semi-simple Lie algebra has a

real form of compact type, and if a Lie group G is compact, its Lie algebra is of compact type.

• Cartan’s criterion states the Killing form is nondegenerate if and only if g is semi-simple.

We’ll show only the forward direction. Suppose g has an abelian ideal i so that the ideal has

basis {T i} and the rest of the Lie algebra has basis {T a}. Then [T i, T j ] = 0 since i is abelian,

and [T i, T a] ∈ i since i is an ideal.

Now consider adX adY Z where Y ∈ i. If Z ∈ i, this is automatically zero. If Z ̸∈ i, then

adY Z ∈ i, and hence adX adY Z ∈ i. Hence tr adX adY = 0, so κ(X,Y ) = 0 for any Y ∈ i, so κ

is degenerate.

• As a partial converse, we’ll show that if g is simple, the Killing form is nondegenerate. If the

Killing form were degenerate, then the set of elements Y so that κ(X,Y ) = 0 for all X ∈ g

forms a nontrivial ideal i, as

κ(X, [Z, Y ]) = −κ([Z,X], Y ) = 0

for any Z ∈ g, so [Z, Y ] ∈ i.
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Example. Consider a simple matrix Lie algebra. Then trXY satisfies the properties of the Killing

form, so it is proportional to the Killing form; this makes computations much easier. In particular,

it’s easy to show the Killing form is negative definite for u(n), since for X ∈ u(n),

trX2 = − trXX† = −
∑
ij

|Xij |2 < 0

for any nonzero X.

One might wonder why trX trY wouldn’t work as well. This quantity vanishes identically, since

trEα = 0 since there are no diagonal elements, while trH i = 0 because the eigenvalues of su(2)

representations sum to zero. Note that the latter statement fails when there are abelian ideals.

Note. The Killing form defines a metric on TeG, and we may extend this to a metric on G by

left and right-translation. Adding an extra minus sign, if g is of compact type, then the metric

on G is positive definite, and it can be shown that G is compact. Geodesics corresponding to the

Levi–Civita connection of this metric are precisely the one-parameter subgroups of G.

Note. The Killing form is used to raise and lower all indices in g, e.g. we may define fabc = κcdfabd .

Now for a Lie algebra of compact type, suppose we choose a basis T a where κab = −δab. Then

0 = κ(T a, [T b, T c]) + κ([T b, T a], T c) = f bca + f bac

so in this basis, fabc is totally antisymmetric. We’ve often chosen our bases to satisfy this, such as

in su(2), where we had fabc = ϵabc. As another example, the quadratic Casimir is generally defined

as κabTaTb, but we defined it earlier as
∑

a(Ta)
2 because we used this special basis.

Next, we find some more properties of the root system of a semi-simple Lie algebra.

• The roots span all of h∗. This is just because if some direction were not represented, we would

have a Cartan subalgebra element that commuted with everything in the group, giving an

abelian ideal.

• The roots are nondegenerate, so there is exactly one step operator Eα for each root α. We’ll

prove this fact below and simply take it as given here.

• Note that adEα raises roots by α, where we regard the Cartan subalgebra itself as associated

with the zero root. Then we must have

κ(H i, Eα) = 0, κ(Eα, Eβ) = 0 if α+ β ̸= 0

because only adEα adE−α and adHi adHj can take roots to themselves.

• To prove these results more formally, we can use the invariance of the Killing form. Since

α(H ′)κ(H,Eα) = κ(H, [H ′, Eα]) = −κ([H,H ′], Eα) = 0

for any H ′, we must have κ(H,Eα) = 0. Similarly

(α(H ′) + β(H ′))κ(Eα, Eβ) = κ([H ′, Eα], Eβ) + κ(Eα, [H ′, Eβ]) = 0

so if α+ β ̸= 0, then κ(Eα, Eβ) = 0.
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• Next, we can get constraints from the nondegeneracy of the Killing form.

– If α is a root, so is −α, with κ(Eα, E−α) ̸= 0, because otherwise κ(Eα, ·) = 0.

– The Killing form is nondegenerate on h, as if κ(H i, Hj) = 0 for all j, then κ(H i, ·) = 0.

• Since the Killing form is a nondegenerate inner product on h, we may use it to correspond

elements of h and h∗ and hence define a nondegenerate inner product on h∗. In components,

κ(H,H ′) = κijeie
′
j , H = H iei, H ′ = H ie′i

and the dual element Hα of α is defined by

κ(Hα, H) = α(H), Hα = (κ−1)ijα
jH i.

We define an inner product on the Hα, and hence an inner product on the roots, by

(α, β) = κ(Hα, Hβ) = (κ−1)ijα
iβj .

The inverse here is just the result of lowering indices, analogous to how the metric and inverse

metric are related in differential geometry.

Next, we work out more of the algebra in the Cartan–Weyl basis.

• By the Jacobi identity, we have

[H i, [Eα, Eβ]] = −[Eα, [Eβ, H i]]− [Eβ, [H i, Eα]] = (αi + βi)[Eα, Eβ].

Therefore, [Eα, Eβ] is proportional to Eα+β if α+ β is a root, as anticipated above.

• For the case α+ β = 0, note that

κ([Eα, E−α], H) = κ(Eα, [E−α, H]) = α(H)κ(Eα, E−α) = κ(Hα, H)κ(Eα, E−α)

where we used the invariance of the Killing form. By the results we found from nondegeneracy

of the Killing form, we may conclude

Hα =
[Eα, E−α]

κ(Eα, E−α)
.

• In summary, the algebra for the step operators takes the form

[Eα, Eβ] =


κ(Eα, E−α)Hα α+ β = 0,

Nα,βE
α+β α+ β ∈ Φ,

0 otherwise.

Here, the Nα,β are unknown complex numbers. Finally, we have

[Hα, Eβ] = (κ−1)ijα
i[Hj , Eβ] = (κ−1)ijα

iβjEβ = (α, β)Eβ.

• To simplify these relations, we rescale all of our operators, as

eα =

√
2

(α, α)κ(Eα, E−α)
Eα, hα =

2

(α, α)
Hα.

Here we’ve implicitly assumed that (α, α) ̸= 0, which we will show below. Our algebra simplifies

to the final form

[hα, hβ] = 0, [hα, eβ] =
2(α, β)

(α, α)
eβ, [eα, eβ] =


hα α+ β = 0,

nα,βe
α+β α+ β ∈ Φ,

0 otherwise.
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6.2 ⊛ The Root Space

Our normalization above makes it easy to identify sl(2) subalgebras of g.

• For any root α, the set {hα, eα, e−α} obeys

[hα, e±α] = ±2e±α, [eα, e−α] = hα

which are exactly the commutation relations for sl(2). We call this subalgebra sl(2)α.

• Define the α-string passing through β as the set

Sα,β = {β + nα ∈ Φ |n ∈ Z}

and define a corresponding subspace of g,

Vα,β = span({eδ | δ ∈ Sα,β}).

• Next, consider the action of sl(2)α on Vα,β. We have

[hα, eβ+nα] =
2(α, β + nα)

(α, α)
eβ+nα =

(
2(α, β)

(α, α)
+ 2n

)
eβ+nα

and

[e±α, eβ+nα] ∝

{
eβ+(n±1)α if β + (n± 1)α is a root,

0 otherwise.

Therefore, Vα,β is a representation of sl(2)α.

• Now we can prove the nondegeneracy of the roots. Let Vα,α contain all raising and lowering

operators with roots nα, plus the single operator hα for the ‘zero root’. By similar reasoning

to above, it is a representation of sl(2)α, where all the weights are even integers.

Since there is only one element with weight zero, Vα,α is an odd-dimensional sl(2)α irrep. But

we also know sl(2)α is a subrepresentation of Vα,α, so sl(2)α = Vα,α. Then the roots ±α are

nondegenerate, and furthermore no other integer multiples of α can be roots.

• Note that roots of the form β = ±α/2 above are allowed by sl(2)α representation theory. But

if β is a root, then 2β is a root, a contradiction. Therefore if α is a root, the only nonzero

multiple of it that is also a root is −α.

• Returning to the general case Vα,β note that the weights are

S =

{
2(α, β)

(α, α)
+ 2n

∣∣∣∣∣β + nα ∈ Sα,β

}
.

Since the weights are nondegenerate and evenly spaced, the representation is a finite-dimensional

irrep. Therefore we must have S = {Λ,−Λ + 2, . . . ,Λ− 2,Λ} for some integer Λ.

• If the range of n is n− ≤ n ≤ n+, we have

−Λ =
2(α, β)

(α, α)
+ 2n−, Λ =

2(α, β)

(α, α)
+ 2n+.

Adding these equations gives

2(α, β)

(α, α)
= −(n+ + n−) ∈ Z.
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The result above gives a strong constraint as the roots, as we now show.

• First, we return to the original definition of the Killing form. Since [H i, Eα] = αiEα,

κij = κ(H i, Hj) = tr(adHi adHj ) =
∑
δ∈Φ

αiαj .

This is essentially a completeness relation, as

(α, β) = αiβj(κ−1)ij = αiβjκ
ij =

∑
δ∈Φ

αiδ
iδjβj =

∑
δ∈Φ

(α, δ)(β, δ).

• Now, we know the ratio (α, β)/(α, α) is real from our work above. But then

(α, β)

(α, α)(β, β)
=
∑
δ∈Φ

(α, δ)

(α, α)

(β, δ)

(β, β)

which tells us that (β, β) is real, and hence (α, β) is real. Moreover, we have

(α, α) =
∑
δ∈Φ

(α, δ)2 > 0

by nondegeneracy. Therefore, if we restrict the root space h∗ to the real span of the roots h∗R,

we have a Euclidean inner product. This is important, since so far every structure introduced

has been complex.

• The real span of the roots has the same dimension, as a real vector space, as h∗ does as a

complex vector space. To see this, choose a basis of roots α(i) ∈ h∗. Then for any β ∈ Φ,

β =
∑
i

βiα(i), (β, α(j)) =
∑
i

βi(α(i), α(j)).

Since the inner product is nondegenerate, combining these equations for all j gives βi ∈ R, so
Φ ⊂ spanR({α(i)}), which is an r-dimensional real vector space.

• We can thus define the length of a root |α| =
√
(α, α), as well as angles ϕ between roots in the

standard way. Now we apply our earlier constraints, for

2(α, β)

(α, α)
=

2|β|
|α|

cosϕ ∈ Z,
2(β, α)

(β, β)
=

2|α|
|β|

cosϕ ∈ Z.

Multiplying these equations gives

4 cos2 ϕ ∈ Z

which implies the angles between roots must be 0, π/6, π/4, π/3, π/2, or their supplements.

• These conditions are geometrically intuitive. The constraint 2(α, β)/(α, α) ∈ Z says that the

states in the α-string through β have α values that are half-integers or integers, in accordance

with sl(2) representation theory. The other constraint says the same for the β-string through

α. Then the constraint is trivial when α and β are orthogonal, but very restrictive otherwise.

• To summarize, in the Cartan–Weyl basis the Killing form is a block-diagonal matrix, with a

block for the Cartan subalgebra, and 2× 2 blocks for pairs of roots ±α.
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Next, we define simple and positive roots.

• We divide Φ into two halves Φ±, called the positive and negative roots, by drawing an arbitrary

hyperplane through the origin that does not intersect any root. Note that the Φ± are each

closed under addition. We call step operators associated with positive roots raising operators,

and with negative roots lowering operators.

• A simple root is a positive root which cannot be written as a positive linear combination of

positive roots. Geometrically, these are typically the positive roots closest to the hyperplane.

• If α and β are simple roots, then α − β is not a root. To see this, note that if α − β were a

positive root, α could not be simple, while if it were a negative root, β could not be simple.

• If α and β are distinct simple roots, then the α-string through β has

n− = 0, n+ = −2(α, β)

(α, α)

Since we know n+ ≥ 0, we have (α, β) ≤ 0.

• The simple roots are linearly independent. Denoting the simple roots by α(i), let

λ =
∑
ci≥0

ciα(i) +
∑
ci<0

ciα(i) ≡ λ+ − λ−.

Then we have, assuming the ci are not all zero,

(λ, λ) = (λ+ − λ−, λ+ − λ−) > −2(λ+, λ−) = 2
∑
ci≥0

∑
cj<0

cicj(α(i), α(j)) > 0

because (α, β) ≤ 0 for simple roots, so λ ̸= 0 as desired.

• Every positive root can be written as a linear combination of the simple roots with nonnegative

integer coefficients. This can be shown recursively: if α is positive and simple, we’re done.

Otherwise α = α1+α2 and we may repeat the procedure until we get the desired decomposition.

• As a result, all roots can be written as an integer combination of the simple roots. Then the

simple roots are a basis for h∗R, so there are r of them.

6.3 ⊛ The Cartan Matrix

The content of the simple roots can be encoded in the Cartan matrix.

• Define the elements of the Cartan matrix by

Aij =
2(α(i), α(j))

(α(j), α(j))
∈ Z.

We note that Aii = 2, and Aij = 0 if and only if Aji = 0. Since the inner product of roots is

negative, Aij ≤ 0 for i ̸= j. Intuitively, −Aij is the number of times α(j) can be added to α(i)

and yield a root; this interpretation also works for the diagonal elements.
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• For each simple root α(i), we have an su(2) subalgebra with operators hi ≡ hα(i) , ei± ≡ e
α(i)

± ,

[hi, ei±] = ±2ei±, [ei+, e
i
−] = hi.

These 3r operators together generate all of g by brackets. A Cartan–Weyl basis chosen so that

these 3r operators are normalized in this way is called a Chevalley basis.

• In a Chevalley basis, the algebra is

[hi, hj ] = 0, [hi, ej±] = ±Ajiej±, [ei+, e
j
−] = δijh

i.

We also have the Serre relations

(adei±
)1−A

ji
ej± = 0

by the intuitive interpretation of Aij above.

• A finite-dimensional, semi-simple complex Lie algebra is uniquely determined by its Cartan

matrix. To reconstruct g, we start with the simple roots and construct all α(i) strings through

α(j), with the Cartan matrix telling us the length of all root strings. We then repeat this

procedure until no more new roots appear.

• The Cartan matrix satisfies detA > 0. To see this, note that the inner product in the basis of

simple roots is

(λ, µ) = (α(i), α(j))λ
iµj , λ =

∑
i

λiα(i), µ =
∑
i

µiα(i).

Since the inner product is positive definite, the matrix with entries (α(i), α(j)) is positive definite

and hence has positive determinant. The Cartan matrix is the product of this matrix with a

diagonal matrix with entries 2/(α(i), α(i)) which also has positive determinant.

• If g is simple, then the Cartan matrix is not reducible, i.e. there is no reordering of the simple

roots that makes A block-diagonal. Essentially, if the Cartan matrix were reducible, then the

step operators generated by one of the blocks of simple roots (along with the corresponding

Cartan subalgebra elements) would form a proper ideal of g.

The above constraints very strongly restrict the form of the Cartan matrix.

• By our previous identities, we have

AijAji = 4 cos2 ϕ ∈ Z

which implies that AijAji ∈ {0, 1, 2, 3}. There are only a few possibilities. Taking the α(i) root

to not be shorter without loss of generality, we have:

– Aij = Aji = 0. The simple roots are perpendicular with indefinite ratio of lengths; no other

roots are attained by adding them.

– Aij = Aji = −1. The simple roots have equal length and angle 120◦, and one additional

root is attained by adding them.

– Aij = −2, Aji = −1. Then |α(i)| =
√
2|α(j)| and the angle is 135◦.

– Aij = −3, Aji = −1. Then |α(i)| =
√
3|α(j)| and the angle is 150◦.
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The roots generated by these three latter possibilities are shown below.

There are no more possibilities, by the detA > 0 constraint.

• One useful fact is that if α and β are roots, then so is the ‘Weyl reflection’ of β in the hyperplane

normal to α. This can be shown by casework with our results on root strings. The set of Weyl

reflections form the Weyl group.

• If g is simple, it can be shown that the simple roots can only have two distinct lengths. In fact,

one can show there are only two distinct lengths among all the roots. The proof is easy if we

ignore the case of perpendicular roots; we can deal with those by Weyl reflection.

• The information in the Cartan matrix can be written in a Dynkin diagram. We draw a node

for every simple root α(i), then connect nodes i and j with max(|Aij |, |Aji|) lines. If the roots

have different lengths, we draw an arrow pointing from the longer root to the shorter, or shade

the shorter roots black. Note that Dynkin diagrams must be connected, by simplicity.

• The set of all Dynkin diagrams is shown below, classifying all simple complex Lie algebras.

Apart from the five exceptional cases, the four infinite families are known in physics as

An = su(n+ 1) ∼= sl(n+ 1), Bn = so(2n+ 1), Cn = sp(2n), Dn = so(2n).

In all cases the subscript indicates the number of roots. Note that D1 isn’t counted since so(2)

is not simple. Also, D2 technically does not belong since it is disconnected.

• Generally, any angle besides 90◦ provides a strong constraint since it generates new roots, so

most angles must be 90◦. After that, angles of 120◦ are nice, as they form regular polyhedra in
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higher dimensions. An angle of 150◦ makes such a strange pattern that it only appears in the

rank 2 Lie algebra G2, whose root system is shown above.

• Looking at the Dynkin diagrams, we can read off some low-dimensional coincidences for the

so(n). The isomorphic algebras correspond to the spin groups, which double cover SO(n).

– We have so(3) ∼= su(2) from B1
∼= A1, and SU(2) = Spin(3).

– We have so(4) ∼= su(2)⊕ su(2) from D2
∼= A1 ⊕A1, and SU(2)× SU(2) = Spin(4).

– We have so(5) ∼= sp(4) from B2
∼= C2, and Sp(4) = Spin(5).

– We have so(6) ∼= su(4) from D3
∼= A3, and SU(4) = Spin(6).

Note that E5 and E4 aren’t listed as they duplicate others.

• It should be kept in mind that we are working at the level of complex Lie algebras; the

complexification of so(p, q) is equivalent to the complex Lie algebra so(n)C, so our results don’t

depend on the signature. However, the signature does affect the Lie groups, e.g. the orthogonal

groups of indefinite signature are noncompact. The spin groups of indefinite signature are

Spin(1, 1) ∼= GL(2,R), Spin(1, 2) ∼= SL(2,R), Spin(1, 3) ∼= SL(2,C), Spin(1, 4) ∼= Sp(1, 1)

• Another useful application is that we can ‘cut’ Dynkin diagrams to find subalgebras. For

example, cutting off the long root of Bn shows that su(n) ⊂ so(2n+ 1). Cutting off the short

root of sp(2n) gives su(n) ⊂ sp(2n) as we observed earlier.

Note. A systematic algorithm for reconstructing all roots from the simple roots.

• For a general root β =
∑

i α(i)ki, let k =
∑

i ki. Here the Cartan subalgebra has k = 0 and the

simple roots have k = 1.

• For each simple root α(j), we draw a box with entries

ci = Aji = −(n+ + n−).

That is, we just write row j of the Cartan matrix. Hence if ci < 0 then we can add the root

α(i), and hence we can construct the k = 2 roots.

• For each k = 2 root, we again draw a box; its entries ci are the sum of the root it came from

and the simple root added to it. We can then continue systematically upward in k, since at

every point we know the value of n−, until the procedure terminates. We then reflect to get all

the negative roots.

• A slightly faster method is to start from the simple roots and draw all possible root strings all

the way to the end. This will produce some roots with new negative ci, which sit at the bottom

of new root strings. We then repeat this process until termination.

Example. The algebra C3. The Cartan matrix is

A =

 2 −1 0

−1 2 −1

0 −2 2


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and the resulting positive roots are shown below.

Note. Reconstructing the algebra from the roots. For a simple root α, if the α-string through β

has length 2s+1, then the action of the E±α operators on this subspace by commutator is just like

that of the angular momentum raising and lowering operators for spin s, with the same constants

up to phases. This gives the action of Eα on everything, and we can find the action of Eα+β on

everything by the Jacobi identity, and so on. The ‘up to phases’ is because we don’t have enough

freedom to take Cordan-Shortley phases everywhere.

Note. The only normed division algebras are R, C, H, and O. The classification of Lie algebras is

related to this, because SO(n) describes linear transformations that preserve the length of a vector

in R, SU(n) does the same for C, and Sp(n) does the same for H. There is no analogue for O
because its multiplication law is not associative, so we don’t get a group. But all of the other Lie

groups are related to O in some way.

6.4 ⊛ Representations and Weights

In this section we apply our results to representations of g.

• We consider an N -dimensional representation R, and assume that the R(H i) are diagonalizable.

Since the R(H i) all commute, they can be simultaneously diagonalized, with

R(H i)v = λiv, v ∈ Vλ

where λ ∈ h∗ is a weight of R and the set of weights is SR.

• Roots are the weights of the adjoint representation R(X) = adX and also live in h∗. But unlike

roots, weights can be degenerate, with multiplicity mλ = dimVλ ≥ 1. It also doesn’t make

sense to associate a weight with an element of g. This only made sense for roots because the

representation space was the algebra itself.

• As with roots, step operators raise and lower the weights,

R(H i)R(Eα)v = R(Eα)R(H i)v + [R(H i), R(Eα)]v = (λi + αi)R(Eα)v.

Then if v ∈ Vλ, then R(E
α)v ∈ Vλ+α.
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• Next, we consider the action of the sl(2)α generators {R(hα), R(eα), R(e−α)} on V . This makes

V into the representation space for a representation Rα of sl(2). The sl(2) weights are

R(hα)v =
2

(α, α)
(κ−1)ijα

iR(Hj)v =
2

(α, α)
(κ−1)ijα

iλjv =
2(α, λ)

(α, α)
v.

Since the sl(2) weights must be integers, we have

2(α, λ)

(α, α)
∈ Z, λ ∈ SR, α ∈ Φ.

This is just the same condition we found for roots; the only difference is that we don’t also have

the same constraint with α and λ swapped.

• To understand this constraint geometrically, note that all the roots lie in the root lattice

L[g] = spanZ{α(1), . . . , α(r)}.

Now define the simple coroots and coroot lattice

α∨
(i) =

2α(i)

(α(i), α(i))
, L∨[g] = spanZ{α∨

(1), . . . , α
∨
(r)}.

• Then the weight lattice is the dual of the co-root lattice,

LW [g] = L∨[g]∗ = {λ ∈ h∗ | (λ, µ) ∈ Z for all µ ∈ L∨[g]}

Consider the basis {α∨
(i)} of L∨[g]. The weight lattice has the dual basis {w(i)} where

(α∨
(i), w(j)) = δij .

This basis is called the Dynkin basis of the weight space, and its elements are called the

fundamental weights of g.

• Now consider the expansion

w(i) =
∑
j

Bijα(j).

Taking the inner product of both sides with α∨
(k) and relabeling indices,

∑
k

2(α(i), α(k))

(α(i), α(i))
Bjk = δik

which shows that B = A−1 where A is the Cartan matrix, so

α(i) =
∑
j

Aijw(j).

Thus starting from the Cartan matrix we can read off the fundamental weights. The matrix

Bij is sometimes called the metric tensor.
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Example. The root and weight lattices of A2 are shown below.

The relation between the two can be read off from the Cartan matrix,

A =

(
2 −1

−1 2

)
.

Note that the root lattice is contained in the weight lattice. This must hold in general because the

simple roots are weights of the adjoint representation.

The fundamental weights allow us to extract the weight set from the highest weight alone.

• Any weight can be expanded as

λ = λiw(i)

and the integers λi are called the Dynkin labels of λ. We’ve already seen these; in our graphical

calculation above, the numbers in the boxes were the Dynkin labels of roots/weights.

• Every finite-dimensional representation has a highest weight

Λ = Λiw(i)

so that all v ∈ VΛ are annihilated by all raising operators,

R(Eα)vΛ = 0, α ∈ Φ+.

The Dynkin labels of the highest weight are called the Dynkin labels of the representation.

• Starting from the highest weight, we can find more weights by applying the lowering operators,

R(E−α) for α ∈ Φ+. The reasoning is just like how we used simple roots to construct all the

roots, but in reverse; starting with any positive Dynkin label, we can go downward. We can

get every weight this way if the representation is an irrep; note that the adjoint representation

itself is an irrep when the algebra is simple.

• Note that we never have to go ‘upward’. Suppose we had a state of the form

E1E2 . . . En|µ⟩
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where |µ⟩ is the highest weight state and the Ei are raising and lowering operators. If any of

the Ei are raising operators, we may commute it all the way to the right, picking up extra

terms as we go, until it annihilates |µ⟩. We can repeat this procedure until all operators are

lowering operators, which can be taken to be those of simple roots. As a corollary, the highest

weight of an irrep is nondegenerate.

• The general principle is that if λ =
∑

i λ
iw(i) is a weight, then we also have the weights

λ−miα(i), 0 ≤ mi ≤ λi

because representations of sl(2)α(i)
must have weights symmetric about zero.

• The weight set of a tensor product is the set of sums of weights, which gives a visual method

for decomposing tensor products. We get one factor for free, since one of the highest weights is

the product of the individual highest weights; for example, (1, 2)× (5, 2) contains a (6, 4).

Example. The fundamental representation of A2
∼= su(3) has Dynkin labels (1, 0), so Λ = w(1),

and

Λ− α(1) = w(1) − (2w(1) − w(2)) = −w(1) + w(2)

is also a weight. This yields the new weight

(Λ− α(1))− α(2) = −w(2)

and this weight produces no further weights. Alternatively, we can use a diagram.

Thus the representation has three weights, which form a small upside-down triangle. More generally,

the Dynkin labels agree with the labels we assigned earlier based on the ranks of symmetric traceless

tensors. Then R(1,1) is still the adjoint representation, R(3,0) is still the 10, and so on.

Note. Finding the degeneracy of weights. Clearly, any weight that can be reached in only one

way by lowering from the highest weight is nondegenerate. Also note that a degenerate weight

can’t create more degeneracy ‘further down’ unless it sits at the top of a new su(2) representation.

Another trick is that if a possibly degenerate weight can be related to a nondegenerate weight by

Weyl reflection, it is nondegenerate. In general, the degeneracy may be computed by the Freudenthal

formula or the Kostant multiplicity formula, though these are rather complicated to use.

Example. The (3, 0) representation of su(3). We get the diagram shown below.
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First, note that there is a ‘spine’ on the right leading from the highest to the lowest weight. In

general for the (n,m) irrep, we can reach it by lowering with α1 n times, lowering with α2 n+m

times, then lowering with α1 m times, yielding the lowest weight (−m,−n). There is also the

possibility of degeneracy; by the remark above, we only need to check the degeneracy of the 0 0

state; we can’t use Weyl reflection since it is at the origin.

Let E1 and E2 be the lowering operators for α(1) and α(2). Then

E2E1E1 − E1E2E1 = [E2, E1]E1 = E1[E2, E1]

where the second step follows because −2α1 − α2 is not a root. Now act with both sides on the

highest weight |µ⟩. On the right-hand side we have

E1[E2, E1]|µ⟩ = E1E2E1|µ⟩

because E2|µ⟩ = 0. This shows that the two possibly degenerate states are proportional.

Note. There is a fully general method for determining whether two states are degenerate. Consider

two states of the form

|A⟩ = Ea1 . . . Ean |µ⟩, |B⟩ = Eb1 . . . Ebn |µ⟩.

Then the states are linearly independent if and only if

⟨A|B⟩⟨B|A⟩ ≠ ⟨A|A⟩⟨B|B⟩

where all of these inner products can be computed systematically using the algebra.

Note. Taking the dual/conjugate of a representation just flips the sign on every weight, because

the Cartan subalgebra elements R(H i) become −R(H i)∗ = −R(H i). For su(3), the (n,m) repre-

sentation has lowest weight (−m,−n), which implies the conjugate representation is (n,m). For

example, the antifundamental representation has Λ = w(2) and its weights form a triangle. We see

that a representation is real if its weights are symmetric about the origin.

Note. In general, we call the representations with exactly one nonzero Dynkin label, which is equal

to one, the fundamental representations. For example, su(4) has rank three, and hence has three
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‘fundamental’ representations. One is its ‘usual’ fundamental representation in terms of matrices,

one is its conjugate, and the third is something completely different; it is not even four-dimensional.

All representations can be found by multiplying fundamental representations, as the representation

with Dynkin labels Λi is contained in ⊗iV
⊗Λi

i where Vi is the i
th fundamental.

Example. Consider B2
∼= C2, where B2

∼= so(5) and C2
∼= sp(4). Then there are two fundamental

representations with dimensions 5 and 4; they correspond to the fundamental matrix representations

of so(5) and sp(4). The adjoint representation has Dynkin labels (0, 2).

Note. If we use an explicit representation, rather than just the abstract algebra, everything simplifies.

We defined the Killing form and worked to show that it gives a natural inner product on the roots.

But we could also work in the adjoint representation and take the inner product on the Hilbert

space. The action of Xa in the adjoint representation is

Xa|Xb⟩ = |[Xa, Xb]⟩

so it’s easy to see how the Eα function as both weights and roots,

H i|Eα⟩ = αi|Eα⟩, [H i, Eα] = αiEα.

Moreover, we have H†
α = Hα since its eigenvalues are real, while taking the adjoint of the above

commutation relation gives Eα† = E−α.

6.5 ◦ Examples of Roots

The roots are the nonzero weights of the adjoint, and the adjoint is often contained in the product of

the fundamental and antifundamental representation. (Here, “fundamental” is used in the physicist’s

sense; the weights of the physicist’s fundamental should not be confused with the fundamental

weights.) Therefore, the roots are a subset of the differences of the weights of the fundamental

representation. In this section, we’ll use this as a shortcut to give examples of roots. Since we deal

with only simple matrix Lie algebras, we use the Killing form tr(XY ).

Example. The roots of su(3). An orthonormal basis for the Cartan subalgebra in the fundamental

representation is

H1 = diag(1,−1, 0)/
√
2, H2 = diag(1, 1,−2)/

√
6.

These are already diagonal in the standard basis, consisting of the vectors (1, 0, 0), (0, 1, 0), and

(0, 0, 1). Their corresponding weights are

w1 = (1, 1/
√
3)/

√
2, w2 = (−1, 1/

√
3)/

√
2, w3 = (0,−2/

√
3)/

√
2.

These three weights form an equilateral triangle, so the differences are the vertices of a hexagon.

As we’ve seen before, these are precisely the roots of su(3). Another common choice is to use a

basis like H1 = diag(1,−1, 0) and H2 = diag(0, 1,−1). While this simplifies the weights, it leads to

a non-Euclidean metric in root space, distorting the picture.

Example. The roots of so(4). In this case an orthonormal basis for the Cartan subalgebra is, up

to an overall scaling factor,

H1 = J12 =


1

−1

 , H2 = J34 =

 1

−1

 .
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These may be simultaneously diagonalized and scaled to

H1 = diag(1,−1, 0, 0), H2 = (0, 0, 1,−1)

by switching to the ‘polar’ basis (x1, x2, x3, x4) → x1 ± ix2, x3 ± ix4. We can then read off the

weights of the fundamental representation,

w1 = (1, 0), w2 = (−1, 0), w3 = (0, 1), w4 = (0,−1)

which form the vertices of a square. In this case there are some extra differences of weights. As an

unjustified ad hoc fix, throwing out w1 − w2 and its rotations gives the root diagram below.

This root diagram visually shows that so(4) = su(2)⊕ su(2), i.e. the Lie algebra is not semisimple.

In this degenerate case, which we only consider because of the importance of the Lorentz group,

the adjoint is not an irrep, but rather decomposes as 3 + 3.

Example. The roots of so(5). There are still two Cartan generators; the only difference is that we

now have a zero weight from the vector (0, 0, 0, 0, 1).

In this case the procedure is less unambiguous. If we keep w1 −w5, then we must toss out w1 −w2

because it is double w1 − w5, and likewise for its rotations. Ignoring repeated roots, we recover a

familiar root pattern.

Example. The roots of so(6). Letting the ei be unit vectors in root space, and following the pattern

of so(4), the roots are

{ηei + η′ej | η, η ∈ {−1, 1}, i, j ∈ {1, 2, 3}, i ̸= j}.

This generalizes directly to so(2n). The pattern for so(2n + 1) is just slightly more complicated,

with the addition of the roots ±ei. The simple roots are

so(2n) : e1 − e2, . . . , en−1 − en, en−1 + en, so(2n+ 1) : e1 − e2, . . . , en−1 − en, en

from which one can read off the Dynkin diagram.
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Example. The roots of su(n). Since dim su(n) = n2 − 1, there are n2 − n roots. Similarly, there

are n(n − 1) nonzero differences of weights, so all of them must correspond with roots, which is

what we saw for su(3) above. In the case of su(4), we have

H1 = diag(1,−1, 0, 0)/
√
2, H2 = diag(1, 1,−2, 0)/

√
6, H3 = diag(1, 1, 1,−3)/2

√
3.

The weights are the vertices of a tetrahedron, so the roots are the sides of a tetrahedron. In

particular, adjacent sides make an angle of 60◦, while nonadjacent sides make an angle of 90◦, in

accordance with the Dynkin diagram. For su(n), the pattern continues, with a higher-dimension

analogue of the tetrahedron. Unlike for so(n), the explicit coordinate expression of the roots is a

bit nasty; instead we’ll just continue to think of them as differences of fundamental weights.

Example. The roots of sp(2n). Earlier, we showed that sp(2n) had basis

iA⊗ I, Si ⊗ σi

from which we identify a Cartan subalgebra

H i = ui ⊗ σ3, uijk = δijδ
i
k.

For example, for sp(4) we have

H1 = diag(1, 0,−1, 0), H2 = diag(0, 1, 0,−1)

from which we read off the weights

w1 = (1, 0), w2 = (0, 1), w3 = (−1, 0), w4 = (0,−1)

These are the same weights as for so(4), but sp(4) has higher dimension. In this case, all of the

differences are roots.

Since this is just the root diagram of so(5) tilted, sp(4) ∼= so(5).

6.6 ◦ Dynkin Diagrams

In this section, we give a quick outline of the Cartan classification.

• First, we can establish the existence of the infinite families An, Bn, Cn, and Dn and their

Dynkin diagrams by our work in the previous section, reading off angles between the simple

roots. We also discovered G2 earlier by classifying all rank 2 Lie algebras.
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• Given simple roots αi, we define the unit vectors ui = αi/|αi|. In this section, we work solely

with roots normalized to unit length. Then

2ui · uj = −
√
ζij , ζij ∈ {0, 1, 2, 3} = number of lines connecting i and j.

Note that if ui and uj are connected at all, then ui · uj ≤ −1/2.

• First, there are no Dynkin diagrams with loops. Summing over the k roots in the loop,(∑
i

ui

)2

= k +
∑
i ̸=j

ui · uj ≤ 0

but the left-hand side must be positive.

• Next, the number of lines coming out of a root cannot be more than three. Let u be directly

connected to the roots w1, . . . , wk. The roots cannot be directly connected to each other

otherwise, since there are loops, so they must be orthogonal. Now note that∑
i

(u · wi)2 =
1

4

∑
i

ζui ≥ 1.

But the left-hand side is the length of u when projected down to the subspace spanned by the

wi, so it must be less than one, a contradiction.

• Next, shrinking a chain of roots each connected with a single line gives a valid Dynkin diagram.

To see this, let u1, . . . , uk be such a chain. Then we can replace these vectors with the vector

u =
∑

i ui, which is properly normalized since

u2 =

k∑
i=1

u2i + 2

k−1∑
i=1

ui · ui+1 = k − 2
k − 1

2
= 1.

Any other root w can be directly connected to the chain only once, or else there will be loops.

If w connects to ui, then w · ui = w · u. Hence everything about the Dynkin diagram stays the

same when we collapse the ui to u.

• Suppose a Dynkin diagram contains a ‘fork’, i.e. there is a root connected to three other roots.

Then all of the connections must be by single lines, and moreover, each of the three roots can

only continue in a linear chain made of single lines. We’ll return to this case below.

• Our results above show that G2 is the only Dynkin diagram with a triple line. Next, consider

a double line; we can only connect single line chains on both ends. Suppose there are n and m

of them, ui and vi, with the last ones connected by the double line, so um · vm = −1/
√
2.

We define u =
∑

i iui and v =
∑

j jvj . Then we have

u2 =
n(n+ 1)

2
, v2 =

m(m+ 1)

2
, u · v = −nm√

2
.

Then the Cauchy–Schwarz inequality gives (m− 1)(n− 1) ≤ 2. The cases m = 1 or n = 1 give

the infinite families Bn and Cn. The only other case is m = n = 2, which gives F4.
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• Finally, we classify Dynkin diagrams with a fork, with n, m, and p roots in each chain, including

the central root. Similar considerations show that

1

n
+

1

m
+

1

p
> 1.

Then if n = m = 1, then p is arbitrary, recovering An. If all of the numbers are at least 3, the

inequality is violated, so otherwise one of them must be two, say p = 2. Then

1

n
+

1

m
>

1

2
.

In the case n = 2, m is arbitrary, recovering Dn. Finally, the only other solutions are (3, 3),

giving E6, (3, 4), giving E7, and (3, 5), giving E8.

• Incidentally, the same inequality occurs when classifying the platonic solids; there E6 corre-

sponds to the tetrahedron, E7 to the cube, and E8 to the icosahedron.

• It is possible to have higher rank exceptional algebras such as E9 if we generalize to Kac-Moody

algebras, which are generically infinite-dimensional.

As an application, we consider regular subalgebras.

• A regular subalgebra h of g is a subalgebra whose Cartan generators are linear combinations

of the Cartan generators of A. A regular maximal subalgebra is not strictly contained in any

proper subalgebras of g.

• In physics, we care about regular subalgebras because if G is a symmetry group, the conserved

charges are the Cartan generators. Then the conserved charges in regular subalgebras are built

from the original ones, so we may reach them by spontaneous symmetry breaking.

• We can construct regular maximal subalgebras by deleting a root from a Dynkin diagram and

replacing it with a u(1) factor. For example, applying this to SU(5) gives SU(3)×SU(2)×U(1) ⊂
SU(5), as used in grand unification.

• To construct semisimple regular maximal subalgebras, we use a trick. Given simple roots αi,

we may add the lowest root α0 to the Dynkin diagram. This root has appropriate angles with

the others, because α0 − αi is not a root for any i. However, the augmented root system is

linearly dependent.

• Working case by case, one can construct the extended Dynkin diagrams below.
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Semisimple regular maximal subalgebras can then be constructed by removing a root from the

extended Dynkin diagram. For example, we find so(2n) ⊂ so(2n+1), which we observed earlier,

and so(2k)⊕ so(2n− 2k) ⊂ so(2n).
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7 More Representations

7.1 Group Theory Constants

In this section, we’ll develop powerful calculation tools for representations. First we’ll consider the

“group theory constants” that often appear in computations. We refer to abstract generators as T a

and generators in a specific representation R as taR with the R subscript suppressed.

• We assume we are working with a simple compact Lie group G, so that g is of compact type.

We can thus choose a basis T a where the Killing form is κij = −δij .

• Given this basis, we automatically have

tr tatb = T (R)δab, T (R) > 0

for any representation R. To see this, define Mab = tr tatb. Then

[taAd,M ]bc = tr
(
(taAd)

bdtdtc − tbtd(taAd)
dc
)
= tr

(
fabdtdtc − fadctbtd

)
.

Using the definition of the structure constants, we have

[taAd,M ]bc = tr
(
[ta, tb]tc + [ta, tc]tb

)
= 0

which means M must be proportional to the identity by Schur’s lemma, since the adjoint

representation is irreducible.

• In physics, we usually pick the normalization,

T (fund) = 1/2

matching the existing convention for the spinor representation of SU(2), ta = σa/2. However,

in mathematics it is more common to pick T (fund) = 1.

• The quadratic Casimir T aT a commutes with everything else, so by Schur’s lemma,

tata = C2(R)

in any irrep R. By contracting indices in the definition of T (R),

(dimR)C2(R) = (dimG)T (R).

Alternatively, one may also take this equation to be the definition of T (r).

• For SU(N), in the physicist’s normalization, we have

C2(fund) ≡ CF =
N2 − 1

2N
, C2(adjoint) ≡ CA = T (adj) = N.

The latter result can be found by a trick. For the adjoint representation, (tb)ac = ifabc and the

structure constants are real, giving

tr tctc = −
∑
ab

fabcfbac =
∑
ab

|fabc|2 =
∑
ab

|tcab|2 = N

since tc is unitary.
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• The Dynkin index obeys the rules

T (R) = T (R), T (R1 ⊕R2) = T (R1) + T (R2), T (R1 ⊗R2) = d(R1)T (R2) + d(R2)T (R1).

To prove the last identity using matrices, we note that

tr taR = 0

for any representation of a semi-simple Lie algebra. This is because every generator can be

written in terms of commutators of generators, and commutators have zero trace.

• The anomaly coefficient obeys the rules

A(R) = −A(R), A(R1 ⊕R2) = A(R1) +A(R2), A(R1 ⊗R2) = A(R1)d(R2) + d(R1)A(R2).

The first implies anomaly coefficients vanish unless the representation is complex.

Now we’ll state some general facts about representations without proof.

• First, we summarize Lie algebra dimensions and the dimensions of the fundamental, or minimal

representation F .

g dim g dimF

su(N) N2 − 1 N

so(N) N(N − 1)/2 N

sp(N) N(2N + 1) 2N

E6 78 27

E7 133 56

E8 248 248

F4 52 6

G2 14 7

• For Lie algebra representations, characters are the analogue of the character (trace) for Lie

group representations. Specifically, for a representation R and Cartan subalgebra element t,

ch(R)(t) = trR(exp(t)). They place similarly powerful constraints on representation theory, via

the Weyl character formula.

• A useful special case of the Weyl character formula is the Weyl dimension formula: for a

representation R of g with highest weight Λ,

d(R) =
∏
α∈∆+

(Λ + g, α)

(g, α)
, g =

1

2

∑
α∈∆+

α

where ∆+ is the set of positive roots. In fact, one can show that g is equal to the sum of

the fundamental weights, i.e. its Dynkin labels are (1, 1, . . . , 1). Explicit special cases of this

formula are given here.

• In this notation, the quadratic Casimir is C2(r) = (Λ,Λ + 2g) in the mathematician’s normal-

ization; in the physicist’s normalization there is a factor of 1/2, as for the Dynkin index.

https://arxiv.org/abs/1511.08771
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• The only Lie groups with complex representations are

SU(n) for n ≥ 3, SO(4n+ 2) for n ≥ 2, E6.

where we don’t include SO(6) because so(6) ∼= su(4). For the latter two, all anomaly coefficients

vanish. Hence anomalies may only come from U(1) factors and SU(n) for n ≥ 3.

• One way to see the SM is anomaly free is to note that its matter fields form a representation of

SO(10), whose representations are all anomaly free. The existence of right-handed neutrinos

doesn’t matter for this argument, since they don’t contribute to any anomalies in the SM.

• Since left-handed and right-handed fermions transform in conjugate representations, a real

GUT representation would yield them in pairs. This cannot match experiment because the SM

is chiral, unless one chirality is much lighter, which is unnatural. Hence only the gauge groups

SU(n), SO(4n+ 2), and E6 are usable for GUTs. The appearance of E6 isn’t too surprising,

because the most common GUT candidates are SU(5) = E4 and SO(10) = E5.

• For the representation R of su(n) with Dynkin labels (a1, . . . , an−1), the anomaly coefficient is

A(R) = d(R)
n−1∑
i,j,k=0

aijk(ai + 1)(aj + 1)(ak + 1)

where the tensor aijk is completely symmetric with

aijk = Nni(n− 2j)(n− k), i ≤ j ≤ k

where Nn is a conventional normalization factor, which we usually set by A(fund) = 1.

• We’ve encountered Casimir operators above and used them to classify irreps. In fact, in

general Casimir operators give a complete classification; any rank n simple Lie algebra has n

fundamental Casimir invariants. For SU(n), their degrees are 2, 3, . . . , n.

• Similarly, one can treat the anomaly coefficient and Dynkin index above as the cubic and

quadratic special cases of a higher-order Dynkin index. Higher orders are relevant for anomaly

cancellation in higher-dimensional theories.

• Dynkin’s theorem for the second highest representation is occasionally useful. We know that

the product of irreps with highest weights Λ and Λ′ contains an irrep with highest weight Λ+Λ′.

We may get from Λ to Λ′ or vice versa by adding simple roots; suppose Λ′ = Λ+ α1 + . . .+ αk
where the path is chosen so k is minimal. Then the product contains an irrep with highest

weight Λ + Λ′ − α1 − . . .− αk.

Note. A proof of the formula for the Casimir invariant, C = κabTaTb = (κ−1)abT
aT b. We use the

basis consisting of Eα and Hα(i) for roots α and simple roots α(i). Then

C =
∑
ij

(κ−1)ijH
α(i)Hα(j) +

∑
α

EαE−α

κ(Eα, E−α)
.

Now act with both sides on a vector v with weight λ. If we restrict the sum in the second term

to positive roots, we get anticommutators {Eα, E−α} for positive α. This is inconvenient, but if
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we choose v to have the highest weight Λ the anticommutators may be replaced with commutators.

Hence the second term is∑
α

EαE−α

κ(Eα, E−α)
v =

∑
α∈∆+

[Eα, E−α]

κ(Eα, E−α)
=
∑
α∈∆+

Hαv = (2g,Λ)v.

The first term is ∑
ij

(κ−1)ijH
α(i)Hα(j)v =

∑
ij

(κ−1)ij(α(i),Λ)(α(j),Λ)v.

For a general v, this is quite complicated, but it simplifies if v has the highest weight Λ. At this

point it is convenient to introduce the “inverse Cartan matrix” or “metric”

Gij = (A−1)ij
(α(j), α(j))

2

which confusingly isn’t actually the inverse of the Cartan matrix. If we define

Ãij = (α(i), α(j)), D = diag((α(i), α(i))/2)

then we have the relations

A = ÃD−1, G = DÃ−1D

so we see G is symmetric. It is convenient because

(w(i), w(j)) = Gij .

Expanding the highest weight as Λ = aiw(i) and plugging these results in, the first term becomes∑
ij

aiGija
jv = (Λ,Λ)v

where we used κij = Ãij . Hence we have the desired result.

Example. Calculating the Casimir invariant for su(3). It is convenient to expand everything in

terms of fundamental weights, so the positive roots are

α(1) = (2,−1), α(2) = (−1, 2), β = α(1) + α(2) = (1, 1), g = (1, 1).

This simple result for g matches the expected general result. The inverse Cartan matrix is

G =
1

3

(
2 1

1 2

)
.

Therefore, the Casimir invariant is

C =
1

3

(
a1 a2

)(2 1

1 2

)(
a1 + 2

a2 + 2

)
=

2

3
(a21 + a22 + a1a2 + 3a1 + 3a2).

In this normalization the Casimir invariant of the fundamental (10) is 8/3, so we must divide by 2

to get the physical normalization. While we’re at it, it’s not too much more work to get the Weyl

dimension formula,

d(a1a2) = (1 + a1)(1 + a2)

(
1 +

a1 + a2
2

)
.



86 7. More Representations

7.2 The Lorentz and Galilean Groups

Inonu–Wigner contraction can be used to generate new Lie algebras from old, and take physically

relevant limits. Our main application of this technique will be the nonrelativistic limit, where it

explains some puzzling features of Galilean invariance.

• Consider the rotation algebra so(3) and let z = Lζ, so ∂z = L−1∂ζ . Then if we take L to infinity

while keeping ζ of order one, to lowest order in L we have

Jz = −i(x∂y − y∂x), Jx = −i(y∂z − z∂y) → i(Lζ)∂y, Jy → −i(Lζ)∂x.

Thus, after some rescaling Jx and Jy yield translations Py and Px, where Pi = i∂i.

• Intuitively, imagine the original vector fields as describing symmetries of the sphere. Then taking

z to be large corresponds to “reverting to the flat Earth”, by zooming in on the flat patch near

the North pole. The resulting symmetry group is ISO(2) or E(2), containing symmetries of

two-dimensional Euclidean space.

• Similar reasoning works for so(n). Letting a Latin index denote a value from 1 to n − 1, the

Jij are unaffected while Jin contracts to yield Pi, giving E(n− 1).

• The same logic applies for the Lorentz algebra so(3, 1). We start with the generators

Jµν = i(xµ∂ν − xν∂µ), [Jµν , Jρσ] = −i(ηµρJνσ + ηνσJµρ − (ρ↔ σ)).

We contract by setting x0 = ct with c→ ∞, t = O(1). Then Jij is unmodified and we have

J0i → ctPi.

By treating t as a constant, just as we treated ζ, the boosts reduce to translations Pi. We hence

recover E(3), up to some possible signs which may have to be scaled away.

• Similarly, one can see how the de Sitter symmetry group SO(4, 1) would contract to the Poincare

group; the SO(3, 1) subgroup gives the Lorentz group, while the remaining four operators give

spacetime translations. Here it is important that we contract away a spatial dimension, since

contracting away the temporal dimension would instead yield E(4).

Note that we didn’t get the full Galilean group above, because we treated t as a constant. By

maintaining time-dependence, we can contract the Poincare group to the full Galilean group.

• We begin with the Poincare commutation relations in the 3 + 1 split. By defining

Jij = ϵijkJk, Ji0 = Ki

the Lorentz algebra is

[Ji, Jj ] = iϵijkJk, [Ji,Kj ] = iϵijkKk, [Ki,Kj ] = −iϵijkJk.

We see that J andK are both vectors. The minus sign in the last commutation relation indicates

the Lorentz group is noncompact. One way to see that J must appear there is to note that J

is a pseudovector and K is a vector, so J is the only result that obeys parity.
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• We split the translations by defining H = P0 = i∂0, to give

[Ji, Pj ] = iϵijkPk, [Ki, Pj ] = −iHδij , [Ji, H] = [Pi, H] = 0, [Ki, H] = −iPi.

These new results are intuitive: we see that translations are vectors, and the difference between

boosting now and later is a translation.

• As before, we define x0 = ct and switch variables to t. To remove factors of c from the generators,

we rescale Ki → Ki/c and H → cH. The commutation relations that change are

[Ki,Kj ] = −1

c
iϵijkKk, [Ki, Pj ] = −iH

c2
δij .

The first equation indicates that Galilean boosts commute. However, the second is more subtle,

because the energy takes the form H = Mc2 + T . The huge relativistic contribution to the

energy allows the right-hand side to survive, giving

[Ki,Kj ] = 0, [Ki, Pj ] = −iMδij , [Ki, T ] = −iPi.

All other commutation relations remain the same.

• Thus, if we don’t count the c-number M as a member of the Galilean algebra, then M is a

central charge, indicating that we must use projective representations of the Galilean group in

nonrelativistic quantum mechanics. There is a superselection rule forbidden superposition of

states with different masses, though this may be removed by enlarging the Galilean algebra

with the generator M , yielding the Bargmann algebra.

• In terms of differential operators, we could also have computed this explicitly as

Ki → −it∂i −Mxi

which immediately yields [Ki, Pj ] = −iMδij . Another check is that

[Ki, P
2/2M ] = − 1

2M
(2iMδij)Pj = −iPi = [Ki, T ]

which confirms T = P 2/2M up to a c-number.

• Also note that there’s a pesky sign here: the physical momentum is P i = −Pi = −i∂i. The

easiest way to see this is in quantum mechanics, where a plane wave eipx/ℏ has momentum p.

These results provide some insight into nonrelativistic classical and quantum mechanics.

• In Lagrangian mechanics, the Galilean algebra can be represented by differential operators

on the configuration space. As usual, lifting this action to quantum mechanics produces

central extensions because we allow projective representations. The same result occurs if we

go to Hamiltonian mechanics: the results are identical but with Poisson brackets instead of

commutators.

• Under an active Galilean boost of velocity u,

p′ = p+Mu, E′ = E + up+
1

2
Mu2.
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On the other hand, the wavenumber and frequency of a plane wave transform as

k′ = k, ω′ = ω + uk

where the uk term is from the Doppler shift, assuming the phase is Galilean invariant. Naively,

these results are not compatible with the de Broglie relations p = ℏk and E = ℏω.

• The resolution is that Galilean invariance only requires that |ψ′(x′, t′)|2 = |ψ(x, t)|2, and allows

the addition of an arbitrary phase. To find this phase, let the original wavefunction be a plane

wave ψ(x, t) = ei(px−Et)/ℏ. Then the transformed wavefunction must be

ψ′(x, t) = ei(p
′x−E′t)/ℏ = ei(Mux−upt−Mu2t/2)/ℏψ(x, t) = ei(Mux−Mu2t/2)/ℏψ(x− ut, t).

For an infinitesimal boost, we neglect the u2 term and find

ψ′(x, t) = (1− iuK)ψ(x, t), K = −it∂x −Mx.

The first term in K is the obvious one. Before relativity, the extraMx term was mysterious, but

in hindsight we understand it as the vestige of the E =Mc2 rest energy after group contraction.

• We may also see this through the Lagrangian. The standard action

S =

∫
1

2
mv2 dt

is not Galilean invariant, but rather changes by a total derivative,

L→ L+
d

dt

(
mux+

1

2
mu2t

)
.

This is acceptable classically, because it leaves the equations of motion invariant, but seems a

little strange because the same caveat does not apply to the relativistic action. And as we’ve

seen above, it becomes an issue in the quantum theory: phase is Lorentz invariant but not

Galilean invariant.

• We can understand the issue by considering the nonrelativistic limit. Relativistically,

S = −mc2
∫ √

1− v2/c2 dt =

∫ (
−mc2 + 1

2
mv2 + . . .

)
dt.

We then drop the first term, corresponding to rest energy, to get to the nonrelativistic Lagrangian.

But this term has a nontrivial effect even in the limit c→ ∞, because the tininess of the time

dilation effect is canceled by the size of the rest energy. Specifically, the change in this term is

mc2(t− t′) = mc2γ

(
t′ +

ux′

c2

)
−mc2t′ = mux′ +

1

2
mu2t′ + . . .

which is precisely the extra phase picked up.

• Yet another way to see this is to consider the process by which we move from the Klein–Gordan

equation to the Schrodinger equation. In the standard account, we factor out a rapidly oscillating

phase e−imc
2t in the wavefunction. This phase is precisely what is missing.
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For completeness, we’ll briefly overview the representations of the Lorentz group.

• As expected from Dynkin diagrams, we have two independent copies of su(2) by defining

Mi =
Ji + iKi

2
, Ni =

Ji − iKi

2
.

The two are swapped by parity. This allows us to easily find the finite-dimensional representa-

tions of the Lorentz group from those of su(2)⊕ su(2), though they won’t be unitary.

• Such nonunitary representations are extremely important, since many physical observables

transform in them, including positions, momenta, and field values. Nonunitarity is acceptable

because these objects do not correspond directly to quantum states. Later, we will show in

detail how quantum states in an infinite-dimensional, unitary Poincare irrep correspond to

quantum fields in a finite-dimensional, nonunitary Lorentz irrep.

• Restricting to SO(3), each Lorentz irrep breaks into SO(3) irreps attained by adding spins u

and v. Hence we can parametrize irreps by the minimum/maximum spin

j0 = |u− v|, j1 = u+ v

and vectors within them by the usual spin and z-component, j and m.

• There are also infinite-dimensional unitary representations. Acting with the Ji does not change

the value of j, but acting with the Ki does. Since the Ki form a vector, we have a set of

irreducible tensor operators {K−/
√
2,K3,−K+/

√
2}, so by the Wigner–Eckart theorem

⟨j′m′|K3|jm⟩ = Aj
′

j ⟨j
′m′|10jm⟩, ⟨j′m′|K±|jm⟩ = ∓

√
2Aj

′

j ⟨j
′m′|1± 1jm⟩.

The Clebsch–Gordan coefficient is only nonzero when |j′ − j| ≤ 1, so only a few of the Aj
′

j

coefficients matter. This gives a constraint on the matrix elements of Ki in any representation.

• One can then show the general solution is parametrized by a complex number ν, and imposing

unitarity gives two classes of irreps,

principal series: ν = −iw, j0 = 0, 1/2, 1, . . . , complementary series: − 1 ≤ ν ≤ 1, j0 = 0

where w is real and j1 is infinite.

• The finite-dimensional irreps can be labeled by the quantum numbers u and v, where the

Casimir operators M2 and N2 have values u(u+ 1) and v(v + 1). For example, we have

scalar: (0, 0), four-vector: (1/2, 1/2), Weyl spinors: (1/2, 0), (0, 1/2).

• A rank two tensor transforms in (1/2, 1/2)⊗ (1/2, 1/2) which decomposes as

symmetric: (1, 1), trace: (0, 0), antisymmetric: (1, 0), (0, 1).

Note that the antisymmetric electromagnetic field Fµν decomposes under spatial SO(3) into two

vectors, which can be arbitrary linear combinations of E and B. Under the full Lorentz group,

the two irreps must be the self-dual and anti self-dual fields E ± iB corresponding to clock-

wise/counterclockwise circularly polarized waves. In fact, this is precisely the decomposition

we applied to Jµν to get the two su(2) subalgebras in the first place.
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• We can also phrase this by using so(3, 1) ∼= sl(2,C). Temporarily switching to mathematics

conventions, so that the commutators have no factors of i, the fundamental representation is

d(Ji) = − i

2
σi, d(Ki) = −1

2
σi

which corresponds to

d(Mi) = − i

2
σi, d(Ni) = 0.

This is the left-handed Weyl spinor representation (1/2, 0).

• Similarly, the conjugate of the fundamental representation has

d(Mi) = 0, d(Ni) = − i

2
σi

and is the right-handed Weyl spinor.

• Finally, consider the four-vector representation (1/2, 1/2). Recalling that (1/2, 1/2) stands for

a tensor product, we have

d(Mi) = − i

2
σi ⊗ I2, d(Ni) = I2 ⊗

(
− i

2
σi

)
.

This is the correct result, though not in the familiar four-vector basis.

7.3 Tensor Methods

We’ll now introduce tensor methods for finding finite-dimensional irreps of the classical groups,

starting with the simplest example of GL(n,C).

• For brevity, let g ∈ Mat(n,C) denote the representation of a group element g ∈ GL(n,C) in

the fundamental representation. Then there are four closely related irreps of GL(n,C),

{g}, {g∗}, {g−1T }, {g−1†}.

These are called the fundamental representations of GL(n,C). They are inequivalent, as

g∗ = SgS−1

cannot hold for g = αI for complex α, with similar logic for the others.

• For simplicity, we focus on {g} and the dual/contragradient representation {g−1T }, which act

on vector spaces V and Ṽ respectively. Vectors in these spaces transform as

xa → x′a = gabx
b, ya → y′a = yb(g

−1)ba.

Here, the transpose swaps the order of the indices on g but maintains their vertical positions;

we will always denote the fundamental representation with an upper index and the dual repre-

sentation with a lower index; note that the contraction xaya is invariant.
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• For the other representations, we would need more types of indices to keep our notation explicit.

For example, we may use dotted indices,

zȧ → z′ȧ = (g∗) ḃ
ȧ zḃ = zḃ(g

†)ḃȧ, wȧ → w′ȧ = (g−1†)ȧ
ḃ
wḃ

for {g∗} and {g−1†} respectively. The contraction wȧzȧ is invariant. For simplicity, we’ll ignore

these representations and return to them later.

• We define the tensor product space of tensors of type (i, j) by

T ij = V ⊗i ⊗ Ṽ ⊗j .

We can define a map T ij → T i−1
j−1 by contracting any pair of upper and lower indices.

• Specializing to T 1
1 , the tensor δ

a
b is invariant; its components stay the same under any GL(n,C)

transformation. One can show this the only elementary invariant tensor; all other invariant

tensors can be built out of it, e.g. by tensor product.

• Using the invariant tensor δab , we can decompose T 1
1 into irreps as

tab = t̂ab + δab
tcc
n

where t̂ab is the traceless part of tab. We can think of the second term as the image of tab under

the projection δbaδ
a′
b′/n.

• Generally, let I be an arbitrary invariant tensor that is also a projection operator; that is, I is

a tensor of type (i, i) which acts by contracting half of its indices, and I2 = I. Then for any

tensor t we can write

t = I(t) + (1− I)(t)

and we claim that if we repeat this process on each term until it terminates, we will have the

maximal decomposition, i.e. t will be decomposed into irreps.

• To see this, let P be a projection operator onto an irrep, so

gP t = Pgt.

Since t is general, this is equivalent to P = gPg−1, so P is an invariant tensor. So all projection

operators will be accounted for in our decomposition.

• Next, we consider T 2
0 . Neither of the naive candidates δa

′
a δ

b′
b and δb

′
a δ

a′
b are projection operators.

We could find projection operators by brute force, but a better way is to recall that the projection

operators in the symmetric group S2 are the symmetrizer and antisymmetrizer, and S2 acts on

T 2
0 , commuting with the action of GL(n,C). Thus these projection operators indeed produce

GL(n,C) irreps, explicitly
tab = t(ab) + t[ab].

This is a full decomposition, as there is no trace to remove.
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• Now consider the general case T ij . We take a Young tableau λ from Si for the upper indices

and a Young tableau σ from Sj for the lower indices. Performing the resulting projection maps

t
{a}
{b} to t

λ{a}
σ{b} , where we use multi-index notation. Now we haven’t taken care of the traces yet,

because they deal with contractions between upper and lower indices, while we’ve only treated

these sets separately.

• To remove the traces in practice, we work recursively. For T 2
2 , we may write

tacbd = racbd + δab (s1)
c
d + δad(s2)

c
b + δcb(s3)

a
d + δcd(s4)

a
b + δab δ

c
du1 + δadδ

c
du2

where r, the si, and the ui are all traceless. We determine the ui by contracting both sides

with two delta functions, giving

n(nu1 + u2) = tacac, n(u1 + nu2)t
ac
ca.

Next, we contract both sides of the original equation with one delta function, determining the

si. This procedure ensures we don’t ‘double count’ any traces. It works independently of the

Young tableaux, which simply set some of the si and ui equal to each other.

• There are no more available invariant tensors, so we’ve arrived at an irrep. One can show that

the irrep associated with Young tableaux (λ, σ) is equivalent to that of (λ′, σ′) if and only if λ

and λ′ have the same Young diagram, and σ and σ′ have the same Young diagram.

• Finally, restoring the {g∗} and {g−1†} representations, the inequivalent irreps of GL(n,C)
generated by the four fundamental representations are indexed by four Young diagrams; they

are fully traceless amongst the dotted indices and amongst the undotted indices.

Note. In physics, every Lie group is regarded as a subgroup of GL(n,C) for some n, and we have

a fundamental, n-dimensional representation by taking matrices, called the defining representation.

We focus on this representation and its relatives here, and generally there are 4, 2, or 1. They are a

subset of the mathematician’s fundamental representations. In most but not all cases we’ll consider,

the “physicist’s fundamentals” are sufficient to build all representations.

The analysis for other classical linear groups is similar, but with more invariant tensors.

Example. The unitary group U(n). In this case, the four fundamental representations collapse to

just two, {g} and {g∗}, which are usually called the fundamental and antifundamental. Another

way of seeing this is that we have a new invariant tensor δa
ḃ
, since

gabδ
b
ḋ
(g†)ḋċ = δaċ

along with δȧb . These invariant tensors relate dotted and undotted indices; hence we can remove all

dots before performing the usual procedure. In practical terms, this is like how we can raise indices

using the metric tensor in relativity, so we call these new invariant tensors metrics. The results for

GL(n,C) go through unchanged, except that we eliminate the dotted indices.

Example. We may also consider indefinite metrics. Suppose that the matrix of δȧb has n+ positive

eigenvalues and n− negative eigenvalues. Then demanding it is an invariant tensor yields the unitary

group U(n+, n−), and the finite-dimensional irreps are just the same as that of U(n+ + n−).

However, making the metric indefinite does have important effects. The resulting group is not

compact, so there are no finite-dimensional unitary representations. On the other hand, for definite

metric, the group is compact, so there are no infinite-dimensional representations.
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Example. The special linear group SL(n,C). In this case we pick up another invariant tensor, the

Levi–Civita tensor. Specifically, we have four Levi–Civitas with n indices, which are all upper/lower

and dotted/undotted. By itself, the Levi–Civita doesn’t further decompose the irreps, but it does

set irreps equal; for example, the fully antisymmetric Tn0 irrep is now equivalent to the trivial irrep.

In general we can replace m antisymmetric upper/lower indices with n − m antisymmetric

lower/upper indices. For a Young diagram λ with column lengths mi, define λ̃ to have column

lengths n−mi. Then (λ, µ; τ, κ) is equivalent to (λ′, µ′; τ ′, κ′) if the Young diagrams obtained by

combining the columns of λ and µ̃, and of τ and κ̃, are the same as their primed counterparts.

Example. In the special case SU(m+,m−), the same final statement is true, except that we only

have undotted indices.

Example. In the more special case SL(2,C), the Levi–Civita ϵab is more useful. Since it relates

one upper index to one lower index, the fundamental representations collapse to just two, {g} and

{g∗}, and all indices can be taken to be upper indices. Moreover, by the logic above, we can replace

any two antisymmetric indices with nothing. Then the irreps are indexed by two integers (i, k) and

consist of tensors with i symmetric undotted indices and k symmetric dotted indices. This is as

one would expect, since SL(2,C) is the double cover of SO(3, 1).

Example. Next, we consider some even more special cases.

• In the case SU(2), two of the above simplifications combine, and we only have a single type of

index. The irreps are indexed by a single integer.

• In the case SU(3), we only have undotted indices, and we can replace any two antisymmetric

upper/lower indices with a single lower/upper index. The irreps are indexed by two integers

(i, j) and are traceless tensors with i symmetric upper indices and j symmetric lower indices.

• In the case SU(4), there are three fundamental representations: 4, 4, and 6. However, the

physicists’ fundamentals are sufficient because the 6 is the antisymmetric part of 4×4. However,

su(4) ∼= so(6), and in that context the 4 and 4 are spinors that can’t be built out of the

fundamental 6. In that case, the physicists’ fundamentals are not sufficient.

Example. When we restrict to GL(n,R), we lose all dotted indices, retaining only {g} and {g−1T }.
Now in O(n+, n−), the new invariant tensor relates upper and lower indices; it is a metric tensor

ξab in the usual sense, and we can raise all indices, so there is only one fundamental representation.

We can also use the metric tensor to remove traces between two upper indices. Thus the irreps

are traceless tensors with upper indices and definite symmetry. The invariant tensor δab is rendered

obsolete since there are no lower indices; alternatively, it can be built out of the metric, ξabξbc = δac .

The addition of the metric splits up GL(n,R) irreps. For example, tab is a GL(n,R) irrep, but
we can raise the index with the metric, then split tab into symmetric and antisymmetric parts.

Example. The case of O(2). Consider the first two indices in tab.... We can take out the antisym-

metric part, and the trace using the metric. But these two irreps are not equivalent, as they differ

by how they transform under reflection; they are the scalar and pseudoscalar.

By repeating this procedure, we find rank n symmetric traceless tensors, for all n > 1. Imagine

starting with a symmetric rank n tensor. Then the trace is a symmetric rank n− 2 tensor, so the

symmetric traceless rank n tensor has

(n+ 1)− (n− 1) = 2
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degrees of freedom. All of these two-dimensional irreps are inequivalent, corresponding to ‘angular

momentum’ eigenvalue n.

Example. The case of SO(n). Since there’s only one kind of index, the Levi–Civita can be used

to break apart irreps, specifically those from tensors of rank n/2, into self-dual and anti self-dual

components. We’ll consider a few low-dimensional cases.

• For SO(2), the one-dimensional irreps of O(2) become equivalent, since one can multiply by ϵab
where an index is lowered using the metric. The two-dimensional irreps decompose, by ‘taking

out the trace’ using ϵab .

• For SO(3), we can symmetrize all the indices by the same logic as for SU(3). By similar

counting as for O(2), we confirm that the symmetric traceless tensors indeed have the expected

integer dimensions. Irreps of O(3) do not break apart, but do become equivalent, identifying

the pseudovector and vector, and pseudoscalar and scalar.

• For SO(3, 1), the situation is similar to SO(2), in that irreps of O(3, 1) do break apart; for

example, Fµν decomposes into E± iB. These are self-dual and anti self-dual components. This

happens in general for rank n tensors in SO(p, q) with p+ q = 2n.

• For SO(8), the Lie algebra so(8) has threefold symmetry, called triality, so there are three

fundamental representations of dimension 8. Only one is a physicist’s fundamental; the other

two are spinors and cannot be built from the first.

7.4 ◦ Representations of SU(n)

In this section, we give some practical applications of tensor methods, focusing on SU(n).

Note. We can think of tensors by themselves, but in the context of quantum mechanics, they can

be interpreted as wavefunctions. For example, consider the state

|ψ⟩ = ψi|i⟩

where the |i⟩ transform in the fundamental representation of SU(3), say

|i⟩ → U ji |j⟩.

Then we have

|ψ⟩ → U ji ψ
i|j⟩ = U ijψ

j |i⟩

so we may alternatively transform the wavefunction as

ψi → U ijψ
j

while keeping the basis vectors |i⟩ fixed. We use upper and lower indices to distinguish the funda-

mental and antifundamental. Note that the transformations for the states and wavefunction differ

by the usual active/passive flip. Now for two particles,

|ψ⟩ = ψij |ij⟩

the wavefunction ψij transforms in a tensor product representation, and we can decompose it using

the methods above. The bra transforms in the contragradient representation, which is just the
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conjugate representation here; thus upstairs and downstairs indices are switched. A inner product

⟨ϕ|ψ⟩ can be computed by contracting all the indices of the respective tensors; it is zero when the

indices don’t match up, reflecting the fact that different irreps are orthogonal. Similarly, tensor

operators can be expanded in terms of wavefunctions, e.g. Â = AiÔi.

Note. Note that the (1, 0) irrep of SU(3) corresponds to a (1, 0) tensor, while the (0, 1) irrep

corresponds to a (0, 1) tensor. We also know that the only new irrep that appears in (1, 0)⊗n ⊗
(0, 1)⊗m is the (n,m) irrep. But in the tensor picture, the only new irrep is the symmetric traceless

tensor with m upper indices and n lower indices. Hence the two labeling schemes of Dynkin labels

and tensor ranks coincide, and this reasoning generalizes.

Note. Tensors explain the ‘triality’ symmetry of the SU(3) representations. For example, in

3× 8 = 15 + 6 + 3, (1, 0)× (1, 1) = (2, 1) + (0, 2) + (1, 0)

all of the (n,m) irreps on the right-hand side have the same value of (n −m) mod 3. This holds

because all of the invariant tensors in the problem have type (n,m) where n−m is divisible by 3.

Example. The weights of the (n,m) irrep of SU(3) are shown below.

We start at the top-right and initially can move leftward or down-right. Then the states on the

upper and upper-right edges are nondegenerate, so all the outer states are nondegenerate by Weyl

reflection. In general, the degeneracy increases by one every time we move in a layer, until we reach

a triangular layer, at which point it remains constant.

Each of the states shown here can be associated with a tensor, i.e. viewing the tensor as the

state’s wavefunction. For example, when we move along the path shown, the tensors change as

v111111113333 → v111111112222 → v333333332222 .

Now consider the states one layer inward. These contain tensors with one index in common between

the top and bottom. To count the number of states in this layer, we find the number of symmetric

tensors of this form (where the symmetry allows us to neglect index order) and subtract the number

of traces, arriving at a degeneracy of 2. The same logic holds for all layers. The casework changes

when we hit a triangular layer, because from that point on one of m or n is zero.
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Note. Suppose we’re consider the matrix elements ⟨u|W |v⟩, where W , ⟨u|, and |v⟩ transform in

irreps RW , Ru, and Rv. By the Wigner–Eckart theorem, all such matrix elements are specified by

only a few numbers, specifically the number of factors of 1 in RW ⊗Ru⊗Rv. We’ve seen examples of

this in SU(2), where we found the other matrix elements by raising and lowering, but with tensors

we can easily find a general expression by contracting indices.

Example. Suppose everything transforms in the 8 of SU(3). There are two ways to contract the

tensors W i
j , u

i
j , and v

i
j to yield a 1, either ‘clockwise’ or ‘anticlockwise’. (Note that by convention

u stands for the wavefunction of |u⟩, so u is the bra wavefunction.) In this case all of these tensors

can be written as matrices, giving

⟨u|W |v⟩ = λ1 tru
†Wv + λ2 tru

†vW.

Here, we replaced u with the matrix u† because taking the bra conjugates and exchanges upper

and lower indices, and the latter is just a transposition in matrix notation.

Example. Suppose u and v are 10’s and the W is an 8. Then there is only one contraction,

⟨u|W |v⟩ = λuijkW
k
ℓ v

ijℓ.

This is more economical in SU(3) than SU(2), because the tensors tend to have lower ranks; the

dimension of the irrep grows quadratically in the rank rather than linearly. However, such methods

also work for SU(2), where they can supply explicit formulas for the Clebsch–Gordan coefficients.

Next, we apply Young tableaux to tensor products in SU(n). We use the physics conventions

detailed in section 2.6 and warm up with SU(3).

• As we’ve seen, the (n,m) irrep has n upper indices and m lower indices, where everything is

traceless and symmetric. To describe the irrep with a single Young tableau, we convert every

lower index into two antisymmetric upper indices by raising with ϵijk.

• Given a tensor T ijk..., we apply a Young tableau to it by labeling the boxes with the indices,

symmetrizing over indices in rows, then antisymmetrizing over indices in columns.

• For example, we project out the (1, 1) irrep of T ikℓ corresponding to Sijϵ
jkℓ by applying

k i
ℓ

.

To see this, note there are two constraints: the k and ℓ indices must be antisymmetric, enforced

by the columns, and the original tensor must have been traceless, which is equivalent to

ϵikℓu
ikℓ = 0

and enforced by the rows. Similarly, the (n,m) irrep has m columns with two boxes each

followed by n columns with 1 box each.

• In general, given a tensor with n upper indices, we can project out an irrep by applying a Young

tableau with n boxes. Columns with more than 3 boxes automatically give zero. Columns with

3 boxes mean an ϵijk factors out of the tensor, so they yield an isomorphic irrep to a Young

tableau without them.
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• There is a simple algorithm to compute the product of the irreps α and β corresponding to

tableaux A and B.

1. Write a’s in the first row of B and b’s in the second row.

2. Add the a boxes to A anywhere, as long as a valid tableau is formed and no two a’s are

in the same column.

3. Then add the b boxes to A similarly. Reading the boxes in Hebrew order and ignore the

tableau if there are more total b’s than a’s at any point. (We could use a different order,

but this is more convenient because we’re attaching boxes on the right anyway.)

We won’t prove this, though intuitively it just takes all ways to combine the indices, maintaining

the symmetry properties found above. In this system, triality is the number of boxes mod 3.

The result can also be computed more directly using the Littlewood-Richardson rule.

• In general, the computation is much faster if we choose B to have as few boxes as possible. In

particular, conjugating everything and then conjugating the final result can save time.

Example. Below we show that 8× 8 = 27 + 10 + 10 + 8 + 8 + 1.

Here we’re ignored combinations that yield columns with more than three boxes, as these are simply

zero. After ignoring columns with three boxes, we arrive at the result, recalling that 27 is (2, 2) and

10 is (3, 0).

Next, we move on to SU(n).

• To do representation theory, we only need to relate between the simple roots and fundamental

weights. Unfortunately, this is a bit complicated, because inverting the Cartan matrix isn’t

trivial. Instead, it’s easier to instead express both of these quantities in terms of the weights of
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the defining representation. (Note they are sometimes called the “weights of the fundamental”,

but one should not confuse them with the fundamental weights!)

• Let the weights of the defining representation be {ν1, . . . , νn}. As shown earlier, these form the

vertices of a tetrahedron in n− 1-dimensional space.

• The roots are simply the differences of these weights. For convenience, we define positive roots

to have the form νi − νj for i < j. Then the simple roots are

αi = νi − νi+1, i = 1, 2, . . . , n− 1.

We can easily check the angles are in accordance with the Dynkin diagram.

• Taking the dual basis, the fundamental weights are

µi =
i∑

j=1

νj , i = 1, 2, . . . , n− 1.

In particular, the highest weight of the defining representation is µ1 = ν1, as we can then lower

with each simple root to get the other νi. Then the second-highest weight is ν2, followed by ν3.

• Now consider the antisymmetric tensor product of m copies of the defining representation.

Then the highest weight is ν1 + . . .+ νm because the indices must be distinct, so we have the

mth fundamental representation! So just like in SU(3), we can build everything out of tensor

products of only the defining representation.

• General irreps of SU(n) can thus be identified by a Young tableau. The tableau

represents the irrep with Dynkin indices qk. We specify a Young tableau with the notation

[ℓ1, ℓ2, . . .] where ℓi is the length of column i, so the ith fundamental is specified by [i]. The

adjoint representation has one defining index and one lowered defining index, so it is [n− 1, 1].

• Consider the conjugate of the defining representation [1]. Its lowest weight is νn, but since

all the νi sum to zero, this is equal to −µn−1. Then the conjugate representation is [n − 1].

Similarly, the conjugate of [j] is [n− j], and hence the conjugate of any Young tableau can be

found by rotating it by 180◦ and interpreting the top edge as a new bottom edge.

• The algorithm for products above also works, with more letters. To avoid overcounting, there

should be at least as many a’s as b’s, at least as many b’s as c’s, and so on, at every point.

Triality generalizes to N -ality, the number of boxes mod N . This in turn generalizes to the

“conjugacy class” of a representation of any Lie algebra, which can be useful for constraining

tensor products.
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• There is a useful formula for the dimension of an SU(n) irrep, which can be derived from the

Weyl character formula. We place an n in the top-left box, then place factors in the other

boxes, adding one when we move right and subtracting one when we move down. The product

of these factors divided by the product of the hook lengths is the dimension.

7.5 ◦ Branching Rules

Finally, Young tableaux can be used to decompose representations when restricting to subgroups.

• First, we consider the subgroup

SU(n)× SU(m)× U(1) ⊂ SU(n+m).

In terms of indices, we imagine the indices can go from 1 to n +m, the SU(n) part acts on

the indices from 1 to n only, and the U(1) generator is diag(m, . . . ,m,−n, . . . ,−n) to ensure

tracelessness.

• The fundamental decomposes as

=
(

, ·
)
M

+
(
· ,

)
N

where the first element in each pair is the SU(n) representation, and the subscript indicates

the U(1) charge.

• More generally, to decompose a general irrep C we consider the Young tableau. If it has k boxes,

then we can only split into a pair of irreps A and B with n and m boxes so that n +m = k,

and the U(1) charge is nM −mN .

• Now, we need to account for the symmetry of C. Let A′ and B′ be SU(n+m) irreps with the

same tableau as A and B. Then if C doesn’t appear in A′⊗B′, then A⊗B surely can’t appear

in the decomposition of C. In fact, in general the number of times A⊗B appears in C is the

number of times C appears in A′ ⊗B′.

• Another important situation is the embedding

SU(n)× SU(m) ⊂ SU(nm)

which occurs when we work with tensor product spaces. The best notation here is to have two

types of indices: an index i for SU(n) and an index α for SU(m), so that indices in SU(nm)

are composites iα. Then each factor acts on its index, leaving the other alone.

• Consider an irrep D of SU(nm) with K boxes. Then its tensor has K indices of the SU(n)

type and K indices of the SU(m) type, so it decomposes into (D1, D2) where D1 and D2 both

have K boxes, up to eliminating full columns.

• The difference from the previous part is that the Young tableau forD describes the SK symmetry

associated with permuting the composite indices iα. Thus, to see if we can recover this symmetry,

we regard D1 and D2 as Young tableaux for SK irreps, multiply them as SK irreps, and look

for a factor of D. We don’t have an algorithm for this, because we only know how to multiply

SU(n) irreps diagrammatically.
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Example. The case of SU(3)× SU(2)× U(1) ⊂ SU(5). The adjoint decomposes as

Example. The case of SU(2)×U(1) ⊂ SU(3), where the ‘SU(1)’ factor is trivial. If we’re working

with flavor SU(3), these components are isospin and hypercharge. The adjoint decomposes as

Here the trivial ‘SU(1)’ irreps are all one-dimensional, so we don’t mark them. However, the fact

that SU(1) has only one index value constrains the Young tableau to have a single row.

Example. The case of SU(3) × SU(2) ⊂ SU(6), where we interpret the factors as quark flavor

and quark spin. For the lowest energy baryons, we need total symmetry between the quarks, so we

must decompose

56 = .

There are three irreps of SU(3) with three boxes, and two of SU(2),

.

Then it turns out the two possibilities are

→ ( , ) +

(
,

)
= (10, 4) + (8, 2).
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These are the baryon decuplet, which is totally symmetric in both flavor and spin space, and the

baryon octet, which has mixed symmetry in both.

Note. Note that the adjoint A obeys the property

R ⊂ A⊗R

for any nontrivial representation R. This is clear from the Young tableaux method for SU(n). More

generally, consider the map

A⊗R→ R, x⊗ v → x(v).

It can be checked this is a map of representations. Since the image is R, R is a quotient of A⊗R.

We can compute branching rules in general using projection matrices.

• Suppose h ⊂ g. We can specify weights in g by the coefficients w(i) of the fundamental weights,

and similarly in h by coefficients v(i). If h is not simple, we simply find the coefficients within

each component and concatenate the vectors.

• As a simple example, consider the branching associated with su(3) ⊃ su(2)⊕ u(1). We have

3 → 21 + 1−2

because the weight vectors (10), (11), and (01) in su(3) map to (1)(+1), (1)(+1), and (0)(−2)

respectively, where a bar stands for a negative sign.

• Hence the weights v(i) and w(i) are related by the projection matrix

P =

(
1 0

1 2

)
.

Once we have the projection matrix, we can compute branching rules in general by projecting

all of the weights of a given representation.

• If the subalgebra h is found by a Dynkin diagram, it is simple to write down the projection

matrix. For example, consider the subalgebra of su(5) below.

It is clear the projection matrix is

P =


1 0 0 0

0 1 0 0

0 0 0 1

a41 a42 a43 a44

 .

The final row, corresponding to the u(1) factor, depends on how the u(1) generator is normalized;

it may be found by considering an explicit simple representation.
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• The projection matrix is not unique. For instance, the usual embedding of su(3)⊕ su(2)⊕ u(1)

in su(5) used in grand unification instead has

P =


1 1 0 0

0 0 1 1

0 1 1 0

−2/3 1/3 −1/3 2/3

 .

However, the branching rules computed will be the same, up to u(1) normalization.

• For multiple layers of subalgebras, h ⊂ k ⊂ g, we may simply multiply the projection matrices.

7.6 ◦ Representations of SO(n)

Next, we turn to SO(n) and spinor representations. We begin with SO(2n+ 1).

• We label the generators as Mab = −Mba, where in the defining representation

[Mab]xy = −i(δaxδby − δbxδay).

Then a basis for the Cartan subalgebra is Hj =M2j−1,2j , for j = 1, . . . , n.

• We’ve already heuristically found that the roots are

ej ± ek, −ej ± ek, ±ej .

In terms of the defining representation, they are

Eηej =
1√
2
(M2j−1,2n+1 + iηM2j,2n+1)

and

Eηej+η′ek =
1

2
(M2j−1,2k−1 + iηM2j,2k−1 + iη′M2j−1,2k − ηη′M2j,2k)

as can be checked by direct commutation, where η, η′ = ±1.

• Under a suitable definition of positivity, the simple roots are

αj = ej − ej+1 for j = 1, . . . , n− 1, αn = en.

Then the fundamental weights are

µj =

j∑
k=1

ek for j = 1, . . . , n− 1, µn =
1

2

n∑
k=1

ek.

The representation corresponding to µn is qualitatively difference since it is associated with the

short root; it is the spinor representation.

• Starting with highest weight µn, by Weyl reflection in the roots ej , we get the 2n weights

(±e1± . . .± en)/2, all of which are nondegenerate since the highest weight was. By some choice

of positivity, each of these weights could be the highest weight, and lowering any of them just

gives another one, so these are all the weights.
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• It is convenient to write the spinor as the tensor product of n two-dimensional spaces,

|±e1/2± . . .± en/2⟩ = |±e1/2⟩ ⊗ . . .⊗ |±en/2⟩

and we define σja to be the Pauli matrix σa acting on slot j, so

Hj =
1

2
σj3, H2

j =
1

4
.

For any a ̸= b, Mab could have been a Cartan generator since the ordering of axes is arbitrary,

so in the spinor representation M2
ab = 1/4 for all a ̸= b.

• Since any state can only be raised once, (Eej )
2 = 0, which implies

{M2j−1,2n+1,M2j,2n+1} = 0

and again since the ordering of axes is arbitrary, we have

{Mjℓ,Mkℓ} = 0, j ̸= k ̸= ℓ ̸= j.

We now construct the generators in the spinor representation.

• First we construct some of the roots. For simplicity we’ll set n = 2, though the reasoning will

be easy to generalize to arbitrary n. First off, we know that

Ee1 |−e1/2± e2/2⟩ ∝ |e1/2± e2/2⟩, E−e1 |−e1/2± e2/2⟩ = 0.

To compute the proportionality constant, take the norm of both sides for

⟨−e1/2± e2/2|E†
e1
Ee1 |−e1/2± e2/2⟩ = ⟨−e1/2± e2/2|{E†

e1
, Ee1}|−e1/2± e2/2⟩ = 1

2

using the above results. Hence we have E±e1 = σ1±/2, where we have implicitly fixed a phase

convention. Similarly, we can choose a phase convention so that

Ee2 |e1/2− e2/2⟩ = 1√
2
|e1/2 + e2/2⟩.

• At this point we have exhausted the phase freedom. Now we compute

Ee2 |−e1/2−e2/2⟩ =
√
2Ee2E−e1 |e1/2−e2/2⟩ = −

√
2E−e1Ee2 |e1/2−e2/2⟩ = − 1√

2
|−e1/2+e2/2⟩

where we used {E±E1 , E±e2} = 0. This extra sign means we need a factor of σ13,

E±e2 =
1

2
σ13σ

2
±.

• By continuing this reasoning for general n, we have

E±ej =
1

2
σ13 . . . σ

j−1
3 σj±.

Thus, for the generators we have

M2j−1,2n+1 =
1

2
σ13 . . . σ

j−1
3 σj1, M2j,2n+1 =

1

2
σ13 . . . σ

j−1
3 σj2.

From these generators we can construct all other generators by anticommutation, as

Mab = −i[Ma,2n+1,Mb,2n+1].

Using {σi, σj} = 2δij , each generator is ±1/2 times a product of Pauli matrices.
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• The spinor representation is not complex, since its weights are symmetric. For n = 1, we have

seen it is equivalent to its conjugate representation by S = σ2,

σa = −σ2σ∗aσ2.

Demanding the same for the generators M2j−1,2n+1 and M2j,2n+1 yields

S =
∏
j odd

σj2
∏
k even

σk1 .

This implies the spinor representations are real for SO(8n+1) and SO(8n+7), and pseudoreal

for SO(8n+ 3) and SO(8n+ 5).

Next, we apply similar reasoning for SO(2n+ 2).

• In this case the simple roots are

αj = ej − ej+1 for j = 1, . . . , n, αn+1 = en + en+1

where αn and αn+1 are the distinguished roots. The last two fundamental weights are

µn =
1

2
(e1 + . . .+ en − en+1), µn+1 =

1

2
(e1 + . . .+ en + en+1)

and correspond to the two spinor representations Dn and Dn+1.

• In SO(2n + 2), all of the roots have the form ±ej ± ek. Then by similar logic to the case of

SO(2n+ 1), the spinor representations have weights

1

2

n+1∑
j=1

ηje
j , ηj = ±1

but with the additional restriction that the ηj multiply to −1 for Dn and 1 for Dn+1. Note

that both of these representations have dimension 2n. We see that the spinor representations

are complex exactly when n is even, in which case they are each others’ conjugates.

• To construct the representations more explicitly, restrict to SO(2n+1) generated by Mjk, with

j, k ≤ 2n + 1. Then we lose the last Cartan generator Hn+1 = M2n+1,2n+1, and both of the

spinor representations reduce to the one found above.

• Thus, using the same notation, all we have to do is construct Hn+1. It is

Hn+1 =
1

2
σ13 . . . σ

n
3 ×

{
−1 Dn,

+1 Dn+1.

All the other missing generators can be found by commutation.

• Finally, we determine reality and pseudoreality. We can define R exactly as we did for SO(2n+1),

and by the same logic find that the spinors are real for SO(8n) and pseudoreal for SO(8n+ 4).

In summary, the Weyl spinors are:
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SO(8n) real

SO(8n+ 1) real

SO(8n+ 2) complex

SO(8n+ 3) pseudoreal

SO(8n+ 4) pseudoreal

SO(8n+ 5) pseudoreal

SO(8n+ 6) complex

SO(8n+ 7) real

Example. In the case of so(4) the algebra is not simple, as it breaks into su(2)⊕su(2). Nonetheless

the arguments above apply, because at each step we simply ignored one of the two special simple

roots. When we do this, we restrict to so(3) ∼= su(2), and the arguments go through as before.

Note that the resulting spinors are pseudoreal, but the Weyl spinors of so(3, 1) are complex; the

results depend on the metric signature. We cover the case of Lorentzian signature in the notes on

Supersymmetry.

We can also arrive at these results by the alternate route of Clifford algebras.

• A Clifford algebra is a set of N operators satisfying the anticommutation relations

{Γj ,Γk} = 2δjk.

Given a Clifford algebra, we may define

Mjk =
1

4i
[Γj ,Γk]

which generate a representation of SO(N). We won’t show this here, but it is done in detail in

the notes on Quantum Field Theory.

• The index on Γj may be viewed as a vector index, in the sense that the Γ’s transform in the

N -dimensional fundamental representation of SO(N),

[Mjk,Γℓ] = i(δjℓΓk − δkℓΓj) = Γm(M
D1

jk )mℓ

where MD1
is in the fundamental representation,

[MD1

jk ]ℓm = −i(δjℓδkm − δjmδkℓ).

That is, the Γ’s form a irreducible set of tensor operators.

• For SO(2n+ 1), the Clifford algebra

Γ1 = σ12σ
2
3 . . . σ

n
3 , Γ2 = −σ11σ23 . . . σn3 , Γ3 = σ22 . . . σ

n
3 , Γ4 = −σ21 . . . σn3

and so on, up to

Γ2n−1 = σn2 , Γ2n = −σn1 , Γ2n+1 = σ13 . . . σ
n
3

yields a 2n dimensional representation, precisely the spinor representation we found earlier.

https://knzhou.github.io/notes/susy.pdf
https://knzhou.github.io/notes/susy.pdf
https://knzhou.github.io/notes/qft.pdf
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• Using this Clifford algebra, we can simply forget about Γ2n+1 to get a Clifford algebra with 2n

elements, yielding a 2n dimensional representation of SO(2n). This representation is reducible

since Γ2n+1 commutes with all the generators, because

Γ2n+1 = (−i)nΓ1Γ2 . . .Γ2n.

Indeed, we saw above that Γ2n+1 is equal to −1 on Dn−1 and 1 on Dn, so

1

2
(1− Γ2n+1) projects onto D

n−1,
1

2
(1 + Γ2n+1) projects onto D

n.

This is familiar from the study of Lorentz spinors, where Γ2n+1 is called γ5.

Clifford algebras arise naturally when considering Majorana spinors.

• Suppose we have a set of n independent fermionic creation and annihilation operators. Then

their anticommutation relations are

{ci, c†j} = δij , {ci, cj} = {c†i , c
†
j} = 0.

Given these, we may always construct the self-conjugate operators

γi = ci + c†i , {γi, γj} = 2δij , γi = γ†i .

These are called Majorana operators and satisfy the Clifford algebra. However, typically these

operators don’t create physical excitations, because if the ci are charged then γi does not have

definite charge.

• If we do have a set of 2n Majorana operators γi, we may recover n independent fermionic

harmonic oscillators by defining

Ψk =
1

2
(γ2k−1 + iγ2k).

Starting from the vacuum, these generate a 2n dimensional Hilbert space, which is the same

reducible representation we saw above. The two pieces correspond to having an even or odd

number of particles.

• A set of n harmonic oscillators has an SU(n) symmetry associated with rotating between them.

These rotations are generated by

Ta =
∑
jk

Ψ†
j [Ta]jkΨk

where [Ta]jk is the defining representation of SU(n). This yields a convenient embedding of

SU(n) in SO(2n).

• Because the SU(n) rotations preserve particle number, the 2n dimensional Hilbert space breaks

into n + 1 representations under SU(n), with the m-particle subspace containing
(
n
m

)
states.

Since the fermionic oscillators anticommute, these correspond to antisymmetric powers of the

fundamental, which we write as [m]. For example, for SU(5) ⊆ SO(10) we have

D5 = 16 → [1] + [3] + [5] = 5 + 10 + 1, D4 = 16 → [0] + [2] + [4] = 1 + 10 + 5.

The latter makes SO(10) suitable for grand unification.
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8 Relativistic Fields

8.1 Representations of the Euclidean Group

In this section we introduce a method for finding the representations of the noncompact Euclidean

group, as practice for the more complicated Poincare group.

• The Euclidean group En is the group of linear transformations of n-dimensional Euclidean

space connected to the identity that leave the length of all vectors invariant. It is generated by

translations and rotations.

• In the special case of E2, a general group element g(b, θ) is a rotation by θ followed by a

translation by b. The multiplication law is

g(b2, θ2)g(b1, θ1) = g(θ1 + θ2, R(θ2)b1 + b2)

and inverses are given by

g(b, θ)−1 = g(−R(−θ)b,−θ).

• Both translations and rotations can be written as linear transformations on R3, where the third

component of the vector is always unity,

g(b, θ) =

cos θ − sin θ b1

sin θ cos θ b2

0 0 1

 , x =

x1x2
1

 .

This allows us to deduce commutation relations from the usual matrix algebra.

• The rotations and translations are generated by

J =

 −i
i

 , P1 =

 i
 , P2 =

 i

 , R(θ) = e−iθJ , T (b) = e−ib·P.

Note that P1 and P2 are not Hermitian. The Lie algebra is

[P1, P2] = 0, [J, Pk] = iϵkmPm

where ϵ12 = 1. Physically, the latter relation states that the translation b is a vector; exponen-

tiating it gives

e−iθJPke
iθJ = PmR(θ)mk, e−iθJT (b)eiθJ = T (R(θ)b)

and the latter is just the group multiplication law in another form.

• The translations T2 form a normal subgroup of E2, and E2/T2 contains pure rotations, so it is

isomorphic to SO(2). Since E2 has an abelian normal subgroup, it is not semi-simple.

• We are interested in unitary representations, but since E2 is not compact, it has no finite-

dimensional faithful unitary representations. The non-faithful finite-dimensional unitary irreps

are just those of SO(2), mapping g(b, θ) to the phase eimθ.

Next, we construct the faithful unitary irreps of E2 with the usual method, starting with a reference

vector and applying raising and lowering operators.
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• We define the raising and lowering operators

P± = P1 ± iP2, [P+, P−] = 0, [J, P±] = ±P±.

Next, we define the squared momentum operator

P 2 = P 2
1 + P 2

2 = P+P− = P−P+, [P 2, J ] = [P 2, P±] = 0.

Therefore, P 2 is a Casimir operator and has a single eigenvalue for each irrep.

• In a unitary representation, J , P1, and P2 are Hermitian operators; to save space we write the

operator associated with a generator with the same symbol. Then P †
+ = P−, so P

2 is positive

definite. We thus write its eigenvalue as p2 > 0.

• Since P 2 and J commute, we can simultaneously diagonalize the two, with normalized eigen-

vectors

P 2|pm⟩ = p2|pm⟩, J |pm⟩ = m|pm⟩, m ∈ Z

where the eigenvalues of J come from our knowledge of the irreps of SO(2). In principle there

could be multiple vectors in the same irrep with the same p2 and m, but we’ll see below this

isn’t the case.

• In the case where p2 = 0, we have P±|0m⟩ = 0, so the representation is one-dimensional. This

simply reproduces the non-faithful irreps we found above.

• For p2 > 0, we take the phase convention

|p,m± 1⟩ = (±i/p)P±|pm⟩.

Starting with any reference vector |pm0⟩, repeated application of P± gives all integer values of

m precisely once. The matrix elements are

⟨pm′|J |pm⟩ = mδm′m, ⟨pm′|P±|pm⟩ = ∓ipδm′,m±1.

• We claim the representation matrices for finite transformations are

Dp(b, θ)m′m = ei(m−m′)ϕJm−m′(pb)e−imθ

where (b, ϕ) are the polar coordinates of b and Jn is the Bessel function of the first kind. The

e−imθ factor is from the rotation part. The translation can be decomposed as

T (b, ϕ) = R(ϕ)T (b, 0)R(ϕ)−1, ⟨pm′|T (b, ϕ)|pm⟩ = ei(m−m′)ϕ⟨pm′|T (b, 0)|pm⟩.

Therefore, it suffices to show that

⟨pm′|T (b, 0)|pm⟩ = Jm−m′(pb).

We have T (b, 0) = e−ibP1 = e−ib(P++P−)/2. This can be expanded in a double series, which

collapses to a single series by orthogonality, giving the defining series for the Bessel function.

This is not unexpected; the Bessel function is fundamentally tied to cylindrical symmetry, as

the spherical Bessel function is tied to spherical symmetry.
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We call the |pm⟩ basis found above the angular momentum basis. Now we work in the “plane-wave”

basis using the method of induced representations.

• This method works for groups with abelian normal subgroups. The idea is to use the generators

of this subgroup as a starting point, i.e. working with eigenvectors of P instead of P 2 and J .

• We take the reference vector p0 = (p, 0) and consider a reference ket |p0⟩ with P|p0⟩ = p0|p0⟩.
The only operation which yields new kets is the rotation R(θ) = e−iθJ , and we have

PkR(θ)|p0⟩ = R(θ)(R(θ)−1PkR(θ))|p0⟩ = pkR(θ)|p0⟩, pk = R(θ)kℓp0ℓ.

The notation here is overloaded, as R(θ) is both an operator on the irrep and a 3× 3 matrix.

• We see that R(θ)|p0⟩ is also an eigenvector of P with the rotated momentum p, so we write

|p, θ⟩ = R(θ)|p0⟩.

Since R(2π) = 1, this shows that |p0⟩ is the only vector with eigenvalue p0 in the irrep. Thus

the set of |p, θ⟩ defined above form an irrep of E2.

• Stepping back, we used the fact that the translation subgroup is abelian to label states with

momentum, and we used its normality to show that rotations take states of definite momentum

to other states of definite momentum. Then the rest of the procedure is simply generating all

the kets we can to get an irrep. In more general situations, there can be group generators that

commute with P, yielding multiple kets with the same momentum.

• We choose to normalize the vectors so that

⟨p, θ′|p, θ⟩ = 2πδ(θ′ − θ).

We don’t need to normalize over p, since p is fixed in this irrep due to the Casimir operator P 2.

• Next, we find the relationship between the angular momentum and plane wave basis. Dropping

the p index, consider the state

|m̃⟩ =
∫ 2π

0

dϕ

2π
eimϕ|ϕ⟩.

By construction, we have

R(θ)|m̃⟩ = e−imθ|m̃⟩

by shifting the integration variable, so |m̃⟩ is proportional to |m⟩. To fix the phases, note

P±|m̃⟩ = |m̃± 1⟩, |m⟩ = im|m̃⟩, ⟨ϕ|m⟩ = eim(ϕ+π/2).

The inner product allows us to switch between bases both ways, e.g.

|ϕ⟩ =
∑
m

|m⟩e−im(ϕ+π/2).

• As an application, note that under a translation, we have

T (b)|m⟩ =
∫
dϕ

2π
eim(ϕ+π/2)e−ipb cos(θ−ϕ)|ϕ⟩
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where b has polar angle θ. Then we immediately have

⟨m′|T (b)|m⟩ =
∫
dϕ

2π
ei(m−m′)(ϕ+π/2)e−ipb cos(θ−ϕ) = ei(m−m′)θ

∫
dψ

2π
ei(m−m′)ψ−ipb sinψ

where ψ = π/2 + ϕ − θ, which recovers our earlier result using the integral representation of

the Bessel function. We can also show that the position-space wavefunctions ⟨r|m⟩ are Bessel

functions times eimθ. (verify) Further investigation recovers many of the standard properties of

Bessel functions, such as their differential equation, recursion formulas, and addition theorems.

Note. As we’ve seen, E2 is the group contraction of SO(3) with

Jy/R→ Px, −Jx/R→ Py, Jz → J

in the limit R → ∞. Then we can recover the representations of E2 from those of SO(3). This

sounds strange since the former has infinite-dimensional representations, but note that for the spin

j representation,

⟨m′|Jx ± iJy|m⟩ = δm′,m±1

√
j(j + 1)−m(m± 1).

Then when we replace the Ji with Pi, the inner product is proportional to 1/R, so the representation

is automatically one-dimensional unless j grows with R. Specifically, if we pick j = pR, then

⟨m′|Px ± iPy|m⟩ = pδm′,m±1

which exactly matches the E2 representation with squared momentum p2. As an application, it is

possible to express Bessel functions in terms of limits of d-functions.

We now apply the same methods to E3.

• The group E3 is generated by rotations and translations, and the Lie algebra is

[Pi, Pj ] = 0, [Ji, Jj ] = iϵijkJk, [Pi, Jj ] = iϵijkPk

which says that both P and J are vectors. The translations T3 form a normal subgroup.

• The general group element can be written with the Euler angle parametrization

g = T (b)R(α, β, γ) = e−ib·Pe−iαJ3e−iβJ2e−iγJ3 .

Alternatively, since conjugation by rotations rotates a translation vector, we can write

g = R(ϕ, θ, 0)T (b0)R(α
′, β′, γ′)

where b has spherical coordinates (b, ϕ, θ) and b0 has spherical coordinates (b, 0, 0).

• We can construct three independent rotational scalars, P 2, J ·P and J2, which are candidates

for Casimir operators. We have [J2,P] ̸= 0, intuitively because the rotation operators pick out

a fixed origin, which is shifted by translations. However,

[J ·P, Pj ] = [Ji, Pj ]Pi = −iϵijkPkPi = 0

and clearly [P 2,P] = 0, so the two Casimir operators are P 2 and J ·P.
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• To work in the angular momentum basis, we simultaneously diagonalize {P 2,J ·P, J2, Jz}. To
work in the plane wave basis, we simultaneously diagonalize {P 2,J ·P,P}.

• In the plane wave basis, the eigenvalues are {p2, λp,p} and we write a ket with these eigenvalues

as |p, λ, p̂⟩ where p̂ = p/p and λ is called the helicity.

• As before, we start with the standard vector p̂0 = êz. Define the little group to be the set

of group elements in the quotient group E3/T3 ∼= SO(3) that leave the standard vector p̂0

invariant. In this case, the little group is SO(2), generated by R3(ϕ) = e−iϕJ3 .

• We can begin by constructing an irrep of the little group, by applying its group operations on

the reference ket. Then, as for E2, we can use this to construct (“induce”) an irrep of E3 using

the rotations outside the little group. (The first step was not necessary for E2, because there

the little group was trivial.)

• Here, the irreps of the little group are all one-dimensional, and they are indexed by the eigenvalue

of J3, which must be an integer. Thus the little group irrep is specified by λ ∈ Z. The rest of

the E3 irrep is generated by rotations,

|p, λ, p̂⟩ = R(ϕ, θ, 0)|p, λ, p̂0⟩, p̂ = (θ, ϕ).

Suppressing the p and λ indices, translations simply act by

T (b)|p̂⟩ = e−ib·p|p̂⟩.

• Rotations are a bit more complex. We have

R(α, β, γ)|p̂⟩ = R(α, β, γ)R(ϕ, θ, 0)|p̂0⟩ = R(ϕ′, θ′, ψ)|p̂0⟩

where the second equality defines ϕ′, θ′, and ψ. Then we have

R(α, β, γ)|p̂⟩ = R(ϕ′, θ′, 0)R(0, 0, ψ)|p̂0⟩ = e−iλψ|p̂′⟩, p̂′ = (θ′, ϕ′).

The point is that p̂ gets rotated in the obvious way, but with a more subtle extra phase e−iλψ,

which has already been fixed by the action of the little group on the reference ket.

• We normalize the vectors by

⟨p̂′|p̂⟩ = 4πδ(cos θ′ − cos θ)δ(ϕ′ − ϕ)

since this cancels the invariant measure sin θ dθdϕ/4π on SO(3).

• Working in the angular momentum basis, we have vectors |p, λ, j,m⟩ corresponding to eigen-

values {p2, λp, j(j + 1),m} of {P 2,J ·P, J2, J3}. We can then construct raising and lowering

operators J± which raise and lower m. Since the translations don’t commute with J2, they can

change j. It turns out that j takes on all positive integer values, making the representation

infinite-dimensional as expected.

• The radial dependence of the angular momentum basis states takes the form of spherical Bessel

functions. (verify) By similar reasoning to E2, we can use the group structure of E3 to recover

many of their properties.
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8.2 ◦ Representations of the Poincare Group

Finally, we turn to the Poincare group, our original goal. We use the (−+++) metric convention.

• The Poincare group is the analogue of the Euclidean group for Minkowski space. Its elements

take the form

g(b,Λ) = T (b)Λ, xµ 7→ Λµνx
ν + bµ

where Λ is a Lorentz transformation connected to the identity. By similar reasoning to before,

the translations form a normal subgroup and the factor group is the Lorentz group. Again, we

will overload the notation so that Λ is both a 4× 4 matrix and an operator.

• A general Lorentz transformation can be written as

Λ = R(α, β, 0)L3(ξ)R(ϕ, θ, ψ)
−1

where L3(ξ) is a boost of rapidity ξ along the z-axis. This is the same idea as before: a boost

can be conjugated by rotations to change its direction to the z-axis.

• To work with the generators, we have to be careful with index placement. An infinitesimal

translation by δb is

T (δb) = I − iδbµPµ, T (b) = exp(−ibµPµ).

The translation generators Pµ are related to the physical four-momentum by raising an index,

so P 0 = −P0 and P i = Pi. Under the multiplication law, Pµ indeed transforms as a covector.

• The Lorentz generators are defined as

Λ(δω) = I − i

2
δωµνJµν

where δω is an antisymmetric tensor that parametrizes the transformation as

δω23 is angle of rotation about x, δω10 is boost along x.

In terms of differential operators, we have

Jµν = i(xµ∂ν − xν∂µ), Pµ = i∂µ.

There may be extra signs here, depending on the convention.

• The commutation relations are

[Pµ, Jλσ] = i(Pληµσ − Pσηµλ), [Jµν , Jλσ] = i(Jλνηµσ − Jσνηµλ + Jµληνσ − Jµσηνλ).

These can be shown using 5 × 5 matrices or by using the differential operators. Intuitively,

these results just say that Pµ is a vector and Jµν is a tensor.

Next, we apply the method of induced representations to the Poincare group.
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• We use the abelian subgroup of translations, and note there is a Casimir operator

C1 = −PµPµ = P 2
0 − P 2.

We let the value of the operator be c1. For a momentum pµ, there are several cases:

trivial: c1 = pµ = 0, timelike: c1 > 0, lightlike: c1 = 0, pµ ̸= 0, spacelike: c1 < 0.

In the trivial case, the little group is the Lorentz group, but translations do nothing; this

recovers the Lorentz irreps found above. The resulting states represent vacuum states, rather

than one-particle states.

• For the timelike case c1 = M2, we choose the standard momentum pµt = (M,0). The little

group is SO(3), so we write the states with the standard momentum as |0λ⟩ where

Pµ|0λ⟩ = pµt |0λ⟩, J2|0λ⟩ = s(s+ 1)|0λ⟩, J3|0λ⟩ = λ|0λ⟩, λ ∈ {−s,−s+ 1, . . . , s}.

Here the indices M and s are suppressed.

• Next, we construct the rest of the states by applying Lorentz transformations. To do this, we

need to pick a conventional Lorentz transformation that maps the reference momentum to any

desired momentum p. Noting again that a general Lorentz transformation can be written as

Λ = R(α, β, 0)L3(ξ)R(ϕ, θ, ψ)
−1 ≡ H(p)R(ϕ, θ, ψ)−1

where the rightmost factor does nothing since it is in the little group, we choose to define

|pẑλ⟩ = L3(ξ)|0λ⟩, p =M sinh ξ

and therefore

|pλ⟩ = R(α, β, 0)|pẑλ⟩ = H(p)|0λ⟩.

The |pλ⟩ are now a full irrep of the Poincare group, and the equations above simply define,

conventionally, how the λ index behaves for nonzero momenta. We would have gotten a different

convention if we had used a different choice of “standard Lorentz transformation” H(p).

• By the same proof as for E2, the |pλ⟩ states indeed have momentum p, in the sense that

T (b)|pλ⟩ = e−ib
µpµ |pλ⟩.

To see how the Lorentz transformations act, we argue as for E3. We have

Λ|pλ⟩ = ΛH(p)|0λ⟩ = H(Λp)R(Λ, p)|0λ⟩, R(Λ, p) = H−1(Λp)ΛH(p).

The “Wigner rotation” R(Λ, p) maps pt 7→ p 7→ Λp 7→ pt, so it is in the little group.

• On the other hand, we fixed how the little group acts in the very first step, which gives

Λ|pλ⟩ = Ds(R(Λ, p))λ′λ|Λpλ′⟩

where the Ds are the spin s representation matrices, and Λp is the spatial part of Λp. This is

the generalization of the extra phase picked up for E3.
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• “Common sense” would expect that when Λ is a pure rotation, the Wigner rotation R(Λ, p) is

precisely that same rotation, for any p. This is indeed true, as can be checked in a tedious,

explicit calculation.

• We now give interpretations for all the parameters above. The irrep is labeled by s and M ,

where s indicates the spin and M indicates the mass, as seen from the relativistic dispersion

relation. We’ve just shown that p is the spatial momentum, and by the same argument as for

E3, λ may be identified with the helicity, i.e. the eigenvalue of J · P/|p|, when |p| ≠ 0. The

difference is that the helicity is no longer a Casimir invariant, as it can be changed by boosts.

• There is a second Casimir invariant related to the spin s. As we’ve seen, it can’t be J2, since

that doesn’t commute with translations. Another guess is JµνJ
µν , since it’s also quadratic in

Jµν , but it doesn’t commute with translations either, and moreover isn’t simply related to s.

• Instead, we define the Pauli–Lubanski vector

W λ = ϵλµνσJµνPσ/2.

It has the properties

W λPλ = 0, [W λ, Pµ] = 0, [W λ, Jµν ] = i(Wµηλν −W νηµλ), [W λ,W σ] = iϵλσµνWµPν .

The proofs are straightforward, mostly using the antisymmetry of ϵ. The second and third

properties say W λ is a translationally invariant four-vector. The second Casimir operator is

C2 =W λWλ.

This is because C2 is a Lorentz scalar, and it is translationally invariant since W λ is. Also, note

that W 0 is J ·P, so W λ essentially completes the helicity to a four-vector.

• To understand the meaning of C2, we return to the timelike case. In the rest frame, i.e. for the

states with momentum pµt , we may replace Pσ with pσt to give wλ, where

w0 = 0, wi =MJ i

so C2 reduces to M2J2 and hence gives the spin parameter s. Thus we recover the situation

with E2 and E3 where the irrep is fully specified by the values of the Casimir operators.

• The previous point shows that in the timelike case, the wµ span the algebra of the little group.

This is in fact true in general, and we’ll use this to help handle the light-like case below.

• Next, we turn to the light-like case, with standard momentum

pµℓ = (ω0, 0, 0, ω0).

In this case the generators of the little group are

w0 = w3 = ω0J3, w1 = ω0(J1 +K2), w2 = ω0(J2 −K1)

which have commutation relations

[w1, w2] = 0, [w2, J3] = iw1, [w1, J3] = −iw2.

This is exactly the algebra of E2, and the little group is indeed E2.
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• The little group elements here are a little less intuitive. The rotations in E2 correspond to

rotations about the x-axis. The translations correspond to boosting along the y-axis and then

rotating about the z-axis (or vice versa), so that the momentum is realigned along x̂.

• The infinite-dimensional irreps of E2 correspond to particles with infinitely many internal states.

These strange “continuous spin particles” do not seem to appear in nature.

• There are also one-dimensional irreps indexed by λ, the eigenvalue of J3, giving states

Pµ|pℓλ⟩ = pµℓ |pℓλ⟩, J3|pℓλ⟩ = λ|pℓλ⟩, W1|pℓλ⟩ =W2|pℓλ⟩ = 0.

That is, the other little group transformations must do nothing to the states. It turns out that

for photons (λ = ±1), at the level of the fields, W1 and W2 generate gauge transformations.

• We then construct the states |pλ⟩ in the same way as before. One can show that

T (b)|pλ⟩ = e−ib
µpµ |pλ⟩, Λ|pλ⟩ = e−iλθ(Λ,p)|Λpλ⟩

where the phase is

e−iλθ(Λ,p) = ⟨pℓλ|H−1(Λp)ΛH(p)|pℓλ⟩.
Unlike the timelike case, the helicity λ is now Poincare invariant.

• CPT symmetry flips λ, so a relativistic theory must have pairs ±λ. For instance, the photon

has λ = ±1 and the graviton has λ = ±2. Sometimes we describe this as “spin 1” and “spin

2”, but this is not technically correct, because spin labels SO(3) irreps, not E2 irreps.

• For a single helicity, the Wigner rotation only produces a physically irrelevant phase. But for

photons and gravitons, whose one-particle states may involve superpositions of helicities, the

Wigner rotation may change their relative phase, changing the polarization. For example, for

linear photon polarizations, a rotation about the propagation direction rotates the plane of

polarization accordingly.

• We can also consider double-valued representations, giving λ = −1/2 to describe massless

neutrinos and λ = 1/2 to describe massless antineutrinos. Note that we only have double-

valued representations, even though the universal cover of SO(2) is R, because it is part of the

Lorentz group, which has only a double cover.

• For the spacelike case, taking the standard momentum pµs = (0, 0, 0, Q), we have

w0 = QJ3, w1 = QJ20 = QK2, w2 = QJ01 = −QK1

and w3 = 0. The little group is thus SO(2, 1), which is noncompact.

• Just like E2, SO(2, 1) thus admits no faithful finite-dimensional unitary representations. How-

ever, it turns out that there are no nonfaithful finite-dimensional unitary representations either.

For example, setting the noncompact boost generators to zero does not work, because we need

to have [K1,K2] = −iJ3. As in the light-like case, the infinite-dimensional irreps do not seem

to appear in nature.

• Finally, if we wish we can normalize the states to be compatible with the Lorentz invariant

integration measure, d̄p/2p0. Then we have, in the spacelike and lightlike cases,

⟨p′λ′|pλ⟩ = 2p0/δ(p− p′)δλ
′
λ .

Of course, in any case the little group representation is unitary.
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8.3 Relativistic Field Equations

We now connect the transformation properties of fields and particles. We warm up with the case of

fields transforming under rotations. Though index placement is not important here, we maintain

it since it’ll be needed later; for matrices, the upper index is always the first index. For clarity, we

always distinguish abstract operators and their representations.

• Under a rotation R, the position states of a spinless particle in R3 transform as

|x⟩ 7→ U(R)|x⟩ = |Rx⟩.

If the particle had spin 1/2, we would instead have

U(R)|x, σ⟩ = D1/2(R)λσ|Rx, λ⟩

where Dj(R) is the representation matrix for spin j.

• For spinless particles, wavefunctions are defined by ψ(x) = ⟨x|ψ⟩, so |ψ′⟩ = U(R)|ψ⟩ has

wavefunction

ψ′(x) = ψ(R−1x).

The inverse here can be understood as the usual active/passive inverse. Similarly, for particles

with spin, the wavefunction picks up a spin index which also transforms,

ψ′λ(x) = D1/2(R)λσψ
σ(R−1x).

This generalizes directly to the wavefunction of a spin j particle.

• Next, we consider the transformation of observables. The position operator satisfies Xi|x⟩ =
xi|x⟩, and using the transformation of |x⟩ gives

U(R)XiU(R)−1 = (R−1)ijX
j .

Using the orthogonality of R, we have

U(R)XiU(R)−1 = XjR
j
i .

This is an example of an irreducible tensor operator.

• Finally, we consider second quantized fields, which represent local observables. For a free spin

1/2 field Ψσ(x) and a one-particle state |ψ⟩, the field is constructed so that

⟨0|Ψσ(x)|ψ⟩ = ψσ(x)

where ψσ(x) is the wavefunction. Fiddling around with the above properties gives

U(R)Ψσ(x)U(R)−1 = D1/2(R−1)σλΨ
λ(Rx).

The factor of D1/2 is the same as for tensor operators, while the position argument is changed

since rotating, creating a particle, and then rotating back creates a particle in a different place.

A field of general spin behaves similarly.
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• We can also try to move the factor of D1/2 to the right. Since U(R) and D1/2(R) are unitary,

U(R)Ψσ(x)U(R)−1 = Ψλ(Rx)D(R)∗λσ.

The complex conjugate and index placement is unappealing, but we can remove it by taking

the adjoint of both sides. Note that D(R) is a set of numbers, not an operator on the Hilbert

space, so it gets conjugated rather than adjointed, for

U(R)Ψ†
σ(x)U(R)−1 = Ψ†

λ(Rx)D(R)λσ.

In some, but not all cases, Ψ is Hermitian, so we get the same result as for tensor operators.

Next, we move to the relativistic case.

• In general, the Hilbert space carries an infinite-dimensional unitary representation U(Λ,b) of

the Poincare group. We identify individual particles with irreps of the Poincare group; this

is sensible, as taking a particle and moving it around in some way should keep it the “same”

particle. For concreteness, we consider a particle with mass m and spin s.

• Equivalently, we could define a one-particle state as a state which can be specified by its four-

momentum, and a list of additional indices with discrete values. This rules out two-particle

states because the relative velocity is continuous, but allows us to count the ground state of

hydrogen as a one-particle state, i.e. it does not distinguish between elementary and composite

particles.

• The set of one-particle states of a given species is hence {|pλ⟩}, while at the level of the free

theory, multiple-particle states can be built from this irrep by the Fock construction. We define

creation operators, which satisfy

|pλ⟩ = a†(pλ)|0⟩.

Using our previous results, under Lorentz transformations the creation operators obey

U(Λ)a†(pλ)U(Λ−1) = a†(Λpλ′)Ds(R(Λ, p))λ
′
λ .

Taking the adjoint, the annihilation operators transform as

U(Λ)a(pλ)U(Λ−1) = Ds(R(Λ, p)−1)λλ′a(Λpλ
′).

Here, R(Λ, p) is as defined earlier, the Ds are the spin s representation matrices of SO(3), and

p is defined to have spatial part p, p0 > 0, and p2 = −m2.

• As in the nonrelativistic case, we may define the wavefunction of a one-particle state by

projecting onto the |pλ⟩ states. Then the wavefunction should transform with a factor of Ds,

but this formalism is not manifestly Lorentz invariant.

• Instead, we prefer to let the wavefunction transform under a finite-dimensional representation

of the Lorentz group D(Λ) as

ψ′α(x) = D(Λ)αβψ
β(Λ−1x), ⟨xα|ψ⟩ = ψα(x)

where the α and λ indices are related by mode functions,

⟨xα|pλ⟩ = uα(pλ)eipx.

For a fixed value of p, the uα(pλ) are also called polarizations.
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• Switching to the set of states |xα⟩ severely enlarges the Hilbert space; it contains particles

with the wrong mass, negative energy, and the wrong spin, as a generic Lorentz representation

contains multiple spins. Hence we’ll have to project out an appropriate subset later.

• Once we have defined wavefunctions, we can define relativistic field operators as

⟨0|Ψα(x)|ψ⟩ = ψα(x)

which by the same proof transform as

U(Λ)Ψα(x)U(Λ−1) = D(Λ−1)αβΨ
β(Λx).

The nomenclature is a bit confusing, as both the states and the observables can be called fields,

since they both depend on position. For example, the wavefunction for a Dirac fermion ψα(x)

is though of as a field in first quantization. We will distinguish operator fields by capital letters.

• In other words, the role of the mode functions is to intervene between particle states, which

carry momenta and little group indices, and fields, which carry momenta and Lorentz indices.

We restrict to the Poincare irrep using the relativistic wave equations that the field satisfies. These

constraints will ensure that the field only creates particles in the desired Poincare irrep.

• The general form of such an equation is

Π(m,−i∂)αβΨβ(x) = 0

which in Fourier space becomes

Π(m, p)Φα(p) = 0

where Φ(p) is the Fourier transform of Ψ(x), with identical transformation properties. For

example, the Klein–Gordan field has Π(m, p) = p2 +m2.

• We demand the wave equation be relativistically invariant, so

D(Λ)Π(m, p)D(Λ−1) = Π(m,Λp).

In other words, if Π(m, p)Φα(p) = 0, then Π(m,Λp)Φ(Λp) = 0, so different observers agree on

whether the equation of motion is satisfied.

• The equation of motion must impose the mass shell condition

(p2 +m2)Φ(p) = 0.

We then parametrize the on-shell degree of freedom by Φ(p) = δ(p2 +m2)Φ̃(p). This ensures

that we only get particles with mass m. The Klein–Gordan equation clearly does this. The

Dirac equation does it as well, since the Dirac operator squares to p2 +m2, and additionally

prevents an extraneous doubling of the degrees of freedom, since a Dirac spinor field transforms

as (1/2, 0) + (0, 1/2).

• Note that the mass shell condition has two possible energies for each momentum; that is, it

doesn’t rule out negative energies. This is related to the prediction of antiparticles in quantum

field theory, as discussed in the notes on Quantum Field Theory.

https://knzhou.github.io/notes/qft.pdf
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• Finally, Π(m, p) must act like a projection matrix that selects out states with spin s. This is

necessary, for instance, to remove the spin 0 part of a vector field Aµ if we wish to use it to

describe only a massive spin 1 particle, as discussed below.

• With this setup, the general quantum field solution has the form

Ψα(x) =
∑
λ

∫
d̃p b(pλ)uα(pλ)eipx + negative energy term

where d̃p is the invariant measure and the b(pλ) are some unknown operators; plugging in the

definition of the quantum field shows they are simply the annihilation operators a(pλ).

Example. Consider a massive vector field V µ. In this case, the mode functions carry a Lorentz

index, and it is conventional to write them as ϵµλ(p). The option that gives the spin 0 particle is

ϵµ(p) ∝ pµ

where there is no little group index, since the index has only a single value. Upon plugging this in,

we find that V µ has precisely the mode expansion of the derivative of a scalar field, ∂µϕ. Hence

it is much more useful to work with ϕ directly. A “normal” Lagrangian in terms of V µ would be

effectively higher in derivatives than one for ϕ, and wouldn’t be able to describe interactions such

as ϕ4. One could describe such interactions if we allowed the Lagrangian to depend on (1/∂µ)V µ,

but then it would be nonlocal.

The option that gives the spin 1 particle is

ϵ0(0) ∝ êz, ϵ±1(0) ∝ êx ± iêy

where the little group index gives the spin along the z-direction, and the result is extended to

nonzero p by applying the standard Lorentz transformation, as discussed in the previous section.

Notice that these polarization are always orthogonal to pµ, ϵµpµ = 0. At the level of the fields, this

corresponds to the constraint ∂µV
µ = 0, which follows from the equations of motion.

Note that there are, confusingly, two uses of “spin” above. The spins of the particles are

associated with their transformations under the little group SO(3), embedded in the Poincare group.

In this case, the spin 1 particles are created by the part of the field with ∂µV
µ = 0. We can also

decompose the field into irreps of spatial rotations, using SO(3) embedded in the Lorentz group.

In this case the spin 0 part is simply V 0, while the spin 1 part is V i. The assignment of spins is in

correspondence, but what we mean when we talk about “the spin 1 part of the field” is ambiguous.

Another lesson of this example is that if one is simply given a field-theoretic action, one cannot

infer the types of particles present after quantization from the transformation properties of the

fields alone. A vector field can end up creating and annihilating either spin 0 or spin 1 particles,

depending on the action.

Example. The situation gets more complicated when we take the mass to zero, i.e. when we want

to describe a particle with helicity ±1. We need to remove another polarization, but there are no

further Lorentz invariant constraints we can impose. If we just start with

ϵ±1(pẑ) ∝ êx ± iêy

then under a little group transformation, we will exit the vector space spanned by the ϵ±1(pẑ). The

only way to avoid this problem is to impose a gauge symmetry, regarding distinct polarizations
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as physically equivalent. This descends to imposing the gauge symmetry V µ → V µ + ∂µα on the

field, which implies that for the Lagrangian to contain an interaction VµJ
µ, the current Jµ must

be conserved.

This is the modern way to introduce gauge theories like electromagnetism, but textbooks often

present another perspective, which is more historical but somewhat less satisfying. Historically, we

figured out Maxwell’s equations by experiment, which implies that electromagnetism has a gauge

symmetry when written in terms of potentials. The coupling of electromagnetism to matter must

respect the gauge symmetry. Thus, textbooks often talk about “introducing” gauge symmetry to a

matter sector, with some vague muttering about how this is motivated by “elegance” or “beauty”.

It isn’t! Gauge symmetry is an inconvenience, which is forced on us by the mismatch between the

mismatch of degrees of freedom of massless particles and fields.

The same logic for helicity ±2 and a rank 2 tensor field hµν implies that for direct coupling hµνS
µν ,

the tensor Sµν must be conserved, so the only option is the stress-energy tensor Tµν . For higher

helicity, there are no high rank conserved tensors available. One can still write down interactions,

but they must involve derivatives, and hence do not produce long-range forces (i.e. forces falling off

as 1/r2).

Example. A bit more about higher spin fields. Notice that we can also get spin 1 particles from

the (1, 0) or (0, 1) representations of the Lorentz group, which correspond to self-dual and anti

self-dual antisymmetric rank 2 tensors. Typically, this is not useful, for the same reason that it isn’t

useful to use a vector field ∂µϕ to create a scalar particle: the field is just the derivative of a vector

field that already does the same job, Fµν = ∂µVν − ∂νVµ. (In the massless case, using Fµν has the

benefit that it is gauge invariant. But we again have the problem that simple interactions in terms

of Fµν can’t yield, e.g. long range forces, because they are higher order in derivatives, while the

usual interactions in terms of Aµ itself would have to be described using nonlocal Lagrangian terms

involving inverse derivatives.)

A particle of integer spin s can be embedded in a field transforming in (s/2, s/2), i.e. as a rank

s tensor, where the extraneous degrees of freedom can be removed by symmetrizing the tensor and

removing all traces. In order to get particles of half-integer spin, it suffices to add a single spinor

index. For example, for spin 3/2, we can use a vector and a Dirac spinor index ψµa , since

(1/2, 1/2)× ((1/2, 0) + (0, 1/2)) = (1/2, 1) + (1, 1/2) + (1/2, 0) + (0, 1/2).

This is known as a Rarita–Schwinger field. To remove the last two representations, it suffices to

impose γµψ
µ = 0. The first two representations also yield extraneous spin 1/2 particles, which

may be removed by imposing ∂µψ
µ = 0. Finally, just like the Dirac field, the Rarita–Schwinger

field obeys a first order equation like the Dirac equation, which avoids double counting the degrees

of freedom. To describe massless helicity ±3/2 particles, one can additionally impose a fermionic

gauge symmetry ψµa → ψµa + ∂µϵa.

Another approach is to construct everything out of spinor indices from the start. We know that

(j1/2, 0) is the symmetric traceless part of the j1-fold tensor product of (1/2, 0). Therefore, the

representation (j1/2, j2/2) can be isolated by taking a field with j1 and j2 dotted and undotted

Weyl spinor indices, with everything symmetrized and traces removed. We didn’t do this in our

previous examples because we preferred to use vector indices as much as possible, as they are more

intuitive. However, depending on the theory, this approach might ultimately be simpler.

Note. The connection between particles and fields sheds some light on spontaneous symmetry

breaking. For example, consider two scalar fields related by an SO(2) symmetry, ϕ1 = i[Q,ϕ2],



121 8. Relativistic Fields

where Q is Hermitian and [Q,H] = 0. To convert this into a statement about the corresponding

particles, we note that at the level of the annihilation operators, we have a1 = i[Q, a2]. Therefore,

|1⟩ = a†1|Ω⟩ = i[Q, a†2]|Ω⟩ = iQ|2⟩ − ia†2Q|Ω⟩.

Therefore, as long as the vacuum state is invariant, Q|Ω⟩ = 0, the one-particle states |1⟩ and |2⟩ are
related by the symmetry, and we can conclude, e.g. that they are degenerate. If the symmetry is

spontaneously broken, Q|Ω⟩ ≠ 0, this logic fails. The symmetry still exists, i.e. Q commutes with

the Hamiltonian either way, but it may not yield any useful information about the particles.

It is simple to connect this to the usual way spontaneous symmetry breaking is described. Suppose

at least one of the fields gains a vacuum expectation value that is not invariant under the symmetry,

⟨Ω|[Q,ϕi]|Ω⟩ ≠ 0. Since Q is Hermitian, it immediately follows that we must have Q|Ω⟩ ≠ 0.

In this case, we typically work with fields φi = ϕi − ⟨Ω|ϕi|Ω⟩ expanded about the new vacuum.

However, the symmetry operator Q acts nonlinearly on these new fields, which means it does not

act on the new operators a′i in a simple way.

In summary, particles live in a unitary Poincare irrep, and the states in these irreps correspond

to plane wave solutions uα(pλ)eipx for a quantum field, which transforms in a nonunitary Lorentz

representation. The field is not strictly necessary, but it allows us to construct theories with

locality and causality manifest; the cost is the extra step of converting between particle and field

representations with mode functions, as well as the necessity of imposing constraints or gauge

symmetries to get the right degrees of freedom in the fields. On the other hand, the on-shell

approach to scattering amplitudes proposes to throw away the fields and work with scattering

amplitudes directly, precisely to avoid these complications. For much more on these issues, see the

notes on Quantum Field Theory.

8.4 ∗ Yang–Mills Theory

In this section, we construct the Yang–Mills Lagrangian. We warm up with a U(1) gauge group.

• The gauge potential is aµ with gauge transformations aµ → aµ + ∂µα, and the gauge-invariant

field strength is fµν = ∂µaν − ∂νaµ. The Lagrangian is

L = − 1

4g2
fµνf

µν .

For convenience, we define Aµ = −iaµ and Fµν = −ifµν . This is useful because the Lie algebra

u(1) may be identified with the imaginary axis iR, so Aµ and Fµν naturally live in it.

• Now consider adding a complex scalar field ϕ with Lagrangian

Lϕ = ∂µϕ
∗∂µϕ−W (ϕ∗ϕ).

This is invariant under the U(1) global symmetry

ϕ→ gϕ, ϕ∗ → g−1ϕ∗, g = eiδ ∈ U(1).

Now we consider an infinitesimal global symmetry g = exp(ϵX) ≈ 1 + ϵX, where X ∈ u(1) is a

pure imaginary number. Then we have

δXϕ = ϵXϕ, δXϕ
∗ = −ϵXϕ∗, δXLϕ = 0.

To gauge the symmetry, we promote g to g(x).

https://knzhou.github.io/notes/qft.pdf
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• The Lagrangian is not invariant under the gauged symmetry because

δX(∂µϕ) = ∂µδXϕ = ϵ∂µ(Xϕ) = ϵ(ϕ∂µX +X∂µϕ).

We get an extra term that does not cancel out.

• We restore gauge invariance by promoting the partial derivative to a covariant derivative,

Dµ = ∂µ +Aµ.

We let the gauge field also transform as δXAµ = −ϵ∂µX. Then direct calculation gives

δX(Dµϕ) = ϵXDµϕ.

Then by the same logic as in the global case, δXLϕ = 0 as desired.

We have constructed the theory of scalar QED above. We now consider a general Lie group G.

• For simplicity, we consider a set of scalar fields ϕ which transform in some representation D of

G, with representation space V ∼= CN . We begin with the Lagrangian

Lϕ = (∂µϕ, ∂
µϕ)−W ((ϕ, ϕ))

where we use the standard inner product on CN .

• Assuming that D is a unitary representation, Lϕ is invariant under the global symmetry

ϕ→ D(g)ϕ, D(g)† = D(g)−1

which is infinitesimally

D(g) = exp(ϵR(X)) ≈ 1 + ϵR(X), R(X)† = −R(X), δXϕ = ϵR(X)ϕ

where R(X) is the representation of g corresponding to D.

• Next, we gauge the symmetry by allowing X to depend on x and using the covariant derivative

Dµϕ = ∂µϕ+R(Aµ)ϕ

where Aµ is a g-valued vector field, which transforms as

δXAµ = −ϵDµX = −ϵ∂µX − ϵ[Aµ, X]

where the second term is new; it is the Lie bracket, which vanished in the u(1) case.

• By direct calculation, we may verify

δX(Dµϕ) = ϵR(X)Dµϕ

where we use the fact that R is linear, so it commutes with derivatives, and that R is a

representation, so R([X,Aµ]) = [R(X), R(Aµ)]. Then we have

δX [(Dµϕ,D
µϕ)] = ϵ ((R(X)Dµϕ,D

µϕ) + (Dµϕ,R(X)Dµϕ)) = 0

since R(X) is anti-Hermitian.
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• Next, we need a kinetic term for the gauge field. We define the field strength

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ∈ g.

Then by direct calculation, we have

δXFµν = ϵ[X,Fµν ]

where we use standard properties and the Jacobi identity.

• We then use the Killing form to define a kinetic term,

LA =
1

g2
κ(Fµν , F

µν).

This term is gauge-invariant by the invariance of the Killing form,

δXLA ∝ κ([X,Fµν ], F
µν) + κ(Fµν , [X,F

µν ]) = 0.

• To get a sensible theory, we need the Killing form to be negative definite, i.e. that g is of

compact type; this also requires g to be simple. That is, we can choose a basis of g where

κab = κ(T a, T b) = −κδab, κ > 0

so that in components,

LA = − κ

g2
FµνaF

µνa, Fµν = FµνaT
a.

• In summary, a gauge theory is specified by a simple compact gauge group G, where Aµ ∈ g

(i.e. the gauge field transforms in the adjoint representation), and a set of matter fields that

transform in representations of g. In nature, the matter fields are always fermions that transform

in the fundamental representation.

Note. Some more explicit expressions in the case where G is a matrix Lie group, so that Aµ ∈ g

and g ∈ G are matrices. The gauge field transforms as

Aµ → A′
µ = gAµg

−1 − (∂µg)g
−1

which yields the same δXAµ by letting g = exp(ϵX).

A field in the fundamental representation transforms as ϕ → gϕ, so its covariant derivative is

simply DF
µ ϕ = ∂µϕ+Aµϕ. On the other hand, a matrix-valued field in the adjoint representation

transforms as ϕ → gϕg−1, so its covariant derivative is DA
µψ = ∂µψ + [Aµ, ψ]. These are both

special cases of our general expression above.

The field strength tensor is the commutator of covariant derivatives,

Fµν = [DA
µ , D

A
ν ]

as can be checked by acting with both sides on ψ. Directly expanding shows that this matches

our earlier definition. Moreover, Fµν itself transforms in the adjoint representation, which implies

that tr(FµνF
µν) is gauge invariant. This is equivalent to what we found earlier, since tr(XY ) and

κ(X,Y ) are proportional for a simple Lie algebra.
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Note. For reference, the one-loop running of the Yang–Mills coupling g at one-loop is

dα

d logµ2
=
bα2

4π
, α =

g2

4π

where

b = −11

3
C2(G) +

∑
F

4

3
T (F ) +

∑
S

1

3
T (S)

where the terms are due to the gauge bosons, Dirac fermions, and complex scalars. We are using

the physics normalization convention, which implies

C2(SU(N)) = N, T (fund) =
1

2
.

In the case of G = U(1), we have

C2(U(1)) = 0, T (charge q) = q2.

If Weyl or Majorana fermions are present, they contribute with a coefficient of 2/3 because they’re

half a Dirac fermion, while real scalars contribute with a coefficient of 1/6.

8.5 Grand Unification

We begin with a brief review of the gauge groups and matter content of the Standard Model.

• The Standard Model has gauge group SU(3)×SU(2)×U(1). The gauge bosons in each of these

factors carry color, weak isospin, and hypercharge Y . The fermions transform in representations

of this group; we will indicate representations of SU(3) and SU(2) by their dimensions are

usual, and representations of U(1) by half their hypercharge, Y/2.

• The structure is the same in each generation, so we focus on the first, containing the quarks

u and d, the electron e−, and the neutrino νe. The quarks and electron are Dirac fermions, so

they contain left-handed and right-handed Weyl fermions, while the massless neutrino is only

left-handed.

– The left-handed quarks transform in (3, 2, 1/6). Counting quarks of different colors as

different particles, there are six; the weak force exchanges the up and down quarks.

– The right-handed up quarks transform in (3, 1, 2/3).

– The right-handed down quarks transform in (3, 1,−1/3).

– The left-handed leptons transform in (1, 2,−1/2).

– The right-handed electron transforms in (1, 1,−1). It has to transform trivially under SU(2)

since there’s nothing left; there is no right-handed neutrino.

– All of the antiparticles transform in the corresponding conjugate representation.

• To build a grand unified theory, we would like to combine these representations together. Since

gauge transformations commute with Lorentz transformations, they can only work within one

Lorentz irrep, so it is convenient to only work with left-handed Weyl spinors. Since the conjugate

of a left-handed Weyl spinor is a right-handed Weyl spinor, we have

u and d quarks : (3, 2, 1/6), uc quark : (3, 1,−2/3), dc quark : (3, 1, 1/3)
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and

e and νe leptons : (1, 2,−1/2), ec lepton : (1, 1, 1)

where the c superscript denotes charge conjugation, so uc is an anti-up quark.

• The SU(2)× U(1) symmetry is spontaneously broken down to the U(1) of electromagnetism;

the photon is a mixture of the U(1) generator and one of the SU(2) generators, say the third.

The explicit relation is given by a modern version of the Gell-Mann–Nishijima formula,

Q = T 3 +
1

2
Y.

Using this relation, we can reverse engineer the values of Y above, where T 3 is the third generator

of SU(2)L. The Y here is totally different from the hypercharge in the Gell-Mann–Nishijima

formula, Q = I3 + Y/2 where I3 is the third component of isospin, and was normalized so the

two formulas look the same.

• The naive Dirac mass terms don’t work, because left-handed and right-handed quarks and

electrons transform differently under SU(2). The resolution is to introduce a new complex

scalar field φ transforming in (1, 2,−1/2), called the Higgs field; the hypercharge is chosen so

that φ times the Dirac mass term is allowed.

• As a result, the Higgs field contains two uncharged particles, a particle with charge +1, and a

particle with charge −1. During symmetry breaking, three of these particles combine with the

broken SU(2) and U(1) gauge bosons to produce the W± and Z, while the remaining degree

of freedom acquires a vev, becoming ‘the’ Higgs field.

We now turn to grand unification under SU(5), first proposed by Georgi and Glashow in 1972.

• One clue that the Standard Model gauge group should be part of a larger one is that the

hypercharges of the 15 Weyl fields above add up to zero. This is what we would expect if

hypercharge were one of the generators of a larger gauge group, as it should be traceless.

• The smallest group that contains the Standard Model gauge group is SU(5), generated by

traceless anti-Hermitian 5 × 5 matrices. We identify SU(3) with generators in the upper-left

3× 3 block, SU(2) with generators in the bottom-right 2× 2 block, and U(1) with generator

1

2
Y = diag(−1/3,−1/3,−1/3, 1/2, 1/2).

There are 12 more gauge bosons, which we’ll get back to later.

• First, consider the fundamental representation ψµ of SU(5). This irrep decomposes as

5 → (3, 1,−1/3) + (1, 2, 1/2)

which implies that

5 → (3, 1, 1/3) + (1, 2,−1/2).

This perfectly accommodates the anti-down quark and the leptons.
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• The remaining 10 particles fit into the antisymmetric tensor representation ψµν . To understand

this representation, it’s easiest to break the symmetry first; then we want the antisymmetric

part of (3, 1,−1/3) + (1, 2, 1/2) times itself. We have

(3, 1,−1/3)× (3, 1,−1/3) = (3, 1,−2/3) + (6, 1,−1/3)

and

(3, 1,−1/3)× (1, 2, 1/2) = (3, 2, 1/6), (1, 2, 1/2)× (1, 2, 1/2) = (1, 1, 1) + (1, 3, 1).

Taking the antisymmetric part eliminates the (6, 1,−1/3) and (1, 3, 1). It also ensures we only

get one copy of (3, 2, 1/6) though we would naively have two. Then

10 → (3, 1,−2/3) + (3, 2, 1/6) + (1, 1, 1)

which is exactly the anti-up quark, the quarks, and the anti-electron.

• Therefore, the matter content of the Standard Model fits into the 5 + 10 of SU(5). Taking the

reasoning in reverse, this explains many features of the Standard Model; it forces charge to be

quantized, and it ensures the proton and electron charge are exactly opposite.

Next, we give a brief taste of dynamics in the SU(5) GUT.

• We write mass terms using the ψµ and ψµν fields. We let

µ, ν = 1, 2, 3, 4, 5, α = 1, 2, 3, i = 4, 5.

There are spinor indices everywhere, which we suppress. In terms of the usual particles, ψα = d,

ψi = (ν, e), ψαβ = u, ψαi = (d, u), and ψij = e.

• In terms of representations, we can write a Dirac mass term for the up quark if uc(Cu) contains

a singlet, where C is charge conjugation. But we run into the same problem as in the Standard

Model: it’s impossible to do this. Instead we introduce a Higgs field φµ transforming in the 5,

with symmetry breaking so that φ4 acquires a vev, and mass term

ϵµνρστψ
µνCψρσφτ → ϵµνρσ4ψµνCψρσφ4 ∼ ψ12Cψ35 + permutations ∼ ucCu.

We choose φ4 to have the vev since it is electrically neutral.

• For the down quark and electron, we introduce the mass term

ψµCψ
µνφν → ψµCψ

µ4 ∼ dcCd+ ecCe

with no mass term for the neutrino since ψ44 = 0, as desired.

• The gauge bosons are in the adjoint representation and hence can be written as components of

a traceless tensor Aµν . Then the 12 gauge bosons we haven’t accounted for, called the X and Y

bosons, mix quarks and leptons because they exist in the same SU(5) irrep. (Specifically, the

X and Y mix among themselves under SU(3)C , which is why we distinguish them.)
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• For example, we have

ψα4 = d, A5
αψ

α4 ∼ ψ54 = e+.

Similarly, we can convert an up quark into an anti-up quark,

ψ5α = u, A5
αψ

5α ∼ ψαβ = uc.

Therefore, proton decay can occur by emission and reabsorption of an A5
α boson,

p = u+ u+ d→ uc + e+ + d = π0 + e+.

This process occurs very slowly due to high mass of the A5
α, at the GUT scale.

• Proton decay can also be described below the GUT scale by an effective field theory. In the

Standard Model, we have the accidental global symmetries of quark rotation and lepton rotation,

yielding conservation of baryon and lepton number B and L. Then to add proton decay, we

simply write down terms that don’t obey these global symmetries.

• Since we are far below the GUT scale, any terms we add should be scalars under the Standard

Model gauge group. Then a qqq term is unacceptable since it has nonzero hypercharge, but a

dimension 6 qqqℓ term turns out to be allowed. This term describes proton decay, and we can

relate its rate to the rates of other exotic processes just as we did for isospin.

• We notice that in the proton decay process, B and L change, but B − L is conserved. To

see why, note that there are only two mass terms but three irreps in play. Therefore we can

construct a global symmetry of the Lagrangian, i.e. a conserved quantity X. We have

X(10) +X(10) +X(5φ) = X(5) +X(10) +X(5φ) = 0

which implies

X(10) = 1, X(5φ) = −2, X(5∗) = −3.

However, this symmetry is broken by the Higgs vev, φ4. Note that φ4 has hypercharge Y/2 =

−1/2 and X = 2, with some sign flips since the index is lowered. Then neither X nor Y is

conserved, but X + 4(Y/2) = B − L is. In more general GUTs, B − L might be violated.

• At the unification scale MGUT ≈ 2 × 1016GeV, we have α(µ) ≈ 1/25, so the theory remains

perturbative. Note that for comparison, the reduced Planck mass is about 2× 1018GeV, so we

can hopefully ignore quantum gravity effects at the GUT scale.

• We expect the most common proton decay mode to be p→ π0e+, and a rough estimate of the

decay rate is

Γ ∼ g(MGUT)
4

M4
GUT

m5
p

where the prefactor is due to the two vertices and the X/Y gauge boson propagator squared,

and the m5
p factor is the phase space factor. This is raised to the fifth power by dimensional

analysis, and mπ and me don’t enter because they are much smaller than mp. Numerically,

τp→π0e+ ∼ 1031 years.
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Note. Electroweak unification is not the same as grand unification! Grand unification combines

three forces into one simple gauge group, where they necessarily have one coupling constant. The

electroweak theory instead describes the breaking of SU(2)L×U(1)Y to U(1)EM. Since the unbroken

group is a product group, there are still two independent coupling constants above the electroweak

scale. The feature they have in common is a Higgs symmetry breaking.

Note. More about picking the Higgs fields irreps for giving mass to matter. Given a left-handed

particle field in a representation R and a left-handed antiparticle field in a representation R′, we

can write a Higgs Yukawa coupling if the Higgs field irrep or its conjugate is in R⊗R′.

Using a notation where, e.g. [m,n] stands for a Young tableau with a column of m and a column

of n, for the down quark and lepton we have

5× 10 = [4]× [2] = [1] + [4, 2] = 5 + 45

while for the up quark we have

10× 10 = [2]× [2] = [4] + [3, 1] + [2, 2] = 5 + 45 + 50.

For simplicity, we’d like to minimize the number of distinct Higgs fields, so we need to take either

5 or 45. We’d like our Higgs to contain the Standard Model Higgs which breaks SU(2)× U(1) to

U(1). Both 5 and 45 work for this purpose, and we took 5 above for simplicity.

The SU(5) GUT comes with a variety of complications.

• Though the strong, weak, and electromagnetic coupling constants do get close at a high energy

scale, they don’t converge exactly. However, the agreement is significantly improved by adding

superpartners. This agreement has had a strong historical impression on the community, with

some calling it the best BSM prediction ever made.

• Experiments such as Super-K have placed a stringent upper bound on the proton decay rate

of τ ≳ 2× 1034 years, beyond what would be natural for the SU(5) GUT. These experiments

work by taking a large tank of water and looking for the gamma rays produced in the decay.

• We need two Higgs fields. The first is in the adjoint and acquires the vev diag(2, 2, 2,−3,−3),

breaking SU(5) to SU(3) × SU(2) × U(1) and giving mass to the extra gauge bosons. The

fermion masses come from the second Higgs field φµ as discussed above.

• Our mass term sets md = me at the GUT scale. This is modified by RG flow, which gives

mb

mτ
≈ ms

mµ
≈ md

me
≈ 3.

This is acceptably accurate for the last two generations, but totally wrong for the first generation.

One can fix this by adding a third Higgs field, but this starts to make the theory complicated.

• Since the GUT scale is so high, the hierarchy problem remains, due to the distance between

the GUT scale and the electroweak scale. There is nothing that protects the SM Higgs from

getting mass corrections up to the GUT scale.

• This question is sharpened by looking more closely at the Higgs sector. The SM Higgs is

contained in a 5, which also contains a color-triplet Higgs. This color-triplet can mediate proton
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decay, so it must be very heavy, near the GUT scale. A light color-triplet Higgs would also

ruin gauge coupling unification. So we need a mechanism to make the Higgs doublet very light

and simultaneously make the Higgs triplet very heavy. This doesn’t hold even at tree level,

since the vev of the 24 Higgs field generically makes both parts of the 5 Higgs field heavy, and

moreover the separation is not stable under radiative corrections. This is the doublet-triplet

splitting problem.

• There is no explanation for the family structure of the SM. More complicated GUT models can

account for this, but in all cases the fact that there are three generations seems to be put in

“by hand”, in the sense that similar, equally elegant theories could have four or five generations.

The number of new heavy particles also tends to explode.

• One could quibble about the proton decay measurement. For example, the neutron decays, but

becomes stable in atoms because of its nuclear environment; however, this is very unlikely for

the proton because its decay is strongly kinematically allowed. Another way out is to note that

the matching of leptons to quarks in each generation is in principle arbitrary, so if the e+ were

not in the same generation of u and d quarks, the decay would be suppressed. However, this

would make the relations between lepton and quark masses within each generation extremely

far off, which would have to be explained.

Note. The basic SU(5) GUT was invented in 1973, and supersymmetric GUTs burst onto the

scene in the 1980s, leading to a flurry of thousands of papers. (See this lecture for a fascinating

account of the early history.) There was a bewildering array of grand unified theories produced.

The simplest next example is SO(10). Here, an entire generation of the Standard Model can be

placed in a single irrep 16, which decomposes as

16 → 10 + 5 + 1

under SU(5). The singlet 1 may be interpreted as a right-handed sterile neutrino. Somewhat more

complicated is E6, where we can fit a generation into the representation 27. This is the smallest

representation, and decomposes as

27 → 16 + 10 + 1

under SO(10). The 10 and 1 must be given a high mass by symmetry breaking to match experiment.

In the case of E6, the simplest possible Higgs representation is the adjoint 78. Furthermore, using

extended Dynkin diagrams, we can see that SU(3)×SU(3)×SU(3) ⊆ E6, so another theory can be

constructed with gauge group SU(3)3. In this theory, called “trinification”, each Standard Model

gauge group comes out of one SU(3) factor. While the gauge group is not simple, it shares many

properties with other grand unified theories.

In the early 2000s, as excitement for the LHC built up, model building using group theory reached

its apex. In addition to the mundane SU(5), SO(10), and E6 SUSY GUTs, there were left-right

symmetric models, Pati–Salam models (featuring lepton number as the “fourth color”), flipped

SU(5), supergravity theories, and family unification models, augmented with a wide variety of Higgs

sectors (possibly composite), supersymmetry breaking mechanisms, extra dimensions, orbifolds, and

branes. These sharp tools were used to address many subtle problems which are unknown among

students today, such as the LEP paradox, the µ problem, the doublet-triplet splitting problem, and

even the “gluino sucks” problem.

The products of this golden age had one thing in common: a belief that it was possible to guess

every particle that existed, reaching the end of physics in a single paper. When the LHC turned on,

https://academic.oup.com/ptps/article/doi/10.1143/PTPS.170.119/1850469
https://golem.ph.utexas.edu/~distler/blog/archives/000263.html
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all of the models which made sharp predictions were brutally slain by reality. Today, they stand as

a testament to the creativity and industry of a bygone era. We look upon their works, and despair.
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