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1 Preliminaries

1.1 Constructing Spaces

Before diving into the formal definitions, we’ll look at some at examples of spaces with nontrivial

topology. Informally, a ‘space’ X is some set of points, such as the plane. Let ∼ be an equivalence

relation. Then the quotient space X/∼ is the result of ‘gluing together’ all points which are

equivalent under ∼ .

Example. Consider the real line R, and let x∼ y if x− y is an integer. Then the quotient space is

the unit interval [0, 1] with edges identified, which is topologically the circle S1.

Example. Consider a closed unit square in the plane R2. We can identify various sides to get

different results.

• Identifying two opposite sides in the same direction gives a cylinder, while identifying them in

the opposite direction gives a Mobius strip; the latter is an example of a nonorientable surface.

• Identifying both pairs of opposite sides in the same direction gives the torus T 2.

• Identifying one pair of sides in the opposite direction gives the Klein bottle; doing this to both

gives the projective plane RP 2.

Both the Klein bottle and the projective plane (shown above) are non-orientable, and cannot be

embedded in R3 without self-interaction. Another construction of the projective plane is to take

the two-sphere S2 and identify opposite points. This is equivalent to taking the closed northern

hemisphere of the sphere and identifying opposite edges of the equator; deforming the hemisphere

into a square gives our construction.

Example. Identifying all points on the boundary of the closed unit disc D2 yields the sphere S2,

as shown below.

More generally, identifying the boundary of Dn (i.e. constructing Dn/Sn−1) yields Sn.

Example. The n-dimensional real projective space RPn is the set of nonzero vectors in Rn+1 under

the equivalence relation x∼ y if x = cy for real nonzero c. That is, it is the set of two-sided lines in

one higher dimension.
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This definition differs from our earlier construction of RP 2, but we can link it back. Every two-

sided line intersects a unit sphere in two antipodal points, so RPn is Sn with antipodes identified.

Equivalently, it is the closed northern hemisphere of Sn with opposite points on the equator identified.

But this is just Dn with opposite points on the boundary identified. For the case n = 2, deforming

the disc to a square gives our original construction.

Example. States (kets) in quantum mechanics live in a complex vector space, but they must be

normalized and are insensitive to overall phase. Therefore kets are actually equivalence classes,

[|ψ⟩] = {c|ψ⟩ | c ∈ C, c ̸= 0}.

We call [|ψ⟩] a ray in the Hilbert space; the set of rays is a complex projective space.

Example. Polarizations of light. The electric field of a monochromatic light wave propagating in

the z direction may be written as

E = Re
[
aei(kz−ωt)

]
where a is a complex polarization living in C2. Then the space of polarization states is naively

C2 = R4. If we only care about the direction of the electric field, not its magnitude, we identify a

with ca for any real c > 0 and ignore a = 0. The resulting quotient space is S3.

However, there is a further ambiguity in the phase of the wave. By changing the origin of time,

we can move phase factors between a and the ei(kz−ωt) factor. We thus identify a and eiαa. The

resulting quotient space S3/∼ is S2, and this construction is called the Hopf fibration.

1.2 Topological Invariants

Definition. LetX1 andX2 be topological spaces. A continuous map f : X1 → X2 with a continuous

inverse is called a homeomorphism. If there exists a homeomorphism between X1 and X2, then the

two spaces are homeomorphic.

Homeomorphism is an equivalence relation, and we will use it to identify two topological spaces as

“the same”. Intuitively, if two spaces are homeomorphic, the spaces may be “deformed into each

other”, though this comes with some caveats.

Example. A ring in R3 may be considered a topological space by the subspace topology. However,

the topological space consisting of two linked rings is homeomorphic to one containing two unlinked

rings, even though there exists no continuous map between the two in R3. Topologically, the

embedding of the rings in R3 is irrelevant; the only important feature is that there are two of them.

It is possible to detect the linking of the rings topologically, but this takes more work. For

example, if S is the set of points in the rings, we may compute the fundamental group of R3 \ S.

In theory, we could try to classify the equivalence classes of homeomorphism, but this is intractable.

An easier goal is to define and compute topological invariants, i.e. properties of topological spaces

which are invariant under homeomorphism. Then the invariants will give us a coarser, but hopefully

still useful, set of equivalence classes. Invariants can be numbers, binary properties, or more generally

algebraic objects such as groups. Connectedness, compactness, and the Hausdorff property are all

topological invariants.

Example. A closed interval [a, b] is not homeomorphic to an open interval (a, b), since only the

former is compact. However, (−π/2, π/2) is homeomorphic to (−∞,∞) by the tangent function, so

boundedness is not a topological invariant.



5 1. Preliminaries

Example. The open disc D2 is homeomorphic to R2, by the stereographic projection. Moreover,

we know that taking the closed disc and identifying the boundary yields S2, which implies that R2

along with a point at infinity is also homeomorphic to S2. This construction is called the one-point

compactification.

Generalizing the reasoning for the open disk to Dn ∼= Rn we have Dn ×Dm ∼= Dn+m. Taking

the boundaries of both sides using

∂(M1 ×M2) = ((∂M1)×M2) ∪ (M1 × (∂M2))

gives

Sn+m−1 ∼= (Sn−1 ×Dm) ∪ (Dn × Sm−1).

Definition. Let X and Y be topological spaces, and let f1 : X → Y and f2 : X → Y be continuous

maps. Then f1 and f2 are homotopic if there exists a continuous function

g : [0, 1]×X → Y

so that g(0, x) = f1(x) and g(1, x) = f2(x).

Definition. A path-connected topological space X is simply connected if all loops can be deformed

to a point. Alternatively, it means that all continuous functions f : S1 → X are homotopic to a

constant function. Simple-connectedness is a topological invariant; for example, it lets us tell apart

R2 and R2 \ {0}.

Definition. Two topological spacesX and Y are of the same homotopy type if there exist continuous

functions f : X → Y and g : Y → X so that f ◦ g and g ◦ f are homotopic to the identity.

Example. Homotopy allows us to “contract” dimensions away, making it much coarser than

homeomorphism. However, it is somewhat closer to our idea of “continuous deformation”.

• The line [0, 1] is of the same homotopy type as a point.

• S1 is of the same homotopy type as a cylinder, and a Mobius strip.

• The sphere Sn is of the same homotopy type as Rn+1 \ {0}.

Homotopy classes of maps f : X → Y may also be used to classify a topological space, as long as

either the domain or image are fixed. For example, the homotopy groups of Y are the homotopy

classes of maps f : X → Y where X = Sn.

1.3 Euler Characteristic

The Euler characteristic is a useful topological invariant for polyhedra. Define a polyhedron as a

subset of R3 bounded by surfaces, called faces. Faces must be simply connected and arranged so

that the boundary of two adjacent faces is an edge; two edges can only at a single vertex. The faces,

edges, and vertices are called simplexes, and aside from this restriction, they may have any shape.

Definition. Define the Euler characteristic χ(K) of a polyhedron K as

χ(K) = V − E + F

where the quantities on the right are the number of vertices, edges, and faces respectively.
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Theorem. If two polyhedra are homeomorphic, they have the same Euler characteristic.

The above theorem allows us to define the Euler characteristic χ(X) of a general X ⊂ R3. To

compute it, we form a ‘polyhedronization’ of X and compute its Euler characteristic.

Example. We give some examples of the Euler characteristic.

• The Euler characteristic of a point, line, or solid disc is 1.

• The Euler characteristic of S1 is the same as that of the triangle (with no interior), so χ(S1) =

3− 3 = 0.

• The Euler characteristic of any polyhedron homeomorphic to S2 is 2. This is called Euler’s

theorem; for example, it applies to all Platonic solids.

It’s more difficult to compute the Euler characteristics of topologically nontrivial spaces. The

embedding of the torus T 2 in R3 is complicated, and the projective plane can’t be embedded in

R3 at all. Instead, we can compute the Euler characteristic by drawing simplexes on squares with

edges identified, as we saw in the first section.

Example. The torus T 2. It’s tempting to just make the entire square a single face, but this is

incorrect because the face is not simply connected once the edges are identified. Instead, we split

the square into four faces, shown below.

One must be careful to avoid double-counting edges and vertices. There are only four vertices

and eight edges, giving χ(T 2) = 4 − 8 + 4 = 0. Similarly, we have χ(Klein bottle) = 0 and

χ(projective plane) = 1.

Definition. The connected sum X♯Y of two surfaces X and Y is the surface obtained by removing

a small disc from both X and Y and connecting the holes with a cylinder.

Theorem. For any two surfaces X and Y ,

χ(X♯Y ) = χ(X) + χ(Y )− 2.

Proof. Consider polyhedra homeomorphic to X and Y , and suppose the ‘small discs’ removed are

triangle, subsequently connected by a triangular prism. Then the number of vertices is unchanged,

the number of edges goes up by 3, and the number of faces goes up by 1.

Example. The sum T 2♯T 2 is the torus with two holes, Σ2. Using the above result, the torus with

g holes Σg has Euler characteristic 2− 2g.

Theorem. If two figures X and Y have the same homotopy type, then χ(X) = χ(Y ).
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To get some intuition for this result, consider the fact that a point and line segment have the same

homotopy type, because one can shrink a line segment into a point. At the very last stage of this

shrinking, a vertex and edge are lost simultaneously, leaving the Euler characteristic the same; in

general it does not change upon contractions.
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2 Simplicial Homology

Homology groups are a refinement of the Euler characteristic, also computable by a ‘polyhedroniza-

tion’ of space. To see the core idea of homology groups, consider the two triangles shown below.

Topologically, the main difference is that the latter has a ‘hole’, while the former does not. In both

cases, the edges form a closed loop, and thus have no boundary. However, in the first case, the

edges are themselves the boundary of a face. Thus, the general idea is that to detect holes, we must

find regions without boundaries, which are not themselves the boundary of any other region.

2.1 Simplicial Complexes

Homology groups are finitely generated abelian groups, so we begin by reviewing some fundamental

facts about abelian groups, writing the group operation as +.

Theorem (FIT). Let f : G1 → G2 be a homomorphism. Then G1/ker f ∼= im f .

Example. Consider the group Z and the subgroup of multiples of k, kZ. Quotienting out by kZ
yields Zk, the cyclic group of order k.

For an Abelian group G with x ∈ G and k ∈ Z, let kx denote x added to itself n times. Given

elements x1, . . . , xr, the most general group element that can be made by them is of the form

k1x1 + · · ·+ krxr.

If H is the set of such elements, we say H is generated by the xi. If there are no nontrivial relations

among the elements, i.e.
∑
kixi = 0 implies ki = 0, then the xi are said to be linearly independent.

Definition. If G is generated by r linearly independent elements, G is called the free Abelian group

of rank r. It is isomorphic to Zr = Z⊕ · · · ⊕ Z.

We may also have a nontrivial relation kx = 0. Our main claim is that this is essentially the only

kind of relation: all Abelian groups look like products of Z’s and Zk’s.

Lemma. Let G be a free Abelian group of rank r and let H be a nonzero subgroup of G. Then it

is possible to choose p generators xi and p numbers ki so that k1x1, . . . , kpxp generate H.

Theorem (Fundamental theorem of finitely generated Abelian groups). LetG be a finitely generated

Abelian group with m generators. Then we may write

G ∼= Zr ⊕ Zk1 ⊕ · · · ⊕ Zkp

where m = r + p. We call r the rank of G.

Proof. Let G have m generators x1, . . . , xm and consider the homomorphism

f : Zm → G, f(n1, . . . , nm) = n1x1 + · · ·+ nmxm.
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Then the FIT says Zm/ker f ∼= G. However, since ker f is a subgroup of Zm, the lemma implies

that we can choose generators so that

ker f ∼= k1Z⊕ · · · ⊕ kpZ.

Quotienting Zm with this gives the result.

Note. There are several similar-looking sums and products here.

• The Cartesian product of two sets S × T is the set of elements (s, t) with s ∈ S and t ∈ T . The

direct product G×H of two groups directly generalizes it.

• The direct sum of two groups G⊕H is only defined for Abelian groups. For a finite number of

summands, it is identical to the direct product, i.e. it contains the set of ordered pairs (g, h).

However, for an infinite number of summands, all but a finite number of entries in the tuple

must be the identity element, while the direct product has no such restriction. This distinction

can be motivated in category theory.

• The tensor product of two groups G ⊗H is more complicated. In the special case of abelian

groups, it is the free group generated by elements g⊗ h with relations inherited from G and H,

i.e. (g1 ⊗ h)(g2 ⊗ h) = (g1g2 ⊗ h).

For example, if G = H = Z3, then G⊕H = Z6, while G⊗H = Z9. If G = H = Z, then G⊕H = Z2,

while G⊗H = Z and the tensor product is simply multiplication.

Conceptually, the direct product multiplies the cardinalities of finite objects, while the direct

sum adds the number of generators; confusion arises here because we may view finite groups as

finite or finitely generated. By contrast, the tensor product multiplies the number of generators.

The same confusion arises for finite-dimensional vector spaces, where both the direct product and

direct sum add the dimension, while the tensor product multiplies it.

When describing the Euler characteristic, we gave a heuristic definition of the faces, edges, and

vertices that made up the polyhedra. We now refine this idea. The standard objects are taken to

be triangles and their higher-dimensional analogues, called simplexes.

Definition. A set of points p0, . . . , pr ∈ Rm is geometrically independent if there is no (r − 1)-

dimensional plane containing all the points. Equivalently, making Rm into a vector space with

origin at p0, the vectors p1, . . . , pr are linearly independent.

Definition. Let p0, . . . pr ∈ Rm be geometrically independent. The r-simplex σr = ⟨p0, . . . , pr⟩ is
the set of points

σr =

{
x =

∑
cipi

∣∣∣∣ ci ≥ 0,
∑

ci = 1

}
.

The ci are called barycentric coordinates.

Example. A 0-simplex ⟨p0⟩ is a point/vertex, a 1-simplex ⟨p0p1⟩ is a line/edge, and 2-simple

⟨p0p1p2⟩ is a solid triangle and a 3-simplex is a solid tetrahedron. The independence requirement

rules out degenerate shapes.

Definition. If we choose q + 1 points pi0 , . . . , piq , then they form a simplex σq which is called a

q-face of σr, and we write σq ≤ σr. If σq ̸= σr, we say σq is a proper face of σr and write σq < σr.
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Example. There are six proper faces of a 2-simplex, i.e. the three edges and three points. We

define a 0-simplex to have no proper faces.

Definition. Let K be a finite set of simplexes in Rm. Then K is a simplicial complex if the

simplexes are ‘nicely fitted together’, meaning that:

1. For all σ ∈ K, all faces of σ are in K.

2. If σ, σ′ ∈ K, then their intersection is either empty of a common face of σ and σ′, i.e.

σ ∩ σ′ = ∅ or σ ∩ σ′ ≤ σ and σ ∩ σ′ ≤ σ′.

For example, we can attach triangles together at points or edges, and we can only attach lines

together at their endpoints.

Definition. Given a simplicial complex K, define the polyhedron |K| as the union of all elements

of K as a subset of Rm.

Definition. A topological space X is said to be triangulable if there exists a simplicial complex

K and a homeomorphism f : |K| → X. We will only consider triangulable spaces. Note that the

triangulation of a space is far from unique.

Example. Consider triangulation of the cylinder S1 × [0, 1].

We may construct it as a subset of R3, but for convenience we will draw all our triangulations in

R2 and use arrows to indicate where sides coincide. The simplest construction is at left above. The

construction on the right is not a simplicial complex, because ⟨p0p1p2⟩ and ⟨p2p3p0⟩ intersect in two

points, which is not a face.

2.2 Simplicial Homology

We now define oriented simplexes, written as (. . .) instead of ⟨. . .⟩.

• An oriented 1-simplex σ1 = (p0p1) can be viewed as a directed line segment, traversed from p0
to p1. We may assign a group structure to 1-simplexes. We let (p0p1) as a generator, and set

(p1p0) = −(p0p1).

• Similarly, for oriented 2-simplexes, we set

(p0p1p2) = (p1p2p0) = (p2p0p1) = −(p2p1p0) = −(p1p0p2) = −(p0p2p1).

The two equivalence classes correspond to ‘traversing the triangle’ clockwise/counterclockwise.

• For r-simplexes, we do the same, determining the sign using the sign of the permutation. For

r = 0, we formally define σ0 = p0.
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Note. One key piece of intuition is that oriented simplexes are “things you can integrate over”, i.e.

they are directed paths and signed areas/volumes. We’ll return to this correspondence when we

discuss cohomology, which explicitly deals with integration using differential forms.

We now use oriented simplexes to define groups. Let K be an n-dimensional simplicial complex,

and regard the simplexes σα ∈ K as oriented simplexes.

Definition. The r-chain group Cr(K) is the free Abelian group generated by the oriented r-

simplexes of K. If r > dimK, we define Cr(K) = 0. An element of Cr(K) is called an r-chain.

If there are Ir r-simplexes in K, denoted by σr,i, then the r-chains are

c =
∑

ciσr,i

for integers ci, called the coefficients of c. The r-chain group is ZIr .

Definition. Let σr be an oriented r-simplex. The boundary ∂rσr of σr is the (r − 1)-chain

∂rσr =
r∑
i=0

(−1)i(p0p1 . . . pi−1pi+1 . . . pr).

We formally define ∂0σ0 = 0 for r = 0. Also note that ∂r(−σr) = −∂rσr.

We may extend the domain of ∂r to all of Cr(K) by letting it act linearly,

∂rc =
∑
i

ci∂rσr,i.

We call ∂r the boundary operator; it is a homomorphism between chain groups. The chain complex

C(K) is the sequence of groups and homomorphisms

0
i−→ Cn(K)

∂n−→ Cn−1(K)
∂n−1−−−→ · · · ∂2−→ C1(K)

∂1−→ C0(K)
∂0−→ 0

where i is the inclusion map.

Note. The minus signs in the definition of ∂r have an intuitive geometric motivation.

• Consider the 1-simplexes (p0p1) and (p1p2). Geometrically, (p0p1) + (p1p2) can be viewed as

equivalent to (p0p2), so they should have the same boundary. This is only possible if a minus

sign is present, i.e.

∂1((p0p1) + (p1p2)) = p2 − p1 + p1 − p0 = p2 − p0.

• Consider the sum of the 1-simplexes (p0p1), (p1p2), and (p2p0). These segments form a closed

triangle, which has no boundary, so we want the boundary to be zero.

• The boundary of the oriented 2-simplex (p0p1p2) should be (p0p1)+ (p1p2)+ (p2p0) to represent

‘going around the triangle’.

Definition. Define the r-cycle group Zr(K) = ker ∂r. Elements of Zr(K) are called r-cycles; they

are the r-simplexes with no boundary.



12 2. Simplicial Homology

Definition. Define the r-boundary group Br(K) = im ∂r+1. Elements of Br(K) are called r-

boundaries; they are the r-simplexes that are the boundary of an (r + 1)-simplex.

Lemma. The composition ∂r ◦ ∂r+1 is the zero map, i.e. Br(K) ⊂ Zr(K).

Proof. Geometrically, the boundary of a boundary is zero. Algebraically, since the boundary

operators are linear, it is sufficient to show that all oriented (r + 1)-simplexes σ = (p0 . . . pr+1) are

sent to zero. Let σi be the r-simplex with pi removed and let σij be the (r− 1)-simplex with pi and

pj removed. Then

∂r∂r+1σ = ∂r

r+1∑
i=0

(−1)iσi =

r+1∑
i=0

(−1)i

 i−1∑
j=0

(−1)jσij +

r+1∑
j=i+1

(−1)j−1σij


There are two cases, depending on whether pj comes before or after pi, giving contributions∑

j<i

(−1)i+jσij −
∑
j>i

(−1)i+jσij = 0.

None of the groups we have defined are topological invariants. For example, the 1-chain group of

a triangle is Z3, and the 1-chain group of a square is Z4, but the two are homeomorphic. We now

define a group that is.

Definition. Define the rth homology group Hr(K) = Zr(K)/Br(K). Let Hr(K) = 0 for r > n or

r < 0. The elements of Hr(K) are equivalence classes of r-cycles [z], called homology classes; if

[z] = [z′] we say z and z′ are homologous.

Note. Geometrically, two r-cycles are homologous if they differ by an r-boundary. The general

intuition is that each generator ofHr(K) represents an “r-dimensional hole”, where an r-dimensional

hole is an empty region bounded by an r-sphere. For example, the circle has one 1-dimensional

hole, while the torus has two. (This differs from our earlier nomenclature, where we called Σn the

“n-holed torus”.) Another way to phrase this intuition is that Hr(K) counts the number of distinct

ways to embed an r-simplex nontrivially into K.

Theorem. Homology groups are homotopy invariants, which implies they are topological invariants.

As with Euler characteristic, this lets us extend them to apply to all triangulable topological spaces.

2.3 Computation of Homology Groups

Example. A single point, K = {p0}. Then C0(K) = Z and Z0(K) = C0(K). However, the

boundary group B0(K) is trivial, so H0(K) = Z0(K)/B0(K) = Z. By similar reasoning, n points

gives H0(K) = Zn.

Example. A single line, K = {p0, p1, (p0p1)}. Then C0(K) = {ip0 + jp1} and C1(K) = {k(p0p1)}.
As before, the highest boundary group B1(K) is trivial, and we can compute to show that Z1(K)

is trivial too. Then H1(K) = 0.

Now, the boundary group B0(K) contains simplexes of the form k(p1−p0), while the cycle group
Z0(K) = C0(K). Then the zeroth homology group is H0(K) = Z2/Z = Z. We can show this more

formally by defining the homomorphism

f : Z0(K) → Z, f(ip0 + jp1) = i+ j.

The kernel of this homomorphism is B0(K), so the quotient H0(K) is isomorphic to the image Z.
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Example. The triangle K = {p0, p1, p2, (p0p1), (p1p2), (p2p0)}. This is a triangulation of S1. We

have B1(K) = 0, so H1(K) = Z1(K). To compute this group, let

z = i(p0p1) + j(p1p2) + k(p2p0) ∈ Z1(K).

Then we have

∂1z = i(p1 − p0) + j(p2 − p1) + k(p0 − p2) = 0

which implies i = j = k. Thus H1(K) = Z1(K) = Z, identifying a “1-dimensional hole” in the

space. Next, we compute H0(K). We have Z0(K) = C0(K) = Z3, and the 0-boundaries are

∂1 (l(p0p1) +m(p1p2) + n(p2p0)) = (n− l)p0 + (l −m)p1 + (m− n)p2.

We now repeat the trick from the last example, defining the homomorphism

f : Z0(K) → Z, f(ip0 + jp1 + kp2) = i+ j + k.

The kernel is B0(K), so the quotient H0(K) is isomorphic to the image Z.

Example. The solid triangle; add the simplex (p0p1p2) to the triangle. The 0-simplexes and

1-simplexes remain the same. However, B1(K) is no longer trivial; its elements are

∂2(m(p0p1p2)) = m ((p1p2)− (p0p2) + (p0p1)) = m ((p0p1) + (p1p2) + (p2p0)) .

Then B1(K) = Z1(K), so H1(K) = 0. That is, the hole has been removed.

Next, B2(K) = 0 and we must compute Z2(K). However, we’ve just shown above that m(p0p1p2)

has nonzero boundary unless m = 0, so Z2(K) = 0 and thus H2(K) = 0.

Example. Spheres and discs. In general, the simplicial complex containing all the proper faces of

(p0p1 . . . pn) is homeomorphic to Sn−1. Including the central face gives Dn.

Through similar computations, we find that the nontrivial homology groups of Sn are H0(S
n) =

Hn(S
n) = Z. The only nontrivial homology group of the disc is H0(D

n) = Z.

Prop. If K is connected, then H0(K) ∼= Z.

Proof. If K is connected, then for any two 0-simplexes pi and pj , there exists a sequence of 1-

simplexes (pipk), . . . , (pmpj) connecting them. The boundary of this set is pj − pi, which implies

that pi and pj are homologous. Therefore, for z =
∑
nipi, we have

[z] =
∑

ni[pi] =
∑

ni[p1].

Then [z] = 0 (i.e. z ∈ B0(K)) if
∑
ni = 0.

Next, we compute B0(K) directly. All elements of this group have the form∑
ni∂1(pi,1pi,2) =

∑
ni(pi,1 − pi,2).

Then if
∑
njpj ∈ B0(K), we must have

∑
nj = 0. Combined with the previous fact, we have

completely characterized the group B0(K).

Finally, to get H0(K), we use the usual trick. Define the homomorphism

f : Z0(K) → Z, f
(∑

nipi

)
=
∑

ni.

Then the kernel is B0(K), and the image is Z. Thus H0(K) ∼= Z.
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Note. There are some links between homology and homotopy.

• If two 1-cycles are homotopic, then they are homologous. This is because they differ by a

boundary, i.e. the area swept out by the homotopy.

• The converse is not true. Consider the sum T 2♯T 2. A 1-cycle through the connecting tube is a

boundary, so it is homologous to the zero cycle. But it can’t be deformed continuously into the

zero cycle: trying to pull it through either torus ‘snaps it in half’.

• In general, the first homology group is the abelianization of the fundamental group.

We now explore some non-orientable spaces. If our space K is an n-dimensional manifold, then

the highest possible nontrivial homology group is Hn(K) = Zn(K). If the manifold is orientable

and closed, then the entire manifold is an n-cycle, so Hn(K) ∼= Z. If the manifold is not closed,

this fails since we pick up the overall boundary (as seen in the disc example), so Hn(K) is trivial.

More subtly, it also fails if the manifold is not orientable. If one tried to form an n-cycle out of all

the n-simplexes in the manifold, it would be impossible to do it coherently: one would ‘wrap back

around’ in the opposite orientation.

Example. The Mobius strip. The triangulation is almost the same as the cylinder’s.

First, let’s consider H2(K) = Z2(K). A 2-cycle must have no boundary, yet each triangle has

a unique edge (along the single edge of the Mobius strip) not contained in any other triangle.

Therefore, there are no 2-cycles and H2(K) is trivial.

We can get additional insight for considering our ‘best guess’ for a 2-cycle, the set of all triangles

with the orientation shown above. The boundary of this 2-chain contains the edge of the Mobius

strip, but it also contains 2(p0p1). If we had glued the sides in the same direction, these would

have canceled; the extra factor appears because the Mobius strip is not orientable. This presents a

totally independent obstacle to having a 2-cycle.

We already know H0(K) = Z, so we turn to H1(K). We work intuitively. The Mobius strip

is somewhat like the circle, so we should get a homology class from a chain that runs around the

loop. We consider (p0p2) + (p2p3) + (p3p1) + (p1p0) as a candidate; we want to show it is not the

boundary of a 2-chain. Any such 2-chain would have to include the top three triangles, but then to

cancel the internal edges, we would have to include the bottom three triangles. But then we cannot

cancel the bottom edges, so the construction fails. Any other path around the strip differs from this

one by a boundary, so there’s only one kind of nontrivial homology class. We conclude H1(K) = Z.

Example. The projective plane, i.e. the disc with opposite points identified. The simplest candidate

triangulation is a hexagon, but it’s an illegal simplicial complex. As with the cylinder and Mobius

strip, we need to put at least three triangles between each edge identification. We thus arrive at a

correct triangulation by adding an internal triangle.
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As before, the nonorientability forbids 2-cycles. We must include all the triangles, and when we do,

the total boundary doesn’t vanish. An explicit computation shows that it is

2 ((p3p5) + (p5p4) + (p4p3)) .

Thus H2(K) is trivial.

Next, we compute H1(K). The fundamental group is Z2 and is generated by a loop that goes

across the plane and wraps back; this translates to the chain z = (p3p5) + (p5p4) + (p4p3). By the

same logic as with the Mobius strip, this is not the boundary of any 2-chain, so it is in a nontrivial

homology class. However, 2z is exactly the boundary of the entire projective plane, so H1(K) = Z2.

This is our first encounter with a homology group that is not free. The non-free part of the group

is called the torsion subgroup, and they measure in some sense the ‘twisting’ of the space.

Example. The torus T 2. We work entirely by intuition. The torus is a closed orientable manifold

(or, alternatively, it’s hollow), so H2(K) = Z. There are two loops we can draw, so H1(K) = Z2.

2.4 Properties of Homology Groups

We now step back and consider general properties of homology groups.

Prop. If K is the disjoint union of connected components Ki, then Hr(K) =
⊕
Hr(Ki).

Proof. This direct sum decomposition clearly holds for the r-chain groups, and similarly for the

subgroups Zr(K) and Br(K). Then we have

Hr(K) = Zr(K)/Br(K) =
⊕

Zr(Ki)/
⊕

Br(Ki) =
⊕

(Zr(Ki)/Br(Ki)) =
⊕

Hr(Ki).

Corollary. If K has n connected components, then H0(K) = Zn.

Note. We may also define homology groups over the real numbers, so that all groups become

real vector spaces. The free parts of homology groups don’t change, as Zn just becomes Rn.
However, all torsion subgroups vanish, as the quotient Hr(K) = Zr(K)/Br(K) is always of the form

Rn/Rm = Rn−m. More concretely, a torsion subgroup Zn arises from a cycle z with nz = ∂(z′).

But if we allow real coefficients, then z is a boundary, since z = ∂(z′/n). Similarly, if we define

homology groups over Z2, torsion subgroups cannot appear because Z2 has no nontrivial subgroups.
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Theorem (Kunneth formula). For homology groups over R, we have

Hr(X × Y ) =
⊕
p+q=r

Hp(X)⊗Hq(Y ).

A more general version of this theorem also accounts for torsion. We will prove this later using de

Rham cohomology.

Example. The torus T 2 is S1 × S1. Hence the Kunneth formula gives

H2(T
2) = R, H1(T

2) = R2, H0(T
2) = R.

This is intuitive, and follows because the torus is “hollow”, forming a two-dimensional hole, has

two independent nontrivial loops, and one connected component. More generally, we see that

Hk(T
n) = R(

n
k)

which would be quite difficult to show directly.

Definition. The dimension of the free part of Hr(K) is called the rth Betti number of K, and

denoted br(K).

Theorem (Euler–Poincare). Let K be an n-dimensional simplicial complex with Ir r-simplexes.

Then the Euler characteristic is

χ(K) =
N∑
r=0

(−1)rIr =
n∑
r=0

(−1)rbr(K)

where the first equality is the definition of the Euler characteristic generalized to arbitrary dimension,

i.e. the Euler characteristic is a topological invariant.

Proof. Since we are only looking at dimensions of free groups, we can work over R. Then we may

apply the rank-nullity theorem to find

Ir = dimCr = dim(ker ∂r) + dim(im ∂r) = dimZr + dimBr−1

where we are abbreviating notation. We also have

br = dimHr = dim(Zr/Br) = dimZr − dimBr.

Comparing the two sums and using dimB−1 = dimBn = 0 gives the result.

We may compute homology groups efficiently using relative homology.

Definition. For a simplicial complex K and subcomplex L, the relative chain group is

Cr(K;L) = Cr(K)/Cr(L).

The relative boundary operator

∂p : Cr(K;L) → Cr−1(K;L)

is defined by mapping the coset of cr ∈ Cr(K) to the coset of ∂rcr. As before we define

Zr(K;L) = ker ∂r, Br(K) = im ∂r+1, Hr(K;L) = Zr(K;L)/Br(K;L).

Note that elements of Zr(K;L) need not be elements of Zr(K).
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The basic intuition for relative homology is that we simply “shrink L to a point”, though it’s slightly

more complex than that.

Example. Let K = {p0, p1, p2, (p0p1), (p1p2), (p2p0)} and L = {p0, p1, (p0p1)}. Then

C0(K;L) = ⟨p2⟩, C1(K;L) = ⟨(p1p2), (p2, p0)⟩.

By direct computation, we have

B0(K;L) = ⟨p2⟩, Z0(K;L) = ⟨p2⟩, H0(K;L) = {0}.

This is one sense in which relative homology differs from collapsing L. The homology class of the

connected component is “eaten up” by taking relative homology. Next,

B1(K;L) = {0}, Z1(K;L) = ⟨(p0p2) + (p2p1)⟩, H1(K;L) = Z.

All higher homology groups are trivial.

Theorem (Excision). Let K be a simplicial complex containing a closed subcomplex L. If L0 is

an open subcomplex of L so that the closure L0 is contained in the interior of L. Then

Hr(K;L) = Hr(K − L0, L− L0)

where the − denotes set subtraction.

Theorem. There is a long exact sequence of homology groups

. . .
∂∗−→ Hr(L)

i∗−→ Hr(K)
j∗−→ Hr(K;L)

∂∗−→ Hr−1(L)
i∗−→ . . . .

Proof. The proof has many pieces which we will only sketch. First we define the maps i∗, j∗, and

∂∗. (finish)
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3 Homotopy Groups

Homotopy is an equivalence relation between maps f between two topological spaces X and Y .

Homotopy groups are constructed from homotopy classes of such maps, where Y is the space under

investigation and X = Sn. The resulting groups, heuristically, tell us about “n-dimensional holes”

in the space, but in a more powerful way than homology groups.

3.1 The Fundamental Group

Definition. Let X be a topological space and let I = [0, 1]. A loop is a continuous map α : I → X

with α(0) = α(1) = x0. We call x0 the base point.

Prop. The set of homotopy classes of loops with in X with base point x has the structure of a

group, called the fundamental group π1(X,x), under the operation

α ∗ β(s) =

{
α(2s) 0 ≤ s ≤ 1/2

β(2s− 1) 1/2 ≤ s ≤ 1
, α−1(s) = α(1− s).

The unit element is the homotopy class of the constant map, [cx].

Proof. There are many things to manually check. For example, we must show that [α ∗α−1] = [cx].

This is verified by the homotopy

F (s, t) =

{
α(2s(1− t)) 0 ≤ s ≤ 1/2

α(2(1− s)(1− t)) 1/2 ≤ s ≤ 1
.

The confirmation of the other parts is similar.

Definition. A topological space X is arcwise connected if, for any x0, x1 ∈ X, there exists a

continuous map α : I → X with α(0) = x0 and α(1) = x1.

Prop. Let X be arcwise connected. Then for any x0, x1 ∈ X, π1(X,x0) is isomorphic to π1(X,x1).

Therefore we may write the fundamental group as simply π1(X).

Proof. Let η be a path from x0 to x1. Then the isomorphism is

Pη([α]) = [η−1 ∗ α ∗ η].

It is clearly a homomorphism, and it is an isomorphism because it has an inverse map,

P−1
η ([α′]) = [η ∗ α′ ∗ η−1].

This concludes the proof. However, note that different choices of η yield different isomorphisms:

prepending a loop to η affects the isomorphism by conjugation by that loop. Hence the isomorphism

is not ‘natural’.

Note. Arcwise connectedness is a stronger property than connectedness. For example, consider

the subset of R2 given by

{(0, y) | −1 < y < 1} ∪ {(x, sinπ/x) | 0 < x < 1}.

It is connected, but one cannot travel between the two pieces by a continuous path. However,

for reasonable spaces, which include all spaces we study, arcwise connectedness is equivalent to

connectedness. From this point onward we assume all spaces are arcwise connected.
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Prop. Let X and Y be homotopic with homotopy equivalence f : X → Y . Then π1(X,x0) is

isomorphic to π1(Y, f(x0)), so the fundamental group is homotopy invariant.

Proof. The isomorphism is to send a loop α : I → X to f ◦ α : I → Y . This is a well-defined

operation on homotopy classes: if α and β are homotopic, then so are f ◦ α and f ◦ β. It is also a

group homomorphism, since f ◦ (α ∗ β) = (f ◦ α) ∗ (f ◦ β).
To show that it is an isomorphism, note that it has an inverse, namely composition with the

homotopy inverse g. The path g ◦ f ◦ α is homotopic to α, since g ◦ f is homotopic to the identity.

The most convenient homotopies for finding the fundamental group are deformation retractions.

Definition. Let X and Y be topological spaces with Y ⊂ X. A deformation refraction is a

continuous map F : X × [0, 1] → X such that

F (x, 0) = x, F (x, 1) ∈ Y, F (y, t) = y.

That is, F ‘shrinks’ the spaces down from X to Y . We say Y is a deformation retract of X.

Prop. If Y is a deformation retract of X, then X and Y are homotopic.

Proof. Define f : X → Y by f(x) = F (x, 1) and g : Y → X by inclusion. Then the composition

f ◦ g is the identity, and g ◦ f is homotopic to the identity by the existence of the deformation

refraction.

Definition. If π1(X) is trivial, then X is simply connected.

Definition. If X may be deformation retracted to a single point, then X is contractible. This

implies X is simply connected.

Prop. For topological spaces X and Y , π1(X×Y ) = π1(X)×π1(Y ). This can be proven by playing

around with projection operators.

3.2 Examples of Fundamental Groups

We now use our results to find fundamental groups.

• π1(Rn) is trivial because Rn is contractible.

• π1(S
1) = Z, where maps are indexed by their ‘winding number’ around the sphere. (We’ll

justify this more carefully below.) Then the fundamental group of the punctured disk is also Z
by deformation retraction.

• π1(S
n) is trivial for n > 1, as we can shrink the loops to a point. More rigorously, we can

always deform the path so it doesn’t hit some point. Performing stereographic projection with

this point as the North pole gives a path in Rn, which must be contractible.

• π1(T
n) = Zn, because Tn = S1 × · · · × S1.

• π1(RP 2) = Z2. We found the generator when computing H1(RP 2). Similarly, π1(RPn) = Z2

for n > 2. The case RP 1 is distinct since RP 1 ∼= S1.

Covering spaces provide another mathematical tool to compute fundamental groups. We motivate

them using the physical example of spin 1/2.
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• Classical rotations live in SO(3), a three-dimensional manifold. Consider a 3×3 rotation matrix

R with unit determinant. Then

|R− I| = |(R− I)T | = |R−1 − I| = |R−1||I −R| = −|R− I|.

Therefore, R has an eigenvector with eigenvalue 1, and hence it fixes an axis.

• Restricting to the orthogonal subspace, R is just a 2D rotation. Therefore, all rotations can

be parametrized as R(n̂, θ), in terms of an axis n̂ and an angle θ. Writing θ = θn̂, shows the

possible values of θ fill the ball D3. However,

R(n̂, π) = R(−n̂, π)

so opposite points on the ball’s surface are identified.

• In quantum mechanics, spin rotations are described by SU(2). Elements of SU(2) may be

written in terms of the Cayley–Klein parameters,

U = x0I − ix · σ, x20 + x2 = 1.

This shows that, topologically, SU(2) = S3 and thus SO(3) = SU(2)/{±1}. That is, SO(3) is

a sphere with antipodal points identified, i.e. it is isomorphic to RP 3.

• To see these two descriptions are equivalent, it is useful to go to one lower dimension. An

S2 with antipodal points identified is the same as a hemisphere with opposite points on its

boundary identified, but a hemisphere is homeomorphic to a disc D2.

• Consider the evolution of a spin 1/2 particle in a magnetic field B(t). Define

ω(t) = g
e

2mc
B(t).

We describe the spin state of the particle with a spinor χ, and the Schrodinger equation reads

iℏ
∂χ

∂t
= ω(t) ·

(
ℏ
2
σ

)
χ

Here, σ is a vector operator containing the Pauli matrices.

• Now, let S(t) be the expectation value of the spin operator,

S(t) = ⟨χ(t)|ℏ
2
σ|χ(t)⟩.

This quantity is just a vector in R3. With some work, we can show that

dS

dt
= ω(t)× S.

This is the “classical” equation of motion.

• For every time evolution of the spinor χ(t), we have a corresponding time evolution of the

classical spin S(t). Mathematically, we have a correspondence from paths α(t) on SU(2) to

paths α(t) on SO(3), and we say α is a lift of α.
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• Now consider the closed loops on SO(3). Since π1(SO(3)) = Z2, there are two homotopy

classes; these correspond to closed loops on SU(2), and paths that connect antipodal points,

respectively. That is, SU(2) is big enough to keep track of homotopy in SO(3). As a result, a

spinor has to turn twice to return to itself.

• Mathematically, we are consider a projection map p : SU(2) → SO(3) defined by

Rij =
1

2
trU †σiUσj .

This is a two-to-one projection, since p(U) = p(−U). We say SU(2) is a double cover of SO(3),

and since it is simply connected, it is a universal cover.

• In general, the double cover of SO(n) is called the spin group Spin(n). Other examples are

Spin(4) = SU(2)× SU(2), Spin(5) = Sp(2), Spin(6) = SU(4).

Intuitively, a covering space is just an “unrolling” of a space that is not simply connected into a

larger space. When the unrolling is complete, we arrive at the universal cover, which is simply

connected. We now use the universal cover to find a fundamental group; along the way, we will

motivate the formal definition of a covering space.

Example. The circle S1 has universal cover R. The projection map p : R → S1 is p(x) = eix. We

can picture the cover as a helix sitting above S1. The inverse function p−1 is multivalued, with

p−1(0) = {2πn |n ∈ Z}.

If we consider an open interval about 1 ∈ S1 that is small enough, it will be simply connected. The

set of its preimages in R will each be homeomorphic to the original interval in S1.

Consider a continuous path α : [0, 1] → S1. A lift of α is a map α : [0, 1] → R satisfying α = p◦α,
and we claim that up to the choice of starting point, α is unique. Intuitively, this is because the

set of preimages of a small interval is discrete; therefore we always have ‘only one possible choice’

as α must be continuous.

Now consider loops on S1 with

α(0) = α(1) = 1, α(0) = 0, α(1) = 2πn.

We claim that the winding number n indexes the homotopy classes. It is invariant under homotopy

by continuity; conversely, if two loops have the same winding number, then their lifts are homotopic,

so projecting shows that the loops are homotopic. Therefore, π1(S
1) = Z.

Example. The circle S1 can also cover itself by wrapping around n times, though these covers

wouldn’t work for the proof above. The cylinder is a double cover of the Mobius strip; this is easiest

to see by looking at gluing diagrams. Similarly, the torus T 2 is a cover of the Klein bottle. Generally,

we may use double covers to make nonorientable manifolds orientable.

We now formalize the definitions and theorems we used above.

Definition. Let M and M be connected topological spaces with a surjective map p : M → M .

Suppose that for every x ∈ M , there is a connected open neighborhood U so that p−1(U) is a

disjoint union of open sets {Uα} in M , each mapped homeomorphically onto U by p. Then M is a

cover of M , and if M is simply connected, it is the universal cover of M .
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Lemma. Given a continuous path α in M with α(0) = x0, and a choice of point x0 in the preimage

p−1(x0), there is a unique continuous path α in M so that α(0) = x0 and α = p ◦ α.

Theorem. Every connected space M has a universal cover M .

Proof. We explicitly construct M . Choose an arbitrary x0 ∈M , and let (x, γ) denote a path γ in

M from x0 to x. The points of M are equivalence classes [(x, γ)] of these tuples, under the relation

(x, γ)∼ (x′, γ′) if x = x′, γ homotopic to γ′.

We define the projection map

p :M →M : [(x, γ)] → x.

Now, ifM is already simply connected, this construction clearly works. To see what this construction

does in general, consider x = x0. Then the corresponding points in M are loops based at x0 up to

homotopy, i.e. they correspond to the fundamental group G = π1(M,x0). The branches of p−1(x0)

are labeled by g ∈ G. So far, this corresponds well with our idea of ‘unraveling loops’.

Now consider a simply connected region U containing x0. We want to show that p−1(U) consists

of regions homeomorphic to U and indexed by G. To do this, note that for any x ∈ U , we may

draw a conventional path τx from x0 to x lying entirely in U . Given a curve γ from x0 to x, we

may label it by the homotopy class of the loop γ ◦ τ−1
x . This gives the desired labeling of p−1(U).

(We are ignoring some formal issues, like how to define a topology on M or to construct U .)

Now we show that M is simply connected. Consider a path α in M starting from x0. We may

continuously identify a group element with [(x, γ)] for x = α(s) by the same method as before: let

σs be the restriction of α to [0, s], and let g = [γ ◦ σ−1
s ].

If the path α crosses itself, so that α(s1) = α(s2), the group assignments for the two points may

disagree. In particular, suppose α is a loop based at x0. Choose a branch of p−1 at x0 labeled by

g0 ∈ G, and follow it continuously along the loop. This is the lift α(s) = [(α(s), γs)] of α(s).

By construction, our assignment tells us that

[γs ◦ σ−1
s ] = [γ0]

In particular, setting s = 1, this gives

[γ1 ◦ α−1] = [γ0]

which implies that g1 = g0 ∗ [α]. That is, if [α] is not the identity, the lift is not closed in M . If

the lift is closed (i.e. a loop in M), then [α] is the identity, so the loop is contractible in M . By

continuity, the lifted loop is contractible as well, so M is simply connected.
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3.3 Fundamental Groups of Polyhedra

To compute fundamental groups of polyhedra, we need a little more group theory.

• Let G be a group and x = {a, b, c, . . .} be a finite subset of G. If every element of G may be

written in terms of a finite product of elements of x, then G is finitely generated by x.

• We call such a product of generators a word. A word is reduced if all zero powers (e.g. a0) are

removed and all elements are canceled with their inverses (e.g. a3a−1 → a2).

• If every element of G can be written uniquely as a reduced word, G is freely generated. If not,

there are relations connecting the generators, i.e. specific words that are equal to zero.

• More formally, let F be the free group generated by (x1, . . . , xn), i.e. the set of reduced words

of the xi. The group operation is concatenation and subsequent reduction of reduced words.

• Suppose G is generated by {x1, . . . , xn} but not freely. We may define a map f : F → G that

simply maps words in F to identical words in G, so G = F/ ker f . The members of ker f tell

us about the relations in G. (More precisely, ker f is generated by elements of the form grg−1

where g ∈ G and r is a relation in G.)

Example. Let G = Z2 be an Abelian group generated by {x, y}. The relation is xyx−1y−1 = 1,

and we can present the group as

G = {x, y;xyx−1y−1}.

As another example, we have

Zk = {x;xk}.

Example. Consider the torus as a square with opposite sides identified.

We guess that the fundamental group is generated by A and B. However, we have the relation

ABA−1B−1 by the contraction shown above. Therefore, π1(T
2) = Z2. If we instead consider the

Klein bottle, the relation would be ABAB−1, so the fundamental group is not abelian.

Note. For a general connected simplicial complex K, the fundamental group can be computed

as follows. We associate every oriented 1-simplex (ij) with a generator gij so that gij = g−1
ji . To

allow for deformations of paths through triangles, we set gijgjk = gik if (ijk) ∈ K. To associate

homotopically trivial paths with the identity, it suffices to choose a one-dimensional subpolyhedron

L of K which is contractible and contains all of the vertices of K. If L contains (ij), we set gij = 1,

which intuitively has the effect of contracting L to a point.

This procedure clearly only depends on the 1-simplexes and 2-simplexes of K, formalizing the

notion that the fundamental group only sees “one-dimensional holes”. This procedure does not

generalize to higher homotopy groups; in general computing them is quite difficult.

We now connect the fundamental group and the first homology group.
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Definition. Let G be a group. The subgroup generated by all commutators xyx−1y−1 in G is

called the commutator subgroup C.

Prop. The commutator subgroup C ⊂ G is a normal subgroup of G, and G/C is abelian.

Proof. All generators of C are mapped to C by conjugation, because

gxyx−1y−1g−1 = (gxg−1)(gyg−1)(gx−1g−1)(gy−1g−1) = x′y′x′−1y′−1.

Therefore C is a normal subgroup. Now, consider the cosets [g1] and [g2]. We have

g1g2(g
−1
2 g−1

1 g2g1) = g2g1

so [g1g2] = [g2g1]. Using coset multiplication, this gives [g1][g2] = [g2][g1] so G/C is abelian.

Note. A perfect group has G = C. Then if the fundamental group is perfect, the first homology

group is trivial. Example of perfect groups are quite rare, with the simplest being A5, so it is

sometimes claimed that a trivial first homology group implies simple connectedness. This claim is

true for all examples considered in these notes.

Theorem. Let K be a simplicial complex, let G = π1(K), and let C be its commutator subgroup.

Then H1(K,Z) = π1(K)/C. This is a special case of the Hurewicz theorem, which relates homology

and homotopy groups.

Example. The Klein bottle has

π1(M) = {x, y;xyxy−1}.

Quotienting by commutators gives the extra relation xyx−1y−1. Combining these relations, we find

x2 = 1, giving H1(M) = Z× Z2.

Corollary. If X and Y are of the same homotopy type, their first homology groups are the same.

3.4 Higher Homotopy Groups

Higher homotopy groups are defined as homotopy classes of maps Sn →M . However, this formula-

tion is slightly inconvenient. Recall that for the fundamental group, we mapped from I = [0, 1] and

demanded the map was equal at the endpoints. Similarly, to study maps S2 →M it is sufficient to

consider homotopy classes of maps

α : I × I →M

where the boundary of the square is mapped to a single point x0. This works since I × I/∼ ∼= S2.

We may now easily define a group operation by giving each map half of the square,

(α ∗ β)(s1, s2) =

{
α(2s1, s2) 0 ≤ 1/2 ≤ s,

β(2s1 − 1, s2) 1/2 ≤ s1 ≤ 1.

As with the fundamental group, it is straightforward to check this is a group, which is homotopy

invariant and does not depend on the base point x0. The definitions of πn(M) are similar.

Prop. All higher homotopy groups πn(M) for n > 1 are abelian.
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Proof. This is apparent from the following diagram.

Above, all shaded regions are filled with the base point x0. There is ‘enough room’ for n > 1 to

move any two maps past each other.

Prop. Let M be the universal cover of M . Then πn(M) = πn(M) for n > 1.

Proof. The essential difference is that the sphere Sn is simply connected for n > 1. Specifically,

consider an n-loop in M with n > 1. Unlike the n = 1 case, this loop always lifts to a loop in M .

To see this, consider the equation [γ1 ◦ α−1] = [γ0] from the universal cover proof. Since the sphere

is simply connected, [α] is always trivial, so [γ1] = [γ0] and the group index g is uniquely defined

on the lifted loop.

Prop. All higher homotopy groups are homotopy invariants.

Prop. Just as for the fundamental group, we have πn(X × Y ) = πn(X)× πn(Y ).

Next, we list facts about higher homotopy groups.

• We first assert that

πn(S
n) = Z.

This can be proven by defining a higher-dimensional analogue of the winding number, called

the wrapping number. For n = 2, we work in spherical coordinates, mapping (θ, ϕ) to (α, β).

Then the wrapping number is

N =
1

4π

∫
dαdβ sinα =

1

4π

∫
dθdϕ sinα

(
dα

dθ

dβ

dϕ
− dβ

dθ

dα

dϕ

)
where the integral is over all (θ, ϕ), and we simply used a Jacobian to change variables.

• We must then show that configurations with different N cannot be deformed into each other,

while those with the same N can. The first part simply holds because N is an integer, and we

omit the proof of the second.

• One particular application of this result is

π3(SO(3)) = π3(SU(2)) = Z.

All of these results for Sn also hold for RPn, since its universal cover is Sn for n > 1.

• For k < n, we know πk(S
n) is trivial, because there is ‘enough’ space to contract all loops. For

k > n, the homotopy groups are surprisingly not trivial. For example,

π3(S
2) = Z

and the generator of the group is the Hopf fibration.



26 3. Homotopy Groups

• There exists a map J called the J-homomorphism

J : πk(SO(n)) → πk+n(S
n)

which is an isomorphism for k = 1, giving

π1(SO(n)) = πn+1(S
n).

In particular, this tells us that π1(SO(2)) = π3(S
2), giving an alternate proof that π3(S

2) = Z.
We also have π1(SO(3)) = π4(S

3) = π4(SO(3)), which shows π4(SO(3)) = Z2.

• There are strong constraints on the homotopy groups of Lie groups. It can be shown that

π2(G) = 0 for G compact, connected, π3(G) = Z for G compact, connected, simple.

The latter result means that instantons in SU(2) are representative of all instantons.

• Finally, many homotopy groups can be computed using the long exact sequence

. . .→ π2(Y ) → π2(X) → π2(X/Y ) → π1(Y ) → π1(X) → π1(X/Y ) → π0(Y ) → . . . .

Here X/Y is simply a quotient space.

• Applying the long exact sequence to Lie groups, we have

π1(G/H) = π0(H) for G simply connected

and

π2(G/H) = π1(H) for G compact, connected, simply connected.

In the context of gauge theories, these conditions are automatically satisfied; G must always be

compact, and may be taken to be connected and simply connected without loss of generality.

Example. Using higher homotopy groups, we can prove that Rn is homeomorphic to Rm if and

only if m = n. To do this, note that Rn − {p} for any p ∈ Rn retracts onto Sn−1, and πm−1(S
n−1)

is trivial for m < n. Now if Rn and Rm are homeomorphic with m < n, then so are Rn and Rm
each with one point deleted, but only the latter has a nontrivial πm−1, a contradiction.

Note. Homology vs. homotopy. While the nth homology and homotopy groups roughly capture

“n-dimensional holes”, they provide rather different information.

• The fundamental group is larger than the first homology group, because a loop can get ‘stuck’ in

ways that a 1-cycle can’t. There are even spaces with trivial first homology group but nontrivial

fundamental group!

• For the 2-torus, we have H1(T2) = π1(T2) = Z2, because the torus has “two one-dimensional

holes”. The second homology group is Z, since the torus is ‘hollow’, but the second homotopy

group is trivial, as a sphere can’t wrap around a torus.

• The homology groups of the spheres are simple: H0(Sn) = Hn(Sn) = Z, and all others are

trivial. But the homotopy groups of spheres πm(S
n) for m > n are extremely complex, because

higher dimensional spheres can wrap around lower-dimensional ones, one example being the

Hopf fibration.
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3.5 Topological Defects

Our background above now allows us to classify topological defects in condensed matter systems.

For further physical context, see the notes on Condensed Matter.

Example. A planar magnet in the XY model. In the continuum limit, the configuration of

the magnet is described by a spin vector S(x) in the plane with unit magnitude. The range of

the spin field, which is called the order parameter space, is S1. (Note that since the punctured

plane is homotopic to S1, our homotopy results would also hold if we only demanded the spin be

nonvanishing.)

Consider a closed loop in the plane. Then mapping the distance along the loop to the spin vector

at that point gives a map f : S1 → S1. Since the fundamental group of S1 is Z, we may assign this

map an integer, called the winding number; physically, this is the number of times the spin vector

rotates around the path.

A nonzero winding number implies a singularity in the spin field. To see this, suppose the field

were continuous everywhere. Then continuously deforming the loop to a point yields a continuous

deformation of f to the identity, a contradiction. We conclude the field has a ‘point defect’ inside

the loop. Physically, this defect is a localized excitation in the magnet.

The classification of point defects is somewhat subtle. It is tempting to conclude that positive

and negative defects have circulation in opposite directions, but both clockwise and counterclockwise

circulation are homotopic (the fields are related by a 180◦ rotation). In fact, sources, sinks, and

vortices all have the same winding number (which we call +1), and winding number −1 looks

qualitatively different, as shown below.

It is also tempting to conclude that a source and a sink annihilate, because as we move them

on top of each other, the singularities they produce should smoothly ‘cancel out’, leaving a field

configuration which must be topologically trivial. However, the dipole field has winding number

+2, not 0. The reason is that there’s a discontinuous switch in the direction of the field inside the

dipole, so the limit is singular.

Note. The existence of an order parameter space at all is linked to symmetry breaking. The

symmetry breaking process yields a set of field valuesM with the same (free) energy, i.e. soft modes.

Then we can have low-energy nontrivial field configurations if their values are in M .

In three dimensional space, the fundamental group detects line defects going through the loop; the

second homotopy group π2 detects point defects.

https://knzhou.github.io/notes/cmt.pdf
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Example. Superfluid He-4 in 3D. The superfluid is described by a complex-valued field ψ(x) = Aeiφ,

corresponding to the classical expectation value of the superfluid quantum field. In general, A is

nonzero throughout the superfluid, so the order parameter space is homotopic to S1. However, the

fundamental group now detects line defects instead of point defects. We can show

v =
ℏ
m
∇φ

which implies that the fluid circulates around these lines; we thus call them vortices.

Example. The Heisenberg model. These are the 3D version of the XY model, i.e. magnets where

the magnetization is a unit vector in R3, so the order parameter space is S2. There are no line

defects, since π1(S
2) is trivial, but there are point defects, as π2(S

2) = Z. However, unlike the case

of the XY model, sources and sinks are now topologically distinct, with opposite charge. These are

also called “hedgehog” defects.

Example. A cubic crystal lattice. Deformations of the lattice can be parametrized by the vector

u from an atom’s position to its corresponding unperturbed position. However, u is equivalent up

to the addition of a lattice vector, so M = T 3. We have π1(M) = Z3 and π2(M) is trivial. The

homotopy classes π1(M) correspond to the number of “missing” lattice planes in each direction.

There is an important subtlety we have suppressed. We’re considering maps without base points,

so we really are indexing free homotopy classes. For line defects, these correspond to the conjugacy

classes of the fundamental group. This makes no difference for an abelian fundamental group, but

more generally, this set is not even a group at all, as the product of two conjugacy classes is not

well-defined. Physically, the homotopy class of two line defects together cannot be determined from

their charges alone, but instead depends on the global structure of the field. It also turns out that

for higher homotopy groups, the free homotopy classes are given by πn(M)/π1(M), by an action of

π1(M) on πn(M) that we do not specify here. Note that none of these subtleties have applied to

any of the examples we’ve considered so far.

Example. Nematic liquid crystals. These crystals contain long molecules which behave like rigid

rods and try to align with their neighbors. We may specify the orientation of a molecule by a vector

v, but since the molecules are symmetric, v ∼ −v. Therefore the order parameter space is RP 2,

the set of directors.

Nematic liquids support line defects, but unlike in the XY model, these line defects annihilate

each other because π1(RP 2) = Z2. To see this, consider the below line defect, shown in the plane.

Placing two of these defects side-by-side gives a dipole field, as shown in the planar magnet example.

However, this field is not singular, because the discontinuous direction switch of the vectors in the

middle of the dipole corresponds to no change at all for the directors. Then merging the two defects

produces a field with no singularities, which must be topologically trivial.

Nematic liquid crystals also have point defects, since π2(RP 2) = Z. However, the sources and

sinks of the Heisenberg model are now identical. In fact, the action of π1(RP 2) on π2(RP 2) is to flip
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the charge, so the point defects are classified by nonnegative integers, and there is no natural group

multiplication law. For example, the combination of two defects of charge 1 could have charge 0

or 2, depending on the global structure of the field. For further discussion, see Disclination Loops,

Hedgehogs, and All That . More exotic examples are given in the notes on Quantum Field Theory.

Note. Can two line defects be pulled past each other? Ignoring the subtlety mentioned above,

suppose two line defects have homotopy classes α and β. If this is allowed topologically, then the

upper green loop shown must be topologically trivial.

This can be deformed into the lower green loop, which takes the form of the commutator βαβ−1α−1.

So if α and β do not commute, there must be an energetic obstruction to passing the line defects

through each other. (This is not a particularly powerful result, because few systems have noncommu-

tative fundamental groups, and those that do are subject to the subtlety mentioned above, making

this analysis oversimplified. Also, note that the converse is not true; line defects that do commute

often do repel each other, for nontopological reasons. Much cannot be inferred from topology alone.)

We can also identify defects using π0. The “zeroth homotopy group” π0(M) does not have a group

structure; it is simply a set. It consists of homotopy classes of maps S0 →M , where S0 = {−1, 1}.
Taking −1 to be the base point, such a map is characterized by a single point, and homotopy allows

us to move that point continuously. Thus |π0(M)| is the number of connected components of M ,

and physically π0 detects domain walls.

Example. The Ising model. In the Ising model of magnetism, the spin of a particle can only be

+1 or −1. Then the order parameter space is S0, and the only topological defects are domain walls.

These are the boundaries between regions with upward spin and downward spin.

In 3D, the third homotopy group π3(M) classifies textures, which are topological properties of

entire field configurations. (In particle physics, they are called skyrmions, as they appeared in an

old model for the nucleon by Skyrme.) Specifically, suppose we are studying a singularity-free field

configuration which approaches a common limiting value at infinity, e.g. a locally perturbed magnet

in a strong external field. Then we may compactify R3 to S3 by adding a point at infinity. The

field configuration as a whole is then a map f : S3 →M which may be classified with π3(M).

Example. Consider a linear magnet with order parameter space S1. Since π1(S1) = Z, textures
exist. One example is given by θ(x) = π tanh(x). It is clear that this texture cannot be unwound,

even though it contains no singularity.

Example. Textures in a planar magnet. We return to the plane, where textures are detected with

π2, but allow the magnetization to be a unit vector in three dimensions. The order parameter space

https://arxiv.org/abs/1107.1169
https://arxiv.org/abs/1107.1169
https://knzhou.github.io/notes/qft.pdf
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is S2, and π2(S2) = Z, so textures exist. The resulting nontrivial field configurations are shown

below, both on R2 and its stereographic projection onto S2.

Example. Superfluid He-3 has order parameter space RP 3, and

π3(RP 3) = π3(S
3) = Z.

The resulting textures are called Shankar’s monopoles.

Example. In high energy physics, it is also useful to classify the entire spacetime profile of a field.

This is important because each topologically distinct sector will contain at least one local minimum

of the action, so this procedure classifies instantons. Heuristically, instantons are classified by

π4(M), but this is a bit of a simplification because the relevant field is a gauge field; as we’ll see

below and in the notes on Quantum Field Theory, they’re instead classified by the topologically

distinct G-bundles over S4, which are in turn classified by π3(G).

Note. There are some physical caveats when considering topological defects. The first is that the

smooth fields in our examples above do not exist in reality; they are extrapolated from a discrete

lattice. On scales on the order of the lattice spacing (or more precisely, the coherence length),

topological defects can simply fall apart.

The second subtlety is that topological stability does not guarantee energetic stability. For

example, Derrick’s theorem forbids the existence of stable textures in dimension n > 1. In the case

of the previous example, scaling the texture down by a factor of λ increases the energy density by

λ2, but decreases the volume by λ3. Thus the texture shrinks further and further down until it

hits the coherence length and vanishes. More subtle models are required to circumvent Derrick’s

theorem.

Yet another subtlety comes in calculating the energy of a topological defect. When writing down

free energies, we usually throw away total derivative terms, but this is not valid if topological defects

are present. In high energy physics, this is the precise reason why the QCD θ-term can have a

physical effect.

https://knzhou.github.io/notes/qft.pdf
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4 Manifolds

4.1 Smooth Manifolds

We define manifolds and related quantities informally.

• A topological manifold is a second countable Hausdorff topological space that is locally home-

omorphic to Rn. The number n is the dimension of the manifold. This is sufficient to talk

about the continuity of functions on the manifold, but not their derivatives, as we don’t have

coordinates.

• A differentiable manifoldM is a topological manifold with coordinate systems. More specifically,

a chart on M is a pair (U, ϕ) where U ⊂M is open and

ϕ : U → V ⊂ Rn

is a homeomorphism. Given a point p ∈ U , this chart gives it coordinates ϕ(p) = (x1, . . . , xn).

• Now, given a function f : M → R, we can define its smoothness by that of f ◦ ϕ−1 : V → R
and use this coordinate representation to differentiate f . From this point on we will assume all

such maps are smooth (i.e. C∞) for convenience. (In particular, the definition we are giving

for a differentiable manifold is technically the definition of a smooth manifold.)

• In general, M cannot be covered by a single chart, so we need a set of charts {(Ui, ϕi)} called

an atlas. We require that the Ui cover M , and that the maps ϕi are compatible, meaning that

the transition functions

ψij = ϕj ◦ ϕ−1
i

are smooth everywhere they are defined. Note that ψij has a smooth inverse, namely ψji.

• Technically, different sets of atlases can yield different manifolds. Define a differentiable structure

on M to be an equivalence class of atlases that agree on which functions are smooth. Then

differentiable manifolds are actually in correspondence with differentiable structures.

• In physical applications, there will be an obvious correct differentiable structure. Other struc-

tures, such as exotic R4 or exotic spheres, play no role in physics. In fact, in the great majority

of physical calculations, one doesn’t even need to work with more than one chart/coordinate

system. Multiple charts play a greater role when talking about topological effects.

Example. The sphere S2. When working informally, we often use coordinates that are singular,

such as spherical coordinates (θ, ϕ). In this case, ϕ changes discontinuously from 2π to 0 at the

meridian, and is not defined at the poles. This does not indicate a singularity in the manifold itself;

it simply means that we need more charts.

We may cover S2 with two charts using stereographic projection. The standard stereographic

projection will map everything except a neighborhood of the North pole onto a finite subset of R2.

Projection the opposite way gives everything but a neighborhood of the South pole.

Example. A manifold with boundary is the same as a differentiable manifold, except that open

sets are mapped homeomorphically to Rn≥0. The points mapped to the boundary of that space are

called the boundary of the manifold.

The presence of a boundary makes results slightly more complicated, as there are now ‘special’

points. We have to be careful with defining smoothness, since the boundary points in our coordinate

space don’t have open neighborhoods.
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From this point on, ‘manifold’ implicitly means ‘smooth manifold without boundary’ and all maps

are assumed to be smooth.

Example. A surface. Consider k smooth functions f1, . . . , fk : Rn → R and let

M = {x ∈ Rn|f1(x) = . . . = fk = 0}.

One can show that if the rank of the k×N matrix ∂fi/∂x
µ is maximal (i.e. equal to k at all points),

then M is a smooth manifold of dimension N − k. For example, the sphere is a manifold with

f(r) = 1− r. It is called a hypersurface since it has codimension one. More generally, Whitney’s

embedding theorem states that any n-dimensional manifold may be realized as a surface in Rm with

m ≤ 2n.

Example. Real projective space M = RPn is defined as

RPn = (Rn+1/{0})/ ∼, x ∼ ax for a ∈ R∗

where R∗ = R/{0}. This is the space of all lines in Rn+1. We will explicitly show that M is a

manifold. Consider the n+ 1 open sets

Uα = {x ∈ Rn+1|Xα ̸= 0}

and define the charts

ϕα : Uα → Vα ∈ Rn, ϕα(x) = (x1/xα, . . . , xα−1/xα, xα+1/xα, . . . , xn+1/xα).

Each chart is smooth, so it suffices to show that the transition functions are smooth. As an example,

RP3 = SO(3). To see this, note that RP3 is equal to S3 with opposite points identified, SO(3) is

equal to SU(2)/{I,−I}, and SU(2) is equal to S3.

4.2 The Tangent Space

Now consider maps f :M → N where M and N are manifolds with dimension m and n.

• We say f is smooth at a point if the corresponding coordinate representation ϕ ◦ f ◦ ψ−1 is

smooth at the corresponding point, where the charts ϕ and ψ are shown above.

• We may also compute the derivative of f , which is now an m× n matrix

Di
j =

∂yi

∂xj
.
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• As special cases, we might have N = R, in which case f :M → R is a scalar field. We let F(M)

stand for the set of scalar fields on M . Note that it is tempting to say the coordinate functions

xi : U → R are scalar fields, but they are manifestly not coordinate independent.

• If a map f : M → N is bijective and has a smooth inverse, then f is a diffeomorphism.

Diffeomorphisms are isomorphisms for manifolds. In particular, if M and N are isomorphic,

then we must have dimM = dimN , though this is somewhat hard to show rigorously.

• We may also define maps c : I → M , in which case c is a parametrized curve. These will be

useful for defining the tangent space.

Now, we turn to defining vectors on manifolds.

• Intuitively, a vector in Rn is a displacement from one point to another, and vectors may be

added and multiplied by scalars. On a manifold, one can talk about displacements from one

point to another, but it is unclear how to add them or multiply them by scalars.

• However, if the displacements are “small”, we can approximate them as taking place in a plane,

the ‘tangent plane’ to M at the base point, and perform vector operations inside it.

• This intuitive idea is nice, but unsatisfactory: there is no real way to define ‘smallness’, and we

want an intrinsic definition of ‘tangent plane’, i.e. one that only involves M itself and not any

embedding space.

• Geometrically, we are trying to take smaller and smaller pieces of a curve going through a

point p. But there is a quantity associated with this motion that is defined solely at the point

p, namely the velocity at p! Heuristically, we will define the tangent space at p as the set of

possible velocities of curves through p.

Given the above motivation, we can lay down formal definitions.

• Given a parametrized curve c : [a, b] →M which passes through p at t = 0, we may define the

differential operator

Xf = lim
∆t→0

f(c(∆t))− f(p)

∆t
=
d(f ◦ c)
dt

∣∣∣∣
t=0

.

This is a linear operator X : F(M) → R.

• The set of curves c is enormously redundant, since the operator X only depends on behavior at

t = 0, so each X is associated with an equivalence class of curves. We call X a tangent vector,

and the set of all X based at p the tangent space TpM .

• Thinking of vectors more abstractly as linear operators X : F(M) → R shows the tangent

space is a vector space. Formally, Tp is the set of first order differential operators at p, i.e. its

elements satisfy the Leibniz rule X(fg) = X(f)g + fX(g) where everything is evaluated at p.

• Given coordinates {xi}, the chain rule yields

df

dt
=
∑
i

∂f

∂xi
dxi

dt
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where df/dt on the left stands for d(f ◦ c)/dt. Now, we can break a tangent vector X into

components by its action on the coordinate functions. Define the component Xi by

Xi = Xxi =
dxi

dt

∣∣∣∣
t=0

.

Then we may write the chain rule as

Xf =
∑
i

Xi ∂f

∂xi
.

Since f is arbitrary, we have

X = Xi ∂

∂xi

where we are using the summation convention, and the derivatives are evaluated at p.

• The basis vectors ∂/∂xi are associated with curves along the coordinate axes, as shown below.

The existence of this basis shows that the dimension of the tangent space TpM is the same as

the dimension of M .

• Finally, we can see how components of vectors transform:

X ′i = Xx′i =
dx′i

dt
=
∂x′i

∂xj
dxj

dt
=
∂x′i

∂xj
Xj .

This is the standard transformation law for contravariant vector components.

Note. We check that the definition of Tp as derivations at p only depends on local information: let

f = g in a neighborhood of p. Then

0 = X(ϕ(f − g)) = (Xϕ)(f(p)− g(p)) + ϕ(p)X(f − g) = X(f)−X(g)

where ϕ is a bump function which is one inside the region where f = g and zero elsewhere. This

step uses the existence of bump functions (constructed using e−1/x2 , etc.), which don’t exist for

complex manifolds by analyticity; thus this is the beginning of the divergence between real manifold

and complex manifold theory.

Another way to enforce locality is to define Tp to act on germs of smooth functions at p. A third

way is to define T ∗
p as the set of germs of smooth functions at p mod constant functions and Tp

to be its dual. We could also go back to our earlier picture and define Tp in terms of equivalence

classes of germs of curves through p. The point is that there are many equivalent ways to define

Tp, and we just favor the one that’s easier to calculate in.



35 4. Manifolds

4.3 The Cotangent Space

Every real vector space V is associated with a dual space V ∗ consisting of real-valued linear maps

on V . The dual space of the tangent space TpM is the cotangent space T ∗
pM , and elements of the

cotangent space are called covectors, cotangent vectors, or one-forms.

• Recall that to get a rate of change, we need to combine a curve c : R →M with a scalar function

f :M → R. We then defined tangent vectors as equivalence classes of the curves. Analogously,

cotangent vectors are equivalence classes of functions.

• More specifically, the covector associated with a function f at p is

df |p : TpM → R : X → Xf = Xi ∂f

∂xi

∣∣∣∣
p

.

We call df the differential of f . It represents the ‘slicing of space’ associated with the level sets

of f . Note that conceptually, there is nothing small or ‘infinitesimal’ about df .

• We may break a covector α into components by its action on the basis vectors,

αi = α(∂/∂xi).

This gives the general action of covectors on vectors,

α(X) = Xiα(∂/∂xi) = Xiαi.

• The basis vectors corresponding to these components are the differentials of the coordinate

functions, because

(dxi)(X) = Xxi = Xi, α(X) = αi(dx
i)(X)

Then we may write α = αidx
i. This basis is the dual basis of the tangent vector basis, as

(dxi)

(
∂

∂xj

)
=
∂xi

∂xj
= δij .

• Finally, we note that the components of df are given by the standard chain rule,

df =
∂f

∂xi
dxi

and that covector components transform covariantly,

α′
i =

∂xj

∂x′i
αj .

The d above can also be thought of as the exterior derivative.

Example. Examples of one-forms include row vectors and bras. The infinite-dimensional case is

more subtle, as V ∗ can be larger than V . For example, the Dirac delta can be regarded as one-form

on a space of functions by ⟨δ(x), f(x)⟩ = f(0). However, there is no such thing as a Dirac delta

‘function’. As another example, if V is the vector space of sequences with finitely many nonzero

elements, V ∗ can contain covectors which are infinite linear combinations of basis covectors.
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We now define vector and covector fields.

• Intuitively, a (co)vector field is simply a (co)vector at every point in the manifold. A vector

field X will be written with the same letter as a single tangent vector, so the meaning must be

inferred from context.

• The components Xi(x) become functions which depend on the coordinate chart used, and we

say X is smooth if the component functions Xi(x) are. (This isn’t a coordinate-dependent

statement, as transition functions are smooth.) From this point forward we assume all vector

fields are smooth.

• More formally, define the tangent bundle TM as the union of all tangent spaces

TM =
⋃
p∈M

TpM

and define the cotangent bundle T ∗M similarly. The projection map π : TM → M takes a

tangent vector and returns its base point. The tangent bundle is locally trivial; its restriction to

a chart decomposes as a product. Note that the topology on TM is inherited from the manifold,

i.e. it can be read off from the charts.

• Now, a vector field is a map X : M → TM satisfying π(X(p)) = p. We denote the set of all

vector fields by X(M) and the set of covector fields by X∗(M).

• Similarly, we may define (r, s) tensor fields, which are functions from M to (T ∗M)r(TM)s. We

define the tensor components in the usual way,

T i1...irj1...js = T (dxi1 , . . . , dxir , ∂/∂xj1 , . . . , ∂/∂xjs).

The components transform in the natural generalization of the previous transformations.

• An equivalent definition is that a vector field is a linear operator on F(M) satisfying the Leibniz

rule

X(fg) = X(f)g + fX(g)

which specifies that it’s a first derivative.

• Similarly, a covector field is a linear operator X(M) → F(M). The apparent asymmetry here is

just a consequence of the order we defined things; we could just as easily have defined covectors

first, and then vectors as their dual vectors. A deeper link is that vectors are associated with

differentiation (i.e. the velocity of a curve) while covectors (and more generally differential

forms) are associated with integration.

Note. The mathematical definition of the tensor product.

• Tensor products are appropriate for studying bilinear maps U × V → W , where W = R in

physical applications. These are distinct from linear maps U × V → W . For example, for a

bilinear map we must map (αu, v) to α(u, v).

• The tensor product U ⊗ V is uniquely characterized by the existence of a bilinear map

π : U × V → U ⊗ V

so that for any bilinear map α : U × V → W , there is a unique linear map α̂ : U ⊗ V → W

with α̂ ◦ π = α.
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• To explicitly construct U ⊗ V , take F (U × V ) to be the free vector space on elements of U × V ,

then quotient out by the subspace generated by elements of the form

(u1+u2, v)−(u1, v)−(u2, v), (u, v1+v2)−(u, v1)−(u, v2), (αu, v)−α(u, v), (u, αv)−α(u, v)

to manually impose bilinearity.

• Another concrete definition is to let

(U ⊗ V )∗ = Bilinear(U × V,R)

where we think of W as R.

• A final concrete definition is to define U ⊗ V to have basis vectors ui ⊗ vj (where ⊗ is just an

abstract symbol) for bases {ui} and {vj}. This is the usual definition in physics texts; explicitly

π(u, v) = u⊗ v.

• Given the abstract definition we can show that the tensor product is commutative and associative,

and Hom(U, V ) ∼= U∗ ⊗ V .

4.4 Pushforward and Pullback

Suppose we have a smooth map f :M → N with f(p) = q. The map is not necessarily injective or

surjective, and M and N need not have the same dimension.

• Given a function ϕ : N → R, we can ‘pull it back’ to a function M → R by

f∗ϕ = ϕ ◦ f.

We call f∗ the pullback map.

• We say that f is smooth if ϕ being smooth implies that f∗ϕ is smooth. This is our general

definition for a smooth map between manifolds, and subsumes earlier definitions of smoothness

as special cases. From here on, we always assume all maps are smooth.

• We can take a vector X ∈ TpM and associate it with a vector Y ∈ TpN . Heuristically, viewing

tangent spaces as small pieces of a manifold, we just apply f to the tangent space TpM . More

rigorously, we can map curves with f , defining

f∗ : TpM → TqN, [c] 7→ [f ◦ c].

This is called the tangent map, the differential of f , or the pushforward map.

• To write f∗ in components, note that ∂/∂xj maps to (∂yi/∂xj)(∂/∂yi), so vector components

transform as

Y i =
∂yi

∂xj
Xj .

Thinking in terms of parametrized curves, this is really just the chain rule: we just multiply by

the Jacobian matrix of f . We can also think of this as a generalization of change of coordinates,

which is the special case where M = N and f is a diffeomorphism.
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• Another equivalent definition of f∗ is

(f∗X)(ϕ) = X(f∗ϕ).

This makes it clear that vectors are pushed forward because they act on functions, and functions

are pulled back.

• Similar logic applies to covectors. Suppose we want to associate α ∈ T ∗
qN with β ∈ T ∗

pM . Then

we define

f∗ : T ∗
qN → T ∗

pM, (f∗α)(X) = α(f∗X).

The covector β = f∗α is called the pullback of α, and f∗ and f∗ are each others’ dual maps.

• Plugging in components, we have

βi =
∂yj

∂xi
αj .

Like the previous formula, this result is the only way to ‘line up the indices’.

• Note that we may also pullback covector fields. To pullback the value of a covector field at a

point, we simply pushforward its vector argument,

(f∗α)p(X) = αq(f∗X).

The definition clearly generalizes to the pullback of (0, r) tensors, and (0, r) tensor fields.

• Using the definition of the pullback of a covector, we can similarly define the pushforward of

an (s, 0) tensor. However, we cannot pushforward (s, 0) tensor fields (e.g. vector fields) because

f may not be bijective. This is a key asymmetry between pushforward and pullback. If f−1

exists, we may define the pushforward and pullback of arbitrary tensor fields.

• In math, we say that things which can be pushed forward are covariant and things which can

be pulled back are contravariant (where ‘co’ and ‘contra’ are with respect to the function f).

This is completely unrelated to the physical definition, which says that vectors are invariant,

basis vectors are covariant, and vector components are contravariant.

• Formally, the tangent map is a functor from pointed manifolds to real vector spaces; given a

map f : (M,p) → (N, q), the functor gives the map f∗ : TpM → TqN .

Note. More terminology for maps.

• Given a map f :M → N , compose with charts to get the map

ϕ ◦ f ◦ ψ−1 : Rm → Rn, ψ :M → Rm, ϕ : N → Rn.

We can define a Jacobian matrix on M by

Df |p = J(ϕ ◦ f ◦ ψ−1)|ψ(p)

where Df doesn’t depend on the charts, essentially by the chain rule.

• We say f is an immersion at p if Df is injective; intuitively, f looks like inclusion of M in N .
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• We say f is an embedding if M is diffeomorphic to its image. This is stronger than immersion.

For example, a curve embedded in R2 cannot cross itself, but a curve immersed in R2 can.

• We say f is a submersion at p if Df is surjective. Locally, this looks like projection of M down

to N .

• We say q ∈ N is a regular value of f if Df |p is surjective for all points p ⊂ f−1(q). The preimage

theorem states if q is a regular value, then f−1(q) is either empty or an m − n dimensional

submanifold of M . This shows surfaces defined as constrained subsets of Rn and matrix Lie

groups defined as subsets of Matn(R) are indeed manifolds; all we have to check is regularity.

• Sard’s theorem states that if f is smooth, the nonregular values of f have measure zero. That

is, regular values are ‘generic’, so the preimage theorem only fails at a few points.

4.5 Vector Fields and Flows

We now turn to the geometric picture of a vector field.

• Since a vector is the velocity of a parametrized curve, a vector field X assigns a velocity to every

point on the manifold M . A parametrized curve γ whose tangent vector at time t is X(γ(t)) is

called an integral curve of X.

• In terms of the components xi(t) of γ, we have

dxi

dt
= Xi(x).

• The flow equation above is the generalization of an n-dimensional system of first-order ODEs

from Rn to a manifold. The solutions obey similar existence-uniqueness theorems, which hold

here due to our implicit assumption that X is smooth.

• One technical point is that existence of a solution is only guaranteed in a neighborhood about

our initial point. For example, the ODE

ẋ = x2, x0 = 1

on the real line blows up in finite time. For simplicity, we will assume this does not happen;

one can show it never happens on a compact manifold, a complex manifold, or a Lie group.

• The integral curves define a map from M to itself, by following the curves for a fixed time t.

More specifically, we have Φ : R×M →M satisfying the properties

Φi(0, x0) = xi0,
∂Φi

∂t
(t, x0) = Xi(Φ(t, x0)).

• Now define the advance map Φt = Φ(t, ·). This clearly satisfies the composition property

ΦsΦt = Φs+t

which may be formally proven using the EUT. Therefore, we have a group structure on the Φt
maps, where the identity element is Φ0 and the inverse of Φt is Φ−t. Since inverses exist, Φt is

a diffeomorphism, and the set of Φt constitute a one-parameter group of diffeomorphisms. This

set is called the flow generated by X. It is an example of an action of R on M .
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• On an analytic manifold, where Taylor series converge, we have

Φt = etX ≡ 1 + tX +
t2

2!
X2 + . . . .

The terms on the right make sense: X maps F(M) → F(M), Xn does the same, and hence so

does etX . Acting on a function f ,

etXf = f + tXi ∂

∂xi
f +

t2

2
Xi ∂

∂xi
Xj ∂

∂xj
f + · · · = f + t

df

dt
+
t2

2

d2f

dt2
+ · · ·

where the derivatives of f are stand for the derivative of f ◦ c where c is an integral curve

passing through x at t = 0. Since the manifold is analytic,

(etXf)(x0) = f(Φt(x0)) = (Φ∗
t f)(x0).

Since x0 and f are arbitrary, we thus have

Φ∗
t = etX .

That is, the pullback map on functions corresponding to Φt is equal to e
tX . If we do not include

the pullback, the equation is not strictly true. (This distinction isn’t necessary if we always

work in coordinates, as in that case we never mention Φt at all. We are always really talking

about Φ∗
t , which acts on the coordinate functions.)

• The exponential notation also has other advantages. It makes the group structure of Φt apparent,

and it also behaves correctly under differentiation, giving

d

dt
Φ∗
t = XetX .

Combining this with our previous result, we have

d

dt
Φ∗
t = XΦ∗

t .

This is a coordinate-free form of the flow equations above.

Note. A set of coordinates defines a family of vector fields, {∂/∂xi}, and a family of covector fields,

{dxi}. However, the converse is not necessarily true.

• By equality of mixed partials, the commutator of coordinate vector fields [∂/∂xi, ∂/∂xj ] is

always zero. This isn’t true for generic sets of vector fields.

• If the commutators are zero, then we can construct a coordinate system from the integral curves

of the vector fields, as long as the vector fields are nonzero and everywhere independent, and

the manifold has trivial topology.

• The exterior derivative of all coordinate-based covector fields dxi is zero, as d2 = 0. However,

this isn’t true for a generic covector field α.

• If we have dα = 0, then we can find a coordinate function f so that df = α as long as the

manifold has trivial topology. The first cohomology group tells us when this doesn’t hold.
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Note. More on the commutator. The commutator of two vector fields is

[V,W ] = (V i∂iWj −W i∂iVj)∂j .

Note that the result is also a vector field; the second-derivative term drops out by equality of mixed

partials. To interpret the commutator, note that

[eϵV , eϵW ] = ϵ2[V,W ] +O(ϵ3).

Then the commutator tells us the difference between flowing along V and then W , or vice versa.

Note. Constructing coordinates from commuting vector fields. In 2D, consider the vector fields V

and W , and use initial coordinates xi. We define a candidate new coordinate system (α, β) by

xi(α, β) = eβW eαV xi|P

where P is some arbitrary base point. That is, we define coordinates by simply flowing along the

vector fields for durations α and β. Intuitively, the result is well-defined as long as flows commute,

which is equivalent to having zero vector field commutator.

Formally, we would like to show that V = ∂/∂α and W = ∂/∂β. The first is always true; to

prove the second, note that

∂

∂β
xi = eβWWeαV xi|P = eβW eαV (Wxi)|P = (Wxi)|(α,β)

where in the second equality we used the commutation relations, and in the final equality we used

the fact the eβW eαV translates any analytic function by (α, β). We must also prove that the (α, β)

are actually a coordinate system; note that the map from the xi to the new coordinates has Jacobian

J =

(
∂x1/∂α ∂x2/∂α

∂x1/∂β ∂x2/∂β

)
=

(
V x1 V x2

Wx1 Wx2

)
.

Then an inverse function exists if det J is nonzero by the inverse function theorem. But det J ̸= 0

is just the condition that V and W be nonzero and independent, as stated earlier.
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5 Lie Theory

5.1 The Lie Derivative

In tensor analysis in Rn, the convective derivative measures the rate of change of a tensor being

transported in a velocity field. The Lie derivative does the same for manifolds.

• Given a vector field X, we define the Lie derivative of a scalar field as

(LXf)(x0) = lim
t→0

f(x1)− f(x0)

t
, x1 = Φtx0.

• It is clear that LXf is just the rate of change of f along integral curves, so

LXf = Xf = Xi ∂f

∂xi

which is analogous to the convective derivative term v⃗ · ∇f in fluid mechanics.

• More formally, we can directly use the limit definition

(LXf)(x0) = lim
t→0

1

t
((Φ∗

t f)(x0)− f(x0)) =

((
dΦ∗

t

dt

∣∣∣∣
t=0

)
f

)
(x0) = (Xf)(x0)

as desired, where we used Φ∗
t = etX .

• Next, we can define the Lie derivative of a vector field. Generally, there’s no way to compare

vectors at different points on a manifold, but given a vector field, we can transport vectors

using the flow; intuitively, a transported vector behaves like a stick moving in a stream.

• To formalize this, we use the pullback map, as we did for the scalar field. This is valid because

Φt is invertible, so we can get a pullback through the inverse of the pushforward map,

(LXY )(x0) = lim
t→0

(Φ−1
t∗ Y )(x0)− Y (x0)

t
.

• To simplify this expression, we expand all terms in the brackets to first order in t. Using the

standard pullback formulas, the pulled back components just pick up a Jacobian factor,

(Φ−1
t∗ Y )(x0) =

∂xi0

∂xj1
Y j(x1)

Expanding the flow equation dxi/dt = Xi(x) to first order,

xi0 = xi1 − tXi(x0),
∂xi0

∂xj1
= δij − t

∂Xi(x0)

∂xj1
≈ δij − t

∂Xi(x0)

∂xj0

There is another first-order component from the fact that Y j is evaluated at x1.

• Collecting all first-order terms and suppressing position arguments,

(Φ−1
t∗ Y )i = (δij − t∂jX

i)(Y j + tXk∂kY
j) +O(t2).

We thus conclude

(LXY )i = Xj∂jY
i − Y j∂jX

i.

The first term is what we would naively expect if we just followed the flow. The second term

is more subtle and arises from how the flow affects the vector: a stick in a circulating current

rotates, so the Lie derivative of a vector field with constant components can be nonzero.
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• Similarly, we can find the Lie derivative of a covector field, using the usual pullback, giving

(LXα)i = Xj∂jαi + αj∂iX
j .

• Now we define the Lie derivative for arbitrary tensor fields. One way is to define the derivative

as above, using the pullback map induced by Φ∗ and Φ−1
∗ . However, it is equivalent to use the

Leibniz rule for tensor products, e.g.

LX(α⊗ Y ) =
d

dϵ

∣∣∣∣
ϵ=0

[
(Φ∗

ϵα)⊗ (Φ−1
ϵ∗ Y )

]
= (LXα)⊗ Y + α⊗ (LXY ).

This is sufficient to define the Lie derivative for all tensors, because scalar multiplication is a

special case of the tensor product,

f ⊗ T = fT, LX(fT ) = (LXf)T + f(LXT )

and every tensor field may be written as a linear combination of scalars times tensor products

of vector and covector fields.

The Lie derivative of vector fields has some special properties.

• Comparing to our previous work, the Lie derivative is just the commutator,

LXY = [X,Y ].

We call this operation the Lie bracket of two vector fields.

• Using the fact that the bracket is the commutator, we can easily show the Lie bracket is bilinear,

antisymmetric, and satisfies the Jacobi identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 ↔ L[X,Y ] = [LX ,LY ].

Therefore, the set of vector fields X(M) is a Lie algebra; the Lie group is Diff(M).

• If f :M → N is a diffeomorphism, then the bracket commutes with pushforward,

f∗[X,Y ] = [f∗X, f∗Y ].

This follows because advance maps commute with diffeomorphisms, as diffeomorphisms are just

isomorphisms of differentiable structure.

Note. Intuition for the Lie derivative. As we saw earlier, the commutator [X,Y ] measures the

difference between traversing integral curves of X or Y first. This translates into intuition for Lie

dragging the vectors X and Y , because we can think of vectors as tiny pieces of integral curves.

Specifically, let points a and b be linked by flowing along the integral curves of X for an infinites-

imal time. Then we can think of the vector X(a) as pointing from a to b. Now let

X : a→ b, Y : a→ c, X : c→ d, Y : b→ d′.

Then c → d represents X(c), but c → d′ represents X(a) Lie dragged along Y . The difference

between d and d′ measures the Lie derivative LYX, and it is also the commutator because XY

takes a→ d and Y X takes a→ d′.
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5.2 Frobenius’ Theorem

Next, we apply the Lie bracket to submanifolds.

• An m-dimensional (embedded) submanifold S of an n-dimensional manifoldM is a set of points

in M so that, in a neighborhood of any point of S, there exists a coordinate system where the

points of S are described by x1 = . . . = xn−m = 0.

• The above definition allows S to inherit all smoothness properties of M . It is natural for

applications, because the solutions of differential equations are usually relations between the

xi, so they are already in the desired form.

• Note that any open subset of M is trivially a submanifold of M . Moreover, submanifolds are

not allowed to intersect themselves.

• Using the inclusion map from S to M , we can restrict forms from M to S by pullback, and

move vectors on S to M . Both of these facts make sense geometrically, thinking of forms as

contour surfaces and vectors as small arrows.

• A set of vector fields X(i) is involutive if it is closed under the Lie bracket, i.e. if the commutators

[X(i), X(j)] may be written in terms of linear combinations of the X(i), where the coefficients

may be functions.

• Using the identity

LX(fY ) = (LXf)Y + fLXY

we can show that this implies that the commutators [fiX
(i), gjX

(j)] are also linear combinations

of the X(i), where the coefficients fi and gj are functions.

• Defining coordinates ya on S, we have m vector fields ∂/∂ya which are clearly involutive. Since

this closure property is also true for linear combinations of the vector fields, the set of all vector

fields on S is closed under the Lie bracket. Intuitively, no combination of tangent vectors could

yield anything besides another tangent vector; flows on S can’t take us off S.

• Frobenius’ theorem states that the converse is true: if the vector fields V (i) are involutive, then

the integral curves of the vector fields mesh together to form a family of submanifolds that

foliate M . That is, every point of M lies on one such submanifold (except for a small number

of degenerate points), and at each point the vector fields V (i) span the tangent space of that

submanifold.

• As a simple example, for one vector field, the submanifolds are just the integral curves.

• Proof sketch: by taking appropriate linear combinations, we can set the commutators to zero,

so we have a set of commuting flows. As we’ve seen earlier, such a set defines a coordinate

system, and this is the desired coordinate system for the submanifold.

Example. Consider X = ∂x + y∂z and Y = ∂y. If Frobenius’ theorem applied, we would expect

the submanifold going through the origin to be tangent to the xy plane, since X and Y span it

there. However, [X,Y ] = −∂z, so it is possible to move along the z-axis at the origin, so the integral

curves do not combine into a family of two-dimensional submanifolds. Instead, we can get to any

point by flowing along X and Y .
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Example. Define the vector fields ℓi as

ℓz = −y∂x + x∂y

and ℓx and ℓx similarly. These generate rotations about the x, y, and z axes. The commutation

relations are [ℓx, ℓy] = −ℓz along with cyclic permutations, so Frobenius’ theorem applies. The

resulting submanifolds are spheres centered about the origin. To show this formally, define r =√
x2 + y2 + z2. Then one can show that

dr(ℓi) = 0.

Then the submanifolds lie within surfaces of constant r. Since the ℓi span a two-dimensional tangent

space at every point, the submanifolds must in fact be these surfaces.

Note. There is a dual formulation to Frobenius’ theorem. Consider a set of p linearly independent

one-forms ω(i). At each point, the annihilator is the subset of the tangent space annihilated by all

of these forms; then we might ask if these tangent spaces mesh together to form submanifolds of

codimension p. This is clearly true if the ω(i) are exact, ω(i) = df i, because then the submanifold

is simply f i = const. By our definition of a submanifold, the converse is true: the one-forms are

‘surface-forming’ if they can be written as linear combinations of a set of p exact forms.

Frobenius’ theorem for forms states that the forms are surface-forming if and only if they are

closed, which means that for V and W in the annihilator, dω(i)(V,W ) = 0. The name of the

condition is because this is a generalization of ordinary closure, dω = 0.

One important application of the Lie derivative is to express the symmetries of a physical problem.

• A tensor field T is said to be invariant under V if

LV T = 0.

As a simple example, functions f(r) are invariant under the ℓi defined above.

• The set of vector fields V under which T is invariant forms a Lie algebra, where the operation

is the usual Lie bracket. To prove this, we need to check closure under linear combinations

with constant coefficients, which is straightforward, and closure under the Lie bracket, which

follows from the Jacobi identity [LX ,LY ] = L[X,Y ].

• The dimension of a Lie algebra is equal to its dimension as a vector space. Note that we only

allow scalar multiplication by constants, not functions, in a Lie algebra. Thus the ℓi form a

three-dimensional Lie algebra, even though they span only a two-dimensional space at every

point. Moreover, the set of all vector fields on a manifold is an infinite-dimensional Lie algebra,

even though the dimension of the manifold’s tangent spaces are finite.

• Geometrically, it is natural to allow linear combinations with functions as coefficients for

Frobenius’ theorem, because multiplying a vector field by a function leaves its integral curves

invariant, simply changing the speed at which they are traversed. But it is unnatural to do the

same for symmetries: invariance under translation is very different from invariance under any

deformation of space.

Killing vectors are vector fields under which the metric is invariant, and are useful in relativity.
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Example. Killing vectors in R3 with the Euclidean metric. Note that in general,

(L∂iT )
k...ℓ

i...j = ∂iT
k...ℓ

i...j .

Therefore, since the metric components are independent of x, y, and z, we have three Killing vectors

∂x, ∂y, and ∂z. The rotation operator ℓz = ∂ϕ is also a Killing vector, as can be seen by switching

to spherical coordinates where the metric components are independent of ϕ. Similarly, ℓx and ℓy
are also Killing vectors. We’ll prove later that these are all the independent Killing vectors.

Note. Killing vectors appear in the background even in classical mechanics. For example, angular

momentum is conserved in a spherically symmetric potential. However, no analogous conserved

quantity exists for a potential which is constant on ellipsoids, even though such a potential does

have a symmetry. To see why, note that the equation of motion is

mv̇i = −gij∂jΦ.

Since the metric is involved, symmetries must be derived from both Φ and g, and g is spherically

symmetric but not ‘ellipsoidally symmetric’.

Example. Axial symmetry. Suppose we wish to solve the equation Lψ = 0, where L is a linear

differential operator and ψ is a function, e.g. a wavefunction or a field. If there is an axial symmetry,

then L is independent of the angular coordinate ϕ, though it may contain derivatives with respect

to ϕ. Thus, as maps on smooth functions, L commutes with L∂/∂ϕ so we can simultaneously

diagonalize them. (Note that L need not be a first order differential operator, so it may not be

interpreted as a vector field.)

Therefore we can consider solutions with axial eigenvalue m,

L∂/∂ϕψ = imψ.

Such a solution can be written as ψ = ψme
imϕ, and the equation L(ψ) = 0 can be simplified to

Lm(ψm) = 0, where Lm contains no derivatives with respect to ϕ. Thus the axial symmetry allows

separation of variables. This procedure is familiar from quantum mechanics, but here we see it

applies in general.

We call the functions eimϕ the scalar axial harmonics; any solution to Lψ = 0 may be written as

a sum of solutions ψm, each of whose angular dependence is a scalar axial harmonic. If ψ is instead

a vector field V , then the analogous procedure uses vector axial harmonics, which satisfy

L∂/∂ϕV = imV.

If the space is n-dimensional, there are n independent vector axial harmonics for each value of m.

For example, in R3 with axial symmetry about the z axis, one basis for the m = 0 vector axial

harmonics is ẑ, r̂, θ̂, as these basis vectors are Lie dragged by L∂/∂ϕ.

5.3 Lie Groups and Lie Algebras

Axial symmetries, and more generally rotations, form a Lie group, a manifold with a smooth group

operation. The vector fields generating the symmetry form the Lie algebra. In this section we

formally define these objects, beginning by reviewing group actions.

• Given a space X, let Bij(X) be the group of all bijections of X. If X = M is a differentiable

manifold, the analogous group is Diff(M), the group of diffeomorphisms of M onto itself.
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• Given a group G, a homomorphism G→ Bij(X) is an action of G on X. We write the bijection

corresponding to g as Φg.

• If X is a vector space and the Φg are linear operators, we call the group action a representation

of G. Sometimes, we also call X itself the representation.

A slightly different convention is to call group actions ‘realizations’ of the group, and any

realization that is not a representation a ‘nonlinear realization’.

• The orbit of x ∈ X is the set {Φgx | g ∈ G}. It is straightforward to show that the orbits

partition X into subsets; we write the orbit of x as [x]. The action is transitive if [x] = X, i.e.

it takes each element to all others.

• Define the stabilizer of x as Ix = {g ∈ G |Φgx = x}. For any y ∈ [x], the set of group elements

that map x to y is a coset of Ix. This gives the orbit-stabilizer theorem

|G/Ix| = |[x]|

which is useful for some combinatorics problems. Since Ix need not be normal, G/Ix need not

be a group, so we should only this of this relation as set equality.

• If all transformations except for Φe = idX move all points of X, the action is free. Then all

stabilizers are trivial, so G ∼= [x]. Then X consists of copies of G in orbits.

• If all transformations except for Φe = idX move some point of X, then the action is effective.

Then the kernel of the action G→ Bij(X) is trivial, and G is isomorphic to the set of {Φg}. If
the action is a representation, it is called faithful.

Example. The group SO(3) acts on R3 by rotations. The orbits are spheres, unless x = 0, in

which case [x] is a point. The stabilizer Ix of any x ̸= 0 is the set of rotations about the axis x̂, an

SO(2) subgroup. The orbit-stabilizer theorem says SO(3)/SO(2) ∼= S2.

Example. An arbitrary group G acts on itself by left or right translation,

La : G→ G, La(g) = ag, Ra : G→ G, Ra(g) = ga.

Then the mapping a → La is an action. The mapping a → Ra is not since it doesn’t obey the

homomorphism condition RaRb = Rab, but a→ Ra−1 is. Note that left and right translations always

commute, e.g. LaRb = RbLa. However, left/right translations don’t commute among themselves if

the group is not Abelian.

Example. A group G also acts on itself by conjugation,

Ia : G→ G, g 7→ aga−1.

That is, Ia = LaRa−1 . This action is automatically trivial if the group is Abelian.

We now turn to defining the Lie algebra of a Lie group.

• The actions of left and right translation are diffeomorphisms of the group manifold. We define

a left-invariant vector field (LIVF) to satisfy

La∗X = X

for all a ∈ G. These vector fields are ‘constant’ along the group manifold.
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• The set of all LIVFs is a Lie algebra under the commutator, because

La∗[X,Y ] = [La∗X,La∗Y ] = [X,Y ]

where we used that fact that pushforward commutes with the commutator. We call this set the

Lie algebra g of G.

• Note that every LIVF X is determined by its value at the identity element XV . Conversely,

every vector at the TeG can be extended to an LIVF. Therefore we can identity g with the

tangent space TeG, where the bracket operation is inherited from the LIVFs,

[XV , XW ] = X[V,W ].

Since we’ve already proven that the vector field commutator satisfies the Jacobi identity, the

bracket operation here does as well.

• If h ⊂ g is a Lie subalgebra, then h corresponds to a Lie subgroup H ⊂ G. This follows by

Frobenius’ theorem, since h defines a family of involutive vector fields.

Note. As we’ve seen above, the group structure on the manifold is quite powerful. It automatically

gives a way to identity distinct tangent spaces, as well as a privileged point, the identity element.

As an application, suppose we pick a basis of TeG. Using the diffeomorphisms La, we can extend

this smoothly to a set of vector fields on G that are linearly independent at every point, called a

field of frames. Using these to define coordinates for the tangent space at each point shows that the

tangent bundle of a Lie group must be trivial!

Conversely, it is impossible to find even a single independent (i.e. nonvanishing) vector field on

an even-dimensional sphere, which is an indication that their tangent bundles are nontrivial. Thus

even-dimensional spheres cannot be given a Lie group structure.

Note that a field of frames generally does not define a coordinate basis. We have shown earlier

that in Rn they define local coordinates if and only if their bracket vanishes; this construction can

still fail globally due to topology.

We can relate g back to G by the exponential map.

• Given V ∈ g, define ΦV,t to be the advance map of the vector field XV . Let σ(t) be the integral

curve going through e, so σ(t) = Φte.

• Because advance maps and pushforward commute,

ΦV,tg = ΦV,tLge = LgΦV,te = Lgσ(t) = gσ(t).

Therefore, the advance map is simply a right translation. This is another way the fact that all

elements of a group “look the same” constrains geometry on the group manifold.

• Using this fact, we can prove that σ : R → G is a homomorphism,

σ(s+ t) = Φs+te = ΦsΦte = Φsσ(t) = σ(t)σ(s).

Such a homomorphism is called a one-parameter subgroup, and this construction shows that

elements of g are in correspondence with them. By contrast with the general case, our vector

field flows are always defined for all t ∈ R thanks to the group structure.
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• Define the exponential map exp : g → G by simply following the integral curves for a unit

time, i.e. mapping V to σ(1) in the notation above. Note that the differential of exp is just the

identity on g.

• It can be shown that the exponential map is surjective for connected, compact Lie groups.

• The exponential map is bijective in a neighborhood of the identity, so we can define a coordinate

system there by taking a basis {eµ} of g and assigning the point exp(V µeµ) the coordinates V µ.

For example, for SO(3), one set of exponential coordinates are Cartesian coordinates, when

we embed D3 in R3. Riemann normal coordinates in relativity are similar, though they use

geodesics of connections, not integral curves of vector fields.

• It can be shown that every Lie algebra g is the Lie algebra of exactly one simply-connected Lie

group G. Moreover, if G′ also has Lie algebra g and is connected, then G is its universal cover.

One example of this is g = su(2), G = SU(2), and G′ = SO(3).

Example. If all the brackets in a Lie algebra are zero, it is abelian. Now, we know that Rn has an

abelian Lie algebra, and since Rn is simply connected, it covers any other group with the same Lie

algebra. Since Rn is abelian, all groups with an abelian Lie algebra are abelian groups!

Example. One-parameter subgroups in SO(3) are rotations with a fixed angular velocity. To

visualize them, recall that SO(3) is D3 with antipodal points identified. Then these subgroups are

lines through the origin, which wrap back around when they hit the edge.

Note. Often, a Lie group describes the symmetries of a manifold. We should not confuse the action

of the Lie group on that manifold with the actions of the Lie group on itself. While the elements of

SO(3) represent rotations, left-translation in SO(3) looks nothing like a rotation of D3/{±1}.

We now cover the Maurer–Cartan structure equations.

• Let Vµ be a basis for g with corresponding LIVFs Xµ. We define the structure constants

[Vµ, Vν ] = c σ
µν Vσ.

The structure constants are the components of a (1, 2) tensor on g. We must be careful not to

confuse the Greek indices above with components.

• By left-translating the above equation, we find

[Xµ, Xν ] = c σ
µν Xσ

where the structure constants c σ
µν do not depend on position (hence the name).

• We can also shift attention from vectors to one-forms. We let g∗ be the dual space of g, with

basis βµ dual to Vµ, and define the left-invariant one-forms

θµ|a = L∗
a−1β

µ

in analogy with Xµ. We pullback using a−1 because pullback runs opposite to pushforward.

• The left-invariant vector fields and one-forms are dual everywhere,

θµ(Xν)|a = (L∗
a−1β

µ)(La∗Vν) = βµ(La−1∗La∗Vν) = βµVν = δµν .



50 5. Lie Theory

• By expanding in coordinates, we can show that for any one-form field α,

dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]).

• Applying this identity, we have

(dθµ)(Xν , Xσ) = Xνδ
µ
σ −Xσδ

µ
ν − θµ([Xν , Xσ]).

The first two terms are zero as they are the derivatives of a constant, giving

(dθµ)(Xν , Xσ) = −c µ
νσ .

It’s important to avoid being distracted by the Greek indices here. We conclude that

dθµ = −1

2
c µ
νσ θν ∧ θσ.

These are the Maurer–Cartan structure equations.

• To remove the coordinates completely, define the Lie-algebra valued one-form θ = Vµ ⊗ θµ,

called the Maurer–Cartan form. Unlike a regular one-form, which maps vectors to real numbers,

θ maps vectors to g. It is similar to the gauge potential A in Yang–Mills.

• The form θ|a maps TaG to g = TeG. Geometrically, it simply moves a vector based at a over

to the identity by left translation. It encodes the structure of the Lie group in the same way

the structure constants do.

• We define the operations

dθ = Vµ ⊗ dθµ, [θ, θ] = [Vµ, Vν ]⊗ θµ ∧ θν .

Then the Maurer–Cartan structure equation reduces to

dθ +
1

2
[θ, θ] = 0.

Note. Another proof that fields of frames locally correspond to coordinates if and only if the vector

field brackets vanish. For any field of frames, the Maurer–Cartan structure equations hold, except

that the coefficients c µ
νσ are no longer constant. If the brackets vanish, the structure constants

vanish, so dθµ = 0. Then the θµ are locally exact by the Poincare lemma, giving the desired

coordinates.

Next, we consider the adjoint representation.

• Every group acts on itself by conjugation Ig, and conjugation always fixes the identity element.

Since every path through the identity remains a path through the identity, conjugation maps a

Lie algebra to itself.

• More formally, the map is

Adg = Ig∗|e : g → g, Ig = Rg−1Lg.

Using the composition rule for pushforward, (fg)∗ = f∗g∗, we have Adg = Rg−1∗|gLg∗|e.
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• Using the fact that left-translations and right-translations commute, we can show that AdgAdh =

Adgh, so the adjoint is a group action. It is a representation of G on the vector space g.

Next, we consider how Lie groups act on manifolds, our original motivation for studying them.

• Let G be SO(3) and act on M = R3 by spatial rotations. Then V is an angular velocity, and

we can associated it with an induced vector field VM on M equal to ω× r. More generally, for

any G acting on any M , the induced vector field is the infinitesimal symmetry corresponding

to a Lie algebra element.

• Formally, the infinitesimal symmetry V generates the diffeomorphisms Φexp(tV ). Then it is

natural to define the induced vector field as

VM =
d

dt
Φ∗
exp(tV )

∣∣∣∣
t=0

where both sides should be regarded as maps F(M) → F(M).

5.4 Matrix Groups

The group GL(n,R) of invertible n × n real matrices is a Lie group with dimension n2. Many

important groups in physics, such as SO(3), SO(3, 1), etc. are subgroups of this group. Matrix

groups come with a natural embedding in Rn2
which makes some concrete computations easier.

• To start, we need to show that GL(n,R) is a submanifold of Mat(n,R) ∼= Rn2
. Note that it is

the inverse image of R \ {0} under the determinant, and this is open in R. Then by continuity

GL(n,R) is open in Rn2
and hence locally looks like Rn2

. Since the group operation is clearly

smooth, we conclude GL(n,R) is a Lie group.

• It can be shown that every closed subgroup H of a Lie group G is also a Lie group.

As an application, note that SL(n,R) it is the kernel of the homomorphism f(A) = detA.

Since f is continuous and {1} is closed in R, the kernel is closed, so SL(n,R) is a Lie group.

• The operation in a matrix Lie group is simply matrix multiplication, and the one-parameter

subgroups are matrix exponentials σ(t) = eAt. Conversely, given a one-parameter subgroup, we

can compute a Lie algebra element by evaluating σ′(0). Equivalently, the Lie algebra elements

are the matrices X so that I + ϵX is in the group.

• The Lie bracket/vector field commutator turns out to just be the matrix commutator. To see

this, note that the vector field commutator encodes the noncommutativity of flows, and

eϵAeϵB − eϵBeϵA = ϵ2[A,B] +O(ϵ3).

This is how the Lie bracket encodes ‘second-order’ information about the group.

• The adjoint representation is just matrix conjugation.

• Ado’s theorem states that all finite-dimensional Lie algebras can be viewed as matrix Lie

algebras, so we actually lose little generality with this approach.

We can quickly calculate the Lie algebras of matrix Lie groups.
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• For GL(n,R), note that the determinant is continuous. Then every matrix near the identity

has determinant near one, so gl(n,R) is the set of all real n× n matrices.

• For SL(n,R), we use the identity

det eX = exp trX

which shows that sl(n,R) is the set of matrices with zero trace.

• For SO(n), X is in the Lie algebra if I + ϵX is a rotation matrix up to O(ϵ2), which means

(I + ϵX)T (I + ϵX) = I +O(ϵ2).

Expanding this shows X = −XT , so so(n) is the set of skew-symmetric matrices. Note that

so(n) is the same as o(n).

• Similarly, u(n) contains skew-Hermitian matrices. In quantum mechanics, we throw in an extra

factor of i to consider Hermitian observables instead.

• The Lie algebra su(n) is the subset of u(n) with zero trace. This is different from the relationship

between so(n) and o(n) because restricting to unit determinant when the determinant can be

complex sets the phase to zero, taking a dimension away from the group manifold.

Example. The group SO(3, 1) acts on Minkowski space by Lorentz transformations. The group

SL(2,C) does as well. Points in Minkowski space correspond with Hermitian matrices by

X = xµσµ, xµ =
1

2
trσµX.

In particular, note that

detX = xµxµ.

We define the action of SL(2,C) on Minkowski space by

x→ AX(x)A†, A ∈ SL(2,C).

These are Lorentz transformations, because they preserve xµxµ. We only get Lorentz transformations

connected to the identity (the proper orthochronous ones), which we call SO(3, 1)+, because SL(2,C)
is connected. We get all of SO(3, 1)+ because

A = exp

(
−iθ

2
(n̂ · σ)

)
represents a rotation by θ about the n̂ axis, while

A = exp
(α
2
(n̂ · σ)

)
represents a boost of rapidity α along the n̂ axis, and boosts and rotations generate everything.

Using this setup, we can define a map of SL(2,C) onto SO(3, 1)+, but it is a double cover since A

and −A map to the same Lorentz transformation. The situation here is closely analogous to the

relationship between SU(2) and SO(3).
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Example. Often, we consider the action of a matrix Lie group on Rn by matrix multiplication. In

this case, induced vector fields are easy to compute. The flow generated by V ∈ g is exp(tV ), so

VMf |x =
d

dt
f(etV x)

∣∣∣∣
t=0

= (V x)i
∂f

∂xi

which implies that VM = Vijxj∂i.

We give some examples of Lie group actions.

• Let a Lie group G act on a manifold M . The little group of a point p ∈ M is the stabilizer

H(p) of p. We claim that the little group is a Lie subgroup.

To see this, consider the map g 7→ gp. The little group is the inverse image of p, and since a

single point is closed, the little group is closed as well, giving the result.

• If G acts transitively on a space M , the orbit-stabilizer theorem states

G/H(p) ∼=M

which holds given some compactness conditions. Moreover, the coset space G/H(p), called a

homogeneous space, is a manifold.

• We’ve already seen that SO(3)/SO(2) = S2. This generalizes to

SO(n+ 1)/SO(n) = O(n+ 1)/O(n) = Sn, U(n+ 1)/U(n) = SU(n+ 1)/SU(n) = S2n+1

where we interpret unitary matrices as rotations in complex space.

• As another example, O(n+1) acts on Rn+1 in the usual manner, but it preserves lines through

the origin. Thus O(n+ 1) acts on RPn, and it is clear this action is transitive. The stabilizer

of a line is O(n)×O(1), where the elements of O(1) flip the line, so

O(n+ 1)/(O(1)×O(n)) = RPn.

This is consistent with our earlier work, as we know that RPn = Sn/Z2.

• More generally, let the Grassmannian Gk(Rn) be the set of k-dimensional subspaces of Rn, so
that G1(Rn) = RPn−1. Then

Gk(Rn) = O(n)/(O(k)×O(n− k))

where the denominator comes from rotations in the subspace and its orthogonal complement.
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6 Differential Forms

6.1 Geometric Intuition

Definition. A differential form of rank r is a completely antisymmetric (0, r) tensor.

Example. A 0-form is a scalar function, a 1-form is a covector, and a 2-form is an antisymmetric

(0, 2) tensor, i.e. ω(X,Y ) = −ω(Y,X).

Example. In n dimensions, an r-form has
(
n
r

)
independent components. We may also consider

r-form fields. The components of these fields are functions, and an r-form field has
(
n
r

)
independent

component functions. Denote the set of smooth r-form fields on M as Λr(M). By convention, we

let all r-forms with r > n be equal to zero.

Example. An n-form has a single independent component, and hence may be written as

ϕi1...in(x) = σ(x)ϵi1...in

where σ(x) is called the scalar density, and ϵi1...in is the Levi–Civita symbol.

We use differential forms to define integration on manifolds. More specifically, an r-form is the

integrand in an integral over an r-dimensional submanifold. This operation has a natural geometric

picture; for simplicity, work in the plane R2. Then a 1-form is a ‘slicing of space’, i.e. a set of

1-dimensional surfaces in the plane. For example, dx is shown below.

An integral along a curve may be evaluated with respect to a 1-form by counting the number of

these slices the 1-form passes through. More generally, an r-form on an n-dimensional manifold is

a set of (n− r)-dimensional surfaces (also called (n− r)-leaves).

Next, the picture corresponding to the exterior product of two forms α∧β is the set of intersections

of the surfaces of α and β. For example, the exterior product of two 1-forms is a 2-form, which in

two dimensions is a set of points. Below we show the 2-form dx ∧ dy.

A surface integral over this 2-form is the number of points inside the surface. Generally, an n-form

on an n-dimensional manifold is represented by a density of points.

One subtlety that our pictures cannot capture is that the surfaces associated with a differential

form are signed, so that an integral over forms can be negative. In particular, for a non-orientable

manifold, there is no nonvanishing n-form, though this is impossible to see in terms of a density of
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points. For (n− 1)-forms, we may indicate the sign by giving directions to the lines, in which case

the integral is a signed flux.

Note. Now we consider the exterior derivative d. This operation takes an r-form ω and yields an

(r + 1)-form dω. Geometrically, the surfaces in dω are the boundaries of those in ω. As we know

from the homology chapter, the boundary of a boundary is zero, so d2 = 0.

As a specific example, given a function f , df is the set of its contour lines, which are closed

curves. Then d(df) = 0 automatically. A less trivial case is d(xdy) = dx ∧ dy, shown below.

Now, Stokes’ theorem tells us that integration on forms satisfies the identity∫
C
dω =

∫
∂C
ω

where ∂ is the boundary operator introduced earlier. This has a simple interpretation in terms of

the example above: the number of 0-leaves of dx∧ dy contained in C is equal to number of 1-leaves

of xdy piercing the surface ∂C.

There are several limitations of our visualization. The associated pictures are hard to see in

higher than three dimensions, and as mentioned above, the signs are invisible. Worse, they don’t

behave nicely under addition; the form dx + dy in the plane has diagonal lines, while dx and dy

individually contain horizontal and vertical lines. One hack is to represent dx+ dy as the union of

the horizontal and vertical lines, which makes integration work, but then it’s hard to tell this is the

same form as dx+ dy drawn with diagonal lines.

Note. We can also visualize the Hodge dual ∗. This is a bijective map between r-forms and (n− r)-
forms, and geometrically, it is performed by replacing r-leaves with their orthogonal complements.

For example, in two dimensions, ∗dx = dy, and in three dimensions, ∗dx = dy ∧ dz. For r = n/2,

the density of the r-leaves of the dual is equal to the density of the r-leaves of the original form.

Note that we’ve dropped some signs above, since our diagrams can’t show sign.

Example. Maxwell’s equations in 2D. The equations are

dF = 0, d ∗ F = 0

where F is a one-form. We find a rotationally symmetric solution. Since dF = 0, we need the curves

of F to form closed circles or head out to infinity; we take the former. Then ∗F contains lines that

head out to infinity. The density of lines in ∗F falls as 1/r, so the same must hold for the lines of

F . Thus F ∝ dr/r, and electromagnetic fields in 2D fall off as 1/r. (You can even use the pieces of

intuition above to depict Maxwell’s equations in 4D, as shown here, but at that point I think it’s

more trouble than it’s worth; it’s complicated enough that it doesn’t really make anything easier.)

https://arxiv.org/abs/1709.08492
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Note. Finally, let’s return to the issue of integration. We have seen that r-forms can be used to

integrate over r-dimensional regions. To connect this with our definition of an r-form as a (0, r)

antisymmetric tensor, we need to relate the region itself to the argument of the r-form.

An r-form maps (r, 0) tensors to numbers, but since the contraction of a symmetric and antisym-

metric object yields zero, only the fully antisymmetric part of the (r, 0) tensor contributes. Thus

r-forms act on antisymmetric (r, 0) tensors, which we call multivectors or r-blades.

Multivectors are constructed from the exterior products (i.e. antisymmetrized tensor products)

of vectors, and we claim that they represent signed volumes. For example, a∧b corresponds to the

signed area of the parallelogram formed by a and b, and in n dimensions, the exterior product of

n vectors ai is equal to the signed volume spanned by those vectors. This volume is equal to the

determinant of the matrix with columns ai. On a more abstract level, multivectors correspond to

signed volumes because the exterior product is linear and antisymmetric in its arguments.

This gives our last piece of intuition for integration of forms: an r-form acting on an r-blade is

the number of r-leaves passing through the corresponding r-dimensional region.

Example. Physically, differential forms are ‘things that go under integral signs’, and they represent

densities. For example, the magnetic flux density is a two-form, and in fluid dynamics, we use both

the volume form and the mass density form, whose integral gives the mass inside a region.

6.2 Operations on Forms

We begin with basic operations to construct differential forms.

• Given any (0, r) tensor, we can antisymmetrize it to get an r-form, with components

A[i1...ir] =
1

r!

∑
j=σ(i)

|σ|Aj1...jr .

Here, we are summing over permutations σ and |σ| is the sign of the permutation. The

normalization constant ensures that this operation leaves differential forms invariant.

• Given two one-forms, we define the wedge product or exterior product as

p ∧ q = p⊗ q − q ⊗ p.

The wedge product of two one-forms is a two-form.

• Similarly, we can generalize this definition to many one-forms by completely antisymmetrizing,

p1 ∧ . . . ∧ pr =
∑
i′=σ(i)

|σ| p1′ ⊗ · · · ⊗ pr′ .

Note that some conventions have a factor of 1/r! here.

• Since every differential form can be written as a linear combination of exterior products of

one-forms, this definition extends by linearity to arbitrary forms. The exterior product makes

the set of all differential forms

Λ∗(M) = Λ0(M)⊕ · · · ⊕ Λn(M)

into a Grassmann algebra, called the exterior algebra, with dimension 2n. Another definition of

Λ∗(M) is to start with the full tensor algebra and quotient out symmetric tensors; the tensor

product then becomes the wedge product.
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• The exterior product is associative, and for an r-form α and an s-form β,

α ∧ β = (−1)rsβ ∧ α.

To see this, we can decompose α and β into linear combinations of exterior products of one-forms.

Each term then requires rs anticommutations to swap the positions of α and β.

• Conventionally, we write an r-form ω as

ω =
1

r!
ωi...j(x) dx

i ∧ . . . ∧ dxj .

The factor of 1/r! cancels the “missing” 1/r! in the definition of the exterior product.

We can also contract differential forms with vectors.

• For any vector X, we define

α(X) = α(X, ·, . . . , ·), [α(X)]j...k = αi...kξ
i.

We arbitrarily choose to contract X with the first slot; choosing other slots would just change

the definition by a sign. We also call this operation the ‘interior product’ and write it as iX .

By antisymmetry, i2X = 0.

• In particular, if we expand α in the wedge product convention introduced above, we have

α(X) =
1

(r − 1)!
Xiαij...k dx

j ∧ . . . ∧ dxk.

The 1/r! is canceled down to 1/(r − 1)! because there are r separate terms in the contraction,

from the vector being contracted with each one-form.

• The interior product is a “graded derivation”. If β is a p-form, then

(β ∧ α)(X) = β(X) ∧ α+ (−1)pβ ∧ α(X)

as can be shown by expanding in components.

All of our results generalize directly to differential form fields.

• As seen earlier, (0, r) tensor fields can always be pulled back, so differential forms can be pulled

back. Since pullback distributes over tensor products, we also have

f∗(α ∧ β) = f∗α ∧ f∗β.

• A differential form at a point with tangent space V can be restricted to a subspace W simply

by restricting its arguments to lie in W . Geometrically, we replace the curves representing the

differential form with their intersection with W . If W has lower dimension than the rank of

the form, the result is automatically zero; we can also get a zero result if W is ‘parallel’ to the

differential form.

• The same reasoning applies for differential form fields, which can be restricted to submanifolds

S by performing this operation at every tangent space. More formally, this is pullback by the

inclusion map. This also provides some intuition for why vectors can’t be pulled back: they

can ‘stick out’ of the submanifold.
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6.3 Volume Forms

First, we define orientability.

• Consider a nonzero n-form ω defined at a point. Then ω acts on a basis {ei} and gives a nonzero

number. We say the basis is right-handed if the number is positive. We define an oriented atlas

to be one containing only coordinate systems with the same handedness; then the Jacobian

determinant for switching between coordinate patches is always positive.

• This definition clearly depends on the form used, but the classes are invariant: two bases either

have the same handedness or don’t.

• Given a smooth, nowhere-vanishing n-form ω, we can also globally define the orientation across

the entire manifold. Manifolds that admit such an n-form are called orientable.

• Alternatively, we can flip these definitions and think of an orientation as being specified by an

oriented atlas, which then defines a volume form.

Next, we define the integral of an n-form over a region.

• Consider an n-form ω in a region with coordinates xi, so that

ω = f(x) dx1 ∧ . . . ∧ dxn.

Note that our earlier convention would have had ω1...n/n! in place of f(x). Our new convention

is nice because there’s only one independent component of ω anyway.

• Now consider a small cell spanned by the vectors ∆xi ∂/∂xi. Intuitively, the volume of the cell

according to the form is given by the form acting on these vectors,

∆x1 . . .∆xn ω(∂/∂x1, . . . , ∂/∂xn) = f(x)∆x1 . . .∆xn.

Therefore, over a region R of the manifold, we are motivated to define∫
R
ω =

∫
R
f(x1, . . . , xn) dx1 . . . dxn

where the right-hand side is an ordinary integral from calculus performed in Rn.

• Making all the maps explicit, our definition really says∫
R
ω =

∫
ϕ(R)

(ϕ∗)−1ω

where ϕ is a coordinate chart mapping R into Rn.

• As a check, we consider coordinate transformations. On the right-hand side, we know from

calculus that dxi factors pick up a Jacobian. Therefore the corresponding wedge product of

differential forms should pick up the same Jacobian, and indeed

dx1 ∧ . . . ∧ dxn =
∑
σ

dyσ(1) ∧ . . . ∧ dyσ(n) Ji,σ(i) = dy1 ∧ . . . ∧ dyn
∑
σ

|σ|Ji,σ(i)

where Ji,j = ∂xi/∂yj and the sum on the right-hand side gives J as desired.
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• Despite this, there is still an arbitrary choice in the definition, from the identification

dx1 ∧ . . . ∧ dxn → dx1 . . . dxn.

The left-hand side is anticommutative, while the right-hand side is commutative. Then the

definition can be changed up to a sign, which is equivalent to a choice of positive orientation

(conventionally called ‘right-handed’) on the manifold.

• The above definition holds for a region contained in a single chart on the manifold. For larger

regions, there’s no problem as long as the manifold is orientable, as we can transfer the choice

of orientation across the overlaps.

• The above procedure only defines the integral of top-dimensional forms. It also thereby defines

the integral of a scalar function f , as the integral of the top-dimensional form fω. We can

also define the integral of an r-form over an r-dimensional submanifold by pulling the form

back to it. However, we generally can’t define the integral of an r-form over an s-dimensional

submanifold for r ̸= s because we would have to pick arbitrary tangent vectors to plug in.

Note. It’s also possible to define integration on a nonorientable manifold. The key reason that

differential forms require an orientation is that they give signed quantities, and the sign must be

defined. For example, even a simple one-dimensional area integral
∫
f dx gives a signed area and

requires an orientation of the real line. A related object called a density can be used to find unsigned

quantities, such as volume and arc length, and doesn’t require orientation.

Note. Orientation is present in ordinary calculus, though hidden. For example, consider

I =

∫ 1

0
dx1

∫ 1

0
dx2.

Under the substitution (y1, y2) = (x2, x1), we pick up a factor of J = −1, flipping the sign of the

result. The reason is that the region we’re integrating over is now negatively oriented, so to get

back to a positive orientation we need another sign flip.

Thus it was always necessary to define an orientation to evaluate I. To avoid explicitly mentioning

it, we always integrate over positively oriented regions, tacitly flipping negatively orientated regions

as needed, and then multiply by |J | instead of J . The exception is the case of one-dimensional

integrals, where the orientation is obvious: [a, b] is positively oriented if a < b. We thus abandon

the convention and allow the Jacobian factor du/dx to be negative. These contradictory ad hoc

rules in ordinary calculus are unified in the more geometric formulation we have here.

Note. Orientation for submanifolds. Given an n-form on M ⊃ S that is nonvanishing on S, we

can define a volume form for S by choosing normal vectors n1, . . . , nn−p continuously and plugging

those into the form. (The result clearly depends on the choice of the ni.) If the ni can be chosen

nonvanishing, then S has a nonvanishing volume form, and we say we have given it an ‘external

orientation’. ‘Internal orientability’ of S is just the usual notion of orientability, where we forget

about M .

• If M is orientable, one can show internal and external orientability of S are equivalent.

• More generally, external orientability implies internal orientability, but not vice versa. For

example, a closed curve is always internally orientable, but a circle drawn around a Mobius

strip is not externally orientable. However, a small circle on a Mobius strip is externally

orientable because it doesn’t ‘feel’ the twist.
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• IfM is orientable and has a boundary ∂M , then ∂M is always canonically internally/externally

orientable; we simply plug the outward normal into the volume form.

• Note that we can’t simply pull the volume form back to S, because we need a p-form, not an

n-form. Since n > p, the pullback of the volume form is identically zero.

Note. Generally, a manifold cannot be covered by a single chart, so we need a little more machinery

to define integration. The idea is to split the manifold using a “partition of unity”, turning an

integral over the manifold into a sum of integrals, each of which takes place on a single chart.

6.4 Duals of Forms

Next, we define duals of differential forms. A p-vector is a totally antisymmetric (p, 0) tensor; they

may be constructed by the exterior product just like p-forms and form an algebra as well. To

distinguish vectors and forms, we write vector names in bold.

• Given a volume form ω, we can associate a p-vector with an n-p-form by

A = ∗T, Aj,...l =
1

p!
ωi...kj...lT

i...k.

• To go backwards, define the N -vector ω by

ωi...kωi...k = n!, ω1...nω1...n = 1.

Then we can analogously define the dual of a p-form by

S = ∗B, Si...k =
1

p!
ωl...mi...kBl...m.

• The normalizing factors are chosen so that when the vectors and forms are written in terms

of wedge products (and the equivalent for vectors), there are no extra numerical factors. For

example, in 4D and coordinates where ωi...j = ϵi...j , ∗(dx1 ∧ dx2) = ∂3 ∧ ∂4.

• It is convenient to define the Levi–Civita symbol

ϵi...k = ϵi...k = sign(i . . . k).

Note that the Levi–Civita symbol is not a tensor, as we have defined it to have the same

components in all coordinates. It’s simpler to write the components of volume forms with this

symbol, as it ‘factors out’ the antisymmetry,

ωi...k = fϵi...k, ωi...k =
1

f
ϵi...k.

• Define the p-delta symbol as

δi...jk...ℓ = p! δi[k . . . δ
j
ℓ].

The interpretation of the symbol is as follows: the p! is present to cancel the 1/p! in the

antisymmetrization. Then we have all possible delta functions linking i . . . j with a permutation

of k . . . ℓ, with appropriate signs, so

δi...jk...ℓ = |σ| if (i, . . . j) = σ(k, . . . , ℓ).

In particular, the antisymmetrization ensures that all of the indices (k, . . . , ℓ) must be distinct.
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• As a result, the product of Levi–Civita symbols is an n-delta,

ϵi...kϵ
ℓ...r = δℓ...ri...k .

This is because the product on the left-hand side is only nonzero if the (i, . . . , k) are distinct,

and the (ℓ, . . . , r) are distinct as well. But then (ℓ, . . . , r) must be a permutation of (i, . . . k),

because the Levi–Civita symbol has n indices. The sign on the left-hand side is positive if

(i, . . . k) and (ℓ, . . . , r) have the same sign as permutations of (1, . . . , n), which means that the

permutation linking them is even.

• Similarly, the general formula for the contraction of Levi–Civita symbols is

ϵi...jk...ℓϵ
i...jm...r = (n− p)! δm...rk...l

where n− p is the number of contracted indices.

Example. We can simply read off identities for Levi–Civita contraction in three dimensions.

ϵijkϵ
imn = δmj δ

n
k − δmk δ

n
j , ϵijkϵ

ijn = 2δnk , ϵijkϵ
ijk = 6.

It is similarly easy to get the coefficients in four dimensions.

Example. Taking the dual twice gives back the original form/vector, up to a sign. For a p-form

B, we have

(∗ ∗B)j...ℓ =
1

(n− p)! p!
ωi...kj...ℓω

r...s i...kBr...s =
(−1)p(n−p)

(n− p)! p!
ϵi...kj...ℓϵ

i...kr...sBr...s

where we used antisymmetry and canceled factors of f . Applying our earlier identities, we get

(∗ ∗B)j...ℓ =
(−1)p(n−p)

p!
δr...sj...ℓBr...s = (−1)p(n−p)Bj...ℓ

where in the second step we used the fact that the contraction generates p! identical terms.

Example. The determinant can be simply written as

|A| = ϵi...kA
1i . . . Ank =

1

n!
ϵa...cϵi...kA

ai . . . Ack.

More formally, any linear operator T : V → V defines an induced map on the space of top-

dimensional multivectors; it turns out to be multiplication by detT .

Example. In cases where there are multiple n-forms, it can be useful to relate all forms to the

coordinate-dependent n-form dx1 ∧ . . . ∧ dxn, which by construction has components ϵi...k in all

coordinate systems. Then we can write a general n-form as

ω = wdx1 ∧ . . . ∧ dxn

in all coordinate systems. Under a coordinate transformation, we know that dx1 ∧ . . . ∧ dxn should

pick up a Jacobian factor J for ω to stay invariant, so we must have

w′ = Jw.

We say that w is a scalar density of weight 1. In general, a tensor density of weight k is simply

a quantity that transforms like a tensor, with an extra factor of Jk. For example, the coordinate-

dependent form dx1∧ . . .∧dxn could be regarded as a rank n tensor of weight −1. Ordinary tensors

are densities with weight zero.
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Example. Metric volume forms. When a metric g is provided, there is a preferred volume form

ω = ω1 ∧ . . . ∧ ωn

where the ωi are an orthonormal basis. (Note that this definition is ambiguous up to orientation,

as usual.) Now, in matrix form, the metric transforms as

g → JT gJ

where J is the Jacobian matrix. Taking determinants, the metric determinant g is a scalar density

of weight 2, and thus the metric volume form is, explicitly,

ω = |g|1/2 dx1 ∧ . . . ∧ dxn

where we have taken the absolute value because g can be negative for Lorentzian signature. This

volume form is also sometimes called the Levi–Civita tensor.

Example. The cross product in three dimensions is

U×V = ∗(U ∧ V )

where U and V are regular 1-vectors and U and V are the corresponding 1-forms.

This explains the strange transformation behavior of cross products. In the ‘passive’ view,

consider flipping the sign of a basis vector. The vectors U and V are invariant, but their cross

product picks up a sign because the volume form flips sign, as the orientation of the basis has

flipped. In the ‘active’ view, consider negating both U and V. Then the cross product receives two

sign flips, so it stays the same.

Using a metric volume form, we can define a duality between p-forms and n-p-forms.

• Define the Hodge dual/star ⋆A of a p-form A to satisfy, for any p-form B,

B ∧ ⋆A = ⟨B,A⟩ω

where ω is the metric volume form, and the inner product is taken with the metric. It is

equivalent to taking the dual ∗ defined earlier, then lowering all the indices with the metric.

• To compute the Hodge star more easily, let e1, . . . , en be a basis of one-forms satisfying

⟨eµ, eν⟩ = δµνϵ(µ), ϵ(µ) = ±1.

Then given a permutation {i1, . . . , in} of {1, . . . , n},

⋆(ei1 ∧ . . . ∧ eip) = sign(i1, . . . , in)ϵ(i1) · · · ϵ(ip).

As a simple example, in R3 this implies ⋆dx = dy ∧ dz, and ⋆(dy ∧ dz) = dx.

• More generally, ⋆2 = ±1. We pick up a minus sign for each of the s minus signs in the metric.

Moreover, the second time we take the dual, the permutation used is related to the original one

by p(n− p) transpositions. Therefore

⋆2 = (−1)p(n−p)+s

when acting on a p-form. By contrast, we found above that ∗2 = (−1)p(n−p).

In these notes, we will emphasize the dual, because this lets us make contact with familiar operations

on vectors. However, in the notes on General Relativity, we will work mostly with forms, and hence

emphasize the Hodge star.

https://knzhou.github.io/notes/gr.pdf
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6.5 The Exterior Derivative

Since we have defined integration for forms, we now turn to defining differentiation. We already

know how to turn a 0-form into a 1-form, namely by the gradient f → df . The exterior derivative

generalizes this to general forms.

• We define the exterior derivative to take p-forms to (p+ 1)-forms, satisfying the properties

d(β + γ) = dβ + dγ, d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ, d2 = 0

where α is a p-form. The first two properties are just linearity and a modified Leibniz rule that

accounts for anticommutation.

• These properties, in addition to the existing definition of df , uniquely specify the exterior

derivative. In coordinates, the result is

α =
1

p!
αj...k dx

j ∧ . . . ∧ dxk, dα =
1

p!
∂iαj...k dx

i ∧ dxj ∧ . . . ∧ dxk

or alternatively

(dα)ij...k = (p+ 1)∂[iαj...k].

• Heuristically, the exterior derivative is “d = ∂∧”. The result d2 = 0 just follows by antisymmetry:

partial derivatives commute, but wedge products anticommute.

• The exterior derivative, like the Lie derivative and covariant derivative, generalizes the partial

derivative to a map from tensors to tensors. In the 1-form case, it works because the ‘error’

term from the partial derivative is symmetric, so the antisymmetrization removes it. While d

requires no additional structure to define, the downside is it only works on differential forms.

• The exterior derivative d commutes with pullbacks,

f∗(dα) = d(f∗α).

The proof is by induction; the base case (α is a scalar) is just the definition of the pullback

map. Intuitively this statement is clear given our geometric intuition for d.

• One coordinate-free identity the exterior derivative satisfies is

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

This can also serve as a starting point for defining d without ever invoking coordinates.

Example. The exterior derivative generalizes familiar operations from calculus. In three dimen-

sional Euclidean space, let a be a vector field and let a be the corresponding one-form. Then

∗da = ∗(∂iaj)dxi ∧ dxj = (∂iaj)ϵ
ijk∂k = ∇× a.

Similarly, for the divergence we have

d ∗ a = d(aiϵijkdx
j ∧ dxk) = (∂ℓai)ϵijkdx

ℓ ∧ dxj ∧ dxk = (∂ℓa
i)ϵijkϵ

ℓjkω = (∂ia
i)ω

where ω is the metric volume element. Taking the dual of both sides gives

∗d ∗ a = ∇ · a.

The results ∇ · ∇ × a = 0 and ∇×∇f = 0 are immediate.
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Example. Consider the partial differential equation

∂f

∂x
= g(x, y),

∂f

∂y
= h(x, y).

In differential form notation, this states that df = a for some one-form a. Then if a solution for f

exists, then we must have da = 0, i.e. zero curl, as we know from multivariable calculus. Working

in the manifold Rn, the converse is also true: if da = 0, then a solution for f exists.

We now discuss closed and exact forms.

• The property d2 = 0 is analogous to the property ∂2 = 0 we saw in homology. Thus we define

a form α to be closed if dα = 0 (in analogy with cycles) and a form α to be exact if α = dβ (in

analogy with boundaries). All exact forms are closed.

• To understand this geometrically, note that in our visualization scheme, the exterior derivative

takes the surfaces of α to their boundaries. Then a differential form if closed if the surfaces

forming its visual representation are closed (e.g. closed contour lines for one-forms).

• Not all closed forms are exact. For example, consider R2 \ {0} and

α =
xdy − ydx

x2 + y2
= dθ.

It is defined everywhere and obeys dα = 0, but it is not exact. (In particular, θ doesn’t count

because it’s multivalued.)

• The failure of closed forms to be exact is due to topological obstructions. Thus we expect that

in a small enough neighborhood, closed forms are always locally exact.

Lemma (Poincare). Closed forms are locally exact. Specifically, if dα = 0 for a p-form α in a

region U of M diffeomorphic to the unit open ball, then we can write dα = β in this region.

Proof. Since the exterior derivative and pullback commute, we map to the unit open ball and

construct β there. Let

α = αi...k(x) dx
i ∧ . . . ∧ dxk.

The idea is that there should be nothing ‘in the way’ of constructing β. In multivariable calculus,

we can construct β by just integrating α over any desired path, e.g. along straight lines parallel to

the axes. In this case, it’s most convenient to integrate α from the origin, i.e.

βj...k(x) =

∫ 1

0
tp−1αij...k(tx)x

i dt.

This is the Volterra formula. We now show that α = dβ. We have

dβi...k = p∂[iβj...k], ∂iβj...k =

∫ 1

0
tp−1αij...k(tx) dt+

∫ 1

0
tpxℓ∂iαℓj...k(tx) dt.

We still must antisymmetrize the i . . . k indices. We use the fact that α is closed. In components,

this means ∂[kαi,...j] = 0. In the case where α is a 2-form, we can expand this out for

∂[kαij] = ∂kα[ij] + ∂[iαj]k + ∂[jα|k|i] = ∂kα[ij] + 2∂[iαj]k
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where the bar denotes exclusion from the antisymmetrization. More generally, we have

∂ℓα[i...k] = p∂[iα|ℓ|j...k].

This allows us to ‘swap the indices’ on the second term above, so that both terms involve α[i...k],

dβi...k =

∫ 1

0
(ptp−1 + tpxℓ∂ℓ)αij...k(tx) dt

where we have dropped the i . . . k antisymmetrization as it now does nothing. Now, this quantity

is just the total time derivative of tpαi...k(tx
1, . . . , txn). Integrating gives αi,...k(x), as desired.

Next, we consider how the Lie derivative and exterior derivative interact.

• Cartan’s magic formula states that

LVω = d(ω(V)) + (dω)(V) = (iX ◦ d+ d ◦ iX)ω

for any p-form ω and vector field V. This is natural, in the sense that the right-hand side

contains the only p-forms that can be constructed using d, ω, and one power of V.

• For a zero-form f , the function reads

LVf = (df)(V)

which is true, as both sides are V i∂if .

• For a one-form, the result can be obtained by direct expansion. We have

d(ω(V)) = d(ωiV
i) = ∂j(ωiV

i)dxj , dω = ∂jωidx
j ∧ dxi = ∂jωi(dx

j ⊗ dxi − dxi ⊗ dxj).

Contracting the latter with V and simplifying gives the result.

• For general forms, the result can be proven by induction. It suffices to prove the result for a

form of the form ω = fa ∧ b by linearity, where the result holds for a and b by the inductive

hypothesis. The proof can be completed by using simple properties of d and LV.

• Using Cartan’s formula twice gives the important result

LV(dω) = d(LVω).

That is, the exterior derivative and Lie derivative commute. This is natural because the exterior

derivative essentially commutes with any smooth map. Using our geometric intuition, it’s

computed by taking the boundaries of surfaces, which can be done before or after a map.

• Alternatively, we can run the steps backwards, showing that LV and iX ◦ d+ d ◦ iX are both

linear derivations that commute with d and agree on functions. To show that LV commutes

with d, it suffices to show pullback commutes with d, which can be done in components.

Example. Moser’s theorem. For a closed manifold M and two volume forms ω0 and ω1 with the

same total volume, there exists a diffeomorphism ψ :M →M with ψ∗ω1 = ω0 where ψ is isotopic

to the identity, where isotropy is the equivalent of homotopy in differential geometry.
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To see this, let ωt linearly interpolate between ω0 and ω1. Then ωt is always a valid volume

form because ω0 and ω1 always have the same sign at every point. We would like to define a family

of diffeomorphisms ψt so that ψ∗
t ωt = ω0. There is an associated time-dependent vector field Xt

describing the ‘velocity’ of every point, with

d

dt
(ψ∗

t ωt) = ψ∗
t (LXtωt +

dωt
dt

) = ψ∗
t (d(iXtωt) + (ω0 − ω1))

where we used Cartan’s formula. Now note that ω0 − ω1 = dα so

d

dt
(ψ∗

t ωt) = ψ∗
t (d(iXtωt + α)).

Then ψ∗
t ωt = ω0 for all t if iXtωt + α = 0, where α is known. Now, the map X 7→ iXω is an

isomorphism if ωt is a volume form. Then there is always a solution for Xt for each t, and we can

define the diffeomorphisms by flow along these vector fields. This is valid on a closed manifold,

where flows exist for arbitrary times, and the idea of the proof is called Moser’s method.

6.6 Stokes’ Theorem

In this section, we prove Stokes’ theorem and examine its consequences.

Theorem (Stokes). Let α be an (n− 1)-form on an n-dimensional manifold M . Let U be a region

of M with a smooth orientable boundary ∂U . Then∫
U
dα =

∫
∂U
α.

Note that we should properly include the restriction of α to ∂U (by pullback under inclusion),

but we suppress them for notational simplicity. Technically, we also require α to be smooth and

compactly supported.

Proof. Let ω be an arbitrary n-form and let V be an arbitrary vector field. Let U(ϵ) be the region

generated by flowing U along V for a parameter ϵ. We will compute

d

dϵ

∫
U(ϵ)

ω

in two different ways. First, we consider the motion of the boundary ∂U(ϵ). Assuming that V is

not tangent to ∂U(0), we can construct local coordinates where V = d/dx1 and ∂U(0) is the surface

x1 = 0. Let V ⊂ Rn−1 be the coordinates of ∂U(0) and let ω = fdx1 ∧ . . . ∧ dxn. Then∫
∂U(ϵ)−∂U(0)

ω =

∫
V

[∫ ϵ

0
f dx1

]
dx2 . . . dxn ≈ ϵ

∫
V
f(0, x2, . . . , xn) dx2 . . . dxn = ϵ

∫
V
ω(V)

where we kept the restriction of ω(V) to ∂U implicit. Therefore

d

dϵ

∫
U(ϵ)

ω =

∫
∂U
ω(V).

We can also compute the integral by thinking about how the integrand changes. To first order, the

change in the integrand is ϵLVω at every point. Then

d

dϵ

∫
U(ϵ)

ω =

∫
U
LVω.
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Applying Cartan’s formula gives the result∫
U
d(ω(V)) =

∫
∂U
ω(V).

Finally, since ω and V are arbitrary, we can set α = ω(V), concluding the proof.

Note. Using Stokes’ theorem twice tells us that ∂2 = 0 if and only if d2 = 0. This link will be

made formal when we introduce singular homology, where ∂ becomes the boundary operator.

Example. In two dimensions, given a one-form α, Stokes’ theorem becomes∫
(∂yαx − ∂xαy) dxdy =

∫
∂U
αidx

i

which is the usual Stokes’ theorem. In three dimensions, a similar calculation gives the three-

dimensional Stokes’ theorem.

Example. The divergence theorem. Given a volume form ω, we define the divergence of V to be

∇ ·ω V = ∗ d ∗V

where the dual is with respect to ω. We can also write this in terms of ω explicitly,

ω∇ ·ω V = d(ω(V)).

Using ω(V) as the differential form in Stokes’ theorem gives∫
U
(∇ ·ω V)ω =

∫
∂U
ω(V)

which is the divergence theorem. To make this more familiar, let ω = n ∧ α where n is a one-form

normal to ∂U , i.e. n(η) = 0 for any η on ∂U . Then the surface integrand is n(V)α, which reduces

to the familiar (n̂ ·V) dS in coordinates.

Note. The decomposition ω = n ∧ α says that ω measures volumes by letting α measure surface

area and n measure distance along the normal. The forms α and n are not unique, as they can be

scaled by reciprocal factors. But if we’re using a metric volume form, we can canonically scale n so

that n(n) = 1, as is done in multivariable calculus.

Example. Divergence in curvilinear coordinates. If ω = fdx1 ∧ . . . ∧ dxn, then we can show

∇ ·ω V =
1

f
∂i(fV

i).

For example, in spherical coordinates, the Euclidean volume form becomes

ω = r2 sin θ dr ∧ dθ ∧ dϕ

from which we can easily read off the divergence.

Note. It is essential that the differential forms be compactly supported. As a simple example,

consider integrating the form d(rdθ) = dr ∧ dθ on the annulus 1 ≤ r ≤ 2. Stokes’ theorem will give

two boundary terms. However, if we change the annulus to 1 < r ≤ 2 or 1 ≤ r < 2, the manifold

will lose one of its boundaries.

While it’s obvious here that a boundary is ‘missing’, our proposed shapes are homeomorphic to

a punctured circle, and an annulus that stretches to infinity. In this case, there still are ‘missing’

terms, though they’re harder to see, so Stokes’ theorem still fails.
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6.7 de Rham Cohomology

To understand de Rham cohomology, we first need to introduce singular homology.

• So far, we have shown how to integrate an n-form over an n-dimensional region of an n-

dimensional manifold M . We extended this definition to integrating r-forms on M over r-

dimensional submanifolds by pulling the form back to the submanifold by inclusion.

• However, for physical purposes we need a more general definition. For instance, if we wanted to

compute the work done on a particle, we would have to integrate over its path, but this path

may cross itself, retrace or repeat itself, or temporarily stop.

• More concretely, we wish to define an integral over the map f : I → M where I = [0, 1] is an

interval and f represents the path of the particle. The obvious answer is∫
f
ω =

∫ 1

0
dt ωµ(x(t))

dxµ

dt

which motivates the definition ∫
f
ω =

∫
I
f∗ω.

• More generally, we call a smooth map σ : Ir → M a singular r-cube. Here Ir is a cube in

Rr, and σ need not be injective, and σ∗ need not have maximal rank. In general any standard

region in Rr works; for instance one may also use a “singular simplex”. We then define∫
σ
ω =

∫
Ir
σ∗ω

for an r-form ω.

• We may take real linear combinations of the singular r-cubes to yield r-chains,

cr =
∑
i

aiσ
r
i .

Integration is defined over r-chains by linearity,∫
cr
ω =

∑
i

ai

∫
σr
i

ω.

The set of r-chains is called the rth chain group Cr(M). It is an abelian group under addition.

• The singular chain groups defined here are the analogues of the chain groups in simplicial

homology, and we will use them to define singular homology. We started with simplicial

homology because it could be straightforwardly computed. However, singular homology is nicer

on general manifolds because it doesn’t require constructing a triangularization. On the other

hand, the chain group is now extremely large.

• To define the boundary operator ∂ for r-chains, we focus on r-cubes and extend by linearity.

The boundary of an r-cube is the sum of the 2r r − 1-cubes defined by each face, where the

orientation is defined using the outward normal vector. It is straightforward to show that

∂2 = 0, and to establish Stokes’ theorem∫
∂c
ω =

∫
c
dω.
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• We thus define the chain complex

. . .
∂r+2−−−→ Cr+1(M)

∂r+1−−−→ Cr(M)
∂r−→ Cr−1(M)

∂r−1−−−→ . . .

and the cycle, boundary, and singular homology groups

Zr(M) = ker ∂r, Br(M) = im ∂r+1, Hr(M) =
Zr(M)

Br(M)
.

One can show that the singular and simplicial homology groups are equivalent, but this is

beyond the tools we have.

We now turn to de Rham cohomology.

• The exterior derivative yields a cochain complex

0 → Ω0(M)
d0−→ Ω1(M)

d1−→ Ω2(M)
d2−→ . . .

where d2 = 0. The closed and exact forms yield the cocycle and coboundary groups

Zr(M) = ker dr, Br(M) = im dr−1.

We define the rth de Rham cohomology group

Hr(M) = Zr(M)/Br(M)

which measures the failure of the cochain complex to be exact at Ωr(M).

• By the Poincare lemma, the open ball has trivial cohomology (except for the zeroth cohomology

group, as we’ll see below), as does any space homeomorphic to it.

• An r-chain acts on an r-form, or vice versa, by

(ω, c) ≡
∫
c
ω.

This suggests that Ωr(M) and Cr(M) are dual, though this is a bit difficult to make precise.

Moreover, Stokes’ theorem states (dω, c) = (ω, ∂c) which implies d is the pullback of ∂.

• By Stokes’ theorem, the cycles Zr(M) annihilate the coboundaries Br(M), while the boundaries

Br(M) annihilate the cocycles Zr(M). Now we consider the space dual to Hr(M). An element

[c] of Hr(M) is an r-cycle defined up to the addition of an r-boundary. This latter implies that,

for the integral to be well-defined, it can only act on a cocycle. But nothing changes if we add

a coboundary to this cocycle. Hence the dual space to Hr(M) should be cocycles defined up to

the addition of coboundaries, i.e. Hr(M).

• The above is not a proof, since we haven’t shown that independent elements of Hr(M) yield

independent linear maps on Hr(M). However, it serves as motivation for de Rham’s theorem,

Hr(M)∗ = Hr(M).

Proving it rigorously is well beyond our scope.
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• Comparing homology and cohomology, we note that forms map out of M , while chains map

into M . The boundary operators d and ∂ also go in opposite directions. A deeper difference is

that, as we’ll see later, the cohomology groups may be given a ring structure.

For concreteness, we now consider some cohomology computations.

Example. The zeroth cohomology group. We define Ω−1(M) to be empty, so B0(M) is trivial.

Then Z0(M) = H0(M), so the group consists of functions f such that df = 0. Then f is constant on

every connected component of M , so H0(M) = Rn where n is the number of connected components

of M . This exhibits de Rham’s theorem for r = 0.

Example. The first cohomology group. Consider a closed one-form α integrated over an arbitrary

closed chain C. Furthermore, suppose that for all such closed chains are boundaries, C = ∂S. Then∫
C
α =

∫
S
dα = 0

which implies that the integral of α between two points is path independent. This implies α is exact,

where we define f with df = α by integration. This is consistent with de Rham’s theorem for r = 1.

Another simple example is M = S1, where H1(S1) = R. The representative one-form is “dθ”,

which is not exact since θ is not a function.

Example. The second cohomology group of M = S2. For any exact two-form α = dβ, we have∫
M
α =

∫
∂M

β = 0

because ∂M = 0. However, the closed two-form ω = sin θdθ∧dϕ has a nonzero integral, so it cannot

be exact, and the second cohomology group is nontrivial.

Conversely, we claim that any two-form α with zero integral over S2 is exact. To see this, note

that we can define β+ and β− so that α = dβ± on the northern and southern hemispheres by the

Poincare lemma. We would like to stitch them together; note that along the equator C,∫
C
β+ − β− = 0

by Stokes’ theorem. Therefore β+ − β− = df on the equator by the previous example. Extending

f to the northern hemisphere smoothly, we can define β′+ = β+ − df . Then combining β′+ and β−
gives the desired form, so H2(S2) = R. Alternatively, in terms of singular homology, S2 itself is the

2-cycle that is not a boundary, so H2(S
2) = R.

Note. We’ve already seen very similar results in multivariable calculus. We know that for topolog-

ically trivial spaces, every curl-free vector function is a gradient, and every divergence-free vector

function is a curl. These correspond to the triviality of the first and second cohomology groups.

A physical example is the two-form magnetic field of a monopole on R3 − {0}, which cannot be

written as B = dA. However, it can be written in this form for R3 minus a Dirac string, a space

with trivial second cohomology group.

Next we consider the structure of cohomology groups.
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• Choose a basis [ei] of Hr(M), where the ei are r-cycles up to the addition of r-boundaries.

Then any z ∈ Zr(M) can be written as

z =
∑
i

ciei + ∂c.

Similarly, if we choose a basis [θi] of H
r(M), then any ω ∈ Zr(M) can be written as

ω =
∑
i

aiθi + dψ.

• Now, invoking de Rham’s theorem, we may choose [θi] to be the dual basis of [ei],

([θi], [ej ]) = (θi, ej) = δij .

The coefficients ai can hence be found by integration,

ai = (ω, ei).

Hence the closed form ω is exact if and only if (ω, ei) = 0 for all ei, a convenient criterion.

• Let Ω(M) be the ring of differential forms on M , where the product is the wedge product. We

may similarly define a cohomology ring

H∗(M) = H0(M)⊕ . . .⊕Hm(M)

where the product, called the cup product, is induced by the wedge product,

[ω] ∧ [ϕ] = [ω ∧ ϕ].

To check this definition is consistent, first note that ω ∧ ϕ is closed,

d(ω ∧ ϕ) = dω ∧ ϕ+ (−1)rω ∧ dϕ = 0.

Next, note that under the addition of an exact form to ω,

(ω + dψ) ∧ ϕ = ω ∧ ϕ+ (dψ) ∧ ϕ = ω ∧ ϕ+ d(ψ ∧ ϕ)

so we add an exact form to ω ∧ ϕ. Similar reasoning holds for the addition of an exact form to

ϕ, giving the result.

• Now consider a map f :M → N between manifolds. We may pullback forms and pushforward

chains, and these turn out to be equivalent in the sense that∫
f∗c

ω =

∫
c
f∗ω.

Moreover, the pullback map induces a map on the cohomology rings, defined by

f∗[ω] = [f∗ω].

It is well defined because d and f∗ commute, and it is a ring homomorphism because ∧ and f∗

commute.
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• One can show that if f, g :M → N are homotopic, then they induce the same maps f∗, g∗ on

the cohomology rings. Then simple connectedness implies a trivial first cohomology group. To

see this, take a closed one-form ω and any loop c : S1 →M . Then∫
c
ω =

∫
S1

c∗ω.

By the proposition, the integral on the right-hand side is homotopy invariant, and since M is

simply connected it must be zero. But then
∫
c ω = 0 for all loops c, so ω is exact.

• Let M be an m-dimensional orientable closed manifold and let ω ∈ Hr(M) and η ∈ Hm−r(M).

Then since ω ∧ η is a top-dimensional form, we may define an inner product

⟨ω, η⟩ =
∫
M
ω ∧ η.

This establishes the Poincare duality

Hr(M) ∼= Hm−r(M).

One immediate consequence is that the Euler characteristic of an odd-dimensional space is zero.

• For example, the nth cohomology group of an n-dimensional connected orientable manifold is

R, indexed by the integral of the volume form. If the manifold is nonorientable, then the nth

cohomology group is trivial.

• In general, cohomology is more powerful than homology because of the additional ring structure.

For example, one may distinguish spaces with the same cohomology groups if the cohomol-

ogy ring differs. There are many important generalized cohomology theories, such as sheaf

cohomology and K-theory.

• Note that taking the dual converts the cup product

H∗(M)×H∗(M) → H∗(M)

to the map

H∗(M)×H∗(M) → H∗(M)

by reversing the arrows. Hence we don’t expect to have a ring structure for homology.

6.8 Physical Applications

Hamiltonian mechanics is covered in terms of differential forms in the notes on Undergraduate

Physics. Here we turn to electromagnetism, an application which additionally requires a metric.

• The field strength F is a two-form, and two of Maxwell’s equations are dF = 0. In terms of

components, this tells us that

∂σFµν + ∂νFσµ + ∂µFνσ = 0

which is called the Bianchi identity.

https://knzhou.github.io/notes/phy.pdf
https://knzhou.github.io/notes/phy.pdf
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• The remaining two equations are ∂νF
µν = Jµ in inertial Cartesian coordinates; the equations

are not true in general due to the partial derivative. Recognizing a divergence, we have

∇ ·ω F = J, ⋆ d ⋆ F = J

where J is the current one-form. These equations hold in all frames.

• The previous equation implies that charge is conserved, as

∇ ·ω J = ⋆ d ⋆ J = 0.

Since ⋆J = d ⋆ F , it also gives the result∫
D
⋆J =

∫
∂D

⋆F

for any three-dimensional region D. In the case where D is purely spatial, this is Gauss’s law,

equating electric charge to electric flux.

• In terms of electric and magnetic fields, the Hodge star gives

B → E, E → −B

in vacuum. If we include sources, it must swap charge and magnetic charge.

• Alternatively, if we phrase E and B in terms of forms, then E is naturally a one-form and B is

naturally a two-form, with

F = B + E ∧ dt.

In this case, the operation of the Hodge star is

B → ⋆SE, E → − ⋆S B

where ⋆S is the Hodge star on space only.

Example. Self-duality. In Minkowski space, ⋆2 = −1 when acting on two-forms, so it has eigenval-

ues ±i. Then every field strength can then be written in the form F = F+ + F− where F+ and F−
are (anti)self-dual, i.e.

⋆F± = ±iF±.

If F is (anti)self-dual and dF = 0, then it automatically satisfies d⋆F = 0. This gives a shortcut for

finding solutions to the vacuum Maxwell equations, which can be generalized to Yang–Mills theory

to find instanton solutions. In terms of electric and magnetic fields, the (anti)self-duality condition

is B = ±iE. Solving Maxwell’s equations for a plane wave E shows that the solutions are circularly

polarized plane waves.

Note. We can have a nonzero electric flux through a closed surface even without charge (d⋆F = 0), if

the space is topologically nontrivial. For example, consider a spacetime which contains a “wormhole”

at some fixed time t. Electric field lines can go in through one end and out the other, so that there

can be nonzero electric flux through a sphere about one end. This doesn’t contradict our result

above, because the sphere is not a boundary. Topologically, these situations can arise if the second

(co)homology group is nontrivial.
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Electric flux can hence be topological or nontopological. Similarly, we can have nontopological

magnetic flux by defining ⋆dF = JM , or topological magnetic flux via “wormholes” or more simply

by removing the point of a monopole from spacetime. However, since electromagnetism is typically

formulated in terms of a gauge potential F = dA, the nontopological option is ruled out. Demanding

that F = dA also forces A to be singular on a Dirac string. The proper way to avoid this singularity

is to describe A by a more powerful object: a connection on a fiber bundle.
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7 Fiber Bundles

7.1 Motivation

In this section, we motivate the correspondence between gauge fields and connections on a principal

fiber bundle.

• In electrostatics, the electric field one-form obeys dE = 0. If the space is simply connected,

i.e. has trivial first cohomology group H1, we may write the field in terms of a scalar potential,

E = dV , which implies that all closed loop integrals of E vanish by Stokes’ theorem.

• Now consider a magnetostatic field. The magnetic field has zero divergence, so the magnetic

field two-form obeys dB = 0. If the space has trivial second cohomology group H2, we may

write the field in terms of a vector potential, B = dA, which implies that all closed surface

integrals of B vanish. These integrals represent magnetic fluxes.

• Now consider the field of a magnetic monopole,

B =
g

ρ2
ρ̂.

This field is defined on R3 − {0}, which has nontrivial H2, reflected in the fact that the flux

integral of B is nonzero. Hence B cannot be written as B = ∇×A.

• However, we can define A locally by further restricting the domain. Imagine removing a ‘Dirac

string’ from R3, a line which begins at the origin and goes out to infinity. The resulting space

has trivial H2, so we may define a vector potential on it.

• Taking the Dirac string to point along −ẑ and +ẑ, respectively, gives

A+(ρ, ϕ, θ) =
g

ρ sinϕ
(1− cosϕ) θ̂, A−(ρ, ϕ, θ) = − g

ρ sinϕ
(1 + cosϕ) θ̂.

When both fields are defined, they differ by a gradient,

A+ −A− = ∇(2gθ)

which confirms they yield the same field. Alternatively, in terms of differential forms,

A+ = g(1− cosϕ) dθ, A− = −g(1 + cosϕ) dθ.

Next, we connect the vector potential to dynamics.

• The Schrodinger equation with a vector potential has the gauge symmetry

A → A+∇Ω, ψ → eiqΩψ.

For example, such a gauge transformation can be used to transfer between A+ and A−.

• We also know that a localized particle moving through a field picks up a phase
∫
A · dx. To

compute this phase when A is not defined globally, we simply work in a patch, then perform a

gauge transformation to switch over to the next patch. As such, the value of the phase of ψ is

not physical, since it is gauge-dependent, but relative phases are, as seen in the Aharanov–Bohm

effect.
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• Now suppose a charge is transferred around the equator; then it picks up a phase relative to a

charge that isn’t moved. The difference of the phases calculated using A+ and A− is 4πqgθ,

so this must be a multiple of 2π. Thus we have the Dirac quantization condition

qg =
n

2
, n ∈ Z.

This can be made more precise with the path integral.

• The original physical argument for the Dirac quantization imagines the Dirac string as a

physical half-infinite solenoid; then the vector potential is well-defined everywhere and we can

use ordinary electromagnetism. If a particle went around such a string, it would pick up a phase

of 4πqg, and such a phase should be easy to detect. Since we haven’t observed this, we must

have 4πqg = 2πn, the same quantization condition.

• Intuitively, we imagine a copy of S1, specifying the phase, sitting above every point of our

domain. Then the job of the vector potential is to tell us how paths in space lift to paths in

this bundle, so it is a connection.

• As an example, if the domain is all of R3, it is contractible and the bundle is automatically

trivial. This doesn’t mean that A has no effect; one can still have magnetic fields in R3. But

magnetic monopoles can only exist if the bundle is nontrivial.

• In our example above, our domain is R3 − {0}, which retracts to S2. We are thus motivated to

study S1 bundles over S2.

We now take a mathematical detour to construct the Hopf bundle.

• We parametrize the sphere S1 as eiξ. It is also the group U(1).

• The sphere S2 is homeomorphic to the extended complex plane C∗ = C∪{∞} by stereographic

projection. Explicitly, if US is S2 minus the North pole, we have

φS : US → R2, (p1, p2, p3) 7→ (p1, p2)/(1− p3)

and the North pole itself maps to the point at infinity. In terms of complex notation the inverse

map is

z 7→ (z + z,−i(z − z), zz − 1)

zz + 1
.

Similarly, let UN be S2 minus the South pole. Then

φN : UN → R2, (p1, p2, p3) 7→ (p1, p2)/(1 + p3) =
1

φS(p)∗
.

• Finally, S3 is homeomorphic to (R3)∗ by similar reasoning. We can also identify it with a subset

of C2 by

S3 = {(z1, z2) | |z1|2 + |z2|2 = 1} =

{(
cos

ϕ

2
eiξ1 , sin

ϕ

2
eiξ2
) ∣∣∣∣ϕ ∈ [0, π]

}
.

Fixing any value of ϕ besides 0 and π yields a torus, since the ξi are invariant under a change

by 2π, while ϕ = 0 and ϕ = π yield circles.
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• We can thus visualize S3 as follows. We place the circle ϕ = 0 in (R3)∗, so that the region

ϕ ≤ π/2 forms a solid torus K1.

The region ϕ ≥ π/2 is another solid torus K2 whose boundary is identified with that of K1. It

can be drawn as shown in the figure; the straight line at ϕ = π is indeed a circle in (R3)∗.

• Next, note that U(1) acts on S3 on the right by

p · g = (z1, z2) · g = (z1g, z2g), g ∈ U(1).

For any fixed p ∈ S3, the orbit is a circle U(1). The set of distinct orbits is the quotient space

S3/S1. To understand this space, note that every orbit is identified by the ratio z1/z2 ∈ C∗,

so S2 ∼= S3/S1.

• We define the projection map

P : S3 → S2, (z1, z2) 7→ (φ∗
S)

−1(z1/z2).

This map is known as the Hopf fibration; it was originally constructed to show that π3(S
2) was

nontrivial. For us, it gives S3 the structure of a principle U(1) bundle over S2.

• Intuitively, if we think of S3 as a normalized spinor state, the U(1) is the phase ambiguity and

the projection maps the state to the direction the spin ‘points’ in. The nontriviality of the

bundle is reflected in the fact that it is impossible to define a continuous phase convention for

the spinors; the usual conventions have singularities at the North and South poles.

• For completeness, we show local triviality. This means that we can cover S2 with open sets V

so that we have diffeomorphisms Ψ : P−1(V ) → V ×G of the form

Ψ(p) = (P (p), ψ(p)), ψ(p · g) = ψ(p)g.

Explicitly, consider the subsets US and UN , which satisfy

P−1(US) = {(z1, z2) ∈ S3 | z2 ̸= 0}, P−1(UN ) = {(z1, z2) ∈ S3 | z1 ̸= 0}.

Then we can use

Ψ−1
S ((z1, z2), g) = (z1, z2) ·

(
g
|z2|
z2

)
, Ψ−1

N ((z1, z2), g) = (z1, z2) ·
(
g
|z1|
z1

)
which satisfies all the requirements; we can verify smoothness by taking components.
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• We may transfer between the local trivializations using transition functions,

ψS,x ◦ ψ−1
N,x(g) = gSN (x)g, ψN,x ◦ ψ−1

S,x(g) = gNS(x)g

where a computation shows that

gSN (x) =
z2/|z2|
z1/|z1|

= e−i(ξ1−ξ2) = e−iθ, gNS(x) =
z1/|z1|
z2/|z2|

= ei(ξ1−ξ2) = eiθ

where θ is a spherical coordinate on S2.

Next, we link the Hopf bundle to the magnetic monopole.

• It can be shown that the U(1) bundles over S2 are classified by elements of π1(U(1)). Thus,

they are indexed by integers just like the charges of magnetic monopoles. In the case of the

Hopf bundle, we have the homotopy class 1 because the transition function is eiθ.

• Taking the elementary charge to be q = 1, the weakest monopole has g = 1/2 and hence

AN =
1

2
(1− cosϕ) dθ, AS =

1

2
(1 + cosϕ) dθ, AN = AS + dθ.

Now suppose we multiply both of these one-forms by −i. Then we have

AN = eiθASe
−iθ + eiθ de−iθ.

• Now, on the mathematical end, a connection on a principal fiber bundle turns out to be a

globally defined Lie algebra-valued one-form on the entire bundle space. It can be built out of

locally defined Lie algebra-valued one-forms which are related by

A2 = g−1
12 A1g12 + g−1

12 dg12

where g12 is a transition function; comparison with gNS shows that AN and AS are related in

just this way. Here, we are thinking of u(1) as the set of pure imaginary numbers, so AN and

AS are indeed u(1)–valued.

• Now we would like to use a connection to lift a path from S2 into S3. Consider the tangent

space at some point in the bundle. It is sufficient to say which direction in the tangent space

corresponds to the fiber (the ‘vertical space’). Then path lifting is performed by moving in the

bundle purely horizontally.

• A Lie algebra-valued one-form maps vectors in the tangent space to the Lie algebra u(1) ∼= R.
Thus the kernel of the one-form is a two-dimensional subspace which identifies the ‘horizontal

subspace’.

• Finally, we identify the physical field F with the (covariant) exterior derivative of the connection.

Then the field tells us about the holonomy associated with parallel transport in a loop, just

as in physics, the Aharanov–Bohm phase picked up by a particle moving around a loop is the

magnetic flux through the loop.

• All of these statements generalize to more complicated internal spaces, such as quark color. For

example, the Hopf bundle can be generalized by replacing the complex numbers with quaternions;

then the base space is S4, the one-point compactification of R4, the fiber is S3 ∼= SU(2), and

the total space is S7 ⊂ R8. This bundle is associated with the BPST instanton solutions to the

Yang–Mills equations.
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7.2 Definitions

We begin with the example of the Mobius strip.

• A fiber bundle is a manifold that looks locally like a product, but is not necessarily a product

globally. For example, the cylinder is the product S1 ×L for a line segment L, and the Mobius

strip M looks locally like S1 × L.

• The cylinder is a trivial bundle, so we can parametrize it with coordinates (s, t) ∈ S1×L, while
this is impossible for the Mobius strip.

• We would like to describe how the Mobius strip is twisted mathematically. For every open

subset U of S1, we can define a diffeomorphism

ϕ : U × L→ π−1(U)

where π :M → S1 is the projection. This means that M is locally trivial on each U .

• Now cover the circle with two open sets U1 and U2 which overlap on the disjoint open intervals

A and B. Then we may define

ϕ−1
1 ◦ ϕ2 : (A ∪B)× L→ (A ∪B)× L.

Then at each point of S1 in A ∪B, ϕ−1
1 ◦ ϕ2 defines a diffeomorphism from L to L. By scaling

the coordinates, we can ensure that this diffeomorphism is either trivial or a sign flip.

• We can always choose the diffeomorphism to be trivial on A. The difference between the Mobius

strip and the cylinder is that for the Mobius strip, we are forced to choose the diffeomorphism

to be the sign flip on B. Thus the nontriviality of a fiber bundle is encoded in the nontriviality

of its ‘transition functions’.

We now proceed to the definition of a fiber bundle.

• A fiber bundle consists of a manifold E called the total space, a manifold M called the base

space, and a manifold F called the fiber, equipped with a surjection π : E → M called the

projection. For x ∈M , the inverse image π−1(x) = Fx ∼= F is called the fiber at x. To specify

a bundle, we write π : E →M .

• The fiber bundle is equipped with an open covering {Ui} of M and a set of diffeomorphisms

ϕi : Ui×F → π−1(Ui) so that πϕi(x, t) = x, called local trivializations. The local trivializations

relate each fiber to the standard fiber F , i.e. they provide local coordinates for the fibers.

• At each point x ∈ M , ϕi,x(t) ≡ ϕi(x, t) is a diffeomorphism ϕi,x : F → Fx. On each point x

in the overlap Ui ∩ Uj , we require the transition function tij(x) = ϕ−1
i,xϕj,x : F → F to be an

element of a Lie group G, called the structure group, which acts on the fiber on the left,

ϕj(x, t) = ϕi(x, tij(x)t).

Alternatively, for a fixed u ∈ E with π(u) = x we have

ϕ−1
i (u) = (x, fi), ϕ−1

j (u) = (x, fj), fi = tij(p)fj .

The final result is the transformation rule for sections.
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• To be as general as possible, we can choose the structure group G to be Diff(F ). However, we

often instead find that G is a much smaller subset of Diff(F ), or use the same G in various

applications. For example, in particle physics G will usually be a gauge group.

• The bundle should not depend on the choice of open covering or local trivializations, so bundles

are defined as equivalence classes of this data. Formally, a fiber bundle is an equivalence class

of the ‘coordinate bundles’ defined above.

• By the definitions, the transition maps satisfy consistency conditions

tijtjk = tik on Ui ∩ Uj ∩ Uk, t−1
ij = tji on Ui ∩ Uj .

Intuitively, the transition maps are simply the ‘changes of coordinates’ for the fibers required

to pass from one patch to another.

• A fiber bundle is trivial if all transition functions can be chosen to be identity maps by adjusting

the local trivializations. Specifically, suppose that the {Ui} have two local trivializations {ϕi}
and {ϕ̃i}. Then if we define

gi(x) : F → F for x ∈ Ui, gi(x) = ϕ−1
i,x ϕ̃i,x

where the gi(x) are in the structure group, then we have

t̃ij(x) = gi(x)
−1tij(x)gj(x)

by the definitions. Then the transitions functions of a trivial bundle have the factorized form

tij(x) = gi(x)
−1gj(x).

Conversely, if we can redefine the local trivializations so the transition functions do nothing,

the bundle is trivial.

• In the case of gauge theories, the transition functions will be interpreted as gauge transforma-

tions. The tij are gauge transformations that link distinct patches, while the gi are the more

familiar gauge transformations within a single patch.

Next, we set up a bit more formalism.

• Given F , M with open cover {Ui}, and transition functions, we can always reconstruct a bundle

π : E → M . This is intuitive; formally we would take the union of the Ui × F and glue them

together/define an equivalence relation using the transition functions.

• Consider two fiber bundles π : E →M and π′ : E′ →M ′. A smooth map f : E′ → E is a bundle

map if it maps each fiber F ′
p of E′ onto a fiber Fq of E. (We also require some compatibility

conditions for the transition functions.) Then f naturally induces a smooth map f :M ′ →M

so that the diagram

commutes.
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• Two bundles π : E →M and π′ : E′ →M are equivalent if there exists a bundle map f : E′ → E

so that f is a diffeomorphism and f is the identity. In particular, bundles that differ only by a

redefinition of the local trivializations, as considered above, are equivalent.

• Given a bundle π : E → M with fiber F and a map f : N → M , we can define a pullback

bundle f∗E over N with the same fiber F by

f∗E = {(p, u) ∈ N × E | f(p) = π(u)}.

Unpacking this, we define f∗E by pulling back the open cover and the transition functions; the

rest of the bundle can be reconstructed using the reasoning above.

• It can be shown that if f, g : N →M are homotopic, then f∗E and g∗E are equivalent bundles

over N . In particular, suppose M is contractible, so the identity map on M is homotopic to a

constant map. Then E must be trivial.

• Given π : E → M , a global section s is a smooth map s : M → E so that π(s(x)) = x for all

x ∈M . The set of global sections is called Γ(M,E), and depending on the bundle, there may

not be any.

• A local section is a section only defined on an open set U of M . Local sections always exist by

local triviality, and the set of local sections over U is called Γ(U,E).

Next, we introduce vector bundles and give some examples.

• A vector bundle is a bundle E where the fiber is a vector space; tangent bundles are one example.

If the fiber is F = Rn, we say dimE = n. The structure group is GL(n,R). A line bundle is a

one-dimensional vector bundle. Note that any vector bundle admits a global section called the

null section, which is simply zero everywhere.

• The set of the tangent spaces in an n-dimensional manifold forms the tangent bundle TM . If

the coordinates on a patch are xi, then the local trivialization is to simply write a tangent

vector in components in the basis ∂/∂xi. The transition function is the Jacobian.

– TRn is clearly trivial and equal to R2n, as we would expect since Rn is contractible.

– TS1 is also trivial. To see this, simply define the unit vector ∂θ. Then we have the global

trivialization (θ, t) 7→ (θ, t∂θ).

– TS2 is not trivial. Note that a global trivialization implies the existence of a basis of

nonvanishing global sections. However, the Poincare–Hopf theorem states that TM has a

nonvanishing global section if and only if χ(M) = 0, where χ is the Euler characteristic.

Thinking exclusively in terms of tangent bundles can be a bit misleading, because we usually

think of the fiber as sitting ‘above’ the base space, drawing the two perpendicular.

• There are also many examples of vector bundles that aren’t tangent bundles. For example, let

M be an m-dimensional manifold embedded in Rm+k and let NpM be the vector space normal

to TpM in Rm+k, under the Euclidean metric. Then the normal bundle

NM =
⋃
p∈M

NpM

is a vector bundle of dimension k.
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– For the sphere S2 embedded in R3, NS2 is a trivial line bundle, by spherical coordinates.

– Consider a relativistic particle with spin. In its frame, its spin is a spacelike vector,

orthogonal to its timelike path M . The normal bundle NM can be used to describe

Thomas precession.

• Recall that an element of CPn is a complex line in Cn+1 through the origin. Then CPn has

a canonical line bundle where the fiber of a point is the corresponding line. To define this

formally, let I = CPn × Cn+1 be a trivial bundle over CPn with elements (p, v). Then the

canonical line bundle L is the subset

L = {(p, v) ∈ I|v = ap, a ∈ C}

with projection π(p, v) = p.

• Given a vector bundle π : E → M with fiber F , we can define the dual bundle π : E∗ → M

whose fiber F ∗ is the set of linear maps from F to the field R. Then the cotangent bundle is

the dual bundle of the tangent bundle.

Now we give some more ways to combine bundles.

• Let π : E →M and π′ : E′ →M ′ be vector bundles with fibers F and F ′. The product bundle

π × π′ : E × E′ →M ×M ′

is a fiber bundle with fibers F ⊕ F ′. For example, if M =M1 ×M2 then TM = TM1 × TM2.

• Now let f : M → M ×M be defined by f(p) = (p, p). The Whitney sum bundle E ⊕ E′ is

the pullback bundle of E × E′ by f . It is a bundle over M with fiber F ⊕ F ′. If the transition

functions are matrices tEij and t
E′
ij , then the transition function of E ⊕ E′ is diag(tEij , t

E′
ij ).

• Let π : E →M and π′ : E′ →M be vector bundles with fibers F and F ′. The tensor product

bundle E ⊗E′ is obtained by taking the tensor product of fibers Fp ⊗ F ′
p at every point p ∈M .

For example, bundles of differential forms are defined as antisymmetrized tensor products of

the cotangent bundle.

Example. The Whitney sum bundle of two copies of the Mobius strip, with fiber R. We cover the

Mobius strip with two open sets; to have a trivial bundle, we must have t12(x) = g1(x)
−1g2(x). We

choose g1(x) to be the identity without loss of generality, so we require g2(x1) = I and g2(x2) = −I
where x1 and x2 are the two places the open sets overlap. This is impossible for the Mobius strip

because GL1(R) = R− {0} is disconnected, but perfectly possible for the sum bundle.

Example. Consider the sphere S2 embedded in R3. Then the Whitney sum bundle of TS2 and

NS2 is simply a trivial bundle over S2 with fiber R3.

7.3 Principal Bundles

Next, we turn to principal bundles.

• A principal bundle is a bundle whose fiber is equal to its structure group. They are written as

P (M,G) and called G-bundles over M .
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• In general, we should think of M as a quotient of E, not a submanifold. This is clearest for

principal bundles: identifying M as a submanifold would be equivalent to finding a global

section, but this requires the bundle to be trivial.

• Unlike generic bundles, we have a natural action of G on P on the right. If we have u = ϕi(p, gi)

where u ∈ P , then we define

ua = ϕi(p, gia)

for a ∈ G. It’s straightforward to check this definition is independent of the local trivializations,

because right actions commute with left actions.

• The same idea wouldn’t work for, e.g. the tangent bundle because finding how an element of

GLn(R) acts on a tangent space requires a basis choice. But for a frame, there is a natural

action, since a frame is a basis.

• Conversely, given a group action of G on P , we can construct a principle bundle withM = P/G.

This is how we constructed the Hopf bundle, through an action of U(1) on S3. Note that the

fibers of the bundle will only be isomorphic to G if the group action is free.

• Note that the typical fiber F has a preferred element, the identity. We should not think of

each individual fiber Fx as having a preferred element, since the mapping of elements of Fx to

F depends on the local trivialization; instead the Fx are merely manifolds. However, given a

section si(p) over Ui, there is a preferred local trivialization ϕi where si(p) = ϕi(p, e).

• A principal bundle is trivial if and only if it admits a single global section. To show the

backwards direction, let s(p) be such a section. Then we have a map

Φ : P →M ×G, Φ : s(p)a→ (p, a)

which is a homeomorphism, giving the result.

• Every bundle has an associated principal bundle, by replacing the fiber with the structure group

and keeping the same transition functions. Since the nontriviality of a bundle is encoded in the

transition functions, the associated bundle is trivial if and only if the original bundle is.

• Conversely, consider a principle bundle P (M,G) and an n-dimensional representation ρ : G→
GLn(R) which acts on V = Rn from the left. Then the vector bundle Eρ associated to P is

Eρ = P × V/ ∼, (u, v) ∼ (ug, ρ(g−1)v)

Essentially, we replace the fiber G with V and turn the transition function tij into ρ(tij). More

generally, for any manifold F we can construct an associated bundle given any left-action of G

on F .

Example. The Mobius strip revisited. If the fiber is R, it is a vector bundle and there are no

nonvanishing global sections by continuity. If the fiber is Z2 so that the bundle is a principal bundle,

then no global sections exist because we pick up a sign flip if we try to go around.

Example. The frame bundle is the principal bundle associated with a vector bundle.

• A frame is an ordered set of basis vectors for F at a point. In the frame bundle, the fiber is the

set of possible frames, and we keep the exact same transition functions, so the structure group

remains GL(n,R).
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• Applying the orbit-stabilizer theorem shows the set of frames at a point is diffeomorphic to

GL(n,R), so the frame bundle is indeed a principle bundle, and it is not a vector bundle.

• As a corollary of our previous results, the tangent bundle is trivial if and only if there is a global

frame. This is intuitively clear, since given a global frame we can assign vectors components at

every point, giving a diffeomorphism between TM and M × Rn.

• The frame bundle FM of a manifold M is the frame bundle associated with the tangent bundle.

In relativity, local sections of FM are called tetrads or vierbeins.

• The frame bundle FS2 is nontrivial by the Poincare–Hopf theorem, since there are no nonvan-

ishing global sections. In optics, FS2 is used to describe the polarizations of spherical waves,

but as we’ve just shown, a set of polarizations cannot be chosen continuously!

• If we restrict to orthonormal frames, the structure group and the fiber both changes to O(n).

This general procedure is called the ‘reduction of the structure group’.

• To define a spin bundle, we start with a Lorentzian manifold, take the frame bundle, then

reduce the structure group to the Lorentz group. We then take an associated vector bundle

with fiber C2, lifting the structure group to SL(2,C). Sections of such a bundle describe Weyl

spinors. Topological obstructions in nontrivial spacetimes may prevent the lifting.

Example. Using our machinery, we can describe nonrelativistic quantum mechanics.

• We consider a quantum particle in R3 with a complex-valued wavefunction. We can measure

the norm |ψ(x)|2 but not the local phase, and we would like to express this geometrically.

• We define a Hermitian line bundle E, i.e. a complex line bundle with a metric, over R3. We

restrict the structure group so it preserves this metric, so it is U(1). Then the state of the

particle is described by a global section ψ(x) of E.

• In general, there is no natural isomorphism between a fiber Fx and C, so ψ(x) cannot be

interpreted as a wavefunction. However, given a global orthonormal frame e(x), we may define

ψ(x) = e(x)ϕ(x) and interpret ϕ(x) as a wavefunction. In ordinary language, we must pick a

phase convention for the position basis to write down wavefunctions.

• A gauge transformation can be performed by changing e(x). There will be a corresponding

change in the gauge potential A(x), which is a connection on a U(1)-bundle over R3, as we’ll

see in more detail below.

• In the case of R3 all bundles are automatically trivial, but in the case of defects such as magnetic

monopoles, we work in subspaces of R3 which may be nontrivial.

• More generally, a matter field transforms in a representation R of a gauge group G. The gauge

potential is a connection on a G-bundle over spacetime M , while the matter field is a section

of an associated vector bundle with fiber R and gauge group G.

Example. Classifying U(1) bundles over R3−{0}. As we’ll see, this is the topological setting of the

magnetic monopole. We perform a deformation retraction of R3 − {0} to S2 for convenience, then

cover it with a ‘North’ and ‘South’ chart. The charts overlap on a strip along the equator, which



85 7. Fiber Bundles

is effectively S1. Then the nontriviality of the bundle is entirely encoded in the single transition

function,

tNS(θ) = eiα ∈ U(1).

By a change of the transition functions, which we interpret as a local gauge transformation,

t̃NS(θ) = gN (θ)
−1tNS(θ)gS(θ).

Now look at the North patch from above, as a disc. Then varying r in gN (θ, r) provides a homotopy

between gN (θ) defined above and a constant map. Thus gauge transformations cannot change the

homotopy class of tNS(θ), so the U(1) bundles over S2 are classified by π1(S
1). For example, the

transition function of the Hopf map corresponds to the homotopy class n = 1.

Example. Consider an SU(2) bundle over R4. To find instanton solutions, we compactify R4 to

S4, which is non-contractible and hence admits nontrivial fiber bundles. By the same argument as

above, the bundles are classified by π3(SU(2)) = Z. Parametrizing the overlap S3 with unit vectors

(x, y, z, t), the transition function

tNS(p) =

(
t1+ i

∑
i

xiσi

)n
corresponds to the homotopy class n. Explicitly, we can generalize the Hopf map with quaternions

to yield a map π : S7 → S4, an S3 bundle over S4, whose transition function belongs to the

homotopy class 1.

Example. In general, let H be a closed Lie subgroup of a Lie group G. Then H acts on the coset

space M = G/H, so we have a principal H-bundle over M where the projection π : G → G/H

just takes the coset. This is a general method of constructing principal bundles, and some useful

examples include

O(n)/O(n− 1) ∼= SO(n)/SO(n− 1) ∼= Sn−1, U(n)/U(n− 1) ∼= SU(n)/SU(n− 1) ∼= S2n−1.

7.4 Connections on Fiber Bundles

Next, we add the additional structure of a connection.

• In general relativity, the connection allows us to parallel transport vectors along a path. In our

fiber bundle language, we start with a curve γ in the base space M and want to construct a

curve in the tangent bundle sγ that projects down to γ.

• Given a principal bundle P (M,G), we would like to lift a curve γ on M to a curve γP on P

that projects down to γ. Equivalently, we want to lift vectors in TγM to vectors in TP .

• For the Mobius strip, we can think of the circle as being ‘horizontal’ and the line segment as

being ‘vertical’. Then given a starting point for γP , we can simply move horizontally, i.e. make

the tangent vector to γP always horizontal. Then a connection is just a choice of what ‘horizontal’

means. Note that we shouldn’t think of ‘vertical’ and ‘horizontal’ as orthogonal directions, as

there generally is no metric.



86 7. Fiber Bundles

• Formally, we define a connection on P to be a smooth choice of horizontal subspacesHuP ⊂ TuP

so that

TuP = VuP ⊕HuP

where VuP ∼= g is the tangent space to the fiber, and

HugP = Rg∗HuP.

This compatibility condition requires every point in the group fiber to be equivalent.

• Note that a connection defines a distribution with dimension dimM , in the sense of Frobenius’

theorem. The distribution is integrable, i.e. it meshes together into surfaces, if and only if the

curvature of the connection vanishes.

• Let γ : [0, 1] → M be a curve in the base manifold. Then γP : [0, 1] → P is the horizontal lift

of γ if π(γP ) = γ and the tangent vector XP to γP is always horizontal, XP ∈ HγPP , and one

can show that γP is unique.

• Generally, a closed loop won’t lift to a closed loop. Instead, we will have γP (1) = γP (0)g for

some group element g. The set of possible group elements attained by varying the loop and

keeping the base point p = γP (0) fixed is called the holonomy group Holp(P ). The holonomy

group depends on both the bundle and the connection. If M is connected, the holonomy group

is the same at all points of M , so we call it Hol(P ).

Next, we consider an alternative definition of a connection that is closer to a gauge potential.

• Consider a vector Y ∈ TuP . We can decompose it into horizontal and vertical components

using the projections

Yv = πv(Y ), Yh = πh(Y ), Y = Yv + Yh

• For convenience, we will regard a vector as an equivalence class of curves, so X = [σ(t)] where

σ(0) = x and X ∈ TxM .

• Consider a Lie algebra element V ∈ g, so

V = [exp(tV )].

Taking the right action of G on Fx by right-multiplication, we may associate V with an induced

vector field V ♯ on Fx, with

V ♯|u = [Rexp(tV )u] = [u exp(tV )].

We thus have a map ♯ : g → VuP . Note that ♯ does not depend on the choice of local trivialization

for Fx, since left-multiplication and right-multiplication commute.

• Next, we define the Ehresmann form

ω = ♯−1 ◦ πv, ω|u : TuP → g

which is a Lie algebra-valued one-form. Then by definition we have

ω|u(HuP ) = 0, ω|u(V ♯|u) = V.
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• The Ehresmann form obeys another identity. We note that for a ∈ G and V ∈ g,

Ra∗(V
♯|u) = Ra∗[u exp(tV )] = [Rau exp(tV )] = [u exp(tV )a].

Using the identity

a−1 exp(tV )a = exp(t ada−1 V )

which holds for matrix Lie groups by power series, we have

Ra∗(V
♯|u) = [ua exp(t ada−1 V )] = (ada−1 V )♯|ua.

Therefore, we have

(R∗
aω)|u(V ♯|u) = ω|ua(Ra∗(V ♯|u)) = ω|ua((ada−1 V )♯|ua) = ada−1 V = ada−1 ω|u(V ♯|u)

which implies that R∗
aω and ada−1 ω agree on vertical vectors. They also both annihilate

horizontal vectors, so they are equal.

• Conversely, we may define a connection by a g-valued one-form ω satisfying

ω|u(V ♯|u) = V, R∗
aω = ada−1 ω

which defines HuP by ω|u(HuP ) = 0.

Example. A falling cat can turn over even though it has zero angular momentum at every moment,

since its body is deformable. To describe this with fiber bundles, let C be the configuration space

of a deformable body; we quotient out by center of mass positions since we won’t care about them.

Then the shape space is obtained by quotienting by rotations, C = C/SO(3), so C is a principal

SO(3) bundle over shape space. Then a local section of C can be used to define orientations, and it

is geometrically obvious that there is no canonical choice of local section, and no way to compare

the orientations of distinct shapes. The connection is defined by imposing conservation of angular

momentum, and the analysis of the falling cat is a statement about the holonomy group of C.
The same formalism can be applied to bacteria which swim in low Reynolds number by deforming

their bodies. In this case, C is the configuration space including different center of mass conditions,

and we define C = C/R3 so C is a principal R3 bundle over shape space.

Finally, we link principal bundles to gauge theory.

• A gauge theory with gauge group G on a spacetime M is associated with a G-bundle over M ,

as well as a connection ω on it, called the gauge potential.

• On each patch, taking a local section σi gives a local description Ai = σ∗i ω of ω, which is the

coordinate expression of the gauge field familiar to physicists. When the bundle is nontrivial,

one must work with multiple patches; if one tries to work naively in a global patch one will find

singularities in the gauge field.

• If we change the local section in a patch σi → giσi, where gi is another local section, then we

perform a gauge transformation

Ai → g−1
i Aigi + g−1

i dgi.

It does not change the abstract gauge field A, but merely its description.
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• The local descriptions of the gauge field on different patches are related by

Aj = t−1
ij Aitij + t−1

ij dtij

which has the same form as a gauge transformation, though it is conceptually distinct.

• If the bundle is trivial, we may define a global section g, which yields gauge transformations

σi → gσi. Now, since g is not defined on a topologically trivial base space, it may not be

homotopic to the identity. Such a transformation is called a large gauge transformation. One

can also find large gauge transformations if g is defined on a topologically nontrivial subset of

M , such that the bundle is trivial when restricted to M .

• As we’ll see below, the topology of the bundle can place constraints on the connections that

can be put on it. If one isn’t careful and simply computes naively in coordinates, it’s possible

to perform a ‘false’ gauge transformation that changes the bundle topology. This is not a gauge

transformation in any sense, but is often mistaken for one.

Example. The Aharanov–Bohm effect, for a particle confined to a ring. This is described by a U(1)

bundle over S1, but all such bundles are trivial. If we cover S1 with two patches, then the transition

functions live in π0(U(1)), which is trivial; they can be taken to be trivial with an appropriate

choice of σi. This fits with the fact that one can write a nonsingular global gauge potential, namely

A =
Φ0

2πr
θ̂.

There is an Aharanov–Bohm phase of Φ0 associated with parallel transport of a particle around the

loop; this is specifically the holonomy associated with the loop for an associated vector bundle over

C. This is clearest when the transition functions are trivial, but doesn’t change under any gauge

transformations, including large ones; when one totals up the integral
∫
A ·ds along with the phases

incurred via transition functions when switching between patches, the net phase is always Φ0.

Example. The vacua of Yang–Mills theory. Compactifying space to S3, the fiber bundles are

described by G-bundles over S3 and classified by π2(G). However, π2(G) is trivial for any Lie group,

so all bundles here are trivial. Hence one may define a global gauge potential A = g−1dg, where

we have a map g : S3 → G. However, for simple Lie groups π3(G) = Z, so the vacua are indexed

by integers. They are related by large gauge transformations, so they are completely equivalent

classically (i.e. they correspond to the same gauge connection ω) but can be chosen to be distinct

or equivalent as quantum states.

Example. Magnetic monopoles are associated with nontrivial fiber bundles; we work on R3 − {0}
which retracts to S2. Working with an abelian gauge group for simplicity, the bundle is classified

by π1(U(1)) ∈ Z, where the integer here is proportional to the first Chern class∫
d2xF

which measures the magnetic charge of the monopole, yielding the quantization of magnetic charge.

Example. Instantons are associated with nontrivial fiber bundles on compactified Euclidean space-

time S4, where bundles are classified by π3(S
3), which is Z for all simple Lie groups. The integer

here is proportional to the second Chern class∫
d4x tr(F ∧ F )

which measures the instanton number. It is also quantized for a wide variety of spacetime topologies.
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