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These notes constitute a year-long course in quantum field theory. The primary sources were:

• David Tong’s Quantum Field Theory lecture notes. A clear, readable, and entertaining set of

notes, good for a first pass through first-semester quantum field theory.

• Timo Weigand’s Quantum Field Theory lecture notes. Covers similar material, but from a

more careful, formal point of view; it opens with LSZ reduction and handles the canonical

quantization of gauge theories in far more detail. May be too dry for a first pass, but very

useful for clarifying points on a second pass.

• David Skinner’s Advanced Quantum Field Theory lecture notes. An excellent second-semester

quantum field theory course with differential geometry and the Wilsonian point of view baked

in throughout. Also contains a thorough list of QFT books and resources.

• Sidney Coleman’s Quantum Field Theory lecture notes. A classic course from the 1980s delivered

by a legendary physicist. When I was starting out, I had a very hard time understanding the

middle third, which introduces renormalization in a rather formal way. However, the first third

is a great introduction to the basics.

• Peskin and Schroeder, Quantum Field Theory. The standard book with all the standard

conventions, from which many sets of lecture notes above draw inspiration. Part I is a standard,

clear introduction to the basics, though slightly sketchy when introducing interactions. Part II

covers renormalization, using the Wilsonian point of view more than other books. Part III is

exceptional, with great physical explanations and a deep exploration of practical computations

in QCD and the Standard Model at large.

• Srednicki, Quantum Field Theory. A newer book with a focus on the path integral. Distinguished

by its clean, modular style and nontraditional ordering of topics by spin, which allows one to

encounter the conceptual novelties in interacting field theory, spinor representations, and gauge

symmetry separately. Has little on canonical quantization, but briefly covers topics beyond the

Standard Model. One downside is that it starts rather formal, and takes a long time to make

contact with familiar physics; the first third of the book covers just ϕ3 theory in six dimensions.

http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.thphys.uni-heidelberg.de/~weigand/weigand_lectures.htm
http://www.damtp.cam.ac.uk/user/dbs26/AQFT.html
https://arxiv.org/abs/1110.5013
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• Schwartz, Quantum Field Theory and the Standard Model. A new book with a breezy, conver-

sational tone. Performs many concrete calculations with modern methods, and applications to

collider physics. Has clear and fresh explanations, but also sometimes sweeps issues under the

rug using vague arguments or ambiguous notation (according to a reviewer: “the logic can be

off-shell”). In my opinion, the main problem with this book is that it is especially sloppy in the

first 250 pages, which is exactly where students are most likely to get confused.

• Zee, Quantum Field Theory in a Nutshell. A fun book which focuses on the path integral and

includes applications to condensed matter. Covers a lot of ground extremely briefly. It might

not be literally impossible to learn quantum field theory by doing every calculation in the book

(as Zee continuously implores the reader), but it wouldn’t be an efficient route. For those with

some background already, the book is a great way to broaden knowledge.

• Weinberg, The Quantum Theory of Fields. A massive three-volume tome that addresses many

subtle points. The notation is dense and clunky, but this is done intentionally in the service of

making the logic as transparent and explicit as possible. There are many natural questions one

wants to ask when learning quantum field theory, that all the usual books seem to completely

ignore. Weinberg often has the answers; it is the book the books above refer to for the ground

truth. However, it is completely unsuitable as an introduction.

• Ryder, Quantum Field Theory. A friendly book which serves as a general introduction to particle

theory, deemphasizing cross sections but incorporating topics like monopoles, supersymmetry,

and differential geometry. It’s very readable, but has little detail on the more advanced parts

and no problems; best used as a supplement.

• Collins, Renormalization. A monograph focused on renormalization methods, which covers

many technical points skimmed over in standard books.

• Banks, Modern Quantum Field Theory. A brief summary from a string theorist’s point of view;

similar spirit to Skinner’s lecture notes. Completely useless if you don’t already know quantum

field theory (e.g. a full pass through Peskin, Srednicki, or Schwartz), but a fun and enlightening

read if you do. The chapter on renormalization is especially good.

• Weinberg, Classical Solutions in Quantum Field Theory. Contains clear and insightful discus-

sions of solitons, anomalies, and instantons.

• David Tong’s Gauge Theory lecture notes. An absolutely exceptional set of notes on special

topics in quantum field theory, with many references to original literature.

• Many insightful questions and answers on Physics.SE. I particularly recommend the answers

by Qmechanic, ACuriousMind, and Chiral Anomaly.

Starting to learn quantum field theory can be very rough, so some people say the standard books are

intentionally confusing, to make the authors look smart. Nothing could be further from the truth.

Writing a good textbook requires thousands of hours of work and years teaching with drafts of it,

which implies real devotion to students. The real issue is that these books were written for capstone

https://www.amazon.com/gp/customer-reviews/R3SI9VQ515MB8U
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html
http://www.physics.stackexchange.com
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courses, taken by theoretical particle physicists only, after four years of undergraduate courses and

two years of rigorous graduate courses. They assume you’ve already seen topics like relativistic

classical fields, representation theory, Green’s functions, and scattering theory. Nowadays, many

people want to learn quantum field theory earlier, and this mismatch makes it harder to start. Below

are some “student friendly” ways to help bridge the gap.

• David Tong’s Quantum Field Theory lecture notes. Yes, again. These notes follow the first 5

chapters of Peskin and Schroeder, but with lower density, keeping about half the detail and

adding double the explanation. This is a good balance for most new students. If you have a

strong understanding of undergraduate physics, I think this is the best place to start.

• Donoghue and Sorbo, A Prelude to Quantum Field Theory. This slim new book is adapted

from the lecture notes of an undergraduate course. It clearly explains some of the trickiest

topics for beginners, including renormalization, symmetry breaking, and the interpretation of

virtual particles, by relentlessly focusing on the simplest possible examples. The book is not

meant to be comprehensive – for instance, spinors are relegated to a few pages near the back.

But it is a fantastic source for supplemental reading.

• Greiner, Field Quantization. This crisp, clear book is used for introductory courses in Europe.

It roughly corresponds to the first 5 chapters of Peskin, but removes all handwaving, lays out

definitions and rules clearly, and includes many concrete worked examples, solved at the level

of detail a beginning student would want. It can be rather dry and tiring to read, but if you

prefer precision and have the time and energy, this might be the best choice.

• Lancaster and Blundell, Quantum Field Theory for the Gifted Amateur. A fun book which

briefly introduces a wide range of topics in both relativistic and nonrelativistic field theory.

Compared to the books above, this one goes in the opposite direction: it covers more topics

than your typical textbook, but suppresses a huge amount of detail. My main complaint with

this book is that it contains just enough to make you think you can flesh out the handwavy

arguments, but it’s missing just enough so that this would be nearly impossible for a new

student. As a result, I don’t recommend studying it closely if you’re a beginner, but it’s a great

book for bedtime reading.

• Schwichtenberg, No-Nonsense Quantum Field Theory. This book again follows the first 5

chapters of Peskin and Schroeder, but it keeps about 1/4 of the detail and adds quadruple the

explanation, including reviews of basic quantum mechanics, special relativity, and Lagrangian

mechanics. In my opinion, if you plan on eventually getting a full understanding of quantum

field theory, e.g. at the level of Peskin and Schroeder, this book is not the right place to start.

It has no exercises, and it would be more efficient in the long run to back up and review

undergraduate physics directly. If you’re self-studying for fun and want to read just one book

to see the basic ideas of quantum field theory, it would be better to go with:

• Zee, Quantum Field Theory, as Simply as Possible. This is an upgraded popular science book,

aimed at people who know calculus but essentially no physics. It’s packed full of charming

http://www.damtp.cam.ac.uk/user/tong/qft.html
https://knzhou.github.io/writing/Minimum.pdf
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historical anecdotes and vivid analogies. Like every popular book, these analogies are fragile

and not a replacement for real mathematics; the difference is that Zee points this out, and

constantly implores the reader to eventually graduate to real textbooks. This is a great option

for the casual reader who wants to get an idea of what particle physicists do.

• Klauber, Student Friendly Quantum Field Theory. A dense book where half of the first 5

chapters of Peskin and Schroeder are spelled out in extreme detail. Notation is kept completely

explicit throughout, leading to single equations that take up three whole lines in small font.

This book is praised by online reviewers, but I think keeping all details explicit actually inhibits

learning, because you’ll use a ton of mental energy to juggle boilerplate which should be left off

the page. With its obsessive focus on the mechanics of calculations, the book says very little

about the bigger picture. Worse, when it does address concepts, it makes some dubious claims,

and rants against strawman arguments from “established physicists.” Not recommended.

Further aspects of quantum field theory, such as discrete symmetries and spontaneous symmetry

breaking, are covered in the notes on the Standard Model. The most recent version is here; please

report any errors found to kzhou7@gmail.com.

https://knzhou.github.io/notes/sm.pdf
https://knzhou.github.io/notes/qft.pdf
mailto:kzhou7@gmail.com
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8 1. Scalar Fields

1 Scalar Fields

1.1 Classical Field Theory

We begin by reviewing the basics of classical field theory.

• We assume the field is described by an action of the form

S[ϕ(x)] =

∫
d4xL(ϕ, ∂µϕ)

where L is called the Lagrangian density. The absence of explicit x-dependence of L is required

by translational invariance. The fact that S can be written in terms of a Lagrangian density

with a finite number of derivatives means that it is local; fields are only coupled to each other

at the same spacetime point.

• Under a field variation ϕ→ ϕ+ δϕ, let the action change by δS. Then we define the functional

derivative by

δS =

∫
d4x

δS

δϕ(x)
δϕ(x).

If we assume the variation δϕ goes to zero at infinity, typically done by fixing the field at

temporal endpoints and demanding it vanish at spatial infinity, then we can integrate by parts

neglecting boundary terms, giving

δS

δϕ
=
∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

.

Classically, the field minimizes its action, and the equation of motion δS/δϕ = 0 is the Euler–

Lagrange equation.

• As an example, for the free real scalar field we have

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2

from which we identify the kinetic energy density as ϕ̇2/2 and the potential energy density as

(m2ϕ2 + (∇ϕ)2)/2. The equation of motion is the Klein–Gordan equation,

(∂µ∂
µ +m2)ϕ = 0.

• We will often use the Hamiltonian formulation, defining the canonical momentum and Hamil-

tonian by

π(x) =
∂L
∂ϕ̇(x)

, H = π(x)ϕ̇(x)− L, H =

∫
d3xH.

Since we have chosen a preferred time direction, we will have to carefully check for Lorentz

invariance as we go. Note that the canonical momentum isn’t spatial momentum; it instead

measures momentum “in the field direction”. For example, for transverse waves on a horizontal

string, the canonical momentum is the vertical momentum.

• Suppose an infinitesimal transformation ϕ→ ϕ+δϕmodifies the Lagrangian by a total derivative,

L → L+ ∂µF
µ, so that the action remains unchanged. Then

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ) =

(
∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

)
δϕ+ ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
= ∂µF

µ.
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• Therefore, we have

∂µj
µ = − δS

δϕ(x)
δϕ(x), jµ =

∂L
∂(∂µϕ)

δϕ− Fµ.

When the equation of motion is satisfied, ∂µj
µ = 0, so jµ is a conserved current; the spatial

integral of j0 is the conserved charge. This is Noether’s theorem.

We now give some example applications of Noether’s theorem.

• Some symmetry transformations, such as Lorentz symmetry, can be viewed either actively or

passively. The active framework is more general and more straightforward, since it involves

only one “coordinate system”, so we focus on it.

• Sometimes, passive thinking can be useful to help write down the active transformation. For

example, if a passive transformation is x→ x′, then the equivalent active transformation maps

ϕ→ ϕ′ where ϕ′(x′) = ϕ(x). More generally, all our active transformations will take the form

ϕ′(x′) = F (ϕ(x)) by locality.

• For an infinitesimal passive translation x→ x− a, we equivalently have ϕ→ ϕ′ where

ϕ′(x) = ϕ(x+ a) = ϕ(x) + aµ∂µϕ(x).

The Lagrangian changes by the total derivative aµ∂µL and the conserved current is

jµ = aν(πµ∂
νϕ− δµνL).

The four conserved currents above may be combined into the stress-energy tensor,

Tµν = πµ∂νϕ− δµνL, ∂µT
µ
ν = 0.

The conserved charges are the physical energy and momenta of the field; T 00 = H is the energy

density and T 0i is the momentum density. Note that these quantities are bilinear in the fields,

as physical observables generally are.

• It can be shown that Noether charges are tensorial. That is, if Tµν... is a tensor, then

Qν... =

∫
d3xT 0ν...

is a tensor as well, which is independent of the spatial surface used for the integral. For example,

the total energy and momentum form a four-vector. This fact is proven in the general setting

of curved spacetime, in the lecture notes on General Relativity.

• The energy-momentum tensor is ambiguous, as we could also take

Θµν = Tµν + ∂ρΓ
ρµν

where Γ is antisymmetric in its first two indices, so Θ is also conserved. It is convenient to

choose Γ so that Θ is symmetric, yielding the so-called Belinfante tensor, but this still leaves

further freedom; it is removed in general relativity, where the physical stress-energy tensor is

the one which appears in the Einstein field equation.

https://knzhou.github.io/notes/gr.pdf


10 1. Scalar Fields

• Consider a passive Lorentz transformation x→ x′ = Λx. Infinitesimally we have

Λµν = δµν + ωµν .

Then the Lorentz condition ΛµσηστΛντ = ηµν reduces to ωµν = −ωµν , so Lorentz transforma-

tions are parametrized by antisymmetric matrices.

• As a result, we have the corresponding infinitesimal active transformation

ϕ′(x) = ϕ(x)− ωµνxν∂µϕ(x)

with a similar transformation for L by analogy with our results for translations, with ωµνxν

replacing aµ. Then similarly the current is

jµ = −ωρνTµρ xν =
1

2
ωρν(T

µνxρ − Tµρxν)

where we used the antisymmetry of ωρν . Note that this current is only conserved if Tµν is

properly symmetrized.

• The six symmetries can hence be packaged into a rank three tensor, representing the relativistic

analogue of angular momentum density,

(J µ)ρσ = xρTµσ − xσTµρ.

For each choice of ρ and ω, there is a conserved current. For spacelike indices we get angular

momentum, while choosing ρ = 0 and σ = i gives “conservation of the velocity of the center

of energy”. When we work with spinor and vector fields, we’ll get more terms due to the

transformation of the fields themselves, which will correspond to spin angular momentum.

• Stepping back, a field is a map ϕ :M → T where M is the base manifold and T is the target

space. Translational symmetry can be thought of as either due to a “horizontal” change in M

(by x → x + δx) or due to a “vertical” change in T (by ϕ → ϕ + δx ϕ′). Above we’ve always

chosen the vertical option, and all infinitesimal changes can be written in this form. Allowing

horizontal transformations can be occasionally useful for clarity, and adds a factor δxνT
µν to

the Noether current.

Note. Passive transformations need to be interpreted differently to count as symmetries. It is

trivially true that physics is invariant under a change of coordinates. The content of symmetry by

a passive transformation is that after such a transformation, the form of the equations remains the

same. For example, Maxwell’s equations look the same after a Lorentz transformation, but not after

a Galilean transformation. We won’t worry about this because we’ll only use active transformations.

Example. Consider the dilation symmetry

x→ x′ = λx, ϕ′(x′) =
1

λ
ϕ(x).

More generally, the power of λ in the denominator is called the scaling dimension of the field. (It

cannot be intuitively interpreted passively since F is nontrivial, unless we imagine the “rulers” we

use to measure ϕ change as well.) The dilation leaves the action

S =

∫
d4x

1

2
(∂ϕ)2 − gϕ4
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invariant, though a mass term would not be invariant. For an infinitesimal transformation λ = 1− ϵ,

δϕ = ϕ+ xµ∂µϕ.

Since the Noether current is linear in δϕ, we can consider the two terms separately. The first term

straightforwardly gives πµδϕ. The second term is just a translation, with xµ replacing aµ, so

jµ = πµδϕ+ xνT
µν = (∂µϕ)(ϕ+ xν∂

νϕ)− xµL.

Example. An internal symmetry. We consider the complex scalar field

L = |∂µϕ|2 −m2|ϕ|2

which has a U(1) internal symmetry ϕ→ eiαϕ. Treating ϕ and ϕ∗ as independent fields, the equation

of motion is

(∂µ∂
µ +m2)ϕ = 0

along with its conjugate, and under the U(1) symmetry,

α∆ϕ = iαϕ, α∆ϕ∗ = −iαϕ∗, ∆L = 0

which gives the conserved current

jµ = i[(∂µϕ∗)ϕ− ϕ∗(∂µϕ)].

This quantity corresponds to the particle number current; it is reminiscent of the probability current

in quantum mechanics, but j0 can be positive or negative. This causes problems when interpreting

the Klein–Gordan equation as a relativistic particle equation; as a field equation the negative sign

corresponds to antiparticles.

Note. Why can we treat ϕ and ϕ∗ as independent? Consider the variation

∆S ∼ Aδϕ+A∗ δϕ∗.

Treating the variations as independent gives A = A∗ = 0. On the other hand, taking real and

imaginary variations gives A±A∗ = 0 which gives the exact same conclusion.

Another way to think about this is to write ϕ = ϕ1 + iϕ2 where the ϕi are real. Then the ‘extra’

degrees of freedom we get are the same as those when we use complex variations δϕi. This gives no

extra constraints because L is analytic in the ϕi, so if δL vanishes along the real direction, it also

vanishes along the imaginary direction.

Note. Why is there no 1/2 in the complex scalar field Lagrangian? Classically, it doesn’t matter

because scaling the action has no effect. At the quantum level, fields must be canonically normalized

(for free fields, have a kinetic term with coefficient 1/2) for the fields to create conventionally

normalized particle states. We may define

ϕ =
ϕ1 + iϕ2√

2

where the
√
2 factor ensures that ϕ is canonically normalized if the ϕi are. Then the Lagrangian in

terms of the real scalar fields ϕi has the desired factors of 1/2.
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Example. Consider longitudinal vibrations of a spring, described by

L =
1

2
ϕ̇2 − 1

2
(∂xϕ)

2.

There are two symmetries, corresponding to shifts in M and shifts in T ,

δx = a, δϕ = a.

This is subtle, because both of these symmetries would appear to be translational symmetry, as

ϕ is simply the displacement of a point on the spring; in this case it is essential to distinguish M

and T . The first symmetry corresponds to δϕ = a ∂xϕ and corresponds to translating everything;

it yields the momentum. The second symmetry heuristically to “translating the wave within the

spring” and yields the pseudomomentum
∫
π dx.

Example. Electromagnetism is described by the Lagrangian

L = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ.

The factor of −1/4 ensures that we have canonically normalized kinetic terms of the form Ȧ2
i /2.

However, the A0 field has no kinetic term at all, which will present some subtleties later. As

currently written, L doesn’t depend on Aµ, so

∂L
∂(∂µAν)

= −1

2

∂Fαβ
∂(∂µAν)

Fαβ = −1

2
(Fµν − F νµ) = −Fµν

giving the equation of motion

∂µF
µν = 0.

We can also integrate by parts, so that the canonical momenta change, and forces ∂L/∂Aµ appear.

Of course, the equations of motion and all observable quantities remain the same. The naive stress-

energy tensor is neither symmetric or gauge invariant, and must be improved, as discussed in the

lecture notes on General Relativity.

Example. A massive vector field instead has the Lagrangian

L = −1

4
FµνF

µν +
1

2
m2AµA

µ.

There is still no kinetic term for A0, but we no longer have a gauge symmetry. The Euler–Lagrange

equations are

∂µF
µν +m2Aν = 0

and taking the divergence gives m2∂µA
µ = 0, so ∂µA

µ = 0 automatically; in the case m2 = 0 we

must impose this constraint by hand as a gauge fixing condition. Then the equation of motion

reduces to the Klein–Gordan equation (∂2 +m2)Aµ = 0 as expected.

Note. Basic dimensional analysis. We have

[length−1] = [time−1] = [mass] = 1.

Starting from the action [S] = 0, we conclude

[L] = 4, [d4x] = −4, [∂µ] = 1, [ϕ] = [Aµ] = 1.

However, spinor fields will have dimension 3/2.

https://knzhou.github.io/notes/gr.pdf
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1.2 Canonical Quantization

We begin by quantizing the real scalar field introduced previously.

• Motivated by the canonical commutators in quantum mechanics, we promote ϕ and π to

operators satisfying

[ϕ(x), π(y)] = iδ(x− y)

with all other commutators equal to zero. Pointwise, these operators behave like x and p in

quantum mechanics, but the position/momentum is in field space, not physical space.

• Classically, the real scalar field is analogous to an infinite set of coupled harmonic oscillators,

which have independent normal modes. Thus we are motivated to Fourier transform. Now,∫
dx eip·x = (2π)3δ(p),

∫
dp eip·x = (2π)3δ(x)

which tells us that a net factor of 2π must be in the Fourier transform. We choose

f̃(p) =

∫
dx f(x)e−ip·x, f(x) =

∫
d̄p f̃(p)eip·x, d̄p =

dp

(2π)3

To save space we drop the tilde, identifying the function by its argument. We also write
/δ(p) = (2π)3δ(p) and /δ(p) = (2π)4δ(p).

• Expanding the Hamiltonian, we have

H =
1

2

∫
dx
(
ϕ̇2 + (∇ϕ)2 +m2ϕ2

)
.

We may simplify these terms by plugging in the Fourier transform and using ϕ(p) = ϕ†(−p)
and π(p) = π†(−p), which holds because ϕ(x) and π(x) are self-adjoint, giving

H =
1

2

∫
d̄p
(
|π(p)|2 + ω2

p|ϕ(p)|2
)
, ωp =

√
p2 +m2

where for an operator A, |A2| = A†A. This describes decoupled harmonic oscillators with

frequency ωp.

• Now, for the ordinary harmonic oscillator, H = (1/2)(p2 + ω2q2), we define

q =
a+ a†√

2ω
, p = −i

√
ω

2
(a− a†).

By analogy, here we define

ap =
1

2

(√
2ωp ϕ(p) + i

√
2

ωp
π(p)

)

and find, for instance, that

ϕ(p) =
ap + a†−p√

2ωp
.

The calculations are a little more complicated because both p and −p terms are present.
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• After working through the algebra, we find

ϕ(x) =

∫
d̄p√
2ωp

(ape
ip·x + a†pe

−ip·x), π(x) =

∫
d̄p (−i)

√
ωp
2
(ape

ip·x − a†pe−ip·x).

We’ll use this form of the field operators almost exclusively.

• Some calculation gives the commutation relations

[ap, a
†
q] = /δ(p− q)

with all other commutators equal to zero. Applying these commutation relations in a slightly

long but straightforward calculation gives

H =

∫
d̄pωpa

†
pap +

1

2

∫
dpωpδ(0)

with a large divergent counterterm.

Note. We find a divergent constant for two reasons. The δ(0) term is an IR divergence due to

the infinite size of our space. Generally, IR divergences signal that we are asking an unphysical

question. The integral of ωp also diverges in the UV because the theory must break down at some

upper scale. For example, if we take the continuum limit of a lattice with spacing a, it should break

down at energy Λ ∼ 1/a. We will be able to perform calculations at E ≪ Λ using the machinery of

regularization and renormalization.

As an explicit example, we can instead quantize the Lagrangian

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 − V0

where V0 is a counterterm, and regularize by introducing a cutoff Λ. We choose V0(Λ) so that the

vacuum energy density is a finite constant for every choice of Λ, then take the limit Λ→∞ without

issue. The price is that our theory now no longer predicts the value of the vacuum energy density.

Generically, we would expect it to be some arbitrary number between zero and M4
P (the cutoff

for quantum gravity), and to lie somewhere in the middle of the range. But we instead observe

a vacuum energy density about 10122 times smaller than the maximum value. This is the “old

fashioned” way to explain the cosmological constant problem.

As we’ll see later, the reasoning here is not quite correct, but in the modern Wilsonian framework

the problem remains. Furthermore, we cannot simply ignore the vacuum energy entirely, defining

it to always be zero, because we can measure differences in it via the Casimir effect.

We now investigate the Hilbert space of our theory.

• In accordance with the remark above, we set the vacuum energy to zero. Another way to view

the vacuum energy is to think of it as an artifact of our quantization procedure; the map from

H(q, p) to Ĥ(q̂, p̂) is not unique because q and p commute but q̂ and p̂ don’t. We may choose

to map H(a, a†) to Ĥ(â, â†) so that all the â’s are to the right, giving zero vacuum energy. The

resulting Hamiltonian is said to be normal ordered.
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• The spatial momentum is

P i =

∫
dx ϕ̇(x)∂iϕ(x) =

∫
d̄p pia†pap +

1

2

∫
dp piδ(0)

where the constant is zero by “symmetry”. (This can also be justified more carefully by

regulating the delta function in any way.) Thus in general we define the four-momentum

Pµ =

∫
d̄p pµa†pap, pµ = (ωp,p)

• The four-momentum operator satisfies the commutation relations

[Pµ, a†p] = pµa†p, [Pµ, ap] = −pµap.

Since Pµ is self-adjoint, it has real eigenvalues. The commutation relations imply that a†p raises

the Pµ eigenvalue by pµ.

• Finally, we note that H = P 0 is nonnegative, so we cannot apply aq indefinitely. In particular,

there must exist a state satisfying

aq|0⟩ = 0

for all q. We postulate this state is unique and call it the vacuum state. By direct computation,

it has zero four-momentum, Pµ|0⟩ = 0.

• The state a†p|0⟩ has the correct relativistic dispersion relation for a particle of mass m, so we

interpret the state as containing one particle. Similarly, acting with n creation operators gives

an n-particle state. We can show that acting with only creation operators can’t take us back

to the vacuum. Thus, we have pinned down the structure of the Hilbert space using only the

commutation relations and the postulated vacuum state.

• As we’ll see later, the fact that the creation operators commute means that the particles obey

Bose statistics. The spin-statistics theorem states that all scalar particles (in a four-dimensional

relativistic field theory) must obey Bose statistics.

• We can directly promote all the quantities we found in the previous section (e.g. the stress-

energy tensor and the six Lorentz currents) to operators. For example, we can show that the

angular momentum of the one-particle state with zero momentum is zero, which shows that

our particles have zero spin.

We now explicitly define the one-particle states with relativistic normalization.

• We choose to normalize the one-particle states as

|p⟩ =
√
2Epa

†
p|0⟩

and more generally multiply for
√
2Ep for each creation operator a†p for a multiparticle state.

Applying the commutation relations gives

⟨q|p⟩ = (2Ep)/δ(p− q)

which implies that the identity on the one-particle Hilbert space is

1one-particle =

∫
d̄p

2Ep
|p⟩⟨p|.
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• The reason we prefer this form is the appearance of the Lorentz invariant measure. Note that∫
d̄p /δ(p2 −m2)Θ(p0) =

∫
d̄p

2Ep
.

Since the left-hand side is Lorentz invariant, d̄p/2Ep is as well.

• Similarly, (2Ep)δ(p − q) is Lorentz-invariant, since it gives one when integrated against the

Lorentz invariant measure. Thus the normalization of the one-particle states is Lorentz invariant;

when a Lorentz transformation Λ is represented as a unitary operator U(Λ), it will satisfy

U(Λ)|p⟩ = |Λp⟩, where Λp is defined as the spatial part of Λ(Ep,p).

• Finally, we define the states |x⟩ = ϕ(x)|0⟩. Using the commutation relations gives

⟨p|x⟩ = e−ip·x

which is similar to how momentum and position eigenstates are related in quantum mechanics.

Then |x⟩ represents a particle localized near x.

• There are no perfectly localized states in relativistic quantum field theory. Using the definition

above, ⟨y|x⟩ is not a delta function, but rather has range on the order of the Compton wavelength

1/m, which stems from the Lorentz invariant measure factor of 1/2Ep. Alternatively, one could

omit this factor, yielding perfectly localized “Newton–Wigner” states. However, these states

don’t transform nicely under Lorentz transformations, and in particular, they do not remain

localized states in other frames.

• Note that the quantum field has a factor of 1/
√
2Ep rather than the Lorentz invariant 1/2Ep.

This is because the creation operators have to be multiplied by
√

2Ep to give relativistically

normalized states, i.e. the expression is really (d̄p/2Ep)
√
2Ep a

†.

Example. The complex scalar field. We take

L = (∂µϕ)
†(∂µϕ)−m2ϕ†ϕ

and treat ϕ and ϕ† as independent fields. The conjugate momenta of ϕ and ϕ† are π = ϕ̇† and

π† = ϕ̇ giving Hamiltonian

H = π†π +∇ϕ† · ∇ϕ+m2ϕ†ϕ.

We perform canonical quantization by demanding

[ϕ(x), π(y)] = [ϕ†(x), π†(y)] = iδ(x− y)

with other commutators zero. As a result, the mode expansion is

ϕ(x) =

∫
d̄p√
2Ep

(ape
ip·x + b†pe

−ip·x)

with a conjugate expression for ϕ†, and π determined by π = ϕ̇†. The quickest way to derive this

expression is to write ϕ = (ϕ1 + iϕ2)/
√
2 and simply add the real field results together, identifying

ap and b†p as the coefficients of the eip·x and e−ip·x terms. We can also do this for π, but note that

π = (π1 − iπ2)/
√
2. Finally, this method gives the commutators

[ap, a
†
q] = [bp, b

†
q] = /δ(p− q)
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with all other commutators vanishing. Note that ϕ is now no longer Hermitian and therefore not

observable; this is acceptable as we generally observe only field bilinears. Constructing the Hilbert

space as before gives two independent types of particles. The momentum has mode expansion

Pµ =

∫
d̄p pµ(a†pap + b†pbp)

so that both particles have mass m. Finally, the Noether charge under the U(1) symmetry is

Q = i

∫
dx (πϕ− ϕ∗π∗) =

∫
d̄p (b†pbp − a†pap)

where we implicitly normal ordered Q. Then the two types of particles carry opposite Noether

charge. When we study QED, we will identify this charge with the electric charge.

Example. Now suppose we have two complex scalar fields ϕa of equal mass. Then we have a U(2)

symmetry, with the generators of the SU(2) part being

Qi = i

∫
dx (πaσ

i
abϕb − ϕ∗aσiabπ∗b ).

These generators satisfy the su(2) commutation relations; in the case of the proton and neutron, or

up and down quark, they generate isospin transformations.

1.3 Heisenberg Picture

To restore some of the Lorentz invariance, we switch to Heisenberg picture.

• Recall that in Heisenberg picture,

AH(t) = eiH
StASe−iH

St

where we have assumed all Schrodinger operators are time-independent. In particular, the

Hamiltonian satisfies HS = HH , and the time evolution is

d

dt
AH(t) = i[H,AH(t)].

• Switching to Heisenberg picture preserves relations between operators as long as all operators

are evaluated at the same time. Then the commutators become equal time commutators,

[qHi (t), pHj (t)] = iδij .

• For fields, we will drop the indices. A Schrodinger field will have argument x, while a Heisenberg

field will have argument x = (t,x). The equal time commutators are

[ϕ(t,x), π(t,y)] = iδ(x− y), [ϕ(t,x), ϕ(t,y)] = [π(t,x), π(t,y)] = 0.

• The Heisenberg equation of motion for the fields is

ϕ̇(t,x) = i[H,ϕ(t,x)].
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Now, H doesn’t evolve in time, so we choose to evaluate it at time t, where

H(t,x) = 1

2
π2(t,x) +

1

2
(∇ϕ(t,x))2 + 1

2
m2ϕ(t,x)2

so we can apply the equal time commutation relations. We thus find

ϕ̇(t,x) = π(t,x), π̇(t,x) = (∇2 −m2)ϕ(t,x)

which correspond to the classical Hamilton’s equations. The first equation gives an easy way of

recovering the mode expansion for π. The two together show the field ϕ obeys the Klein-Gordon

equation.

• The Heisenberg equations also ‘covariantize’, i.e. we can show that

∂µϕ(x) = i[Pµ, ϕ(x)], ϕ(x+ a) = eiaPϕ(x)e−iaP .

• Finally, we compute the mode expansion in Heisenberg picture; we choose to keep the creation

and annihilation operators the same. We get factors like eiHtape
−iHt in the field expansion; to

handle them note that

Hap = ap(H − ωp), f(H)ap = apf(H − ωp).

Commuting the creation and annihilation operators in this way gives

ϕ(x) =

∫
d̄p√
2ωp

(ape
−ipx + a†pe

ipx).

Note that px stands for pµxµ, with an apparent sign flip because of the (+−−−) metric.

• The inverse expression is

ap =
i√
2ωp

∫
dx eiqx

←→
∂0ϕ(x)

where f
←→
∂ g = f∂g − g∂f and the time in ϕ(x) is arbitrary.

Finally, we return to the question of causality.

• Using the Heisenberg picture, we can think of measurements as taking place at different times;

conceptually OH(t) represents a measurement of O at time t.

• To understand this, suppose that O1(t1) and O2(t2) commute. Then they have a common

eigenbasis |ψi⟩ where the |ψi⟩ are nonevolving Heisenberg states. In Schrodinger picture,

|ψi(tj)⟩ is an eigenvector of Oj .

Thus, if O1 is measured at t1, there is no statistical effect on a measurement of O2 at time t2.

• Therefore, we say operators O1(x) and O2(y) on spacetime are local if

[O1(x), O2(y)] = 0 when (x− y)2 < 0.

This enforces causality: a measurement of O1 cannot affect O2 superluminally.
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• Since the elementary observables are the fields ϕ, we compute

∆(x− y) = [ϕ(x), ϕ(y)] =

∫
d̄p

2ωp
(e−ip(x−y) − e−ip(y−x)).

Now, the integration measure and integrand are both Lorentz invariant, so if the separation is

spacelike we can switch to a frame where x0 = y0, giving factor (eip·(x−y) − e−ip·(x−y)), which

integrates to zero as desired.

• More generally, the same calculation goes through for commutators of ∂µϕ, and all local operators

O(x) can be built out of ϕ(x) and ∂µϕ(x). Thus quantum fields maintain causality.

• For interacting fields, we cannot use the free mode expansion; the commutator turns out to be

an operator rather than a number. Working casually, we could show it also vanishes at spacelike

separation, but formally, we would take this as one of our axioms.

Next, we consider propagators and Green’s functions.

• Define |x⟩ = ϕH(x)|0⟩. To interpret |x⟩, switch back to Schrodinger picture for

|x⟩ = U(−t)ϕ(x)U(t)|0⟩ = U(−t)ϕ(x)|0⟩ = U(−t)|x⟩.

Since |x⟩ is roughly a state with a particle at x, |x⟩ is a state that has a particle at x after

evolution for a time t, so |x⟩ has a particle at x. This particle exists for all times, both before

and after t, but is only well-localized at time t.

• Therefore, we define the propagator

D(x− y) = ⟨0|ϕ(x)ϕ(y)|0⟩ =
∫

d̄p

2ωp
e−ip(x−y)

which describes the amplitude for a particle to go from y to x.

• The commutator is D(x − y) − D(y − x). While the propagator is nonzero for spacelike

separations, the commutator is, because the amplitudes for propagation from x to y and y to

x cancel out! Note the interplay between the field intuition for ϕ (in the commutator) and the

particle intuition for ϕ (in the propagator).

• When we generalize this to the complex scalar field, we see that the amplitude for a particle

to go from x to y is canceled by the amplitude for an antiparticle to go from y to x. (For the

real scalar field, the particles are their own antiparticles.) This is generally the reason that a

multi-particle picture is necessary to preserve causality in relativistic quantum mechanics.

• We define the Feynman propagator

DF (x− y) = ⟨0|Tϕ(x)ϕ(y)|0⟩

where time ordering means to order fields “later on left”, so that earlier fields are applied to

the state first. Then

DF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x)

=

∫
d̄p

2ωp
eip·(x−y)

(
θ(x0 − y0)e−iωp(x0−y0) + θ(y0 − x0)eiωp(x0−y0)

)
.
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• One can show that this is equal to the contour integral

DF (x− y) =
∫
d̄p

i

p2 −m2 + iϵ
e−ip(x−y)

where the p0 integral is along the real axis. The two step function cases come from how we

close the contour, which affects which pole we pick up. To remember the sign, note that the iϵ

shifts the poles so we can Wick rotate to a contour that goes up the imaginary axis.

• Working in Fourier space makes the Feynman propagator easy to differentiate. We find

(∂2x +m2)DF (x− y) = −iδ(x− y)

so it is a Green’s function for the Klein–Gordan equation. More generally, any of the four

possible pole prescriptions gives an independent Green’s function, including the retarded and

advanced Green’s functions.

• There are some inconsistencies in terminology here. In quantum mechanics, a propagator obeys

the equations of motion, while Green’s functions obey it up to a delta function driving. Thus a

propagator is used to propagate a solution for a homogeneous equation forward in time, while

a Green’s function is used to solve an inhomogeneous equation.

• However, in quantum field theory, we use the term “propagator” to denote an amplitude for a

particle to propagate from one point to another. Thus both D and DF are called propagators,

though only D is a propagator in the quantum mechanical sense; DF is a Green’s function.

• The retarded propagator propagates modes to the future, while the Feynman propagator prop-

agates positive frequency modes forward in time and negative frequency modes backward in

the time. The Feynman propagator is not often used in classical field theory, since it is not

causal, and not even real, but plays an important role in perturbative quantum field theory,

which centers around time-ordered correlation functions.

• The very rough intuition for the Feynman propagator is that after quantization, an excitation

of a negative frequency mode going backwards in time corresponds to an antiparticle going

forwards in time. So the Feynman propagator propagates both particles and antiparticles

forwards in time.

Note. The classical complex scalar field has both positive and negative frequency modes. At the

classical level, this isn’t a problem, as both modes have positive energy. However, in the quantum

theory, we run into trouble because of the relation E = ℏω, which ties frequency to energy. If the

field is regarded as a single-particle wavefunction, we find arbitrarily negative energy levels, which

plagued early attempts at relativistic quantum mechanics.

This problem is avoided in quantum field theory because each mode is associated not with

an eigenstate of the Hamiltonian, as in relativistic quantum particle mechanics, but with a set

of creation and annihilation operators. For instance, for the complex scalar field, we associate

a positive frequency mode with an annihilation operator but a negative frequency mode with a

creation operator, in the mode expansion

ϕ(x) =

∫
d̄p√
2Ep

(ape
−ipx + b†pe

ipx).
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This is forced by canonical quantization. As a result, both a†p and b†p increase the energy, avoiding

the negative energy levels.

In all cases, the quantization of a relativistic field yields pairs of positive and negative frequency

modes. These both must appear in the mode expansion; if one is associated with a creation operator,

the other must be associated with an annihilation operator. If there is an internal symmetry under

which the field has a definite charge, this implies that the positive and negative frequency modes

are associated with particles with opposite charges. This is how relativistic quantum field theory

predicts the existence of antimatter.

Note. Keeping track of a tricky sign. In Heisenberg picture, we have a† ∼ eiωt because a† increases
the energy, i.e. it makes a state behave like e−iωt, but in Heisenberg picture a†(t) makes a particle

with no phase at time t, which means we need to run time backwards to t = 0 to see how it affects

the Heisenberg state, flipping the sign. Since we take a† to be time-independent in Heisenberg

picture, the eiωt is absorbed into the exponent. Thus the coefficient of a positive frequency solution

(i.e. one proportional to e−iωt) is an annihilation operator. For the same reason, if the field carries

a quantum number Q, the action of the field on states generally lowers Q. This minus sign will be

mostly invisible in the discussion below, but will occasionally pop up to cause confusion.

1.4 Quantum Mechanics

Finally, we connect our results above to ‘ordinary’ quantum mechanics. We begin with describing

attempts at nonrelativistic quantum mechanics.

• The Schrodinger equation has a conserved current

ρ = ψ∗ψ, j = − i

2m
(ψ∗∇ψ − ψ∇ψ∗).

If ψ is interpreted as a particle wavefunction, then it implies probability is conserved. In

particular, a Schrodinger equation for particles can’t account for particle creation or annihilation.

• On the other hand, if ψ is interpreted as a field, this conserved current comes from the U(1)

symmetry of the first-order Schrodinger Lagrangian

L = iψ∗ψ̇ − 1

2m
∇ψ∗ · ∇ψ − V (x)ψ∗ψ.

In the early days, this conceptual distinction was not clearly made. Note that here the momen-

tum conjugate to ψ is simply iψ∗, so only ψ is needed as an initial condition.

• Historically, Schrodinger first invented the Klein–Gordan equation, with conserved current

jµ = i(ϕ∗∂µϕ− ϕ∂µϕ∗).

The issue is that if ϕ is interpreted as a wavefunction, then the probability density j0 is not

positive definite. Moreover, there are negative energy states.

• In the context of the Klein–Gordan field theory, these problems are both fixed. There, jµ is

interpreted as a charge current, not a probability current. Moreover, negative energy states are

avoided by the conceptual replacement of states by modes, as mentioned above.
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• Dirac attempted to solve these problems by constructing an equation that was first order in

time, giving the Dirac equation. The conserved current

jµ = ψγµψ

has positive definite density j0 = ψ†ψ. There remain negative energy solutions, which Dirac

resolved by postulating that all negative energy states were already occupied, by a “Dirac sea”.

• Despite these odd features, the Dirac equation was extremely successful. For instance, it

automatically accounted for all fine structure corrections, as well as the g-factor of the electron,

which is determined by minimal coupling rather than put in by hand. We further describe these

successes in the notes on Undergraduate Physics.

Note. Some further discussion of the Dirac sea. In the years following the Dirac equation, inter-

preting the negative energy solutions was a major issue. One obvious fix is to just dismiss them

as unphysical, but this was unsuitable for several reasons. First, the negative energy subspaces

for free electrons and, e.g. the electron in hydrogen were different, so the prescription was not

well-defined to begin with. Second, the positive energy states did not form a complete set, and if

one does not include the negative energy states as intermediate states in perturbation theory, one

gets the wrong results. And finally, the Zitterbewegung caused by interference between positive

and negative energy states was necessary to produce the Darwin term, which contributed to the

experimentally observed fine structure.

Dirac solved all of these problems at once by postulating the Dirac sea, interpreting positrons

as holes in the Dirac sea. It’s worth seeing how this is resolved within quantum field theory; it is

different from the resolution we saw earlier, which works for bosonic fields. For fermionic fields, the

modes are described by fermionic quantum harmonic oscillators, obeying {a, a†} = 1. However, the

occupied and unoccupied states are completely symmetric: one can just as easily define b = a† and

b† = a. Hence in quantum field theory, we simply define particles in terms of the excitations about

the lowest-energy state, which is defined to be the vacuum. So by fiat, the vacuum has no particles

in it, and is energetically stable. The problematic negative energy modes of the Dirac equation

are reinterpreted as negative frequency modes of the Dirac field, for which we need to perform the

swap above. (This idea does not work for bosonic fields, as exchanging creation and annihilation

operators would yield the wrong commutation relation, [a, a†] = −1. If one insisted on interpreting

this as a set of creation and annihilation operators, then a† would create states with negative norm,

leading right back to the negative probabilities fixed by passing to quantum field theory.)

In other words, in the Dirac equation we postulate the unwanted states are already occupied,

while in the Dirac field, we define the notion of “occupation” so that in the lowest energy state,

nothing is occupied. This might look like mathematical slight of hand. Indeed, in spirit the two are

just the same core idea described with different words. For example, one problem with the Dirac

sea is the resulting infinite charge density, which was thought to cancel out an infinite “bare” charge

of empty space. In quantum field theory, the exact same problem appears, because the naive charge

operator diverges when evaluated on the vacuum state. We remove this infinity by normal ordering,

which is essentially just subtracting out the contribution we don’t want. As another example, the

Dirac sea also provides an infinite mass density, which produces unwanted gravity. The exact same

problem appears in quantum field theory, where we must tune the cosmological constant to cancel

such contributions.

However, the Dirac field has legitimate conceptual advantages over the Dirac sea, especially in

situations where particles are created or destroyed. For example, one might be led by the Dirac sea

https://knzhou.github.io/notes/phy.pdf
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to think that electron number must be conserved, though it isn’t in weak processes. (One might

think that beta decay, observed by the time of the Dirac sea, should have made the idea obviously

wrong. But at this time the neutron was not known: nuclei were thought to be made of protons and

“nuclear electrons”, so beta decay did conserve electron number.) It is also puzzling how the Dirac

sea is formed in the first place, since one needs just enough electrons to fill the sea and no more; it

seems the Dirac sea breaks the symmetry between matter and antimatter. But this problem lives

on in field theory, as the problem of baryogenesis.

Next, we recover the Schrodinger equation from quantum field theory.

• In order to revert to ‘ordinary’ quantum mechanics described by a Schrodinger equation, we

must take the nonrelativistic limit to avoid particle creation. We also need a conserved current

which will eventually serve as the probability current, which means the simplest option of a

real scalar field doesn’t work; we instead choose a complex scalar field.

• Taking the Klein–Gordan equation (∂2 +m2)ϕ = 0 and setting ϕ = e−imtχ/
√
2m yields

iχ̇ =
χ̈−∇2χ

2m
.

Noting that χ̈/m ≪ χ̇, since the field is nonrelativistic, we recover the Schrodinger equation.

Similarly, we can go from the Klein–Gordan Lagrangian to the Schrodinger Lagrangian,

L = iχ∗χ̇− 1

2m
∇χ∗ · ∇χ.

Note that the current jµ reduces to the nonrelativistic expressions for ρ and j, where the factor

of
√
2m converts between relativistic and nonrelativistic normalization. The reason ρ and j

look superficially different is that ϕ and χ are related by only a time-varying phase; as usual

the deeper, relativistic theory “makes more sense”, uniting the two expressions.

• However, we are not done, because χ is a classical field, not a quantum wavefunction. To put it

another way, the position remains a parameter, rather than an operator. However, we do have

a chance of recovering quantum mechanics if we quantize this field.

• Turning the crank of canonical quantization, we have

π = iχ∗, H =
1

2m
∇χ∗ · ∇χ, [χ(x), χ†(y)] = δ(x− y).

Unlike the usual canonical commutation relations, these can be solved by

χ(x) =

∫
d̄p ape

ipx, [ap, a
†
q] = /δ(p− q).

Hence antiparticles do not appear in the nonrelativistic limit, because the field equation is not

relativistic. Of course one could include them, but the formalism does not require them.

• The key structural difference is the following: the Lagrangian must be second order in space

derivatives to be a scalar (or, upon integrating by parts, quadratic in first spatial derivatives).

Lorentz invariance requires the Lagrangian to be second order in time, while without it the

Lagrangian may be first order in time, giving the simpler commutation relations above.
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• At this point, we have the so-called Schrodinger field theory. This formalism is useful in many-

body problems in atomic, nuclear, and condensed matter physics, even in situations where the

particle number is fixed, because it is second quantized and hence automatically accounts for

the symmetrization postulate.

• To describe fermions, we could instead quantize using the canonical anticommutation relations,

as we will for the Dirac field below. We can quantize either way, as statistics is only determined

by spin within relativistic field theory.

• The U(1) symmetry conserves the number of particles. To recover the Schrodinger equation,

we must define position and momentum operators. As before, we must have

H =

∫
d̄p

p2

2m
a†pap, P =

∫
d̄pp a†pap

which are simply the usual definitions in nonrelativistic quantum field theory.

• We focus on single particle states, defining |x⟩ = χ†(x)|0⟩ and

X =

∫
dxxχ†(x)χ(x), X|x⟩ = x|x⟩

where the latter property is just as expected for a position operator. Note that this step doesn’t

work in the relativistic case, because the analogues of the |x⟩ states are not perfectly localized.

• Define a wavefunction by

|ψ⟩ =
∫
dxψ(x)|x⟩.

Then it is straightforward to verify that

X|ψ⟩ =
∫
dxxψ|x⟩, P|ψ⟩ =

∫
dx (−i∇ψ)|x⟩, H|ψ⟩ =

∫
dx

(
− 1

2m
∇2ψ

)
|x⟩.

Hence, by working with the wavefunctions directly, the canonical commutation relations are

satisfied and the wavefunction obeys the Schrodinger equation.

• A similar procedure works for the Dirac equation. We now can use either commutation relations

or anticommutation relations to quantize the field; choosing the latter, we preserve the commu-

tation relation between X and P because these operators are bilinear in the fields. However,

returning from the Dirac field to the Dirac equation for a single particle is a bit more subtle,

because of the issues of interpreting negative energy solutions. (add more detail)

• Note that the equation satisfied by the wavefunction of a single particle is the same as the

equation satisfied by the field as a whole! This was responsible for much confusion in the early

days of quantum mechanics, where it was thought that field theory resulted from quantizing the

wavefunction itself. That was a reasonable idea, since in those days it was also unclear how the

wavefunction was to be interpreted. Now we know that neither single particle wavefunctions

or classical fields come first; they both emerge from quantum fields, and this common origin is

the reason for their similarity.
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2 Interacting Scalar Fields

2.1 Spectral Representation

We now carefully treat interacting scalar fields.

• We consider an interacting Lagrangian

L = L0 + Lint, Lint = −Vint

where Vint is a power series in ϕ starting at cubic order.

• We still have Poincare symmetry, i.e. we still have unitary operators realizing these symmetries.

Thus we can still talk, for example, about the momentum of a state. We also still have the

equal-time commutation relations.

• We assume the full Hamiltonian has a unique vacuum |Ω⟩ with zero four-momentum,

Pµ|Ω⟩ = 0.

Hence the vacuum is translation invariant, eixP |Ω⟩ = |Ω⟩.

• Since we still have translation invariance, the Hamiltonian and 3-momentum commute, so we

can choose a basis of states with definite four-momentum,

H|λp⟩ = Ep(λ)|λp⟩, P|λp⟩ = p|λp⟩.

One can show that, by applying a Lorentz boost, we get a family of states |λp⟩ for every λ,

whose energies are Ep = (p2 +m2
λ)

1/2.

• The index λ labels irreps of the Poincare group in the interacting Hilbert space. In a weakly

interacting theory, the sum includes “dressed” versions of the particles in the free theory, bound

states of those particles, and unbound multiparticle states. In the latter case, λ has a continuum

of values, as necessary to specify the relative motion of the particles.

• In a strongly interacting theory, there is no sharp distinction between dressed particles and bound

states. The only meaningful distinction we can make is between multiparticle states and others,

because the continuous values of λ for multiparticle states will have analytic consequences.

• Since the equation of motion is now nonlinear, the mode decomposition of ϕ is no longer useful.

Even at the classical level, such a decomposition doesn’t work because the interaction mixes the

modes. At the quantum level, we could formally expand ϕ(x) in terms of ladder operators as in

the free field case, but as we’ll shortly see, these operators wouldn’t have a simple interpretation

in terms of creating and annihilating particles.

• The completeness relation, with relativistic normalization, is

1 = |Ω⟩⟨Ω|+
∑
λ

∫
d̄p

2Ep(λ)
|λp⟩⟨λp|.
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• Translation operators and Lorentz boost act on the field as

ϕ(x) = eixPϕ(0)e−ixP , ϕ(x) = U−1(Λ)ϕ(x′)U(Λ)

where U(Λ) carries out the Lorentz transformation x′ = Λx. To check the signs, we can take

matrix elements on both sides and act on the states instead.

With this setup, we now compute the Feynman propagator.

• Consider ⟨Ω|ϕ(x)|Ω⟩. Using the translational invariance of the vacuum, we find that ⟨Ω|ϕ(x)|Ω⟩ =
⟨Ω|ϕ(0)|Ω⟩ for all x. We can set the constant to zero by shifting the field, as this preserves the

canonical commutators.

• Therefore, inserting the identity in a correlation function,

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∑
λ

∫
d̄p

2Ep(λ)
⟨Ω|ϕ(x)|λp⟩⟨λp|ϕ(y)|Ω⟩

where the vacuum term vanishes. Using the fact that the |λp⟩ have definite momentum,

⟨Ω|ϕ(x)|λp⟩ = ⟨Ω|ϕ(0)|λp⟩e−ipx.

Next, applying a Lorentz boost such that |λp⟩ = U−1|λ0⟩,

⟨Ω|ϕ(0)|λp⟩ = ⟨Ω|U−1Uϕ(0)U−1U |λp⟩e−ipx = ⟨Ω|ϕ(0)|λ0⟩

where we used the Lorentz invariance of the zero vector and the vacuum.

• Putting these results together, we have

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∑
λ

∫
d̄p

2Ep(λ)
e−ip(x−y)|⟨Ω|ϕ(0)|λ0⟩|2.

Doing the exact same manipulations for the time ordered correlator gives

⟨Ω|Tϕ(x)ϕ(y)|Ω⟩ =
∑
λ

∫
d̄p

i

p2 −m2
λ + iϵ

e−ip(x−y)|⟨Ω|ϕ(0)|λ0⟩|2.

• It is useful to parametrize this result by mass,

⟨Ω|Tϕ(x)ϕ(y)|Ω⟩ =
∫ ∞

0
d̄(M2) ρ(M2)D0

F (x− y,M2)

where

D0
F (x− y,M2) =

∫
d̄p

i

p2 −M2 + iϵ
e−ip(x−y), ρ(M2) =

∑
λ

/δ(M2 −m2
λ)|⟨Ω|ϕ(0)|λ0⟩|2.

The quantity ρ(M2) is called the spectral function, and by its definition, it is real and positive.
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• Typically the spectral function will have poles for one-particle states and bound states. Mul-

tiparticle states have continuously “smeared out” poles, i.e. branch cuts. Separating out the

one-particle contribution,

ρ(M2) = /δ(M2 −m2)Z + higher, Z = |⟨Ω|ϕ(0)|10⟩|2

so that∫
dx eip(x−y)⟨Ω|Tϕ(x)ϕ(y)|Ω⟩ = iZ

p2 −m2 + iϵ
+

∫ ∞

m2
bound

d̄(M2) ρ(M2)
i

p2 −M2 + iϵ
.

The quantity Z is called the wavefunction renormalization, where Z = 1 when the theory is

free. We see that in an interacting theory, ϕ(x) creates not only a one-particle state, but a

superposition of many kinds of states. However, as long as Z ̸= 0, it has at least some amplitude

to create the single-particle states that we need to calculate scattering amplitudes.

• Note that this derivation was very general, and never required an expansion into creation and

annihilation operators; it works for any field operator, e.g. also for composite operators. However,

one can show that for bare fields (i.e. fields that satisfy [ϕ0(t,x), ∂tϕ0(t,y)] = iδ(x− y)), the

spectral function has unit integral, and hence Z ≤ 1.

• There is also a similar spectral representation for the Dirac field,∫
dx eip(x−y)⟨Ω|Tψ(x)ψ(y)|Ω⟩ =

iZ2
∑

s u
s(p)us(p)

p2 −m2 + iϵ
+ . . . ,

√
Z2u

s(p) = ⟨Ω|ψ(0)|p, s⟩.

To derive it, we also need to keep track of how the Lorentz boosts above affect the field.

• Interactions could also render one-particle states unstable, e.g. by allowing them to decay to

lighter particles. Such states are not energy eigenstates at all. They instead appear in the

Fourier transform of the two-point function as poles off the real axis, as we’ll discuss later.

Another possible subtlety is that in a theory with massless particles, the branch cut extends

down to M2 = 0.

Note. A cheap RG analysis. Consider interactions of the form λnϕ
n. Since [L] = 4 and [ϕ] = 1,

we have [λn] = 4− n. We consider a few examples.

• For the cubic interaction, [λ3] = 1, so the effect of the interaction is described by the dimen-

sionless parameter λ3/E, where E is the energy scale of the process. (This is clearest in the

path integral picture, where λ3/E estimates the action contribution.) Then the interaction is

strong at low energies, so it is called relevant.

• For the quartic interaction, [λ4] = 0, and we say it is marginal.

• For the quintic interaction, [λ5] = −1, so its effect is described by λ5E, which is weak at low

energies, so it is called irrelevant.

• Now suppose we have a fundamental theory defined at some high scale Λ. Then the dimensionless

coupling constant for ϕ5 would be g5 = Λλ5, where by naturalness we expect g5 = O(1). Then

the effect of the interaction at scale E is g5(E/Λ).
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• If Λ is taken to be the GUT scale or the Planck scale, then E/Λ is extremely small, so it is an

excellent approximation to ignore irrelevant terms.

• But there is a subtlety: consider the dimension 2 mass term. If the above argument worked, then

we would expect it to scale as Λ2ϕ2, which implies a mass of order Λ. But clearly, there exist

plenty of particles with masses well below the Planck scale. This violation of naive dimensional

analysis can result from approximate symmetries, tuning, or nontrivial dynamics.

Note that this analysis depends on the spatial dimension. In six dimensions, [L] = 6, [ϕ] = 2, and

it is λ6 that is marginal.

2.2 The LSZ Reduction Formula

We now carefully define scattering amplitudes in terms of “in” and “out” states.

• We are still working in Heisenberg picture, so all states are “fixed in time”. Note that a better

way of thinking about Heisenberg picture is that all the states “extend through time”, so they

may be described by how they look at any given time.

• An in state |i, in⟩ is a state which looks like several widely separated, incoming particles as

t → −∞. Similarly, an out state |f, out⟩ is a state which has widely separated, outgoing

particles as t → ∞. Here, i and f are shorthand for a specification like “two particles, of

momenta pµ and qµ”. The asymptotic vacua are |vac, in⟩ and |vac, out⟩.

• The S matrix maps out states to in states,

|i, in⟩ = S|i, out⟩.

In most reasonable physical theories, we have

|vac, in⟩ = |vac, out⟩ = |Ω⟩, S|Ω⟩ = |Ω⟩, S† = S−1.

We are interested in calculating the transition amplitudes

⟨f, out|i, in⟩ = ⟨f, in|S|i, in⟩.

Hence these transition amplitudes are also called S-matrix elements. Note that all of these

states live in the full interacting Hilbert space.

• To formally construct the in states, we define an “in field” ϕin with the following properties.

– The in field is a free Klein–Gordan field ϕ(x) which creates in states from |vac, in⟩ as
t→ −∞. Hence we have the mode expansion

ϕin(x) =

∫
d̄p√
2ωp

(ain,pe
−ipx + a†in,pe

ipx).

– Since the in states have mass m, where m is the single-particle mass in the full theory, the

in field must have mass m.
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– The in field approaches the interacting field as t→ −∞ in the sense that

⟨α|ϕ(x)|β⟩ →
√
Z⟨α|ϕin(x)|β⟩

for all states as t → −∞. The constant
√
Z is determined by setting |β⟩ = |Ω⟩ and

|α⟩ = |1p⟩ and using the spectral form.

• The out field ϕout has analogous properties as t→∞. The two are related by

ϕin(x) = Sϕout(x)S
−1.

We now apply our setup to derive the LSZ reduction formula.

• For concreteness, consider the S-matrix element ⟨p1, p2, out|q1, q2, in⟩. We have

⟨p1, p2, out|q1, q2, in⟩ =
√

2ωq1⟨p1, p2, out|a
†
in,q1
|q2, in⟩

=
1

i

∫
dx e−iq1x

←→
∂0 ⟨p1, p2, out|ϕin(x)|q2, in⟩

∣∣
x0=t

= lim
t→−∞

Z−1/2 1

i

∫
dx e−iq1x

←→
∂0 ⟨p1, p2, out|ϕ(x)|q2, in⟩

where we used the expression for a†in in terms of ϕin, which holds for arbitrary t, then took

t→ −∞ to match with the interacting field.

• The next step is to act with ϕ(x) on the left to get rid of one of the out particles. This is only

possible if we have an out field, which requires a limit t→ +∞, so we use

lim
t→−∞

f(t) = lim
t→+∞

f(t)−
∫
dt ∂0f(t).

The first term will give us terms like ⟨p2, out|q2, in⟩δ(p1 − q1) with another term with p1 and

p2 swapped. These represent “disconnected” contributions to the S-matrix, i.e. one where the

first particle doesn’t scatter at all. We don’t care about them here because it can be recursively

computed from S-matrix elements with fewer particles.

• The connected term yields an integral over spacetime, and directly carrying out the derivatives

and integrating by parts yields

iZ−1/2

∫
dx1 e

−iq1x1(□1 +m2)⟨p1, p2, out|ϕ(x1)|q2, int⟩.

There is a sticky point here, which is that the integration by parts is not legal, because e−iq1x

doesn’t go to zero at infinity. This occurs because momentum eigenstates unphysically cover all

of space. To define our in and our states properly, we should have constructed finite wavepackets

and worked with them from the start, but we sweep this under the rug to avoid the complication.

• Next, we would like to repeat this process for all of the other incoming and outgoing particles.

The only snag is that when we flip t→ −∞ to t→ +∞ with the identity above, the new fields

may be in the “wrong place” and can’t be commuted past the others. The fix is to replace the

correlation functions with time-ordered correlation functions, which automatically put the in

and out fields on the right side.
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• Carrying out this procedure and generalizing to n+ r particles,

⟨p1, . . . , pn, out|q1, . . . , q4, in⟩ =
∑

disconnected

+(iZ−1/2)n+r
∫
dy1 . . . dx1 . . .

∏
k

eipkyk(□yk+m
2)
∏
ℓ

e−iqℓxℓ(□xℓ+m
2)⟨Ω|Tϕ(y1) . . . ϕ(x1) . . . |Ω⟩.

This is the LSZ reduction formula, relating S-matrix elements to time ordered correlation

functions. Note that all momenta here are on-shell, since they are the momenta of asymptotic

particles, so we can’t treat the scattering of unstable particles.

• In momentum space, the connected part becomes

(iZ−1/2)n+r
∏
k

(−p2k +m2)
∏
ℓ

(−q2ℓ +m2)⟨Ω|Tϕ(p1) . . . ϕ(q1) . . . |Ω⟩.

For the S-matrix element to be nonsingular, the time-ordered correlators must have a corre-

sponding pole structure, with a Feynman propagator factor giving poles for on-shell particles.

• Another useful rewriting is

∏
k

∫
dyk e

ipkyk
∏
ℓ

∫
dxℓ e

−iqlxl ⟨Ω|Tϕ(y1) . . . ϕ(x1) . . . |Ω⟩

=
∏
k

i
√
Z

p2k −m2

∏
ℓ

i
√
Z

q2ℓ −m2
⟨p1, . . .|S|q1, . . .⟩

∣∣∣∣
connected

.

Our goal now is to understand how to compute time-ordered correlators.

Note. In summary, in free field theory, the fields always create or destroy a particle near a point.

Then position-space correlation functions describe amplitudes for particle propagation between

those points, and LSZ states that momentum-space correlation functions are essentially equal to

S-matrix elements after removing the poles.

In an interacting field theory, ϕ(x) still creates some kind of excitation near the point x (as

can be seen by its transformation properties) but it is generally a complicated combination of

single-particle and multiparticle states, as shown in the spectral representation. The point of the

LSZ reduction formula is that we can project out the part we want (i.e. above, single-particle states

of mass m) by looking at the residues of the appropriate poles, up to a
√
Z correction factor.

More generally, the LSZ reduction theorem means that any field can be used to compute S-matrix

elements of any kind of particle, as long as that field has nonzero overlap with the particle. For

example, we can compute S-matrix elements using the canonical momentum π(x), because it has

some amplitude to make single-particle states. For a complex scalar field, we can compute S-matrix

elements for bound particle-antiparticle pairs using the field ψ†(x)ψ(x).

2.3 Time-Ordered Correlators

We compute time-ordered correlators in the interaction picture.

• In the interaction picture, we split

H = H0 +Hint
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and evolve the states with Hint and the operators with H0. In particular, this means the

interaction picture field

ϕI(x) = eiH0tϕ(0,x)e−iH0t

act exactly like the free Heisenberg fields which we introduced earlier. They satisfy the Klein–

Gordan equation with the bare mass m0, not the physical mass m. Moreover, using the free

mode expansion to define aI,p, the interacting annihilation operator annihilates the free vacuum

|0⟩, not the interacting vacuum |Ω⟩.

• At general times, the Heisenberg picture operators are related by

ϕ(t,x) = U †(t)ϕI(t,x)U(t), U(t) = eiH0te−iHt.

Taking matrix elements of both sides shows that states evolve in interaction picture via U(t).

• Differentiating, U(t) obeys the equation

i
∂

∂t
U(t) = HI(t)U(t), HI(t) = eiH0tHinte

−iH0t

where HI(t) is the interacting Hamiltonian in the interaction picture. The solution is

U(t) = T exp

(
−i
∫ t

0
dt′HI(t

′)

)
= 1− i

∫ t

0
dt1HI(t1) + (−i)2

∫ t

0

∫ t

0
dt1 dt2 THI(t1)HI(t2) + . . .

which is called Dyson’s equation. In general, we have

U(t, t0) = T exp

(
−i
∫ t

t0

dt′HI(t
′)

)
and the time ordering ensures U(t1, t2)U(t2, t3) = U(t1, t3).

• Next, we relate the interacting and free vacuum. Let H|n⟩ = En|n⟩. Then

e−iHt|0⟩ =
∑
n

eiEnt|n⟩⟨n|0⟩

by inserting the energy basis. The vacuum state will have some nonzero energy EΩ (as we

already used up our vacuum energy counterterm to set E0 = 0), but all other states will have

higher energy. Thus, sending time to infinity with a small damping,

|Ω⟩ = lim
t→∞(1−iϵ)

e−iHt|0⟩
e−iEΩt⟨Ω|0⟩

.

Note that we must assume ⟨Ω|0⟩ is nonzero, which should be true if Hint is ‘weak’. This trick

also fails if the theory has massless particles, which yield states of arbitrarily low energy.

• Next, note that

e−iHt|0⟩ = e−iHteiH0t|0⟩ = U(−t)†|0⟩ = U(t)|0⟩ = U(0,−t)|0⟩
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where we used H0|0⟩ = 0. Plugging this into a correlation function,

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ = lim
t→∞(1−iϵ)

(|⟨0|Ω⟩|2e−2iEΩt)−1

× ⟨0|U(t, 0)U(x0, 0)†ϕI(x)U(x0, 0)U(y0, 0)†ϕI(y)U(y0, 0)U(0,−t)|0⟩

where we simply switched to interaction picture.

• Using the multiplication rule for U(t, t′), we have

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ = lim
t→∞(1−iϵ)

(|⟨0|Ω⟩|2e−2iEΩt)−1 × ⟨0|U(t, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−t)|0⟩.

We see that as long as the fields were time ordered, everything inside the expectation value is

automatically timed ordered!

• To deal with the prefactor, note that

1 = ⟨Ω|Ω⟩ = lim
t→∞(1−iϵ)

⟨0|U(t,−t)|0⟩
|⟨0|Ω⟩|2e−2iEΩt

.

Combining these results together and generalizing to n fields, we find

⟨Ω|Tϕ(x1) . . . ϕ(xn)|Ω⟩ = lim
t→∞(1−iϵ)

⟨0|TϕI(x1) . . . ϕI(xn)U(t,−t)|0⟩
⟨0|U(t,−t)|0⟩

.

We use Wick’s theorem to compute these interaction picture correlators. Since we’ll be working

exclusively with interaction picture fields from now on, we drop the subscript.

• We decompose the interaction picture field into positive and negative free modes,

ϕ(x) = ϕ+(x) + ϕ−(x) =

∫
d̄p√
2ωp

ape
−ipx +

∫
d̄p√
2ωp

a†pe
ipx.

The plus and minus fields are easier to deal with because ϕ+(x)|0⟩ = ⟨0|ϕ−(x) = 0.

• Given an operatorO define as a string of creation and annihilation operators, its normal ordering

:O: is the same string but with all the annihilation operators moved to the right. As long as O

does not have a c-number piece cI,

⟨0| :O: |0⟩ = 0.

• Note that normal ordering is not a map on operators, but a map on strings of creation and

annihilation operators. For example, aa†−a†a = 1 is an operator equation, but normal ordering

both sides gives 0 = 1.

• Now, for the product of two fields, we have

ϕ(x)ϕ(y) = ϕ−(x)ϕ+(y) + ϕ−(x)ϕ+(y) + ϕ+(y)ϕ+(y) + ϕ+(x)ϕ−(y).

The first three terms are in normal order, but the last is not. Normal ordering both sides (which

is legal because we haven’t done anything nontrivial like applying commutation relations) gives

ϕ(x)ϕ(y) = :ϕ(x)ϕ(y): +[ϕ+(x), ϕ−(y)].
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• Applying this to a time-ordered pair of fields, we have

Tϕ(x)ϕ(y) = :ϕ(x)ϕ(y): +θ(x0 − y0)[ϕ+(x), ϕ−(y)] + θ(y0 − x0)[ϕ+(y), ϕ−(x)].

The last two terms are c-numbers by the commutation relations. By taking the vev of both

sides, we see they must sum to the vev of Tϕ(x)ϕ(y), i.e. the (bare) Feynman propagator, so

Tϕ(x)ϕ(y) = :ϕ(x)ϕ(y): +D0
F (x− y).

• More generally, for a string of n fields, we get 2n terms in total, (n!)2 of which are already

normal ordered. For the other terms, we have to do some number of commutations to reach

normal ordering, each of which produces a two-point function.

• The full result can be written in terms of contractions, where contracting two fields removes

them from the normal ordering and produces a factor of their two-point function. Wick’s

theorem states that

T (ϕ1 . . . ϕn) = :ϕ1 . . . ϕn: +all possible contractions

which includes terms with any number of contractions; here we write ϕi = ϕ(xi).

• The sum includes terms which are not fully contracted, such as D0
F (x1 − x2) :ϕ3ϕ4: , which

vanish when we take the vev. The fully contracted terms all come from the term that begins

anti-normal ordered. We thus conclude

⟨0|Tϕ1 . . . ϕ2n|0⟩ = D0
F (x1 − x2) · · ·D0

F (x2n−1, x2n) + all other full contractions

while the time-ordered correlator of an odd number of fields vanishes.

2.4 Feynman Diagrams

We can represent the terms in Wick’s theorem diagrammatically.

• For ⟨0|Tϕ1 . . . ϕn|0⟩, draw n points, then draw all possible diagrams made by connecting disjoint

pairs of points. For an edge from i to j, write down the factor D0
F (xi − xj).

• Interactions can be expanded order by order, e.g. for a ϕ4 interaction,

⟨0|Tϕ(x)ϕ(y)e−i(λ/4!)
∫
dz ϕ4(z)|0⟩ = ⟨0|Tϕ(x)ϕ(y)|0⟩+⟨0|Tϕ(x)ϕ(y)

∫
dz

(
−iλ
4!

)
ϕ4(z)|0⟩+. . . .

The 1/n! factor in the Taylor series is always canceled by the permutation symmetry of the

vertices. Naively, the 1/4! factors are canceled because we have 4! contractions possible for each

factor of ϕ4(z), but this is not true for symmetric diagrams; the overall result is that we must

divide by the symmetry factor of the diagram.

• This gives the position-space Feynman rules for ⟨0|Tϕ(x1) . . . ϕ(xn)U(∞,−∞)|0⟩.

– Draw a point for every ‘external’ point xi. These are the original fields in the correlator.

– Draw some internal vertices zi to account for the interaction. For every vertex, multiply

by −iλ and integrate over zi.
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– Draw directed lines between points until every external point is connected to one line, and

every internal vertex is connected to four.

– For a line from x to y, write down the Feynman propagator

D0
F (x− y) =

∫
d̄p

i

p2 −m2
0 + iϵ

e−ip(x−y).

The orientation of the line doesn’t matter, since D0
F (x− y) = D0

F (y − x).
– Divide by the symmetry factor of the diagram and sum over all diagrams.

• Note that we can contract fields at a point to other fields at the same point, giving factors of

D0
F (0) which diverges. This is a loop diagram, which must be addressed by renormalization.

• To simplify this, we can perform the position integrals, leaving behind only momentum integrals.

If lines with momentum p1 and p2 point into a vertex z and lines with momentum p3 and p4
point out, the position integral is∫

dz eip1zeip2ze−ip3ze−ip4z = /δ(p1 + p2 − p3 − p4).

Therefore, we have the momentum-space Feynman rules shown below.

– Give each line a directed momentum pi and write down the factor

D̃0
F (p) =

i

p2 −m2
0 + iϵ

.

– For each vertex, multiply by

(−iλ)/δ (Σin pi − Σout pj) .

– For each external point, multiply by e−ipx if momentum p points out of the point, and eipx

if it points in.

– Integrate d̄p over each internal momentum.

– For each connected component that is a vacuum bubble, multiply by the volume of spacetime

V T .

Note that we are not computing the Fourier transforms of the correlators; we’re computing the

exact same thing as before, but with some of the work already done for us.

• To explain the last rule, note that for vacuum bubbles, not all of the position integrals can be

performed. We are left with integrals parametrizing the location of each bubble,∫
dz = /δ(0) = V T

where V T is the volume of the spacetime. This is generally what δ(0) means when it appears.

Next, we discuss how to handle disconnected diagrams.
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• The nomenclature is a bit confusing. We say a diagram is connected if every vertex is connected,

in the graph theory sense, to an external point, i.e. there are no vacuum bubbles. We say a

diagram is fully connected if it has one connected component. Neither condition implies the

other. For example, a diagram with only a vacuum bubble is fully connected but not connected.

• Every diagram can be factorized into the product of a connected diagram and a diagram with

no external points, which we call a vacuum bubble. Then∑
all diagrams =

(∑
connected diagrams

)(∑
vacuum bubbles

)
.

• By applying our rules above to the case of zero external points, we have

lim
t→∞(1−iϵ)

⟨0|U(t,−t)|0⟩ =
∑

vacuum bubbles ≡ Z

which tells us that the correlator of Heisenberg fields is

⟨Ω|Tϕ1 . . . ϕn|Ω⟩ =
∑

connected diagrams with n external points.

We call the sum of the vacuum bubbles Z the partition function.

• The partition function has further structure. Let {Vi} be the set of fully connected vacuum

bubbles. Then a vacuum bubble with ni copies of Vi comes with the additional symmetry factor∏
i 1/ni!, so

Z = exp
(∑

fully-connected vacuum bubbles
)

• On the other hand, by our previous work we have

lim
t→∞(1−iϵ)

⟨0|U(t,−t)|0⟩ = lim
t→∞(1−iϵ)

|⟨Ω|0⟩|2e−iEΩT .

Taking the logarithm, the |⟨Ω|0⟩|2 term is finite and vanishes in the limit, giving

EΩ = lim
t→∞(1−iϵ)

i

T
logZ.

Thus the sum of fully-connected vacuum bubbles gives the vacuum energy.

• We can divide by V to get the vacuum energy density. On the right-hand side, this combines

with T to give the volume of the spacetime, which cancels with the factor of /δ(0) which comes

with every fully-connected vacuum bubble. This removes the IR divergence, though we still

have a UV divergence, which must be handled by renormalization.

Next, we introduce 1PI diagrams to compute the propagator.

• In perturbation theory, the exact propagator can be expanded as,

DF (x− y) = ⟨Ω|Tϕ(x)ϕ(y)|Ω⟩ =
∑

connected diagrams with 2 external points.

To organize the perturbation series, define a one-particle irreducible (1PI) diagram to be one

which cannot be separated into two separate nontrivial diagrams by cutting a single line.
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• We define

−iM2(p2) =
∑

all non-trivial 1PI diagrams

where the 1PI diagrams have incoming and outgoing momentum p2, and do not include factors

for the incoming/outgoing propagators or external points.

• We define the Fourier transform

DF (x− y) =
∫
d̄p e−ip(x−y)DF (p

2).

Then DF (p
2) is computed with the same Feynman rules as DF (x− y), but there are no factors

for external points.

• Therefore, we have the expansion

DF (p
2) = D0

F (p
2) +D0

F (p
2)(−iM2(p2))D0

F (p
2) + . . . =

i

p2 −m2
0 + iϵ

1

1− M2(p2)
p2−m2

0+iϵ

which gives the compact expression

DF (p
2) =

i

p2 − (m2
0 +M2(p2)) + iϵ

.

This procedure is called Dyson resummation, and M2(p2) is the self-energy of the particle.

• Let m2 be the first analytic pole of DF (p
2). Then we may write

DF (p
2) =

iZ

p2 −m2 + iϵ
+ terms regular at m2.

Comparing this with the spectral representation, Z is the wavefunction renormalization and m

is the physical mass. Thus we have found a way to compute Z and m perturbatively.

2.5 Scattering Amplitudes

We now use LSZ to relate our correlators back to S-matrix elements.

• We return to our statement of LSZ, with n+ r total incoming and outgoing particles,∏
k

∫
dyk e

ipkyk
∏
ℓ

∫
dxℓ e

−iqlxl ⟨Ω|Tϕ(y1) . . . ϕ(x1) . . . |Ω⟩

=
∏
k

i
√
Z

p2k −m2

∏
ℓ

i
√
Z

q2ℓ −m2
⟨p1, . . .|S|q1, . . .⟩

∣∣∣∣
connected

.

Above, all momenta are on-shell. The S-matrix element cannot cancel any of the poles, because

then it would be proportional to p2k−m2 or q2ℓ−m2, and hence vanish entirely. Thus contributions

to S|connected come from correlation functions with n+ r poles at m2.

• The only diagrams which produce such poles are fully connected diagrams. For example, if one

particle was in its own connected component, it would only contribute one factor of iZ/(p2−m2)

from its propagator rather than the two it should. This lines up with our intuition that S|connected
gives scattering amplitudes where all particles participate together.
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• Every fully connected diagram can be decomposed as n+ r exact propagators attaching to an

“amputated” diagram. Specifically, to amputate a leg, we start at some external point and cut

off as much as possible so that the diagram splits into two components, one of which contains

only that external point. Note that all 1PI diagrams are amputated but not vice versa.

• As we’ve seen above, each resummed propagator contributes iZ/(p2 −m2 + iϵ), plus a regular

piece which is not relevant to our calculation; these cancel with the factors on the right-hand

side of the LSZ reduction formula. Taking the Fourier transform has the sole effect of removing

the exponential factors for the external points.

• Therefore, the Feynman rules for ⟨p1, . . . , pn|S|q1, . . . , qr⟩|connected are

– Add internal points and lines as specified earlier, giving every line a directed momentum.

– For each internal line of momentum p, multiply by

i

p2 −m2
0 + iϵ

.

– For each vertex, multiply by

(−iλ)/δ (Σin pi − Σout pj) .

– Integrate d̄p over each internal momentum and divide by the symmetry factor.

– Sum over fully-connected, amputated diagrams and multiply by
√
Z
n+r

.

Formally,
√
Z = 1+O(λ), so we can set Z = 1 for a lowest-order computation. We will always

get an overall factor of /δ(q1 + . . .+ qr − p1 + . . .− pn).

• For the physical computations which follow, we will almost never be interested in vacuum bubbles,

i.e. all diagrams will be connected. Hence we will rename “fully connected” to “connected” for

the rest of these notes; note that we’ve already been using this nomenclature to refer to the

connected S-matrix.

We will now introduce a naive version of perturbation theory which is easier to handle at tree level.

• Working in Schrodinger picture, we suppose that H = H0 + f(t)Hint, where f(t) is chosen so

the interaction adiabatically turns on and off. This makes calculations much easier, though we

lose generality. For example, if H0 is just taken to be the free part of H, then it is impossible

to describe the scattering of bound states, which fall apart when the interaction is turned off;

however, it is possible if H0 is chosen appropriately.

• We define an “in” state |iin(t)⟩ to be a state which approaches a free state for t→ −∞,

|iin(−∞)⟩ = |i(−∞)⟩

where |iin⟩ evolves by H and |i⟩ evolves by H0, and i stands for a state specification like ‘two

one-particle wavepackets with momenta p and q approaching each other’.
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• We define the S-matrix by

⟨f(0)|S|i(0)⟩ = ⟨fout(0)|iin(0)⟩.

Thus, when the particles in the free state |i(0)⟩ are about to meet and pass through each other,

S takes them to a superposition of other free particle states in order to reproduce the dynamics

of an interaction. This definition is equivalent to our earlier one, though everything is evaluated

at time t = 0 on the left rather than at t→ −∞.

• Letting U and U0 be the full and free time evolution operators,

⟨fout(0)|iin(0)⟩ = ⟨fout(∞)|U(∞,−∞)|iin(−∞)⟩
= ⟨f(∞)|U(∞,−∞)|i(−∞)⟩
= ⟨f(0)|U0(∞, 0)U(∞,−∞)U0(−∞, 0)|i(0)⟩

= ⟨f(0)|UI(∞, 0)U †
I (−∞, 0)|i(0)⟩

= ⟨f(0)|UI(∞,−∞)|i(0)⟩

which shows that S = UI(∞,−∞). In other words, the point of the adiabatic turn-off is that

it allows us to get a simple formal expression for the S-matrix itself. We can also show that

[S,H0] = 0, so scattering does not change the free particle energy.

Calculations can also be done with the adiabatic approach introduced above.

• For concreteness we consider scalar Yukawa theory,

L = |∂µψ|2 +
1

2
(∂µϕ)2 −M2|ψ|2 − 1

2
m2ϕ2 − gψ†ψϕ

in which case

S = UI(∞,−∞) = T exp

(
−ig

∫
dxψ†ψϕ

)
where the fields above are interaction picture fields.

• We would like to calculate the amplitudes ⟨f(0)|S|i(0)⟩. For convenience, we construct the

states in interaction picture, i.e. we view |i(0)⟩S = |i(0)⟩I , so that particles in the initial state

are also created by interaction picture operators. Since the interaction picture states don’t

change at all (as the states are free), we drop the t = 0 argument.

• Concretely, we call the real particles mesons and the complex particles nucleons, with

ϕ ∼ a+ a†, ψ ∼ b+ c†, ψ† ∼ b† + c

where b† creates a nucleon and c† creates an antinucleon. Then for meson decay,

|i⟩ =
√

2Epa
†
p|0⟩, |f⟩ =

√
4Eq1Eq2b

†
q1
c†q2
|0⟩.

• To lowest order in g, we have

⟨f |S − 1|i⟩ = −ig⟨f |
∫
dxψ†(x)ψ(x)ϕ(x)|i⟩.
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This can be simplified using the commutation relations for free field creation and annihilation

operators; only one combination of operators gives a nonzero contribution. We find

⟨f |S − 1|i⟩ = −ig/δ(q1 + q2 − p)

in accordance with the Feynman rules above. To save space, we define

⟨f |S − 1|i⟩ = ⟨f |iT |i⟩ = iM/δ(· · · )

since the delta function always appears, so that iM = −ig.

• For more complicated processes, we use Wick’s theorem, but slightly differently. Since the initial

and final states aren’t vacuum, we don’t care about full contractions; instead we want enough

fields left over to turn the initial and final states to vacuum. In this formalism, contractions

correspond to only internal lines in diagrams.

Example. Consider nucleon-nucleon scattering, ψψ → ψψ, with

|i⟩ = |p1, p2⟩ =
√

4Ep1Ep2b
†
p1
b†p2
|0⟩, |f⟩ = |q1, q2⟩ =

√
4Eq1Eq2b

†
q1
b†q2
|0⟩

and the O(g2) contribution to the S-matrix element is

(−ig)2

2
⟨f |
∫
dx1dx2 T (ψ

†(x1)ψ(x1)ϕ(x1)ψ
†(x2)ψ(x2)ϕ(x2))|i⟩.

Then the only contraction which contributes is

T (ψ†(x1)ψ(x1)ϕ(x1)ψ
†(x2)ψ(x2)ϕ(x2)) ⊃ :ψ†(x1)ψ(x1)ψ

†(x2)ψ(x2): D
0
F (x1 − x2).

Since all the annihilation operators are moved to the right, we have

⟨f | :ψ†(x1)ψ(x1)ψ
†(x2)ψ(x2): |i⟩ = ⟨f |ψ†(x1)ψ

†(x2)|0⟩⟨0|ψ(x1)ψ(x2)|i⟩.

Expanding the fields into creation and annihilation operators, each piece has two terms, giving

(−ig)2

2

∫
dx1dx2 (e

i(q1x1+q2x2) + ei(q1x2+q2x1))(e−i(p1x1+p2x2) + e−i(p1x2+p2x1))

∫
d̄k ieik(x1−x2)

k2 −m2 + iϵ
.

Doing the position integrals gives momentum-conserving delta functions, giving

iM = (−ig)2
(

i

(p1 − q1)2 −m2
+

i

(p1 − q2)2 −m2

)
We dropped the iϵ because the denominator is never zero; to see this, work in the center of mass

frame where |p1| = |q1|. Then the timelike component of p1 − q1 is zero, so (p1 − q1)2 < 0. There

is also an O(g0) contribution when |i⟩ = |f⟩, which is not included in S − 1.

We can generalize this calculation into Feynman rules.

• The Feynman rules for computing iM, valid at tree level, are the following.

– Add internal vertices and lines as specified earlier, giving every line a directed momentum,

and conserving momentum at every vertex.
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– For each internal line of momentum p and mass m, multiply by i/(p2 −m2 + iϵ).

– For every vertex, multiply by −ig.
– Divide by the symmetry factor, and sum over tree-level diagrams, excluding the totally

disconnected diagram.

For complex scalar fields, we draw arrows on the lines to indicate the flow of particle number,

but define the direction of the momentum so that p0 is positive for external legs. There is no

fixed convention for internal lines; there we might as well align the two.

• As another example, for ψψ → ψψ, we have

iM = (−ig)2
(

i

(p1 − q1)2 −m2
+

i

(p1 + p2)2 −m2 + iϵ

)
where the iϵ cannot be dropped in the second term, as it diverges when the incoming nucleons

form an on-shell meson. As we’ll describe in more detail later, this appears as a resonance peak

in the scattering cross section.

Note. The calculational formalism we have built up in this chapter is very different from the

material one learns in ordinary quantum mechanics. It’s important to keep in mind that quantum

field theory is in principle a special case of quantum mechanics, so the same techniques still work.

For example, one can calculate cross sections using the standard techniques of time-independent

perturbation theory, in a procedure particle physicists call “old-fashioned perturbation theory”, but

which atomic and optical physicists still commonly use. For example, one gets expressions like

dP

dt
∼ |M|2, M∼

∑
k

⟨f |Hi|k⟩⟨k|Hi|i⟩
Ei − Ek

for a process that occurs at second order. Old-fashioned perturbation theory doesn’t require learning

complex, abstract new tools such as the LSZ reduction theory. However, it relies on the Hamiltonian

and hence breaks Lorentz invariance. In particular, single Feynman diagrams break into multiple

diagrams in this formalism, one for each possible time ordering of the interaction vertices, making

calculations more complicated. (By combining pairs of such diagrams, one combines the energy

denominators 1/(Ei−Ek) into Lorentz invariant Feynman propagators.) Old-fashioned perturbation

theory is covered in detail in these lecture notes, as well as Sakurai’s book Advanced Quantum

Mechanics, whose introduction contains forceful arguments in favor of studying such methods.

Note. Above, we have seen that the connected part of the S-matrix contains a single overall

momentum conserving delta function, so the connected amplitudeM contains no delta functions.

In our treatment, this followed automatically from the structure of the perturbative expansion, in

terms of Feynman diagrams.

More generally, this result can be understood as a requirement of the cluster decomposition

principle, the notion that distant experiments should give uncorrelated results. To see this, first

note that the connected S-matrix can be defined independently of the dynamics; it is simply the

part of the S-matrix, for n-particle scattering, that cannot be constructed from combining S-matrix

elements for (n − 1)-particle scattering and lower. Thus, the connected S-matrix tells us about

the part of the scattering that involves all n particles together. Now, the S-matrix is unchanged

under translating all of the particles, which is equivalent in momentum space to requiring an

overall momentum conserving delta function. If there were further delta functions in the connected

http://bohr.physics.berkeley.edu/classes/221/notes/emdirac.pdf
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amplitude, it would imply that the connected S-matrix was invariant under translating a subset of

the particles, i.e. that these particles would continue to have an effect on the others if they were

translated arbitrarily far away. Hence this is forbidden by the cluster decomposition principle.

Following Weinberg, the fact that this result follows automatically from a local field description

is one of the key motivations for introducing quantum fields at all, rather than focusing on just the

particle states. For a masterful account with interesting historical asides, see his article What is

Quantum Field Theory, and What Did We Think It Is?

2.6 Physical Observables

We now link our scattering amplitudes to physical quantities. We begin with the potential energy

U(r) of two nucleons.

• At the classical level, a delta-function source for the meson field yields

ϕ(x) =
e−mr

4πr

where m is the meson mass. We would like to think of nucleons as such delta-function sources,

so that this gives the potential energy of two nucleons.

• To see this picture at the quantum level, we consider the process ψψ → ψψ at tree level. We

work in the center of mass frame, so p = p1 = −p2 and q = q1 = −q2. Then

iM = ig2
(

1

(p− q)2 +m2
+

1

(p+ q)2 −m2

)
.

On the other hand, we know from nonrelativistic quantum mechanics that the amplitude for

this scattering is Ũ(p − q) + Ũ(p + q) in the first Born approximation, where we took into

account the fact that the ψ particles are identical. Then

Ũ(p− q) =
−λ2

(p− q)2 +m2
, U(r) = − λ2

4πr
e−mr

where λ = g/2M and the extra factors of 2M are from the relativistic normalization. To get

the result for U(r), we have to work in spherical coordinates and perform a contour integral.

• The exact same logic holds for ψψ → ψψ. In this case, the s-channel doesn’t contribute because

it vanishes in the nonrelativistic limit, as long as M ≫ m, but the t-channel contributes in

the same way, giving the exact same potential. Therefore, the force between a nucleon and

antinucleon is also attractive. In general, forces mediated by particles of even spin are universally

attractive.

• Similarly, in ϕ4 theory with Hint = λϕ4/4! the tree-level amplitude is

iM = −iλ, Ũ(p) ∝ λ, U(r) ∝ δ(r).

That is, the potential in ϕ4 theory has zero range.

• In general, the Born approximation is a useful way of relating the scattering amplitudes we

know how to compute to “position-space” quantities such as potentials. For example, we can

use it to relate the magnetic moment of the electron to its scattering amplitude off a fixed

background vector potential, which can be computed diagrammatically.

https://arxiv.org/abs/hep-th/9702027
https://arxiv.org/abs/hep-th/9702027
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• For 2→ 2 scattering, the Mandelstam variables

s = (p1 + p2)
2, t = (p1 − q1)2, u = (p1 − q2)2

appear frequently. We say that ψψ → ψψ has t-channel and u-channel diagrams at O(g2), while

ψψ → ψψ has s-channel and t-channel diagrams. If the particles have masses mi,

s+ t+ u =
∑
i

m2
i .

Suppose two identical particles scatter by an angle θ in the center-of-mass frame. Then

s = 4E2
cm, t = −2p2(1− cos θ), u = −2p2(1 + cos θ).

In this frame, s determines the energy of each particle, while t and u give directional information.

Next, we turn to the calculation of cross sections and decay rates.

• Let V be the spatial volume and T be the total time separating the asymptotic past and future.

Then /δ(0) = V T and /δ(0) = V , as we’ve seen earlier. We’ll need these results because we will

encounter squared delta functions, which arise from working in an infinite space.

• By definition, the probability to transition from state |i⟩ (with particles of momentum pi) to

|f⟩ (with particles of momentum qj) is

P =
|⟨f |S|i⟩|2

⟨f |f⟩⟨i|i⟩
.

Under the relativistic normalization convention,

⟨f |f⟩ =
∏
j

2Eqi/δ(0) =
∏
j

2EqjV, ⟨i|i⟩ =
∏
i

2EpiV

and the S matrix element is

|⟨f |S|i⟩|2 = |Mfi|2/δ(pI − pF )2 = |Mfi|2/δ(pI − pF )V T

where pI and pF are the total initial and final momenta.

• Next, we must integrate over the momenta of the particles in the final states, using

1

V

∑
p

→
∫
d̄p, V δp,q → /δ(p− q)

which gives

P =

(∏
i

1

2EpiV

)
V T

∫
|Mfi|2 dΠ, dΠ = /δ(pF − pI)

∏
j

d̄qj
2Eqj

.

If some of the particles in the final state are identical, the Lorentz invariant phase space dΠ

should contain 1/N ! factors to avoid overcounting.
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• First, consider the decay rate of a particle with mass m. Taking a rate cancels the T . The

result is not Lorentz invariant, because of the factor of 1/Ep, but this is correct because it

accounts for time dilation. Usually we will work in the rest frame, where Ep = m, giving

Γ =
1

2m

∫
|Mfi|2 dΠ

If there are multiple decay channels, we must also sum over types of final states.

• Next, consider scattering of two particles with energies E1 and E2. Then we wish to calculate

the differential cross section

dσ =
differential probability

unit time× unit flux
=

1

4E1E2V

1

F
|Mfi|2 dΠ.

The flux F is the number of incoming particles per area per unit time.

• Working in the center of mass frame, the probability per volume is 1/V for each initial particle,

and the relative velocity is |v1 − v2|, giving

dσ =
1

4E1E2|v1 − v2|
|Mfi|2 dΠ.

• The denominator is Lorentz-invariant under boosts along v1 − v2, but not others, since the

cross section can length contract. To see this, note that for velocities parallel to ẑ,

E1E2|v1 − v2| = |E2p1 − E1p2| = |ϵµxyνpµ1p
ν
2 |.

Thus, the inverse of this quantity has precisely the Lorentz transformation quantities of the xy

component of an antisymmetric rank 2 tensor, which is precisely the geometrical representation

of an area element in the xy plane.

• Some other sources define the cross section in a slightly different, Lorentz invariant way,

dσ =
1

4vrel(p1 · p2)
|Mfi|2 dΠ

where the relative velocity (i.e. the speed of one particle in the frame of the other) is

vrel =

√
1− m2

1m
2
2

(p1 · p2)2
.

This matches the boxed definition above in the center of mass frame, so it will make no difference

for these notes. On the other hand, in situations where the particles may not have opposite

momenta (such as in a thermal average) one has to be careful about which definition is used.

• For scattering with two particles in the final state, we are interested in the quantity dσ/dΩ,

which can be found by writing dΠ = (dΠ/dΩ) dΩ. One can show, in the CM frame,

dΠ =
|q1|

(2π)2(4Ecm)
dΩ

where q1 is the final momentum, which gives

dσ

dΩ
=

1

4E1E2|v1 − v2|
|q1|

(2π)2(4Ecm)
|Mfi|2.
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• For all equal masses, this reduces to

dσ

dΩ
=
|Mfi|2

64π2E2
cm

.

For example, we see that s-wave scattering is isotropic, and σ ∝ 1/s for ϕ4 theory. This is a

general phenomenon for scattering off pointlike sources.

• The traditional unit for a cross section is the typical cross sectional area of a uranium nucleus,

1 barn = 10−28m2 = 100 fm2

which corresponds to a scatterer whose radius is a few femtometers. For context, the total

cross section for proton-proton scattering is of order 100mb, and the instantaneous luminosity

of the LHC is about 10 nb−1s−1. The total integrated luminosity of the LHC so far is about

200 fb−1 = 0.2 ab−1, while the future HL-LHC will accumulate 3 ab−1.

• Finally, another useful case is a final state with three particles. In the CM frame, the momenta

qi lie in a common plane, called the event plane. It is useful to define

xi =
2Ei
Ecm

, x1 + x2 + x3 = 2.

In these variables, a laborious calculation shows that the phase space takes a very simple form,

dΠ =
E2

cm

128π3
dx1dx2

where the right-hand side is implicitly supported only over the kinematically allowed region.

• The result is also simple in terms of the invariant masses of pairs,

m2
12 = (p1 + p2)

2, m2
23 = (p2 + p3)

2

in which case

dΠ =
1

128π3E2
cm

dm2
12dm

2
23.

• Again, there are implicit and messy theta functions on the right-hand side to mark the kine-

matically allowed region. Thus, the utility of this parametrization is really on the experimental

side. Plotting events in the (m2
12,m

2
23) plane yields a Dalitz plot, and features of the plot can be

attributed to the scattering amplitude itself, and hence indicate physically interesting effects.
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3 Spinor Fields

3.1 Dirac Spinors

A set of relativistic classical fields transforms under a representation of the Lorentz group,

ϕi(x)→ R(Λ)ijϕj(Λ
−1x).

We would thus like to classify representations of SO(1, 3).

• As we’ve seen, an infinitesimal Lorentz transformation takes the form

Λµν = δµν + ωµν

where ωµν = −ωνµ. We may index the six independent Lorentz transformations with two

antisymmetric indices,

(Jρσ)µν = ηρµησν − ησµηρν .

• Then any infinitesimal Lorentz transformation can be written as

ωµν =
1

2
Ωρσ(J

ρσ)µν

and finite Lorentz transformations are given by exponentiation,

Λµν = exp

(
1

2
Ωρσ(J

ρσ)µν

)
.

The factors of 1/2 are canceled by the antisymmetry of Ω and J . Explicitly, Ω12 = −Ω21 = θ

gives an active θ rotation about ẑ, while Ω0i = χi gives an active boost with rapidity χ.

• Note that while the generators are antisymmetric with indices raised, they aren’t with mixed

indices, so the Λµν are not unitary. Alternatively, Lorentz transformations preserve ηµνV
µV ν

and not δµνV
µV ν . In general, there are no finite-dimensional unitary representations of a

noncompact Lie group like the Lorentz group.

• Some explicit computation yields the Lorentz algebra so(1, 3),

[Jρσ, Jτν ] = ηστJρν − ηρτJσν + ηρνJστ − ησνJρτ .

We seek representations of this algebra. When we exponentiate them, we will generally find

a projective representation of the Lorentz group, i.e. a representation of its double cover

Spin(1, 3) ∼= SL(2,C). This is a bit strange, since classical fields don’t have phase ambiguities

like quantum states, but acceptable since the spinor field will not be directly measurable.

We construct the Dirac spinor representation starting from the Clifford algebra.

• The Clifford algebra is a set of four matrices γµ satisfying

{γµ, γν} = 2ηµν

That is, all of the γµ anticommute with each other, and they square as

(γ0)2 = 1, (γi)2 = −1.
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• The lowest-dimensional representation of the Clifford algebra is four-dimensional. We will use

the Weyl/chiral representation,

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
.

We note the useful Pauli matrix identities

σiσj = δij + iϵijkσk, {σi, σj} = 2δij , [σi, σj ] = 2iϵijkσk.

Other representations can be constructed by replacing γµ with V γµV −1.

• The commutators of the γµ are

Sρσ =
1

4
[γρ, γσ] =

{
0 ρ = σ

(1/2)γργσ ρ ̸= σ

}
=

1

2
γργσ − 1

2
ηρσ.

We claim the Sµν form a representation of the Lorentz algebra. First, note that

[Sµν , γρ] =
1

2
[γµγν , γρ] =

1

2
γµγνγρ − 1

2
γργµγν = γµηνρ − γνηρµ

where we used anticommutation to cancel the two terms, picking up γη terms. Next,

[Sµν , Sρσ] =
1

2
[Sµν , γργσ] =

1

2
(γµγσηνρ − γνγσηρµ + γργµηνσ − γργνησµ)

where we used the commutator product rule and the previous result. Finally, applying γµγν =

2Sµν + ηµν gives the result. Note that the γ and S matrices contain complex numbers, so we

have a complex representation.

Next, we exponentiate the Sµν to find a projective representation of SO(1, 3).

• The Sµν act on a Dirac spinor field, i.e. a field with four complex components ψα(x) so that

ψα(x)→ S[Λ]αβψ
β(Λ−1x), S[Λ] = exp

(
1

2
ΩρσS

ρσ

)
• To see this is a projective representation, we explicitly work out S[Λ] for rotations. For i ̸= j,

Sij =
1

2
γiγj = − i

2
ϵijk

(
σk 0

0 σk

)
.

Defining the angle by Ωij = ϵijkφ
k, we have

S[Λ] =

(
e−iφ·σ/2 0

0 e−iφ·σ/2

)
which is −1 for a 2π rotation.

• Similarly, for boosts, we define Ω0i = χi and

S0i =
1

2

(
−σi 0

0 σi

)
, S[Λ] =

(
e−χ·σ/2 0

0 eχ·σ/2

)
.

We see the Dirac spinor splits into two components which transform identically under rotations

but oppositely under boosts.
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• Sources may differ on the signs of φ and χ. Here we have taken the active point of view, so χ

refers to the amount we actively change the spinor’s velocity. But χ can also label the relative

velocity of a frame we transform into, which would give an extra minus sign.

• The Dirac spinor representation is not unitary. To see this at the level of the Clifford algebra,

note that unitarity requires Sµν to be anti-Hermitian, which works if the γµ are all Hermitian or

all anti-Hermitian. But since (γ0)2 = 1 and (γi)2 = −1, γ0 can only be picked to be Hermitian

and γi can only be picked to be anti-Hermitian. Again, the issue comes from the indefinite

signature of η.

3.2 The Dirac Action

We now build a Lorentz-invariant action using our Dirac spinor.

• Suppressing position arguments, we have

ψ → S[Λ]ψ, ψ† → ψ†S†[Λ].

Therefore, the naive guess ψ†ψ does not work because the S[Λ] are not unitary.

• For concreteness, we use a representation of the Clifford algebra where γ0 is Hermitian and the

γi are anti-Hermitian, such as the chiral representation.

• In any specific representation, it is straightforward to show that

γ0γµγ0 = (γµ)†

which means γ0 takes the adjoint of gamma matrices when pulled through them. (Since all

representations are related by unitary transformations, it suffices to show this result in any

representation – but it’s not straightforward to do it without ever picking one.) Then

(Sµν)† = −γ0Sµνγ0, S[Λ]† = γ0S[Λ]−1γ0.

• Defining the Dirac adjoint ψ = ψ†γ0, we have

ψ → ψ†S[Λ]†γ0 = ψ†γ0S[Λ]−1 = ψS[Λ]−1

which implies that ψψ is a Lorentz scalar.

• Moreover, ψγµψ is a Lorentz vector. Since we have

ψγµψ → ψS[Λ]−1γµS[Λ]ψ.

we need to show S[Λ]−1γµS[Λ] = Λµνγν . For infinitesimal Lorentz transformations, this becomes

[−Sρσ, γµ] = (Jρσ)µνγ
ν .

We can directly verify this is true using computations we’ve already done.

• Similarly, one can show that ψγµγνψ transforms as a Lorentz tensor, as does any combination

of more gamma matrices. Taking the symmetric part yields ηµνψψ, which is simply a multiple

of our Lorentz scalar. The new feature is the antisymmetric part, ψSµνψ.
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• We use our scalar and vector to build the Dirac Lagrangian

L = ψ(i/∂ −m)ψ, /∂ = γµ∂µ.

Note that the factor of i is necessary to make L real, i.e. invariant under conjugation, to cancel

out a minus sign from integration by parts. We haven’t seen this issue before because our other

Lagrangians were second-order, requiring two integrations by parts.

• Using the trick of treating ψ and ψ as independent fields, varying with respect to ψ gives the

Dirac equation

(i/∂ −m)ψ = 0.

Varying with respect to ψ gives the conjugate equation

i∂µψγ
µ +mψ = ψ(i

←−
/∂ +m) = 0

where the arrow indicates the derivative acts to the left.

• Each component of the Dirac spinor satisfies the Klein–Gordan equation, as

(iγν∂ν +m)(iγµ∂µ −m)ψ = −(γµγν∂µ∂ν +m2)ψ = −(∂2 +m2)ψ = 0.

Thus the Dirac spinor describes four types of particles of mass m. The left-hand side contains a

‘factorization’ of the Klein–Gordan operator ∂2 +m2, so the Dirac equation is sometimes called

the ‘square root’ of the Klein–Gordan equation. Here it’s clear that the definition of a Clifford

algebra was originally chosen just to make this work out.

Next, we decompose the Dirac spinor into Weyl spinors.

• As we’ve seen, in the chiral representation of the Clifford algebra, the Lorentz transformations

are block-diagonal. Hence the Dirac spinor splits into two irreps, ψ = (u+, u−), called Weyl

spinors, which transform as

u± → e−iφ·σ/2u±, u± → e∓χ·σ/2u±.

The Weyl spinors are (1/2, 0) and (0, 1/2), or left-handed and right-handed respectively, and

the Dirac spinor is (1/2, 0)⊕ (0, 1/2).

• Introducing the notation

σµ = (1, σi), σµ = (1,−σi)

the Dirac Lagrangian can be written in terms of Weyl spinors as

L = iu†−σ
µ∂µu− + iu†+σ

µ∂µu+ −m(u†+u− + u†−u+).

Therefore the mass term couples the Weyl spinors together. To get a theory with only one

Weyl spinor, we must set it to zero. The individual Weyl spinors satisfy the Weyl equations

iσµ∂µu+ = 0, iσµ∂µu− = 0.

• Suppose a classical field theory has n real degrees of freedom in configuration space at each

spatial point. Then it has 2n degrees of freedom per point in phase space, which become

2n/2 = n particles upon quantization. This yields n = 1 for a real scalar field and n = 2 for a

complex scalar field, as expected.
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• Now, the Dirac spinor naively has 16 real degrees of freedom in phase space. However, since

the Dirac equation is first-order, πψ = iψ†, so the phase space is parametrized by ψ and ψ†.

Then the phase space has real dimension 8, giving 4 particles upon quantization, i.e. a spin

up/down particle/antiparticle. Similarly the Weyl spinor yields 2 particles.

• Another way of saying this is that physical fermions must have constraints in their phase space;

it can be shown that we otherwise inevitably get negative-norm states.

• To define the Weyl spinors in an invariant way, define

γ5 = iγ0γ1γ2γ3.

Then one can show

{γ5, γµ} = 0, (γ5)2 = 1.

Given this definition, the matrices (γµ,−iγ5) form a five-dimensional Clifford algebra. Moreover,

choosing γ0 to be Hermitian and γi to be anti-Hermitian as before, γ5
†
= γ5.

• We can also show that [Sµν , γ
5] = 0, so γ5 is a ‘Lorentz scalar’. Then we have

γ5 =

(
−1 0

0 1

)
, PL =

1

2
(1− γ5), PR =

1

2
(1 + γ5)

where PL and PR project on the left-handed and right-handed Weyl spinors.

3.3 Symmetries and Conserved Quantities

Next, we define parity symmetry.

• Conjugating a rotation by parity leaves it invariant, but conjugating a boost with parity flips

its sign. Thus we want parity to exchange the Weyl spinors,

P : ψ±(x, t) 7→ ψ∓(−x, t).

Thus, in the chiral representation,

P : ψ(x, t) 7→ γ0ψ(−x, t).

The Dirac equation is parity invariant, since if ψ(x, t) satisfies it, so does γ0ψ(−x, t).

• Note that ψψ transforms as a scalar under parity because (γ0)2 = 1. However, for the vector

ψγµψ, the spacelike parts flip sign,

ψγiψ → ψγ0γiγ0ψ = −ψγiψ

which implies that ψγµψ transforms as a vector under parity.

• Similarly, ψSµνψ transforms as a tensor under parity. We also have ψγ5ψ, which transforms

as a pseudoscalar, and ψγ5γµψ, which transforms as a pseudovector; both of these pick up an

extra sign flip due to the γ5.
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• As we’ve seen above, the Dirac spinor is a certain representation of the Lorentz group and the

set of spinor bilinears is that representation’s tensor product with itself,

((1/2, 0) + (0, 1/2))×((1/2, 0) + (0, 1/2)) = (0, 0)+(1/2, 1/2)+(1, 0)+(0, 1)+(1/2, 1/2)+(0, 0)

which decompose as 1 + 4 + 3 + 3 + 4 + 1. The two 3’s are packaged together into the rank 2

antisymmetric tensor and correspond to self-dual and anti-self-dual tensors.

• The pseudoscalar and axial vector terms treat the u± asymmetrically since they are not parity

invariant. In general, any theory that treats the u± asymmetrically is called a chiral theory (vs.

a vector-like theory). However, chiral theories can be parity invariant; for example, the term

ϕψγ5ψ respects parity if ϕ is a pseudoscalar.

Note. Sometimes people ask: why don’t the gamma matrices transform under Lorentz transforma-

tions, like everything else with a four-vector index does? The representation theory above shows the

right way to think about this. A gamma matrix is a set of Clebsch–Gordan coefficients which ex-

tracts the Lorentz vector representation from the tensor product of two Dirac spinor representations.

These coefficients don’t change under Lorentz transformations, for exactly the same reason that

ordinary Clebsch–Gordan coefficients for spin don’t. For example, for spin we have 1 ⊂ 1/2× 1/2,

and the state |ℓ,mz⟩ = |1, 0⟩ is always of the form (|1/2, 1/2⟩|1/2,−1/2⟩+|1/2,−1/2⟩|1/2, 1/2⟩)/
√
2.

This doesn’t depend on how you orient the z-axis, as long as you use the same z-axis to define the

mz states in the 1 and 1/2 representations, which of course we always do.

We now define charge conjugation symmetry and Majorana fermions.

• Naively, we would like to define charge conjugation of a classical field as just the complex

conjugate, as is suitable for a complex scalar field. But charge conjugation should commute

with Lorentz transformations, so the naive option doesn’t work since S[Λ] is not real.

• Instead, we define

ψ(c) = Cψ∗

where C is a 4× 4 unitary matrix satisfying

C†γµC = (−γµ)∗

in a general representation of the Clifford algebra where (γ0)† = γ0 and (γi)† = −γi.

• To check the transformation properties, we have

ψ(c) → CS[Λ]∗ψ∗ = S[Λ]Cψ∗ = S[Λ]ψ(c)

as desired. The Dirac equation is also invariant. Complex conjugating it gives

(−i/∂∗ −m)ψ∗ = 0.

Multiplying on the left by C and pulling it through shows that ψ(c) obeys the Dirac equation.

• A Majorana spinor obeys the reality condition ψ(c) = ψ. This constraint relates the two Weyl

spinors. Majorana spinors can have a mass, but they cannot have charges.
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• Finally, we can write C explicitly given a fixed basis for the Clifford algebra. In the chiral basis,

C = iγ2

because only γ2 is imaginary. In terms of the Weyl spinors, this implies u− = −iσ2u∗+.

• Alternatively, in the Majorana basis,

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0

0 iσ3

)
, γ2 =

(
0 −σ2
σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1
)
.

Then all of the gamma matrices are pure imaginary, so the S[Λ] are real and C = 1.

Note. This definition of the C matrix differs from the C matrix appearing in the quantum charge

conjugation operation Ĉ. This is because this C arises from the classical charge conjugation on

fields, which in this case acts like Ĉ with an additional parity factor γ0. This is explained further

in the notes on the Standard Model.

Note. We check the Lagrangian is invariant under charge conjugation. Consider the mass term,

ψψ = ψ†γ0ψ → ψTC†γ0Cψ∗ = −ψT (γ0)∗ψ∗.

This quantity is, naively, equal to its own transpose. However, we must account for the fact that

spinors are inherently anticommuting, and hence the classical fields here are really Grassmann

numbers; taking the transpose flips the sign because of the anticommutation. Then we get

ψψ → ψ†γ0
†
ψ = ψψ

as desired. Demanding the invariance of the ψ /Dψ term forces

Aµ → −Aµ

under charge conjugation, which intuitively is because ∂2Aµ = jµ and jµ → −jµ. More generally,

for a non-abelian gauge theory, the gauge interaction term ψi /Aijψj is invariant if

Aµij → −A
µ
ji.

This is sensible, as it’s just the usual rule for conjugating a Lie algebra representation.

Finally, we consider the continuous symmetries and conserved currents of the Dirac action.

• We begin with translational symmetry, treating ψ and ψ as independent as usual. Since the

Lagrangian does not depend on ∂ψ, we have

Tµν = iψγµ∂νψ − ηµνL.

We can further simplify this using the equations of motion, which state that L vanishes on shell.

The total energy is then

E =

∫
dxT 00 =

∫
dx iψγ0ψ̇ =

∫
dxψ†γ0(−iγi∂i +m)ψ.

https://knzhou.github.io/notes/sm.pdf
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• An infinitesimal Lorentz transformation gives

δψα = −ωµνxν∂µψα +
1

2
Ωρσ(S

ρσ)αβψ
β.

Expanding out the definitions yields ωµν = Ωµν . Now, the first term contributes the same thing

we saw for the scalar field, while the second term contributes a “spin” term,

(J µ)ρσ = xρTµσ − xσTµρ − iψγµSρσψ.

Upon quantization the latter will yield a spin of ±1/2 for each particle. A similar spin/orbit

decomposition appears for general fields with spin.

• The Dirac action has an internal phase symmetry, ψ → e−iαψ which yields

jµV = ψγµψ

where jµV is called the vector current. The conserved quantity is

Q =

∫
dxψγ0ψ =

∫
dxψ†ψ

which we will see can be interpreted as the total particle number.

• When m = 0, the Weyl spinors decouple, so there is an additional independent symmetry given

by rotating the Weyl spinors in opposite directions,

ψ → eiαγ
5
ψ, ψ → ψeiαγ

5
.

This gives the ‘axial current’,

jµA = ψγµγ5ψ

which is an axial vector. Later, we will see that the axial symmetry is anomalous. In QED with

massless fermions, the Lagrangian has axial symmetry, but the current is not conserved in the

quantum theory.

3.4 Plane Wave Solutions

In this section, we find the classical plane wave solutions of the Dirac equation in the chiral basis.

• We consider a positive frequency plane wave ψ(x) = u(p)e−ipx where p0 > 0. Then the Dirac

equation becomes (
−m p · σ
p · σ −m

)
u(p) = 0.

Since the individual components satisfy the Klein–Gordan equation, p2 = m2. Now we have

u(p) =

(
mu1

(p · σ)u1

)
.

for some spinor u1. Defining mu1 =
√
p · σξ and using the identity

(p · σ)(p · σ) = p · p = m2

on the bottom spinor, we arrive at the general form

u(p) =

(√
p · σξ√
p · σξ

)
.

We will conventionally normalize ξ by ξ†ξ = 1.
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• Similarly, there are negative frequency solutions. Letting ψ(x) = v(p)eipx with p0 > 0,

v(p) =

( √
p · ση

−
√
p · ση

)
where we normalize η†η = 1. Note these classical field solutions vary in space as if they had

four-momentum −p. However, we will fix this sign discrepancy after quantization, so that the

corresponding particles indeed have four-momentum p.

• As a simple example, consider the positive frequency solution with mass m and p = 0,

u(p) =
√
m

(
ξ

ξ

)
.

To interpret ξ, recall that the angular momentum operator is J i = diag(σi/2, σi/2). Then ξ

describes the spin, with ξ = (1, 0)T yielding spin up.

• Next, consider a boost along the x3 direction, pµ = (E, 0, 0, p). Then for spin up,

u(p) =


√
E − p3

(
1

0

)
√
E + p3

(
1

0

)
 .

In particular, in the massless case we have u(p) = (0, 0, 1, 0)T . Similarly, for a massless spin

down field we have u(p) = (0, 1, 0, 0)T .

• Define the helicity as the projection of spin along the direction of momentum,

h =
i

2
ϵijkp

iSjk =
1

2

(
piσ

i 0

0 piσ
i

)
.

Then the spin up solution above has positive/right-handed helicity and the spin down solution

has negative/left-handed helicity. In the massless case helicity coincides with chirality. When

a mass is added, helicity is no longer Lorentz invariant, and chirality is no longer conserved.

However, we’re playing a dangerous game here because we’re assigning helicity to classical

solutions, while it is really a property of quantum states; this will lead to some extra sign flips.

• Now pick orthonormal bases ξs and χs for the positive and negative frequency solutions. Then

ur†(p)us(p) = 2p0δ
rs, ur(p)us(p) = 2mδrs, vr†(p)vs(p) = 2p0δ

rs, vr(p)vs(p) = −2mδrs

by direct expansion, using the identity (p · σ)(p · σ) = m2. Another useful identity is

ur†(p)vs(−p) = vr†(p)us(−p) = 0.

• Finally, for outer products we have∑
s

us(p)us(p) = /p+m,
∑
s

vs(p)vs(p) = /p−m.

These combinations will appear in the numerator of the propagator.
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3.5 Quantizing the Dirac Field

Now we turn to the quantization of the Dirac field. We begin by naively imposing canonical

commutation relations.

• We recall the conjugate momentum is

π =
∂L
∂ψ̇

= iψγ0 = iψ†.

Perform the Legendre transform by H = πψ̇ − L, the Hamiltonian is

H =

∫
dxψ(−iγi∂i +m)ψ

as we found earlier when computing Tµν .

• Now, we impose the usual canonical commutators

[ψα(x), ψ
†
β(y)] = δαβδ(x− y)

with all other commutators zero, and perform the mode expansion

ψ(x) =

∫
d̄p√
2Ep

(bspu
s(p)eipx + csp

†vs(p)e−ipx).

Taking the conjugate gives

ψ†(x) =

∫
d̄p√
2Ep

(bsp
†us(p)†e−ipx + cspv

s(p)†eipx).

Here, the spin indices s run from 1 to 2, the spinor indices α and β run from 1 to 4, and the

summation convention is used on the spin indices.

• By a similar computation to the scalar field case, we have the commutators

[brp, b
s
q
†] = δrs/δ(p− q), [crp, c

s
q
†] = −δrs/δ(p− q)

with all others zero; note the appearance of the minus sign.

• To simplify the Hamiltonian, we apply the on-shell spinor condition

(−γipi +m)us(p) = γ0p0u
s(p), (γipi +m)vs(p) = −γ0p0vs(p)

so we simply have

(−iγi∂i +m)ψ =

∫
d̄p

√
Ep
2
γ0(bspu

s(p)eipx − csp
†vs(p)e−ipx).

Note there is an extra minus sign here because eipx looks like e−ipx. Applying our spinor inner

product identities gives

H =

∫
d̄pEp(b

s
p
†bsp − cspcsp

†) =

∫
d̄pEp(b

s
p
†bsp − csp

†csp + /δ(0)).
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• Now, note that [H, c†(p)] = Epc
†(p) as usual for a creation operator; the extra minus sign in

the commutation relations cancels out the minus sign in the Hamiltonian. The problem is that

the particles created by c† have negative norm, as

∥crp
†|0⟩∥2 = ⟨0|[crp, crp

†]|0⟩ < 0

which violates unitarity, as we get negative probabilities. We can fix this by interpreting c† as

an annihilation operator and c as a creation operator, but then c creates particles with negative

energy, so the spectrum is unbounded below. Either way, the theory is sick.

Note. The problem above can be traced backwards to the fact that the Hamiltonian for a spinor

field is linear in time derivatives, while that of a scalar field is quadratic, which can in turn be traced

back to the Lagrangian. This generalizes to higher spins. An integer spin field can be represented

using a number of vector indices, while a half-integer spin field must additionally have one spinor

index. The kinetic term of the Lagrangian must contract the spinor indices by a factor of γµ (or

more properly, for a Weyl spinor index, a factor of σµ), whose Lorentz index must then be contracted

with a single derivative ∂µ. The remaining Lorentz indices simply come in pairs, so half-integer spin

fields have equations of motion with an odd number of derivatives.

The problem is fixed by switching to anticommutation relations.

• The spin-statistics theorem states that half-integer spin particles in a relativistic quantum field

theory must be fermions, i.e. must be quantized with anticommutation relations. Thus we

instead impose the canonical anticommutation relations

{ψα(x), ψ†
β(y)} = δαβδ(x− y)

which are equivalent to the anticommutation relations

{brp, bsq
†} = δrs/δ(p− q), {crp, csq

†} = δrs/δ(p− q)

with all other anticommutators zero.

• All of our manipulations above go through unchanged, except that at the last step,

H =

∫
d̄pEp(b

s
p
†bsp − cspcsp

†) =

∫
d̄pEp(b

s
p
†bsp + csp

†csp − /δ(0)).

Then both types of particles have positive energy and positive norm. The vacuum energy

contribution also comes out negative, canceling part of the boson contribution.

• We can construct the Hilbert space exactly as before, acting with the creation operators on the

vacuum. They both raise the energy, as

[H, bsp
†] = Epb

s
p
†, [H, csp

†] = Epc
s
p
†.

The anticommutation relations imply the Pauli exclusion principle: every mode can have either

zero or one particle. The anticommutation makes the multiparticle wavefunction antisymmetric,

as postulated in nonrelativistic quantum mechanics.
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• As an example, the conserved charge from the internal vector symmetry is

Q =

∫
d̄p (bsp

†bsp − csp
†csp)

indicating that the c particles have negative charge. We thus interpret them as antimatter.

• One might wonder how the c particles can have positive energy when they are the quantization

of a classical mode with negative frequency. Each of these modes can have occupancy either 0

or 1, and it is arbitrary which of these two states is labeled ‘unoccupied’. We thus define the

vacuum to be the lowest energy state, and for the vacuum to have all modes unoccupied. In

this new picture, the excitations created by c† are ‘holes’ in the Dirac sea.

• The Dirac sea also explains why the vacuum energy comes out negative for fermionic fields. All

the bosonic degrees of freedom get zero-point energy ℏω/2, while all the negative frequency

fermionic degrees of freedom get Dirac sea energy −ℏω.

• Since c† makes a hole, every quantum number is flipped, so that csp
† creates a particle with

momentum p and negative charge. It’s convenient to define the basis spinors so that csp
† and

bsp
† have the same spin.

Next, we switch to Heisenberg picture, establish causality, and find the fermionic propagator.

• In Heisenberg picture, the field simply becomes

ψ(x) =

∫
d̄p√
2Ep

(bspu
s(p)e−ipx + csp

†vs(p)eipx).

Next, we compute the anticommutator

iSαβ(x− y) = {ψα(x), ψβ(y)}.

Suppressing spinor indices and using the anticommutation relations, we have

iS(x− y) =
∫

d̄p

2Ep
(us(p)us(p)e−ip(x−y) + vs(p)vs(p)eip(x−y))

=

∫
d̄p

2Ep
((/p+m)e−ip(x−y) + (/p−m)eip(x−y))

= (i/∂x +m)(D(x− y)−D(y − x))

where D(x− y) = ⟨0|ϕ(x)ϕ(y)|0⟩ is the propagator for a free scalar field.

• Since D(x − y) vanishes for spacelike separations, S(x − y) and hence the anticommutator

vanishes for spacelike separations. Since all observables are fermion bilinears or combinations

thereof, observables commute at spacelike separations.

• Next, we define the time-ordering symbol as

T (ψ(x)ψ(y)) =

{
ψ(x)ψ(y) x0 ≥ y0,
−ψ(y)ψ(x) y0 > x0.

.

To see one reason the minus sign is necessary, note that at spacelike separations we have

ψ(x)ψ(y) = −ψ(y)ψ(x) by the above calculation. In such cases we can perform a boost to

change the time ordering of x and y, so the two cases in the time ordering must be equal.



57 3. Spinor Fields

• We define the Feynman propagator as

SF (x− y) = ⟨0|Tψ(x)ψ(y)|0⟩.

By a similar calculation to above, we find

SF (x− y) = θ(x0 − y0)
∫

d̄p

2Ep
(/p+m)e−ip(x−y) − θ(y0 − x0)

∫
d̄p

2Ep
(/p−m)eip(x−y)

from which we conclude

SF (x− y) = (i/∂x +m)DF (x− y) = i

∫
d̄p

/p+m

p2 −m2 + iϵ
e−ip(x−y)

where DF is the Feynman propagator for a free scalar theory. If we had used commutation

relations to quantize the field, we would have found an ugly, non-Lorentz invariant result.

• As expected, SF is a Green’s function for the Dirac equation, since applying i/∂x − m gives

(/p−m)(/p+m) = p2−m2 in the numerator. Because of this identity, the Feynman propagator is

sometimes formally written as SF (p) = i(/p−m)−1. Alternatively, we can think of the Feynman

propagator as a sum of Feynman propagators for each degree of freedom; in this picture the

numerator is a sum over polarizations. We will prove this more generally later.

• Normal ordering for fermionic fields is also defined with an extra minus sign for every interchange.

Thus the general method for normal and time ordering is to simply commute or anticommute,

neglecting all extra resulting terms. The proof of Wick’s theorem goes through as before, with

contractions yielding a factor of SF .

• Contractions now come with signs, so that swapping any two ψ or ψ fields in the contraction

structure yields a factor of −1. If we draw lines connecting contracted fields, the number of

sign flips is the number of intersections of the lines.

• Note that the contraction of ψ with ψ, or of ψ with ψ, is automatically zero. Then n-point

functions of spinor fields can only be nonzero if there are an equal number of ψ and ψ fields,

reflecting charge conservation.

• The proof of the LSZ reduction formula also goes through mostly as before, expect that the

poles are projected out by factors of i/∂ −m rather than ∂2 +m2.

3.6 Feynman Rules

In this section, we will illustrate the Feynman rules by a direct calculation in the interaction picture.

The same results can also be found by the same rigorous route followed for the scalar field, starting

with the LSZ reduction theorem.

• For concreteness we consider Yukawa theory,

L =
1

2
(∂µϕ)

2 − 1

2
µ2ϕ2 + ψ(i/∂ −m)ψ − λϕψψ

where ϕ is a scalar field. We think of the ψ particles as nucleons and the ϕ particles as mesons

(specifically, pions). The Yukawa coupling here also appears in the same form between fermions

and the Higgs boson.
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• We now carefully work out ψψ → ψψ scattering, with initial and final states

|i⟩ =
√

4EpEqb
s
p
†brq

†|0⟩, |f⟩ =
√

4Ep′Eq′b
s′
p′

†
br

′
q′

†
|0⟩.

Note that taking the adjoint to get ⟨f | reverses the order of the operators; we were careless

about this before because the operators commuted.

• The O(λ2) contribution to ⟨f |S − 1|i⟩ is

(−iλ)2

2

∫
dx1dx2 T (ψ(x1)ψ(x1)ϕ(x1)ψ(x2)ψ(x2)ϕ(x2))

where the two ϕ fields must be contracted, just as in scalar Yukawa theory.

• Next, we need to be careful about how the spinor indices are contracted. While we’ve kept this

implicit, there is a contraction between ψ and ψ in the interaction term, so explicitly

:ψ(x1)ψ(x1)ψ(x2)ψ(x2): b
s
p
†brq

†|0⟩

= −
∫

d̄k1d̄k2√
4Ek1Ek2

(ψ(x1) · um(k1))(ψ(x2) · un(k2))e
−i(k1x2+k2x2)bmk1

bnk2
bsp

†brq
†|0⟩

where the dot indicates spinor contraction, and we picked up a sign from moving ψ(x1) past

ψ(x2). Applying the anticommutation relations gives two terms which differ by a sign.

• Finally, we need to take care of the final state. Each of the two terms above yields two possible

contraction structures, canceling the 1/2 in front of the amplitude. We are left with the position

integrations, which yield delta functions, finally giving

M = (−iλ)2
(
(us

′
(p′) · us(p))(ur′(q′) · ur(q))

(p′ − p)2 − µ2 + iϵ
− (us

′
(p′) · ur(q))(ur′(q′) · us(p))

(q′ − p)2 − µ2 + iϵ

)

• We can summarize our results with the following Feynman rules.

– For every incoming fermion with momentum p and spin r, write down ur(p). For outgoing

fermions, write ur(p).

– For incoming and outgoing antifermions write vr(p) and vr(p), respectively,

– Every vertex gives a factor of −iλ.
– Every internal line gets a Feynman propagator,

scalar:
i

p2 − µ2 + iϵ
, fermion:

i(/p+m)

p2 −m2 + iϵ
.

– Conserve momentum at every vertex, and integrate d̄p over loop momenta.

– For every fermion line, draw an arrow indicating the flow of particle number, and contract

spinor indices along these lines. This is independent of the momentum flow arrows, though

the two can always be aligned for internal lines.

An easy way to remember the external fermion factors is to note that the matrix multiplications,

read left to right, always go opposite the particle flow lines.
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• There are also extra minus signs in various places.

– Interchange of identical particles gives a factor of −1. For example, the t-channel and

u-channel diagrams have opposite signs for ψψ → ψψ, as we saw above.

– Every closed fermion loop has a factor of −1. This is because we will always need an odd

number of swaps to ‘untangle’ all of the contractions. We write ‘tr’ to indicate the spinor

indices are contracted in a loop.

– Unfortunately, there are further signs that are more subtle, for which these two rules don’t

suffice. The most reliable way is to simply return to the level of contractions and count

the anticommutations necessary to form one. An equivalent diagrammatic method is to

redraw the diagram so that all fermion lines start on the left (in a standard order) and end

on the right; the sign is the sign of the permutation of the lines on the right.

• Finally, we can find the Yukawa potential in the nonrelativistic limit. For ψψ → ψψ scattering,

note that the spinors become

u(p)→
√
m

(
ξ

ξ

)
, v(p)→

√
m

(
ξ

−ξ

)
so the spin-dependence in the terms is just δss

′
δrr

′
and δrs

′
δsr

′
, so the interaction conserves

spin and is spin-independent. Besides that, the amplitude is the same as in Yukawa theory, so

the potential is attractive.

• Next, consider the process ψψ → ψψ. There is a sign flip from fermionic statistics as shown

above, but another sign flip from vs
′ · vs = −2mδss′ , which means nucleons and antinucleons

still attract. This is because forces mediated by spin 0 particles are universally attractive.

• More realistically, the pion is a pseudoscalar, so we should considering the coupling

LYuk = −λϕψγ5ψ

which obeys parity. Then the interaction vertex becomes −iλγ5. In this case, the calculation

becomes significantly more complicated, since taking the naive nonrelativistic limit above just

yields zero. The result is a spin-dependent potential which goes as 1/r3 for massless pions. For

details, see the paper New Macroscopic Forces?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.30.130


60 4. Vector Fields

4 Vector Fields

4.1 Gauge Symmetry

In this section, we quantize the electromagnetic field, finding several new obstacles due to the gauge

symmetry. For background on quantization with constraints used here, see the lecture notes on

String Theory. (finish, see Weinberg)

• Electromagnetism is described by the Lagrangian

L = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ

and satisfies the equations of motion and Bianchi identity

∂µF
µν = 0, ∂λFµν + ∂µFνλ + ∂νFλµ = 0.

These each produce four equations, i.e. two of Maxwell’s equations each.

• Many of the degrees of freedom in Aµ are redundant, as we know the photon has only two

polarization states. The first issue is that A0 has no kinetic term, as the Lagrangian does

not depend on Ȧ0. It is a ‘non-dynamical’ field, whose value is totally determined by initial

conditions for Ai and Ȧi.

• Intuitively, a kinetic term Ȧ2
0 gives the action a ‘penalty’ for changing A0, and hence gives

the field A0 some ‘inertia’. Without this inertia, action minimization always takes A0(t) to

whatever minimizes the Lagrangian given Ai(t) and Ȧi(t) at every time t.

• More explicitly, we can solve for A0 (up to gauge symmetry) using its equation of motion,

∇2A0 +∇ ·
∂A

∂t
= 0, A0(x) =

∫
dx′ (∇ · (∂A/∂t))(x′)

4π|x− x′|
.

Note that this equation of motion is equivalent to the constraint ∇ ·E = 0. We could plug this

expression for A0 back into the Lagrangian, eliminating A0 entirely, but this would be much

messier than just keeping A0 explicit.

• The Lagrangian also has a gauge symmetry

Aµ(x)→ Aµ(x) + ∂µα(x)

where we assume α(x)→ 0 as x→∞, under which the field strength is invariant. Classically,

we think of states related by a gauge transformation as the same physical state. The gauge

symmetry also takes away one degree of freedom because the gauge parameter α has one value

at every point, leaving two.

• Gauge symmetry places powerful constraints on the action. For example, as we will see in detail

for the non-abelian case, the Maxwell action is essentially the only possible kinetic term for a

photon which is gauge invariant, not irrelevant, and not a total derivative.

https://knzhou.github.io/notes/str.pdf
https://knzhou.github.io/notes/str.pdf
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• Since A0 is non-dynamical its conjugate momentum vanishes,

π0 = 0, πi = −F 0i = Ei.

The Hamiltonian can be straightforwardly computed to be

H =

∫
dx

1

2
E2 +

1

2
B2 −A0(∇ ·E).

We hence recover the familiar electromagnetic field energy, with A0 serving as a Lagrange

multiplier which enforces Gauss’s law. Thus we have first-class constraints π0 = ∇ ·E = 0.

We will look at a few different gauges.

• Lorenz gauge is the condition ∂µA
µ = 0. This is always achievable since we can set ∂2α = −∂µAµ

for any starting Aµ. This is not a complete gauge fixing, because ∂2α = 0 has nontrivial solutions,

but Lorenz gauge is Lorentz invariant.

• Coulomb gauge is the additional restriction ∇ ·A = 0, which means A0 is time-independent in

vacuum; it is achievable by the same logic as Lorenz gauge. This is still not a complete gauge

fixing, because we may still apply gauge transformations with parameters α so that

α̈ = ∇2α = 0.

Usually, we further require A0 = 0, which can be achieved by performing a final gauge transfor-

mation with α = A0t. This brings us to Coulomb gauge, which breaks Lorentz invariance, but

makes it easy to see the two independent polarizations.

• In Lorenz gauge and hence in Coulomb gauge, the equation of motion is ∂2Aµ = 0.

• The counting of degrees of freedom can be a little puzzling. Intuitively, there is only “one degree

of freedom” in α(x), which is a function on spacetime. Lorenz gauge is also intuitively “one

constraint”, so it seems nothing should be left over. The point is that the remaining freedom is

of measure zero, as a solution to ∂2α = 0 can be specified by initial conditions on a hypersurface.

Similarly, after fixing Coulomb gauge, we have the freedom to perform gauge transformations

with α̇ = ∇2α = 0, which again is of measure zero relative to what we started with.

• For a fixed four-vector nµ, the axial gauge is nµAµ = 0. We will not deal with axial gauge here,

but it is useful in Yang–Mills theory because ghost fields are not required.

4.2 Quantization in Coulomb Gauge

We begin with quantization in Coulomb gauge. This gauge is popular in atomic physics, where

the breaking of Lorentz invariance is not problematic, since the matter is typically nonrelativistic

anyway. However, it is especially difficult to perform renormalization with it.

• Since we have set A0 = 0, the classical plane wave solutions are

A(x) =

∫
d̄p ξ(p)eip·x, p2 = 0

where ξ(p) is the polarization. The constraint ∇ ·A = 0 yields ξ · p = 0.
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• For each momentum, there are two independent polarization vectors ϵr(p) satisfying

ϵr(p) · p = 0, ϵr(p) · ϵs(p) = δrs.

Note that it is impossible to choose the polarization vectors continuously by the hairy ball

theorem. However, this topological issue has no impact on scattering calculations.

• Naively, we would impose the canonical commutators

[Ai(x), Ej(y)] = iδijδ(x− y)

with all other commutators zero, but we must account for the constraints. Before gauge fixing,

we had the first-class constraints

π0 = 0, ∇ ·E = 0.

In the process of gauge fixing, we imposed the additional constraints

A0 = 0, ∇ ·A = 0

and now π0 = A0 = 0 are automatically satisfied since we have eliminated those variables

entirely. The remaining constraints are now second-class. They are not obeyed by the naive

commutators, as, for example,

[∇ ·A(x),∇ ·E(x)] = i∇2δ(x− y) ̸= 0.

• The fix is to use the Dirac bracket, i.e. the modified bracket

[Ai(x), Ej(y)] = i

(
δij −

∂i∂j
∇2

)
δ(x− y).

Then in momentum space, we have

[Ai(x), Ej(y)] = i

∫
d̄p

(
δij −

pipj
|p|2

)
eip·(x−y)

so that ∂iAi and ∂iEi each have zero bracket with everything else.

• Formally, because our theory has constraints, we would like to define it on a subset of the full

phase space. However, explicitly reducing the three degrees of freedom to two would be quite

ugly. Thinking geometrically of Poisson brackets {f, g} as the rate of change of g under the

flow generated by f , the Dirac bracket amounts to adjusting the flows so that they stay on the

constraint manifold, giving the same result.

• Now, the usual mode expansion gives

A(x) =

∫
d̄p√
2|p|

2∑
r=1

ϵr(p)(a
r
pe
ip·x + arp

†e−ip·x)

and

E(x) =

∫
d̄p (−i)

√
|p|
2

2∑
r=1

ϵr(p)(a
r
pe
ip·x − arp

†e−ip·x).

The polarizations ϵr(p) remain vectors, not operators, obeying the same constraints as before.
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• One can show that the commutation relations above lead to the usual result

[arp, a
s
q
†] = δrs/δ(p− q)

with all others zero. This can be derived using the completeness relation for the polarizations,

2∑
r=1

ϵir(p)ϵ
j
r(p) = δij − pipj

|p|2
.

• Finally, we substitute our mode expansion back into the Hamiltonian, which gives

H =

∫
d̄p |p|

2∑
r=1

arp
†arp

which confirms the excitations all have energy p.

• Switching to Heisenberg picture and applying the completeness relation gives the propagator

Dij(x− y) = ⟨0|TAi(x)Aj(y)|0⟩ =
∫
d̄p

i

p2 + iϵ

(
δij −

pipj
|p|2

)
e−ip(x−y).

Unfortunately, the result is far from Lorentz invariant. Instead we’ll redo the quantization

procedure keeping Lorentz invariance explicit throughout.

Note. When treating the electromagnetic field, we typically either consider the quantized version,

or the classical limit, which arises out of states with many photons. However, it is also valid to

consider states with one photon, and see what the quantum theory says about them. For massive

fields, the one-particle states would be useful in the nonrelativistic limit, where there isn’t enough

energy to make more particles. For photons, this doesn’t apply, but considering one photon at a

time is still interesting since many processes involve only one, or a few photons.

We can write a general state containing one photon as

|ψ⟩ =
∫
d̄p

2∑
r=1

ϵr(p)ψr(p)a
r
p
†|0⟩.

Here, we are working with a basis of one-photon states that diagonalizes momentum p and helicity,

so ψr(p) is the “wavefunction in momentum/helicity space”. It is normalized in the usual way,∫
d̄p

2∑
r=1

|ψr(p)|2 = 1.

Unlike nonrelativistic quantum mechanics, in quantum field theory it is simpler to start in momentum

space. We can define a position operator by noting that, by the canonical commutation relations,

we should have x = −i∇ where the gradient is in momentum space. (This operator is formally

called the Newton–Wigner position operator. One can show that this is the unique candidate

for x which transforms appropriately under the Poincare group.) There is no problem in defining

a position space wavefunction, by taking the Fourier transform. Next, we can define the orbital

angular momentum L = x×p, which has the same value on one-photon states as the orbital angular
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momentum derived by Noether’s theorem for the fields. The spin S is already defined, taking values

±p̂ depending on the polarization, and the helicity is h = p̂ · S.
However, this has a serious problem, which can be seen by defining a vector-valued wavefunction

ψ(p) =
2∑
r=1

ϵr(p)ψr(p).

This wavefunction obeys the transverse constraint, p · ψ(p) = 0, which means the position space

wavefunction obeys ∇ ·ψ(x) = 0. But in position space, the position operator just multiplies by x,

which does not preserve this property. More formally, Wigner’s classification tells us that photons

only occupy helicity states λ = ±1, with λ = 0 forbidden. But x does not commute with helicity,

since it does not commute with p, so it introduces a λ = 0 component. One can restrict x to the

λ = ±1 subspace, but then it no longer has the right transformation properties. This problem

also applies to L and S. Intuitively, these rotate the field rigidly in space, and the field value

itself, and rotating the two independently will turn transverse polarizations into longitudinal ones.

More generally, this problem does not occur for massive particles, where one can boost to the rest

frame and straightforwardly construct the operators there. For massless particles, the problem only

appears for helicities of |λ| ≥ 1, since otherwise there are no missing helicities.

Note that (p, h) is not the only choice for a complete set of commuting observables for one-

photon states. For example, if one wants to talk about angular momentum, one can diagonalize

(p, J2, Jz, h) or (p, J
2, Jz, P ) where P is parity. The position space wavefunctions involve spherical

Bessel functions and spherical harmonics, and are known as vector multipole fields.

The obstruction above is usually described by mathematical physicists as saying that “the position

of a photon is meaningless”, which is probably overenthusiastic. There clearly is no problem with

confining a photon in a cavity or a beam.

Note. There are yet more subtleties even when the Newton–Wigner position operator exists. In this

case, there exist states that are perfectly localized in a given reference frame, but localization is not

Lorentz invariant: the very same state is not perfectly localized upon applying a boost. (However,

this might not be relevant in an experimental situation where the detector defines a preferred frame.)

Furthermore, the wavefunction spreads out faster than the speed of light, a result known as the

Hegerfeldt paradox. The easiest way to see that causality is not actually violated is to return to

the field picture. This is one of the reasons modern particle physics sources often avoid the topic of

one-photon wavefunctions: they have historically led to much confusion.

4.3 Gupta–Bleuler Quantization

Alternatively, we may impose the constraint at the level of the Hilbert space.

• We instead consider the new, “gauge-fixed” Lagrangian

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2

where ξ is a number. Naively, we have changed the theory, and this will be justified below by

showing the S-matrix is independent of ξ. But it’s more correct to say that the non-gauge-fixed

theory isn’t defined as a quantum theory at all, and we’re really checking that the specific way

we gauge fix doesn’t matter. We’ll derive this again in a more satisfying way with the path

integral, where the extra term falls out naturally by restricting the integral to gauge-inequivalent

configurations.
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• To motivate this choice, note that if ξ were a field, the equations of motion would be

∂2Aµ − (1− 1/ξ)∂µ∂νAν = 0, ∂µA
µ = 0

so ξ acts as a Lagrange multiplier that enforces Lorenz gauge.

• However, we don’t want the extra auxiliary field ξ, so we instead let ξ be a number. A natural

choice is ξ = 1, where the equation of motion becomes ∂2Aµ = 0 as it is in Lorenz gauge.

However, note that the Lorenz gauge condition is not enforced, i.e. we don’t have ∂µA
µ = 0.

• Next, we perform canonical quantization. The new term ensures all fields are dynamical,

π0 = −∂µAµ, πi = ∂iA0 − Ȧi.

Below, it will be more convenient to integrate by parts, yielding the new canonical momenta,

L = −1

2
∂µAν∂

µAν , πµ = −Ȧµ.

Next, we impose the Lorentz-invariant canonical commutation relations

[Aµ(x), πν(y)] = iηµνδ(x− y)

with all other commutators zero; note the extra minus sign, because of the minus sign in πµ.

We haven’t imposed any constraints, so there are no issues with Dirac brackets.

• Next, we perform the usual mode expansion, giving

Aµ(x) =

∫
d̄p√
2|p|

3∑
λ=0

ϵλµ(p)(a
λ
pe

−ipx + aλp
†
eipx)

in Heisenberg picture, and

πµ(x) =

∫
d̄p

√
|p|
2
(+i)

3∑
λ=0

ϵλµ(p)(a
λ
pe

−ipx − aλp
†
eipx)

where the canonical momentum has a +i rather than a −i because πµ = −Ȧµ.

• Consider a photon of momentum pµ and let nµ = (1, 0, 0, 0). Then we define

– ϵ0µ = nµ is the timelike polarization

– ϵ1µ and ϵ2µ are the transverse polarizations, obeying

ϵi · n = ϵi · p = 0, ϵi · ϵj = −δij

– ϵ3µ is the longitudinal polarization, defined to be orthogonal to all the others,

ϵ3µ ∝ pµ − nµ(p · n)

and normalized to have norm −1.
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For example, when pµ = (E, 0, 0, E), these are simply the standard basis for R4. Using these

definitions, we have the orthogonality and completeness relations

ϵλ · ϵλ′ = ηλλ
′
, ϵλµϵ

λ′
ν ηλλ′ = ηµν .

• The resulting commutation relations for the creation/annihilation operators are

[aλp, a
λ′
q

†
] = −ηλλ′/δ(p− q).

Then there is a minus sign for the timelike polarizations, which have negative norm, as we

saw for the incorrectly quantized spinors. That is, our naive canonical quantization procedure

hasn’t given us a Hilbert space at all, because the inner product is not positive definite.

Next, we remove the unphysical degrees of freedom by imposing the Lorenz gauge constraint on

the naive Fock space.

• The simplest idea is to set ∂µA
µ = 0 as an operator equation in Heisenberg picture, but this is

unacceptable as it sets π0 = 0. We can also attempt to identify a set of physical states by

∂µA
µ|Ψ⟩ = 0.

However, this is also too restrictive since not even the vacuum is a physical state.

• Finally, consider writing Aµ = A+
µ +A−

µ where A+
µ has positive frequency, and hence contains

only annihilation operators. Then we define physical states by the Gupta-Bleuler condition

∂µA+
µ |Ψ⟩ = 0

so that the vacuum is indeed physical. This is equivalent to

⟨Ψ′|∂µAµ|Ψ⟩ = 0.

That is, we demand the operator ∂µA
µ is zero when restricted to the physical states.

• Explicitly, we define the one-photon states by

|p, ξ⟩ =
√
2|p|αλa†λ(p)|0⟩, ξµ =

∑
λ,λ′

αληλλ′ϵ
µλ′

where ξ is a polarization vector. Then we have

⟨q, ξ′|p, ξ⟩ = −2|p|/δ(p− q) (ξ′ · ξ).

• Using the strange convention above, the Gupta-Bleuler condition is simply

pµξµ = 0.

This eliminates the negative-norm timelike photons, but we still have the zero-norm states

|p, ξS⟩ ∝ (a†0(p)− a
†
3(p))|0⟩

which are combinations of timelike and longitudinal photons, with pµ ∝ ξµ. We need a relative

minus sign between the terms above, even though pµ ∝ (1, 0, 0, 1), because of the minus sign in

the commutation relations for timelike photons.
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• More generally, a basis for our Fock space contains elements of the form |Ψ⟩ = |ψ⟩|ϕ⟩ where
|ψ⟩ contains transverse photons and |ϕ⟩ contains timelike and longitudinal photons. Then the

allowed |ϕ⟩ states satisfy the Gupta-Bleuler condition

(a3p − a0p)|ϕ⟩ = 0

so that the allowed |ϕ⟩ are of the form |ϕn⟩ = (a0p
† − a3p

†
)n|0⟩, which have zero norm for n > 0.

The presence of these states reflects the fact that Lorenz gauge is not a complete gauge fixing.

• We claim the zero-norm states decouple, in the sense that they have zero expectation value for

all gauge-invariant observables. For example, the Hamiltonian is

H =

∫
d̄p |p|

(
3∑
i=1

aip
†
aip − a0p

†
a0p

)
.

However, the Gupta-Bleuler condition implies ⟨ϕ|a3p
†
a3p − a0p

†
a0p|ϕ⟩ = 0, so the |ϕn⟩ have zero

energy. Thus, for a free theory, one can think of the states |ψ⟩|ϕn⟩ as all being ‘gauge equivalent’

to |ψ⟩|ϕ0⟩, yielding a Hilbert space where all states have positive norm.

• On the other hand, zero-norm states do affect the expectation value of Aµ, as we have

⟨ϕn|Aµ(x)|ϕn⟩ = ∂µα, ∂µ∂µα = 0.

This is acceptable since Aµ is not gauge-invariant. Indeed, this is the exact analogue of the

remaining classical gauge freedom Aµ → Aµ + ∂µα with ∂µ∂µα = 0.

• We cannot ignore the zero-norm states entirely. In an interacting theory, they appear as

intermediate states in scattering processes, though we will see that the Ward identity guarantees

they decouple from initial and final states. They are also required to maintain Lorentz invariance,

because a boost can turn a transverse polarization into a partly longitudinal one.

• Finally, we have the Lorentz-invariant propagator

⟨0|TAµ(x)Aν(y)|0⟩ =
∫
d̄p

i

p2 + iϵ

(
−ηµν + (1− ξ)p

µpν

p2

)
e−ip(x−y)

where above we worked with ξ = 1, the numerator comes from the sum of all four polarizations,

and the minus sign ensures the right sign for the spacelike polarizations. The choice ξ = 1 is

called Feynman gauge, while ξ → 0 is called Landau gauge. Landau gauge is the quantum

version of Lorenz gauge, as the Lorenz gauge condition is imposed exactly in this limit.

4.4 Coupling to Matter

Finally, we couple our theory of light to matter.

• While naively we can write down any Lorentz-invariant interaction term involving Aµ, we must

be careful to maintain decoupling of the negative-norm and zero-norm states. By the Feynman

rules, a scattering amplitude involving an external photon of momentum k and polarization

ζµ(k) has the form

M = ζµ(k)Mµ.

Note that by the Feynman rules,Mµ depends on k but not on ζ.
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• The Ward identity states that

kµMµ = 0.

This ensures the amplitude to produce a photon with ζµ(k) ∝ kµ is zero, which means the

zero-norm states decouple as desired. We’ll show later that the Ward identity implies that all

unphysical polarizations decouple.

• Suppose the coupling to matter takes the form Aµj
µ. The classical equation of motion is

∂µF
µν = jν

which implies that ∂µj
µ = 0, so jµ must be a conserved current. Heuristically, at the quantum

level, since jµ creates photons we have

Mµ(k) ∼
∫
dx eikx⟨f |jµ(x)|i⟩

so the Ward identity follows from conservation of the current jµ.

• More generally, it can be shown that jµ must be the conserved current arising from a global

U(1) symmetry of the action. To maintain gauge invariance, this symmetry must be gauged.

We will justify these statements more carefully later; now we turn to some examples. Note that

different sources will differ on the sign of e below.

• First, consider coupling to Dirac fermions. We have a global U(1) symmetry from phase rotation

ψ(x)→ e−ieαψ(x), where we have introduced a dimensionless coupling constant e, which yields

the conserved current jµ = eψγµψ.

• The interaction term can be written neatly with the covariant derivative,

L = −1

4
FµνF

µν + ψ(i /D −m)ψ, Dµψ = ∂µψ + ieAµψ.

We gauge the global symmetry to

Aµ → Aµ + ∂µα, ψ → e−ieαψ

where α is a general function of x. Then the action is gauge-invariant because

Dµψ → ∂µ(e
−ieαψ) + ie(Aµ + ∂µα)(e

−ieαψ) = e−ieαDµψ.

• Given the coupling Aµj
µ, the component j0 can be interpreted as electric charge. Tracing back

to our earlier results, this shows that particles and antiparticles have charge ±e. One can also

show that charge conjugation turns e to −e, as expected.

• Note that a gauge transformation with constant parameter is just the same as a global trans-

formation, which does not take us to the same physical state; this must be true because we

can infer a conservation law from the global symmetry. Only gauge transformations where the

parameter goes to zero at infinity are ‘true’ gauge transformations.



69 4. Vector Fields

• Next, we turn to scalar fields. A real scalar field has no suitable conserved current, so we focus

on a complex scalar field φ, which has a symmetry φ→ e−ieαφ and conserved current

jµ = ie(φ†∂µφ− (∂µφ†)φ).

However, the naive coupling jµAµ doesn’t work, because jµ depends on ∂µφ. Then if we add the

term jµAµ to the Lagrangian, the conserved quantity associated with the U(1) global symmetry

changes, so jµ is no longer conserved!

• It’s possible to fix this by manually adding terms, but a simpler, reliable method is ‘minimal

coupling’, i.e. replacing partial derivatives with covariant derivatives as above. We define

Dµϕ = (∂µ + ieAµ)ϕ, L = −1

4
FµνF

µν + (Dµϕ)
†Dµϕ−m2ϕ†ϕ

which is gauge-invariant by the same reasoning. The interaction terms are

Lint = −
(
ie(ϕ†∂µϕ− (∂µϕ†)ϕ)Aµ − e2AµAµϕ†ϕ

)
which includes a two-photon vertex with a factor of 2. The equation of motion can be read off

by minimal coupling,

(DµD
µ +m2)ϕ = 0.

• The new conserved current associated with the U(1) global symmetry is

j′
µ
= ie(ϕ†Dµϕ− (Dµϕ)†ϕ)

and one can check that Lint = −j′µAµ as required. But this final result would have been rather

difficult to guess without the benefit of the covariant derivative. Also note that to lowest order

in e, the coupling is −jµAµ. This is a universal result for gauge theories.

Note. What if we wished to introduce a mass term for the photon field? The Proca action is

L = −1

4
FµνF

µν +
1

2
m2AµA

µ.

The second term is not gauge invariant, so the theory does not have a gauge symmetry. The

equation of motion is

∂µF
µν +m2Aν = 0

so that, as long as the mass term is nonzero, we automatically have ∂µA
µ = 0. Plugging this back

into the equation of motion yields the Klein–Gordan equation,

(∂2 +m2)Aµ = 0.

Hence we have three massive degrees of freedom. The quantization of this theory is much more

straightforward than the quantization of QED. We have only the second-class constraints ∂µA
µ = 0

and π0 = 0, and Dirac brackets get the job done.

In fact, it is possible to obtain the Proca action from a gauge invariant action by gauge fixing;

this is called the Stuckelberg trick. The Stuckelberg action is

L = −1

4
FµνF

µν +
1

2
(mAµ − ∂µϕ)2.
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The action has the gauge symmetry

δAµ = ∂µϵ, δϕ = mϵ.

We recover the Proca action by gauge fixing ϕ = 0. The benefit of starting from the Stuckelberg

action is that the gauge symmetry constrains the divergences that may appear in perturbation theory,

allowing one to prove the theory is renormalizable. Since the ϕ field is eaten, the Stuckelberg theory

can be thought of as the abelian Higgs model in the limit where the Higgs is very heavy, and

decouples. The Stuckelberg trick doesn’t work for a non-abelian gauge theory, at least in this form,

as in that case δAµ is more complicated.

4.5 Feynman Rules for QED

Now we write down the Feynman rules for scattering amplitudes QED, in Feynman gauge.

• Each interaction vertex has two fermion legs and one photon leg, and gives the factor −ieγµ.
Here, the spinor indices are contracted along the fermion lines as usual, while the Lorentz

indices are contracted along photon lines. Momentum is conserved at each vertex and loop

momenta are integrated as usual.

• Internal lines get the Feynman propagators,

fermion:
i(/p+m)

p2 −m2 + iϵ
, photon:

−iηµν

p2 + iϵ
.

• External fermion receive the usual factors, while incoming and outgoing photons of momentum

p receive factors ϵµ(p) and ϵ
∗
µ(p), respectively. As with the fermion factors, this can be derived

from the LSZ analysis for photon fields or less rigorously in the interaction picture.

• Strictly speaking, both external fermion and photon lines should receive factors of
√
Ze and√

ZA, respectively. We ignore these issues for now because we are focusing on tree-level QED.

• For charged scalars, we have the Feynman rules

The factor of 2 arises because the AµAµϕ
†ϕ term has two identical particles but no compensating

factor of 1/2!. Note that for the sign to be right in the first term, the momentum arrows need

to be oriented along the particle flow arrows.

Note. If we had quantized in Coulomb gauge, we would have more work to do. In the presence

of matter, we no longer have A0 = 0. Instead we find ∇2A0 = −ej0 and we may eliminate A0 by

substituting

A0(x, t) = e

∫
dx′ j0(x′, t)

4π|x− x′|
.

However, this makes the action nonlocal in j. Thus we have both a non-Lorentz invariant propagator

and a nonlocal current-current interaction. With some effort, they can be combined into the Lorentz

invariant propagator above.
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Symmetries give us some useful identities.

• If we had quantized with a general ξ above, we would have found the propagator

− i

p2 + iϵ

(
ηµν + (ξ − 1)

pµpν

p2

)
.

We will show later that we always get the same quantum theory regardless of the value of ξ.

• For now, we can show that ξ doesn’t matter at tree level. For concreteness, consider s-channel

electron-positron scattering, with incoming momenta p and q. Then the photon has momentum

p+ q, and the extra term above contributes

v(p)γµ(pµ + qµ)u(q) = (v(p)/p)u(q) + v(p)(/qu(q)) = (m−m)v(p)u(q) = 0

where we used the on-shell spinor conditions,

(/p−m)u(p) = u(p)(/p−m) = (/p+m)v(p) = v(p)(/p+m) = 0.

Similar reasoning holds for all tree-level diagrams.

• The Ward identity gives a useful result for polarization sums. Define Mµ as above and let

kµ ∝ (1, 0, 0, 1). Then the Ward identity implies

kµMµ = 0, M0 =M3.

Now, the sum over physical polarizations is

2∑
λ=1

|ϵλµMµ|2 = |M1|2 + |M2|2 = |M1|2 + |M2|2 + |M3|2 − |M0|2 = −ηµνMµMν

by the Ward identity, so we can replace a sum over physical polarizations with a sum over all

polarizations; this will be useful in some QED calculations.

• This result shows why it is possible to ignore the negative-norm states: the amplitudes to

produce the unphysical states cancel out. Let P be the projector onto the space of transverse

polarizations. Then our result above heuristically says

S†PS = S†S.

Using the unitarity of the S-matrix on the entire Fock space, we have (PSP )†(PSP ) = P .

Then the restriction of the S-matrix to the subspace of transverse polarizations is unitary, as

desired.

• Note that unphysical polarizations are still produced in intermediate states, as shown by the

photon propagator being proportional to ηµν . We cannot simply ignore these unphysical

polarizations entirely, because the transverse polarizations alone are not Lorentz invariant; one

can perform a Lorentz transformation on the field to convert a transverse polarization into an

unphysical one. That is, gauges that restrict to transverse polarizations only, such as Coulomb

gauge, are necessarily not Lorentz invariant.
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• In the case of a massive vector field, there is no gauge symmetry; instead we have three physical

polarizations and a single negative-norm polarization with ϵµ(k) ∝ kµ. In this case, a direct

application of the Ward identity kµMµ = 0, which still holds, is enough to show the unphysical

state decouples.

Example. Compton scattering. Two diagrams contribute to the amplitude iM, as shown below.

If we wish to sum over final polarizations and average over initial polarizations, we could use the

identity derived above from the Ward identity. Alternatively, we can use this result to check the

Ward identity. Setting ϵin = q, we get

iM∝ 2p · q
(p+ q)2 −m2

+
2p′ · q

(p′ − q)2 −m2
= 1− 1 = 0

where we used the on-shell spinor equations and q2 = /q/q = 0. Note that the Ward identity doesn’t

hold for each diagram individually; it is a result for amplitudes, not diagrams.

Finally, we recover the Coulomb potential.

• First, consider electron-electron scattering, with the following amplitude.

• In the nonrelativistic limit, the spinors become u(p)→
√
m(ξ, ξ)T . Then the only term in the

spinor contractions that contributes is µ = 0 (which means the interaction is mediated by a

timelike photon) giving a numerator of (2m)2, canceling the relativistic normalization.

• Working in the center-of-mass frame, the process is elastic, so the denominator gives a factor

of −(∆p)2 where ∆p is the momentum transfer. The nonrelativistic amplitude for scattering

isM∼ −iŨ(∆p) by the Born approximation, giving

U(p) =
e2

p2

which is a repulsive Coulomb potential.

• Next, we consider electron-positron scattering. In this case, we pick up a sign flip from fermionic

statistics, as in Yukawa theory. In Yukawa theory, there was an second sign flip since vv → −2m,

but here we instead have vγ0v → 2m. Then all the logic above goes through as before, and the

result is an attractive Coulomb potential.
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• Thus, we have shown that while forces mediated by spin-0 particles are universally attractive,

forces mediated by spin-1 particles are not. One might say the sign flip really comes from the

negative norm of the timelike photon.

• The same sign flip can be found in scalar QED. For example, we have:

Then particles with the same charge repel, and again only A0 contributes. If we flipped the

charge of one of the incoming scalars, then we would get a sign flip because the momentum

factors are correlated with the charge flow, giving attraction.

Note. More intuition for the sign. We consider coupling to a current jµ, so that at lowest order

the energy of interaction of two currents is

E ∼
∫
dk Jµ(k)∗Dµν(k)J

ν(k).

We work with a massive photon for simplicity. Naively, since each component of Aµ satisfies

the Klein–Gordan equation, we should sum over all four polarizations, giving a numerator of ηµν .

However, since we automatically have ∂µA
µ = 0, the polarizations satisfy kµϵµ = 0, or equivalently

we are missing the “timelike” polarization ϵµ ∼ kµ, called so because it is (1, 0, 0, 0) in the particle’s

rest frame. Then in a general frame, we have∑
λ

ϵµλ
∗
(k)ϵνλ(k) = −ηµν +

kµkν

m2
.

This gives the propagator for a massive vector,

Dµν(k) =
−iηµν + ikµkν/m

2

k2 −m2 + iϵ
.

Now we take the mass to zero. For a massless photon, we can only couple to a conserved current,

so that kµJ
µ(k) = 0 and the singular second term vanishes; then the spacelike components have the

usual sign and the timelike component has the opposite sign. This is why parallel currents attract

in electromagnetism but like charges repel!

Note. Guessing the propagator for gravity. In general, the numerator of a propagator is simply

the sum of projections onto polarizations. Define the spin 1 numerator as −Gµν(k), we have∑
a

ϵ(a)µ (k)ϵ(a)ν (k) = −Gµν(k)

as can be checked by explicit computation in the rest frame. Now for spin 2, there are five matrix

polarizations satisfying

kµϵ(a)µν = 0, ηµνϵ(a)µν = 0
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which project away the spin 1 and spin 0 components. Applying these constraints to the most

general candidate built out of Gµν and kµ gives

Dµν,λσ(k) = i
GµλGνσ +GµσGνλ − (2/3)GµνGλσ

k2 −m2 + iϵ

where the overall constant can be found by evaluating in the rest frame. Gravity couples to the

stress-energy tensor, and its conservation means we can replace Gµν with ηµν . It turns out that in

proper GR, the massless limit converts the 2/3 to a 1.

The sign of the gravitational force is determined by the sign of D00,00, which is indeed positive.

(Another way of understanding this is that the sign flip for spin 1 occurs twice; universal attraction

holds for even spins.) Pressure is also attractive by the same amount as energy density, since

Dii,ii = D00,00, as we know from the notes on General Relativity.

https://knzhou.github.io/notes/gr.pdf
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5 Quantum Electrodynamics

5.1 Cross Sections and Spin Sums

In this section, we do an extended example to demonstrate ‘technology’ for QED calculations.

• We consider e+e− → µ+µ−, which is simple since there is only one diagram, the s-channel.

We set the initial spin polarizations to s and s′ and the final polarizations to r and r′.

• Applying the Feynman rules, we have

iM(s, s′, r, r′) =
ie2

q2
(vs′(p

′)γµus(p))(ur(k)γµvr′(k
′)), q = p+ p′ = k + k′.

Often, the initial state is unpolarized, and the detector cannot measure the polarization of the

final state. Then the squared amplitude relevant for the cross section is

|M|2tot =
1

2

∑
s

1

2

∑
s′

∑
r

∑
r′

|M(s, s′, r, r′)|2.

• Using the identities (γ0)† = γ0 and γ0γµγ0 = (γµ)†, we have

(vs′γ
µus)

∗ = usγ
µvs′ .

A similar rule holds in general: the gamma matrices just reverse in order, and there’s an

additional sign flip for every factor of γ5 since γ0γ5γ0 = −γ5 = (−γ5)†. For example,

(vs′γ
µγνγρus)

∗ = usγ
ργνγµvs′ .

In our current case, the total squared amplitude has two factors,

|M|2tot =
1

4

e4

q4

∑
ss′rr′

(usγ
µvs′vs′γ

νus)(vr′γµururγνvr′)

where we suppress momentum arguments.

• We can simplify this using the completeness relations∑
s

us(p)us(p) = /p+me,
∑
s

vs(p)vs(p) = /p−mµ.

Carefully keeping track of spinor indices, we find spinor traces, giving

|M|2tot =
1

4

e4

q4
tr((/p+me)γ

µ(/p′ −me)γ
ν) tr(( /k′ −mµ)γµ(/k +mµ)γν).

More generally, we will have multiple diagrams that contribute, so the squared amplitude will

have cross-terms.
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• Thus, we need to evaluate the traces of gamma matrices. We use the identities

tr(odd number of γµ) = 0, tr γµγν = 4ηµν , tr γµγνγργσ = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ).

For pseudoscalar and pseudovector interactions, we will also need

tr(γ5(zero to three γµ)) = 0, tr γ5γµγνγργσ = −4iϵµνρσ.

• These identities can generally be proven by inserting the identity, in terms of (γ0)2 or (γ5)2,

and using the anticommutation relations; the γ5 identities can be shown by noting that the

result must be a totally antisymmetric tensor.

• A more general technique is to recall that S[Λ]−1γµS[Λ] = Λµνγν . Therefore, if we “transform”

each gamma matrix on the left-hand side by conjugating by S[Λ], the trace remains invariant,

but the right-hand side transforms like a Lorentz tensor, or a pseudotensor if γ5 appears. Thus,

the right-hand side must be a Lorentz invariant (pseudo)tensor, which can only be built from

ηµν and ϵµνρσ. This fixes the answer in all cases above, and is also useful for larger traces.

• We can express antisymmetrized products of gamma matrices as

γ5 = − i

24
ϵµνρσγ

µγνγργσ, γ[νγργσ] = iϵµνρσγµγ
5.

In fact, the identity, γµ, γ[µγν], γµγ5, and γ5 form a basis for the space of 4× 4 matrices; we

used this when analyzing all Dirac bilinears above.

• Finally, we have

γµγµ = 4, γµγνγµ = −2γν , γµγνγργµ = 4ηνρ, γµγνγργσγµ = −2γσγργν .

However, these particular identities change in dimensional regularization, as we’ll see below.

• Sometimes it’s useful to rearrange things using the Clifford algebra,

/p/q = 2p · q − /q/p.

• Note that the γ5 identities use the convention

ϵ0123 = 1, ϵ0123 = −1.

This is the opposite of the convention in general relativity, where the volume form naturally

has lowered indices, so ϵ0123 =
√
|g| > 0.

• Applying these identities to our result and setting me to zero gives

|M|2tot =
8e4

q4
(
(p · k)(p′ · k′) + (p′ · k)(p · k′) + (p · p′)m2

µ

)
.

Working in the center of mass frame, let the initial energies of the particles be E, and let the

outgoing muon come out at an angle θ from the incoming electron. Then

|M|2tot = e4
(
1 +m2

µ/E
2 + (1−m2

µ/E
2) cos2 θ

)
.
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• Finally, we may substitute this into the 2→ 2 scattering cross section and integrate for

σ =
4πα2

3Ecm

√
1 +mµ/E (1 +m2

µ/2E
2), α =

e2

4π
.

Here, the factor in parentheses is determined by the dynamics of QED, while everything else is

determined by the “kinematics”, i.e. by dimensional analysis and the volume of available phase

space. For example, for Ecm ≫ mµ we must have σ ∝ 1/E2
cm by dimensional analysis.

Note. A taste of real experimental particle physics. Currently, there are many experiments searching

for the dark photon, a hypothetical particle whose motivation is described in the notes on Cosmology.

The dark photon acts like the regular photon, but it has a mass mA′ and couplings ϵe to fermions,

where ϵ is the kinetic mixing parameter. Accelerator experiments attempt to produce the dark

photon and detect its decay. The dominant production channel depends on the experiment, such

as whether it uses lepton or hadron beams, but some important production channels are:

• Electron-positron annihilation, e+e− → γA′. At high energies, the rate for this is ϵ2 smaller

than the rate for e+e− → γγ.

• A′ Bremsstrahlung. Most processes can also produce an A′ by attaching it to a fermion line.

• Meson decay. For example, pions can decay as π0 → γγ, though we won’t be able to calculate

this rate for some time. However, it is simply related to the rate for π0 → γA′.

The A′ can then decay, e.g. through A′ → e+e−, which is trivial to calculate given what we already

know, or through A′ → π+π−, which is somewhat more tricky. The way we detect this decay

depends on the lifetime of the A′, which generally scales as τ ∼ 1/Γ ∼ 1/αϵ2mA′ . The dark photon

will travel a distance γcτ , but the opening angle of the decay products is ∼ 1/γ, so the quantity

that determines experimental resolution turns out to be

ℓ ∼ cτ ∼ (10−6m)

(
10−3

ϵ

)2
10MeV

mA′
.

For ℓ ≲ 10µm, the decay is “prompt”, i.e. it happens at the same point as production, up to the

detector resolution. In this case, individual dark photon events look like background events, but they

can be found by computing the invariant mass of the decay products and looking for a statistically

significant bump at mA′ . For larger ℓ, we enter the “displaced” regime, where the decay products

can be measured to be coming from a point away from the interaction point. Here the signal

rate tends to be lower, but measuring a displaced decay dramatically cuts down on backgrounds.

Finally, if ℓ is larger than the detector, we enter the “long-lived” regime, where the dark photon

flies out undetected. These can be detected by looking for “missing energy/momentum”, but this

procedure introduces its own backgrounds and uncertainties. Alternatively, one can search for the

dark photon’s decay inside a shielded secondary detector, far downstream of the main detector.

These events would be very rare, but backgrounds are very low. Furthermore, in this case the

dark photon doesn’t need to be traced back to the event that produced it, so we can enhance the

luminosity by using a “beam dump”, crashing a beam into a wall rather than colliding it with another

beam. Every one of these options is being considered by several completed, ongoing and proposed

experiments around the world, including BaBar, Belle II, APEX, MAMI, MESA, DarkLight, HPS,

DarkQuest, NA48, and NA42 (for prompt and displaced decays) and GAZELLE, CODEXb, FASER,

MATHUSLA, E137, E141, E774, NA64, CHARM, NuCal, and NA62 (for long-lived particles).

https://knzhou.github.io/notes/cos.pdf
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5.2 Ward–Takahashi Identity

In this section, we justify the statements about the Ward identity made earlier. We begin by

covering the Schwinger–Dyson equations.

• For simplicity, consider a free real scalar field. The classical equation of motion is

δS

δϕ(x)
= −(∂2 +m2)ϕ(x) = 0.

The quantum Heisenberg fields also satisfy the same equation.

• For the two-point function, we have

(∂2x +m2)i⟨0|Tϕ(x)ϕ(x1)|0⟩ = δ(x− x1)

where the delta function comes from differentiating a step function, and we use the equal-time

commutation relations. By extending this reasoning, we have the Schwinger–Dyson equation

⟨0|T δS

δϕ(x)
ϕ(x1) . . . ϕ(xn)|0⟩ = i

n∑
j=1

⟨0|Tϕ(x1) . . . ϕ̂(xj)δ(x− xj) . . . ϕ(xn)|0⟩

where the hat indicates a missing argument; it is the analog of the classical ‘equations of motion’

for correlation functions.

• Heuristically, the Schwinger–Dyson equation says that correlation functions in classical field

theory obey the classical equations of motion, while correlation functions in quantum field

theory are corrected by ‘contact terms’ which correspond to the emission and absorption of

virtual particles; accordingly, classical field theory Feynman diagrams have no loops.

• Off-shell, the Noether current associated with the symmetry δϕ(x) satisfies

∂µj
µ = − δS

δϕ(x)
δϕ(x)

so the Schwinger–Dyson equations become

∂µ⟨0|Tjµ(x)ϕ(x1) . . . ϕ(xn)|0⟩+ i

n∑
j=1

⟨0|Tϕ(x1) . . . ϕ̂(xj)δϕ(x)δ(x− xj) . . . ϕ(xn)|0⟩ = 0.

This result is called the Ward–Takahashi identity; it is the analog of classical current conservation

for correlation functions. They are generalized in Yang–Mills to the Slavnov–Taylor identities.

• We have only justified these results for a free theory, but the same results hold for an interacting

theory, where δS/δϕ(x) simply gets more complicated; we will justify this with the path integral

later. One caveat is that correlation functions generally involve divergent loop integrals that

must be regulated. If we cannot find a regulator that respects the classical symmetry, then the

symmetry is anomalous and does not hold at the quantum level.

Now we see how these results imply the Ward identity.
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• By the LSZ reduction formula, a scattering amplitude involving an external photon |kµ, ξµ(k)⟩
and n other external particles has the form

⟨f |i⟩ ∼ ξµ(k)
∫
dx e−ikx∂2x . . . ⟨0|TAµ(x) . . . |0⟩.

• In Feynman gauge, the classical equation of motion for Aµ is ∂2Aµ = jµ. Then we have

∂2x⟨0|TAµ(x) . . . |0⟩ = ⟨0|Tjµ(x) . . . |0⟩+ contact terms

where the contact terms contract our photon with another external photon. This represents a

disconnected contribution and hence doesn’t contribute to the connected S-matrix.

• Now set ξµ = kµ. Integrating by parts turns the momentum into a derivative, giving

∂µ⟨0|Tjµ(x) . . . |0⟩ = contact terms

by the Ward–Takahashi identity. Since jµ is the conserved current associated with the U(1)

symmetry of the electron field, we get a contact term for each external electron. None of these

terms contribute to the S-matrix because in each term, the momentum of one external leg will

be displaced by ±k from where it should be; this proves the Ward identity.

• Alternatively, backing up a step and removing the LSZ pole cancellation factors, we have derived

an identity between off-shell momentum-space correlation functions, where a correlation function

involving an external photon is equal to a sum of correlation functions without it, where the

external electron momenta are shifted by ±k. This is the form of the Ward–Takahashi identity

presented in Peskin, where it is proven diagrammatically.

Note. More generally, any amplitudeMµν...ϵ
(1)
µ ϵ

(2)
ν . . . will vanish if any nonzero number of the ϵ(i)

are made longitudinal. However, in non-abelian gauge theory the equations of motion are more

complicated, and the above argument is not applicable. It turns out that the amplitude still vanishes

if any one of the ϵ(i) are made longitudinal, but the rest must be transverse.

This leads to some subtleties. For processes involving off-shell gluons, we cannot naively replace

sums over physical polarizations with ηµν as we did for QED. However, the extra contribution due

to including the extra unphysical polarizations can be cancelled by ghosts. For example, in the

amplitude for qq → gg, the extra unphysical contribution can be cancelled by adding the amplitude

for qq → cc. This latter amplitude contributes negatively to the cross section, which is possible

because the ghosts have negative norm.

We now explicitly link current conservation and gauge invariance.

• Write the action as

S = SA[A] + Sint[A, ϕ] + Sϕ[ϕ].

In retrospect, we see that our derivation of the Ward identity only requires S to have a global

continuous symmetry with conserved current jµ that couples to Aµ as

δSint[A, ϕ]

δAµ
= −jµ.

This is the first step in the derivation, and conservation of jµ is the second.
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• We claim that if Aµ couples to a conserved current in a massless vector theory, the action S must

be gauge invariant. To see this, consider the global continuous symmetry ϕ(x)→ ϕ(x)+ ϵδϕ(x),

which leaves S invariant. If we promote ϵ to ϵ(x), then

δS =

∫
dx j̃µ∂µϵ(x) = −

∫
dx (∂µj̃

µ)ϵ(x)

where the first step follows by Lorentz invariance, and because δS is zero when ϵ(x) is constant.

Comparing this to our earlier expression shows that j̃µ = jµ.

• Next, using our original hypothesis we have∫
dx

(
δSint
δAµ

+ jµ
)
∂µϵ(x) = 0.

As we’ve just seen, the second term is the change in the action due to the local transformation

ϕ(x)→ ϕ(x) + ϵ(x)δϕ(x). The first term is the change in the action due to the local transfor-

mation Aµ → Aµ+ ∂µϵ(x), where we used the fact that SA[A] is gauge invariant. Thus we have

shown that the full action has a gauge symmetry.

• The converse of this statement follows from running the steps in reverse. If there is a gauge

symmetry, taking ϵ constant gives a global symmetry with conserved current jµ, and the

variation of the action under the gauge transformation is∫
dx

(
δSint
δAµ

+ jµ
)
∂µϵ(x) = 0

as before. Since ∂µϵ(x) is arbitrary, the term in brackets is zero.

• In the case of a massive vector theory, there is no gauge invariance, but the Ward identity still

holds if Aµ couples to a conserved current jµ. A map of equivalences is given below.

All of these statements are so closely related that the Ward identity is sometimes called a

statement of ‘current conservation’ or ‘gauge invariance’.

5.3 Electron Self-Energy

Next, we give a quick overview of radiative corrections.

• We will call the parameters in the Lagrangian bare parameters, and write the bare fermion

mass as m0. The bare propagator is the tree-level propagator,

SF (x− y) =
∫
dp e−ip(x−y)

i(/p+m0)

p2 −m2
0 + iϵ

=

∫
dp e−ip(x−y)

i

/p−m0 + iϵ

where the latter notation is just suggestive, motivated by ‘factoring the difference of squares’.
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• We define the electron self-energy Σ(/p) by the sum of 1PI diagrams,

By Dyson resummation, the full propagator is∫
dp e−ip(x−y)

i

/p−m0 − Σ(/p) + iϵ

and hence we call Σ(/p) the self-energy of the electron. Note the self-energy has two spinor

indices which contract with the spinor indices of the incoming and outgoing electron.

• Similarly, we consider the full photon propagator. It is corrected by Dyson resummation of the

1PI contribution,

and Πµν(q2) is called the self-energy of the photon or the vacuum polarization.

• Finally, the interaction vertex receives radiative corrections, and summing all these corrections

gives the effective vertex,

We only count amputated diagrams, which in this case coincide with 1PI diagrams.

• Generally, we will find UV divergences from virtual particles with arbitrarily high momenta;

they must be tamed by regularization. There are also IR divergences for loops with photons;

these cancel against IR divergences from the radiation of soft photons.

Note. One strange feature of Dyson resummation is that it involves summing over diagrams of all

orders, even though we only calculate the 1PI diagrams (and most other things) to a fixed order.

For instance, if we calculate the sum of 1PI diagrams up to O(e2), then the Dyson sum includes

additional contributions of O(e4) and higher. But this extra accuracy seems pointless, because there

are also 1PI diagrams of O(e4) we’re neglecting!

The real point is that in processes where the intermediate propagator is nearly on-shell, the higher-

order terms in the Dyson sum become important. To see this, note that Σ ∼ m0 on dimensional

grounds, so each term in the Dyson series is suppressed relative to the last by a factor

Σ(p2)D0
F (p

2) ∼ e2m0

/p−m0
∼ e2m2

0

p2 −m2
0

.

This ratio can be large when p2 −m2
0 is small enough, in which case the entire Dyson series has to

be summed to get an accurate answer, even at O(e2). That is, in some situations we must sum over

diagrams of all orders merely to ensure accuracy at a fixed order.
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We need to perform Dyson resummation for the photon propagator for a similar reason. For

processes with low-energy photons, the full Dyson series needs to be summed to get an accurate

result, and the result is the “running coupling” where the effective strength of the electromagnetic

interaction varies with energy, as described below. A more obscure example of this phenomenon

occurs when two nonrelativistic charged particles scatter. The propagator for photon exchange in

the t-channel can be very large, since 1/t ∼ 1/v2. In this case, all the “ladder” diagrams involving n

photon exchanges are comparable in size, and must be summed to get an accurate result. The result

is a complex structure with resonant peaks corresponding to the bound states of the particles, which

matches what one finds using the nonrelativistic Schrodinger equation. These kinds of calculations

are not covered in standard introductory textbooks, but can be found in Quantum Electrodynamics

by Berestetskii, Lifshitz, and Pitaevskii.

In the rest of this section, we calculate the one-loop electron self-energy in detail.

• The one-loop contribution is due to emission and absorption of a virtual photon, with

−iΣ2(/p) = (−ie)2
∫
d̄k

γµ(i(/k +m0))γµ(−i)
(k2 −m2

0 + iϵ)((p− k)2 − µ2 + iϵ)

where we have applied the Feynman rules in Feynman gauge and introduced a small photon

mass µ to regulate the IR divergence.

• To handle the denominator, we turn it into a square with the identity

1

AB
=

∫ 1

0

dx

(xA+ (1− x)B)2

which generalizes to

1

A1 . . . An
=

∫ 1

0
dx1 . . . dxn δ

(∑
i

xi − 1

)
(n− 1)!

(x1A1 + . . .+ xnAn)n
.

The measure is normalized so that∫ 1

0
dx1 . . . dxn (n− 1)! δ

(∑
i

xi − 1

)
= 1.

• After some simplification and a change of variable, we find

iΣ2(/p) = e2
∫ 1

0
dx

∫
d̄ℓ
γµ(/k +m0)γµ
(ℓ2 −∆+ iϵ)2

, ℓ = k − xp, ∆ = −x(1− x)p2 + xµ2 + (1− x)m2
0.

This form is useful because the denominator has a simple dependence on the integration variable.

Note that the /ℓ term in the numerator vanishes because it is odd in ℓ.

• Next, we perform a Wick rotation to Euclidean space. Note that the dℓ0 integral above can

be viewed as a contour integral, with poles in the second and fourth quadrants. Then we can

rotate the contour to go along the positive imaginary axis.
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• We parametrize the rotated contour with the real variable ℓ0E , so that ℓ
0 = iℓ0E . Hence dℓ

0 = idℓ0E ,

picking up a factor of i, and∫
d̄ℓ

(ℓ2 −∆+ iϵ)m
= i(−1)m

∫
d̄ℓE

(ℓ2E +∆− iϵ)m
, ℓ2E = (ℓ0E)

2 + ℓ · ℓ

where the sign flip occurs because the metric for (ℓ0E , ℓ) is negative definite. Finally, we drop

the iϵ and regard the integral as an integral in real Euclidean space R4.

• In our case, we would like to evaluate the UV-divergent integral

I4 =

∫
d̄ℓE

(ℓ2E +∆)2
.

The simplest method is a hard UV cutoff at r = Λ, which gives

I4 ∼ log(Λ2/∆)

which is a log-divergence. However, this method breaks gauge invariance, since a gauge trans-

formation can introduce arbitrarily high Fourier modes.

We instead regulate the integral with dimensional regularization (DR), using d = 4− ϵ dimensions.

• For the angular part, note that for integer d, we have∫
dΩd ≡ Vol(Sd−1) =

2πd/2

Γ(d/2)

where Γ(n) = (n − 1)! and Γ(z) has poles at z = 0,−1,−2, . . .. This formula may be derived

by taking the identity

πd/2 =

(∫
dx e−x

2

)d
and evaluating the right-hand side in d-dimensional spherical coordinates. We then define this

to hold for all d ∈ C. Some useful special cases are

Vol(S1) = 2π, Vol(S2) = 4π, Vol(S3) = 2π2.

• Therefore, using this result, the measure in d dimensions with spherical symmetry is

d̄dp = Vol(Sd−1)
pd−1 dp

(2π)d
=

(p2)d/2−1 d(p2)

(4π)d/2Γ(d/2)
.

Thus our integral generalized to d dimensions is

Id =
1

(4π)d/2Γ(d/2)

∫ ∞

0

ud/2−1

(u+∆)2
du =

∆d/2−2

(4π)d/2Γ(d/2)

∫ 1

0
dxx1−d/2(1− x)d/2−1

where we substituted x = ∆/(u+∆). This integral can be evaluated using the beta function,

B(α, β) ≡
∫ 1

0
dxxα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α+ β)
.



84 5. Quantum Electrodynamics

• More generally, for an arbitrary power of p in the numerator, we have∫
d̄dp

p2a

(p2 −∆)b
= i(−1)a−b 1

(4π)d/2
1

∆b−a−d/2
Γ(a+ d

2)Γ(b− a−
d
2)

Γ(b)Γ(d2)

by similar logic, where the sign factors come from flipping the negative-definite Euclidean

signature. Some useful special cases of this result are∫
d̄dp

1

p2 −∆
=

−i
(4π)d/2

1

∆1−d/2Γ

(
2− d
2

)
,∫

d̄dp
1

(p2 −∆)2
=

i

(4π)d/2
1

∆2−d/2Γ

(
4− d
2

)
,∫

d̄dp
p2

(p2 −∆)2
=
d

2

−i
(4π)d/2

1

∆1−d/2Γ

(
2− d
2

)
,∫

d̄dp
p2

(p2 −∆)3
=
d

4

i

(4π)d/2
1

∆2−d/2Γ

(
4− d
2

)
.

Note that we generally end up with a factor of 1/(4π)2, which suppresses the contribution of

the loop; this is called a loop factor.

• In Euclidean signature, we have the same result with no i or sign factors,∫
d̄dk

k2a

(k2 +∆)b
=

1

(4π)d/2
1

∆b−a−d/2
Γ(a+ d

2)Γ(b− a−
d
2)

Γ(b)Γ(d2)

• An alternate way to derive this result is to use Schwinger parametrization. Before doing the

angular integral, we note that

1

an
=

1

Γ(n)

∫ ∞

0
duun−1e−ua.

If we apply this to the denominator, then we would have∫
d̄dk

k2a

(k2 +∆)b
=

1

Γ(b)

∫
duub−1e−u∆

∫
d̄dk e−uk

2
k2a

in Euclidean signature. After doing the angular integral, the inner integral is merely a gamma

function after substitution, and so is the outer integral, giving the same result.

• Finally, we need to handle numerators, which involve spinors and the metric. We define

gµνgµν = d

and the Lorentz-invariant phase space as

dΠLIPS = /δ
d
(∑

pj

)∏
j

d̄d−1pj
2Epj

.

Formally, we suppose there are d four-dimensional gamma matrices satisfying {γµ, γν} = 2gµν ,

so that the trace of the identity in spinor space is still 4.
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• As a result, spinor identities that involve metric contractions change, such as

γµγµ = d, γµγνγµ = (2− d)γν

and

γµγνγργµ = 4ηνρ + (d− 4)γνγρ, γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ.

We also assume there exists a matrix γ5 so that {γ5, γµ} = 0, though this runs into some

subtleties with anomalies, as we’ll see below.

• For the final step, we substitute d = 4− ϵ and take the limit ϵ→ 0+, using

Γ(ϵ) =
1

ϵ
− γ +O(ϵ), xϵ = 1 + ϵ log x+O(ϵ2).

where γ is the Euler–Mascheroni constant. For the other poles of Γ, we use Γ(z + 1) = zΓ(z),

Γ(ϵ− 1) = −1

ϵ
− 1 + γ +O(ϵ), Γ(ϵ− 2) =

1

2ϵ
+

3

4
− γ

2
+O(ϵ)

• Note that dimensional regularization is just a formal technique. It is merely a perturbative

regularization scheme, and it does not provide a definition of the path integral in d = 4.

Note. A proof of our identity for the beta function. Let us define

C(α, β) =

∫ 1

0
dxx−α−1(1− x)β−1.

We wish to prove that this coincides with the definition of B(α, β) in terms of the gamma function.

By integration by parts, it is straightforward to see that

C(α− 1, β + 1) =
β

α− 1
C(α, β).

Furthermore, by writing x = 1− (1− x), we have

C(α+ 1, β) = C(α, β)− C(α, β + 1).

It is easy to see using the gamma function recursion relation Γ(z + 1) = zΓ(z) that the gamma

function obeys the same relations. Since C(1, 1) = B(1, 1), the above relations imply that B and C

agree on integers; using their similar asymptotic behaviors suffices to show they are equal.

We now apply this technique to our divergent integral.

• Applying our results, we find

Id =
Γ(2− d/2)

(4π)d/2∆2−d/2 .

We now set d = 4 − ϵ and taking the limit ϵ → 0. The dimensions of Id depend on d, so we

introduce a compensating mass scale M̃ , giving

I4 = lim
ϵ→0

1

(4π)2

(
2

ϵ
+ log

M2

∆
+O(ϵ)

)
, M2 = 4πe−γM̃2.

Simplifying the numerator with spinor identities gives

Σ2(/p) = lim
ϵ→0

α

2π

∫ 1

0
dx ((2− ϵ/2)m0 − (1− ϵ/2)x/p)

(
2

ϵ
+ log

M2

∆

)
.
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• The same result can be carried out in Pauli–Villars regularization, where we subtract off a loop

diagram containing a fictitious massive particle of mass Λ in place of the photon. This is a

better approach than the hard-cutoff, and introducing an arbitrary mass scale M gives

Σ2(/p) = lim
Λ→∞

α

2π

∫ 1

0
dx (2m0 − x/p)

(
log

xΛ2

M2
+ log

M2

∆

)
.

The momentum-dependent terms are the same, while the log-divergence matches with that seen

with the hard cutoff, and translates to a 1/ϵ pole in DR.

To understand the consequences of the self-energy, we recall the spectral representation.

• Applying the spectral representation, we have

i

/p−m0 − Σ(/p)
=

iZ2

/p−m
+ terms analytic at m.

The physical mass m is the location of the lowest-lying pole, and hence satisfies

/p−m0 − Σ(/p)

∣∣∣∣
/p=m

= 0.

We can extract the residue Z2 by differentiating with respect to /p here, giving

Z−1
2 = 1−

dΣ(/p)

d/p

∣∣∣∣
/p=m

.

In both equations above, the equality /p = m looks rather strange, though it’s straightforward

to use. It is a valid shortcut for a more correct procedure, as justified here.

• Since we are working to lowest order in α, the mass shift is

δm = m−m0 = Σ2(/p = m0) +O(α2)

where we evaluated Σ2 at m0 rather than m since the resulting error is second-order.

• We need to interpret the fact that the correction δm is divergent. The parameter m is physical,

while m0 can never be measured directly. Hence we interpret our mass renormalization as a

definition of m0 in terms of m in terms of the regularization parameters (e.g. ϵ and M). As the

regularization is removed, m0 diverges, but this is acceptable since it is not physical. The cost

of this interpretation is that m is now an input rather than an output of the theory.

Note. In classical electrodynamics, the UV divergence of the mass is even worse, as

δm ∼
∫
dxE2 ∼ α

∫
r2dr

r4
∼ αΛ.

The reason the divergence is less strong in quantum electrodynamics is that when m0 = 0, the

electron separates into two uncoupled Weyl spinors, which must remain massless. Then assuming

δm is analytic in m0, the leading term is linear in m0, and for that term the dependence on Λ must

be logarithmic; indeed, we have δm ∼ m0 log(Λ
2/m2

0).

https://physics.stackexchange.com/questions/211499/spinor-field-normalisation-from-poles-in-the-propagator/343321#343321
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5.4 Photon Self-Energy

Next, we consider the photon self-energy on general grounds.

• By Lorentz invariance, its tensorial structure can only depend on ηµν and qµqν . By the Ward

identity, the photon self-energy is also transverse, qµΠµν(q) = 0. (Note that this does not

imply the photon propagator is transverse; instead, this depends on the gauge.) We give a more

detailed justification of this fact in section 10.3.

• Therefore, the relative magnitude of the two terms is fixed, as

iΠµν(q) =

(
ηµν − qµqν

q2

)
f(q2).

Heuristically, iΠµν(q) is regular at q2 = 0 because poles can only come from single-particle

massless intermediate states. (This is a bit too quick; there are subtleties here, but they don’t

apply to QED in four dimensions.)

• Therefore, we can pull out a q2 factor from f(q2) to give

iΠµν(q) = (q2ηµν − qµqν)Π(q2)

with Π(q2) also regular at q2 = 0. Note that when we talk about regularity, we always imagine

a UV cutoff, since Πµν(q) is UV divergent.

• As a result, when we apply Dyson resummation, only the transverse part of the propagator is

affected. In general Rξ gauge, the exact propagator is

∆µν(q) = ∆0
µν(q) + ∆0

µρ(q)Π
ρσ(q)∆0

σν(q) + . . .

=
−i

q2(1−Π(q2))

(
ηµν −

qµqν
q2

)
+ ξ
−i
q2
qµqν
q2

.

Then in Landau gauge ξ = 0, we have propagator

∆µν(q) =
−i

q2(1−Π(q2))

(
ηµν −

qµqν
q2

)
.

We see the photon remains massless, since Π(q2) is regular at q = 0, and

Z3 =
1

1−Π(0)
.

• Explicitly, one can show that at one-loop, under DR,

Π2(q
2) = −2α

π
lim
ϵ→0

∫ 1

0
dxx(1− x)

(
2

ϵ
+ log

M2

∆

)
, ∆ = m2

0 − x(1− x)q2.

If we had instead used a hard cutoff, we would have found a correction to Πµν2 (q) proportional

to ηµν , violating the Ward identity. We will see later than in the path integral formulation,

such anomalous symmetries occur because the path integral measure is not invariant under the

classical symmetry.
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The photon field renormalization leads to a running coupling.

• Consider electron-electron scattering by an intermediate photon of momentum q. Then the

amplitude is proportional to
(−ie0)2

1−Π(q2)

and we are thus motivated to define the effective coupling

e(q2) =
e0√

1−Π(q2)
.

Note that there are other processes that contribute, e.g. by the exchange of two photons.

However, to ‘lowest order’ this is a good estimate of the total scattering amplitude.

• As with the electron mass, Π(q2) is divergent, so we define the physical/renormalized coupling

e =
e0√

1−Π(0)
= e0

√
Z3.

As before, we then flip this around and regard it as an expression for the divergent bare quantity

e0 in terms of the physical quantity e.

• Therefore, the effective coupling and physical coupling are related at one-loop order by

e2(q2) =
1−Π2(0)

1−Π2(q2)
e2 +O(α2) =

e2

1− Π̂2(q2)
+O(α2)

where

Π̂2(q
2) = Π2(q

2)−Π2(0) = −
2α

π

∫ 1

0
dxx(1− x) log m2

m2 − x(1− x)q2

where we replaced m0 with m, which is accurate up to O(α2) terms. Physically, this result

tells us that the interaction between electrons gets stronger at high energies; note that the

unphysical renormalization scale M has dropped out.

• The e that appears in Coulomb’s law, which corresponds to the typical quoted value α ≈ 1/137,

applies at very low energies. At energies q2 ∼ m2
W , we instead have α ≈ 1/128.

Note. Heuristically, the vertex renormalization is really what renormalizes the charge e, if we think

of e as the coefficient of the vertex factor. But as we’ll see below, this effect is exactly canceled by the

renormalization of the electron field Z2. The effect we’ve computed above is really a renormalization

of the electromagnetic field, but since its effects always appear in tandem with an electron-field

interaction, it can be thought of as renormalizing the charge.

Note. Interpreting the running coupling. In the nonrelativistic limit, the potential is

V (q) = − e2

|q|2(1− Π̂2(−|q|2))

and the real-space potential is found by Fourier transform. Taking the inverse Fourier transform is

tricky, since for high |q| the Π̂2 factor provides a branch cut; doing this yields the Uehling potential.
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Alternatively, for low |q| we can simply expand Π̂2 in a Taylor series. The zeroth order term

slightly modifies e, while the |q|2 term contributes a constant to V (q) and hence a delta function

to the potential. This slightly lowers the energy of the 2s state in hydrogen relative to the 2p state,

producing the Lamb shift.

In the opposite limit, we consider a high-energy scattering where the photon is in the t-channel

or u-channel, so −q2 ≫ m2. Then

αeff(q
2) =

e2(q2)

4π
≈ α

(
1− α

3π
log

−q2

exp(5/3)m2

)−1

by straightforward calculation. This diverges for very high energies at the Landau pole of QED.

5.5 Vertex Renormalization

Finally, we turn to the renormalization of the QED vertex.

• We denote the amputated resummed QED vertex as

• Keeping track of the fermion field renormalization, the following amplitude

is of the form

iM∼ u(p′)(−ie0Z2Γ
µ(p′, p))u(p)

−i(ηµν − qµqν/q2)
q2(1−Π(q2))

u(k′)(−ie0Z2Γ
ν(k′, k))u(k).

• The most general form possible is

Γµ = Aγµ +B(p′µ + pµ) + C(p′µ − pµ).

Since the Γµ is sandwiched between on-shell spinors, we can replace all factors of /p and /p′ with

m. Then the coefficients can only depend on q2. The Ward identity requires the amplitude to

vanish when Γµ is contracted with qµ, setting C = 0.
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• Next, we use the Gordan identity

u(p′)γµu(p) = u(p′)

(
p′µ + pµ

2m
+
iSµνqν
2m

)
u(p), Sµν =

i

4
[γµ, γν ]

to arrive at the conventional form

Γµ(p′, p) = γµF1(q
2) + i

Sµνqν
2m0

F2(q
2),

where F1(q
2) and F2(q

2) are called form factors.

• The first form factor δF1 is both UV and IR divergent. At one loop with PV regularization,

δF1(q
2) =

α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

(
log

zΛ2

∆
+

(1− x)(1− y)
∆

q2 + (1− 4z + z2)m2
0

)
where ∆ = −xyq2 + (1− z)2m2

0 +µ2z, and µ is a photon mass that regulates the IR divergence.

• Similarly, one finds that

δF2(q
2) =

α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

2m2
0z(1− z)
∆

which is luckily finite. This remains true at all orders in perturbation theory.

• In the limit of small momentum transfer q → 0, only F1 contributes, so we define the vertex

renormalization

lim
q→0

Γµ(p+ q, p) = Z−1
1 γµ .

The Ward–Takahashi identity can be used to show that Z1 = Z2, so

lim
q→0

Z2Γ
µ(p+ q, p) = γµ

and at each order in perturbation theory,

δF1(0) = −δZ2.

• Comparing this with our scattering amplitude, the physical charge at q = 0 is e0(Z2/Z1)
√
Z3 =

e0
√
Z3 as found earlier. As a physical application, this means that electrons and muons have

the same bare charge if and only if they have the same physical charge.

• One can show that the F2 form factor affects the magnetic moment of the electron, by

µ=
ge

2m
S, g = 2 + 2F2(0), F2(0) =

α

2π
.

This is one of the most famous predictions of QED. The two-loop correction is substantially

more complicated, and was actually computed incorrectly at first. Currently, people are working

on the five-loop correction, which has over 104 diagrams. The story is nicely recounted here.

https://www2.oberlin.edu/physics/dstyer/StrangeQM/Moment.pdf
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Note. When one speaks of the physical charge of a particle, one almost always means the charge

e(µ) evaluated at zero momentum, e(0)2 ≈ 1/137. This is the quantity relevant to all experiments

besides those in high energy physics.

At this point one could make a metaphysical objection: what does it mean for a “fundamental

constant of nature” to be scale-dependent? Isn’t the amount of charge on the electron fixed? The

point is that there is no such thing as a direct measurement of the charge itself; instead we only

measure how strongly the electron interacts in various situations. We’ve found that the effective

interaction strength changes depending on the scale µ of the process, and there’s nothing strange,

physically or metaphysically, about that. The only reason one might think it was strange is that

the dependence happens to be very weak at low µ, where most experiments historically took place.

But once we frame it this way, e(0) stops appearing particularly fundamental at all; the truly

fundamental constants are defined at high scales.

5.6 Renormalized Perturbation Theory

Next, we step back and review the structure of the loop corrections.

• For a systematic treatment of UV divergent diagrams, it suffices to consider amputated, 1PI

UV divergent diagrams; all other UV divergent diagrams can be built from them.

• As we’ll show later, it is possible to classify the divergent 1PI diagrams by power counting. In

the case of QED, the only ones are the photon propagator, the electron propagator, and the

vertex, all of which we’ve studied above. At one-loop order we found, in PV,

Π2(q
2) = c

(1)
0 log

Λ

M
+ finite, −iΣ2(/p) = a

(1)
0 m0 log

Λ

M
+ a

(1)
1 /p log

Λ

M
+ finite

and

−iΓµ2 (p
′, p) = b

(1)
0 γµ log

Λ

M
+ finite

where M is the renormalization scale and Λ is the cutoff.

• Later, we will show that this structure persists to all orders in perturbation theory. Then the

UV divergences are completely described by the four divergent constants a0, a1, b0, and c0,

where e.g. a
(1)
0 is the O(α) term of a0.

• In bare perturbation theory, we write the Lagrangian in terms of bare parameters m0 and e0
and impose a finite cutoff Λ, or in DR, a nonzero ϵ. We then compute the physical electron

mass m, the physical coupling e, and the field renormalizations Z2 and Z3 in terms of m0, e0,

and Λ. The renormalization step is to regard m0 and e0 as functions of m, e, and Λ, and vary

them as Λ→∞ so that m and e remain fixed.

• Finally, we perform the usual perturbation theory, e.g. expanding in powers of e0 with a cutoff

Λ. If the preceding step has been performed correctly, then when the answers are written in

terms of m and e, all divergences will cancel out of scattering amplitudes.

• In practice, we only compute m(m0, e0,Λ) and e(m0, e0,Λ) to some loop order in e0. Then we

must compute the scattering amplitudes to the same order in e0.
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• It might be disturbing that we are expanding in the formally divergent parameter e0. In

fact, this is acceptable because e0 diverges only logarithmically, and the theory of QED has a

reasonable cutoff so that e0(Λ) is still small. However, we will reformulate perturbation theory

without e0 below.

• In general, a theory is renormalizable if there are only a finite number of UV divergent resummed

amputated 1PI diagrams. If there are m fields and n such diagrams, then m divergent constants

can be absorbed into field renormalizations, while n−m are absorbed into bare couplings. The

n−m bare couplings must then be specified by measurements of physical couplings.

• Philosophically, the UV divergences signal that our theory must break down at some high

scale, where some unknown physics takes over. The process of renormalization parametrizes

our ignorance about this new physics into n − m observables that must be measured. A

renormalizable theory is one where this process only requires a finite number of experimental

inputs. A truly fundamental theory must be UV finite, as string theory is believed to be.

• Finally, recall that our regularization schemes introduce an arbitrary mass scale M . The results

don’t depend on M , but higher-order corrections for a process with energy scale E contain

factors of logE/M . Then the perturbation theory converges fastest when M ∼ E.

Example. Consider the following contribution to the amplitude for Compton scattering.

The amplitude takes the form

(Z
1/2
3 ie0Γ

µZ2)
1

Z2

i

/p−m0 − Σ(/p)
(Z

1/2
3 ie0ΓµZ2).

As we’ve already seen, e = e0Z
1/2
3 is the finite physical charge. The factor ΓµZ2 is also finite, since

Γµ(p+ q, p) = γµF1(q
2) + finite, F1(q

2) = 1 + δF1(0) + finite

so that the divergent part of ΓµZ2 is δZ2 + δF1(0) = 0 at each order in perturbation theory, as

argued earlier. Finally, the propagator is

1

Z2

i

/p−m0 − Σ(/p)
=

i

/p−m
+

1

Z2
(finite terms analytic in /p = m).

The extra terms are finite because they come from the second and higher derivatives of Σ(/p), which

are finite, as the divergences in Σ(/p) are proportional to m0 and /p.
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We can also use renormalized perturbation theory, which works explicitly with physical parameters.

In this formulation, the action depends on the cutoff/renormalization parameters just as before, but

we split it into a finite, cutoff-independent “renormalized” piece and an infinite, cutoff-dependent

“counterterm” piece.

• The Lagrangian, called the bare Lagrangian, is

L = −1

4
F 2 + ψ(i/∂ −m0)ψ − e0ψγµψAµ.

We recall the exact two-point functions for photons and electrons have coefficients of Z3 and

Z2 respectively. We thus define the renormalized fields

Aµ = Z
1/2
3 Aµr , ψ = Z

1/2
2 ψr

so that two-point functions of the renormalized fields have no such factors.

• We can thus rewrite the Lagrangian in terms of the renormalized fields as

L = −1

4
Z3F

2
r + Z2ψr(i/∂ −m0)ψr − Z2Z

1/2
3 e0ψrγ

µψrA
r
µ.

This is simply a change of variables; the Lagrangian itself is unchanged. The Feynman rules for

the renormalized fields have no Z factors, the fermion has mass m = Z2m0, and the coupling

is e′ = Z2Z
1/2
3 e0. Applying these rules yields the same results as the original Feynman rules.

• Next, we split the (bare) Lagrangian into the renormalized Lagrangian and the counterterms.

We further define the parameters e and m by

e′ = Z1e, Z2m0 = m+ δm

to be given a physical interpretation below. Letting Zi = 1+δi, and suppressing the r subscript,

the Lagrangian splits as

L = L(1) + L(2)

=

(
−1

4
F 2 + ψ(i/∂ −m)ψ − eψγµψAµ

)
+

(
−1

4
δ3F

2 + ψ(iδ2/∂ − δm)ψ − eδ1ψγµψAµ
)
.

The perturbation parameter is now e. The four counterterms δ1, δ2, δ3, and δm are are defined

order by order in α = e2/4π. The new arbitrary parameters e and m will be chosen to be more

physically meaningful than e0 and m0.

• The Feynman rules for L(1) have no Z factors, mass m, and coupling e. They are UV divergent

in the exact same way as before, but with m0 and e0 replaced with m and e. The terms in L(2)
lead to additional diagrams, such as

The dependence on the bare parameters is entirely captured by the counterterms.
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• The one-loop electron self-energy takes the form

−iΣ(1)
r (/p) = −iΣ(1)

2 (/p) + i(/pδ
(1)
2 − δ

(1)
m )

where Σ
(1)
2 is the piece due to L(1)r . Similarly, the photon self-energy in Landau gauge is

iΠ(1)
r

µν
(q) = i(q2ηµν − qµqν)(Π(1)

2 (q2)− δ(1)3 ).

Finally, the vertex factor is

−ieΓ(1)
r

µ
(p+ q, p) = −ieΓ(1)µ(p+ q, p)− ieγµδ(1)1 .

• Next, we determine the counterterms, which depend on the cutoff, by renormalization conditions.

In the on-shell scheme, we let m be the physical mass of the electron and e be the physical

charge measured at q = 0. By construction, we also require the propagators to have no Z-factors

at the physical mass poles. Then we have four conditions,

Σr(/p)

∣∣∣∣
/p=m

= 0,
d

d/p
Σr(/p)

∣∣∣∣
/p=m

= 0, Πr(q
2)

∣∣∣∣
q2=0

= 0, −ieΓµr (p, p) = −ieγµ

which fix the values of the counterterms order by order in α in terms of e, m, and the cutoff.

We have removed all dependence on e0 and m0, and when the regularization is removed, all

amplitudes are finite functions of e and m.

• At two-loop order, we have two-loop diagrams involving renormalized fields and second-order

contributions to the counterterms such as δ
(2)
1 . In addition, one-loop diagrams containing

first-order counterterms like δ
(1)
1 also contribute.

• We assumed that the counterterms above were sufficient to absorb all UV divergences. As

before, we can do this with finitely many counterterms only for a renormalizable theory.

Note. There’s a fair deal of historical confusion about renormalization. Many sources phrase the

procedure above in terms of “adding counterterms” to “cancel divergences”. This is not a good

way of thinking about it, because adding terms to a Lagrangian changes the theory. We are simply

working with a single Lagrangian the entire time, whose terms may be formally divergent but whose

physical predictions are always finite.

However, this naive picture is redeemed in Wilsonian renormalization. As we will see later, the

bare Lagrangian is the fundamental Lagrangian, while the renormalized Lagrangian can be thought

of as the effective Lagrangian after integrating out high-energy modes. The parameters in the

effective Lagrangian are closely related to physically measurable ones, because loop integrals are

cut off at a low scale and hence have little effect. The counterterm consists of the terms added to

the fundamental Lagrangian as we perform Wilsonian RG flow down to the low scale.

Note. There are a wide variety of ways to set the counterterms, called subtraction schemes. For

example, in minimal subtraction, we use dimensional regularization and let the counterterms have

zero finite part, so they’re only series in 1/ϵ. This is more computationally efficient, and the standard

in modern calculations. Alternatively, in the off-shell scheme, we do the same thing as the on-shell

scheme, but let m above be an arbitrary parameter rather than the physical mass. Note that the

bare Lagrangian doesn’t depend on the subtraction scheme; it only affects the split into L(1)r +L(2)r .

Whenever a subtraction scheme contains a mass parameter, such as the µ parameter in DR,

we have a continuum RG flow by changing the parameter. In the on-shell scheme, there is no

continuum RG, though we have the Wilsonian RG as always.
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Note. The point of these other subtraction schemes is to improve perturbation theory. Generically,

a loop integral will give logarithmic factors like log(s/Λ2), so

M(s) ∼ λ+ λ2 log
s

Λ2
+ . . . .

We may define the renormalized coupling to be the physical coupling at some arbitrary scale s0,

λR =M(s0)

so that the perturbation series becomes

M(s) ∼ λR + λ2R log
s

s0
+ . . . .

Then if s is very far from s0, the perturbation series doesn’t converge quickly. Thus it’s very useful

to be able to adjust s0 as needed. The continuum RG gives a differential equation forM(s0) as s0
is varied, essentially resumming the perturbation series.

5.7 Physical Interpretation

We now give some insight into the meaning of renormalization using simple toy models.

• We consider the general problem of fitting a quantum mechanical model to data. We try a

candidate class of Hamiltonians H(θ) with parameters θ, which output predictions v(θ), such

as energy eigenvalues. We then compute the predictions to data to infer θ.

• An important point is that the parameters θ need not have a direct physical meaning. For

example, different models of quarks will have significantly different quark masses in θ, and this

is acceptable because quark masses are not physically measurable.

• Parameters that are model-independent and directly measurable by experiment, such as the

physical electron mass, are called renormalized or dressed parameters, in contrast to bare

parameters. The purpose of renormalization is to reparametrize H(θ) as Hren(θren) so that

ideally the θren are directly measurable, or at least can be easily inferred from the data.

• As a trivial example, consider a two-state system with

H(g,Λ) = H0 + gVΛ, H0 =

(
0 0

0 ω

)
, VΛ =

(
−1 Λ

Λ 0

)
where Λ plays a role like a UV cutoff. The energy eigenvalues are

E± =
1

2

(
ω − g ±

√
(ω + g)2 + 4g2Λ2

)
.

If Λ is a very large number, the outputs E± are extremely sensitive to changes in g, indicating

a poor choice of parametrization.

• To avoid this problem, we could reparametrize in terms of E±, but these quantities are somewhat

complicated. A simpler option is to use gren = gΛ, giving the renormalized Hamiltonian

Hren(gren,Λ) =

(
−grenΛ−1 gren
gren ω

)
.

In this case, the energy levels are less sensitive to gren for large Λ. The reparametrization is so

nice that we can even take the limit Λ→∞ and find a finite result.
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• Situations of this form typically arise when there is a naturally large parameter, such as a

volume or energy cutoff. Note that taking Λ→∞ is not logically necessary; in the Wilsonian

picture we never do this because realistic theories will have some finite cutoff. The point is that

after a successful renormalization we have removed the extreme sensitivity to Λ, so we could

take Λ→∞ if we wanted to; either way it shouldn’t affect the experimental outputs.

Next, we turn to perturbation theory.

• Usually, for practical reasons, we expand perturbatively about a reference Hamiltonian H0(µ),

where µ = µ(θ). For example, the decomposition H = H0 + gVΛ expands about H0(ω). The

energy levels are

E− = −g − g2Λ2

ω
+O(g3), E+ = ω +

g2Λ2

ω
+O(g3).

• We see that g is a bad expansion parameter because for large Λ, we require g ≪ Λ−1 instead of

the typical g ≪ 1. Alternatively, it is impossible to expand in g at all in the limit Λ→∞.

• On the other hand, after renormalization and taking the limit Λ→∞, we have

E− = −g
2
ren

ω
+O(g4ren), E1 = ω +

g2ren
ω

+O(g4ren)

which is a perfectly well-behaved series. Thus the quality of the perturbation series depends

on the parametrization θ.

• As another example of this phenomenon, consider the Taylor series of the logarithm,

log(1 + g) =
∞∑
k=1

(−1)k−1

k
gk.

This only converges for |g| < 1. But if we expand in terms of z = g/(g + 2), we have

log(1 + g) = log

(
1 + z

1− z

)
=

∞∑
k=0

2

2k + 1
z2k+1

which converges for |z| < 1 and hence for all Re g > −1, much faster than the original series.

The singularity at g = −1 remains at z = −1, but all Re g > −1 are ‘sucked into’ the region

|z| < 1.

• The quality of the perturbation series also depends on the choice H0(µ) as well as the specific

value of µ. Since the total Hamiltonian is always the same, these choices do not affect the exact

results, but they can affect the accuracy of a truncated series expansion. One might worry that

this reduces predictivity; thus a good choice of µ is one which minimizes the sensitivity of the

results to changes in µ.

• As an example, consider finding x(t) for a particle in the potential V (x) = ax2 + ϵx4 at a large

time t = T , so that T is the large parameter. Then x(T ) depends very sensitively upon the bare

parameters a and b. Now suppose we attempt a perturbative expansion. Taking H0 = p2/2m is

clearly a very poor choice; a more reasonable choice is H0 = p2/2m+ ax2. However, expanding

in ϵ gives a bad perturbation series; the terms in the series depend on T and diverges for

T →∞.
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• The solution is to work in terms of a renormalized frequency. We set

H0 =
p2

2m
+ cx2, c = a+

∑
n

cnϵ
n

so that H0 describes a harmonic oscillator with the same period as the anharmonic oscillator.

Then if we perform a first-order expansion in ϵ, we can set the ‘counterterm’ c1 so that the

first-order correction is small for all T . Similarly to perform a second-order expansion we would

have to also determine c2.

• The sensitivity to T has been reduced; changing variables from (a, ϵ) to (c, ϵ′), where c is the

renormalized frequency and ϵ describes the amount of anharmonicity. The result x(T ) depends

sensitively on ϵ, but not on ϵ′.
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6 Amplitudes

6.1 Introduction

In this section, we consider some of the properties of amplitudes, i.e. the quantities M(i → f)

simply related to S-matrix elements.

• Amplitudes are constrained by Poincare invariance. Note that

⟨f, out|i, in⟩ = ⟨f, out|U †(Λ, a)U(Λ, a)|i, in⟩

where U(Λ, a) is our representation of the Poincare group. We know how it must act on the in

and out states, since these are just combinations of independent single particles, and using this

gives us a relation between two amplitudes.

• Specifically, let us label the incoming particles with momenta pi, little group indices σi, and

discrete labels ni for the particle type, and likewise with primes for the outgoing particles. Then

S{pi,σi,ni},{p′i,σ′
i,n

′
i} = exp

(
iaµΛ

µ
ν(Σp

′
i − Σpi)

ν
)

×

∑
{σi}

∏
i

D
(ji)
σiσi

(W (Λ, pi))

∑
{σ′
i}

∏
i

D
(j′i)

σ′
iσ

′
i

∗
(W (Λ, p′i))

S{Λpi,σi,ni},{Λp′i,σ′
i,n

′
i}

In other words, we just pick up the expected transformations for the momenta and little group

labels. Here, we’ve omitted a convention-dependent normalization factor.

• We pick up additional constraints from internal symmetries, which are defined to be those that

change the particle type label ni, without changing the momenta.

• Scattering amplitudes are analytic in the momenta, so we can analytically continue them “off-

shell”. At the perturbative level, we can define this analytic continuation by simply demanding

that off-shell amplitudes can be computed using the same Feynman rules as on-shell ones.

• A simple reason this is useful is that diagrammatically, off-shell amplitudes could appear as

internal parts of larger, on-shell amplitudes.

• Another reason is that they appear when one has an external source,

L = L0 + Lint − J(x)ϕ(x).

In this case, one has a Feynman rule where a particle can appear out of the source, with a factor

iJ(x). The diagrams that contribute to the vacuum-to-vacuum transition amplitude Z[J ], at

nth order in J , have n copies of this vertex.

• Taking the Fourier transform, since J̃(k) can have support off-shell, the resulting amplitude

is just an n-particle off-shell scattering amplitude times factors of iJ̃(ki). This is important

because, as we’ll see later, Z[J ] is what the path integral naturally computes.

• There is one more direct interpretation of off-shell amplitudes. We recall that the S-matrix in

the adiabatic formalism is S = UI(∞,−∞). With the external source,

H = H0 +Hint + J(x)ϕ(x).
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Now, suppose we work in interaction picture by treating H0 +Hint as the “free” Hamiltonian.

In this case, the interaction picture fields are what we usually call the Heisenberg fields, and

the vacuum-to-vacuum amplitude is

Z[J ] = ⟨Ω|S|Ω⟩ = ⟨Ω|T exp

(
−i
∫
dx J(x)ϕH(x)

)
|Ω⟩.

By Taylor expanding the right-hand side, we see that n-particle off-shell amplitudes are just

the Fourier transforms of the vev of the time-ordered product of n Heisenberg fields.

• This point is important because we usually take for granted that symmetries work for off-shell

amplitudes or amplitudes with external currents just as they do for on-shell amplitudes, which

is not strictly justified. If we define off-shell amplitudes in terms of Heisenberg fields, then

we can establish this rigorously. For example, this ensures that momentum is conserved in

off-shell amplitudes, beyond perturbation theory, where it is clear from the Feynman diagram

expansion.

Another useful consequence of analytic continuation is crossing symmetry.

• Crossing symmetry is the statement that

M(ϕ(p) + . . .→ . . .) =M(. . .→ . . .+ ϕ̃(−p))

where ϕ(p) represents a particle with four-momentum p, and ϕ̃(−p) represents an antiparticle

with momentum −p. Note that it is impossible for both sides above to be on-shell, so this

statement must be understood in terms of analytic continuations.

• For scalars, crossing symmetry can easily be shown perturbatively with the Feynman rules,

as for every diagram with ϕ incoming there is a corresponding diagram with ϕ̃ outgoing. For

spinors and vectors, one picks up factors for the external polarizations, which can lead to extra

sign flips; however, these can be removed if one uses appropriate conventions for the off-shell

polarization vectors.

• Crossing symmetry can also be shown nonperturbatively using the LSZ reduction formula. This

gives an analytic formula for S-matrix elements which only distinguishes between in and out

particles by the sign of the energy in the Fourier transform. Analytically continuing a positive

energy to a negative one thus yields a crossed S-matrix element.

• For 2 → 2 scattering, crossing symmetry is especially simple in terms of the Mandelstam

variables. For example, for the process a+ b→ c+d with Mandelstam variables s, t, and u and

scattering amplitude f(s, t, u), crossing symmetry implies that the amplitude for c+ b→ a+ d,

in terms of its Mandelstam variables s′, t′, u′, is f(u′, t′, s′). An equivalent way of saying this

is that upon expressing (s′, t′, u′) back in terms of (s, t, u), the amplitude is the exact same

analytic function f(s, t, u).

• Also note that applying crossing symmetry to switch all incoming particles to outgoing ones,

and vice versa, just yields the S-matrix element related by CPT.
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6.2 The Optical Theorem

The unitarity of the S-matrix leads to useful constraints.

• We recall that we have defined

S = 1 + iT, T =M/δ(Σpin − Σpout).

The unitarity condition S†S = 1 gives

−i(T − T †) = T †T.

• To make this more explicit, we take matrix elements of both sides, suppressing “in” and “out”

labels, and introduce a resolution of the identity on the right-hand side. Canceling a delta

function from both sides, and considering a 2→ 2 scattering for concreteness, we have

− i(M(k1k2 → p1p2)−M∗(p1p2 → k1k2))

=
∑
n

(
n∏
i=1

∫
d̄qi
2Ei

)
M∗(p1p2 → {qi})M(k1k2 → {qi})/δ(k1 + k2 −

∑
i

qi).

In a more abbreviated notation, this is

2 ImM(a→ b) =
∑
f

∫
dΠfM∗(b→ f)M(a→ f).

This is the optical theorem.

• The optical theorem is most useful when a and b are the same state. For a one-particle state,

the right-hand side is just the decay rate, up to some constants, so

ImM(a→ a) = mA

∑
f

Γ(a→ f) = maΓa.

It’s not clear if the left-hand side makes sense for an unstable particle, because such particles

can’t appear in asymptotic states. One needs to do more work to resolve this, but we’ll just

ignore it. (resolve)

• For a two-particle state, the right-hand side gives the total scattering cross section, up to some

constants, and we have

ImM(a→ a) = 2Ecmpcmσtot(a→ anything)

where pcm is the momentum of either particle in the center of mass frame.

• These results have precisely the same interpretation as in the notes on Undergraduate Physics.

The imaginary part of the forward scattering amplitude is precisely the amount by which the

amplitude for remaining in the same state is depleted, so it is sensible that this is related to

the probability to end up in a different state.

https://knzhou.github.io/notes/phy.pdf
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• The optical theorem is especially useful when we work perturbatively, because it relates con-

tributions from different orders in perturbation theory. For example, we will see that the

leading contribution to ImM(a→ a) is at loop level, while the right-hand sides have leading

contributions at tree level. Thus, even if we didn’t know the full theory, unitarity can still be

used to constrain loop level amplitudes given tree level ones. This will be formalized below by

“cutting rules”.

Next, we give an explicit example of the optical theorem. We focus on a 2 → 2 scattering and

considerM as an analytic function of s, defined by the Feynman rules.

• First, it’s worth noting that typically, we expect the imaginary part ofM, for real s, to vanish.

This is a bit confusing because the Feynman rules have many factors of i, but we can trace

them as follows.

– Vertices always come with a factor of i, e.g. because they come from expanding eiHintt,

along with a momentum conserving delta function.

– Edge (i.e. Feynman propagators) always come with a factor of i in the numerator, along

with an integral over four-momentum d̄p.

– Each seemingly real integral over four-momentum is secretly a purely imaginary number,

because the integral over p0 can be thought of as a contour integral, which yields 2πi times

the residues of relevant poles. This might sound unfamiliar but it isn’t strange, because

this is precisely the reverse of the logic that let us introduce four-momentum integrals in

the first place.

– Thus, each edge secretly comes with an extra factor of i, as does every vertex (since delta

functions remove these four-momentum integrals).

Since edges and vertices each come with two factors of i, the amplitude is real. Alternatively,

if we use the delta functions to do as many four-momentum integrals as possible, then the

number of remaining integrals is the number of loops. Then the total number of factors of i is

the number of vertices, plus edges, plus faces (loops) mod 2, which is zero by Euler’s formula.

• The idea that a loop gives a factor of i is also consistent with our previous treatment of

renormalization. All of our renormalization schemes (dimensional regularization, Pauli–Villars,

or a Wilsonian cutoff) begin by Wick rotating the integral over p0, giving a factor of i.

• Another way of thinking about this is that, as a distribution,

Im
1

p2 −m2 ± iϵ
= ∓πδ(p2 −m2).

In a typical loop integral, where only one propagator can be on-shell at once, this yields an

imaginary number, making the amplitude overall real. But there is a chance for the amplitude

to become imaginary if multiple propagators go on-shell at once. And if the intermediate states

in a diagram are on-shell, then we can “cut” the diagram in half, giving diagrams contributing

to the right-hand side of the optical theorem.

• Now we treat this explicitly. First, we note that at low s, we are “below threshold” to produce

on-shell intermediate states, so we have

M(s) = (M(s∗))∗.



102 6. Amplitudes

Both sides are analytic, so by analytic continuation we have, for all real s,

ReM(s+ iϵ) = ReM(s− iϵ), ImM(s+ iϵ) = − ImM(s− iϵ).

At threshold,M(s) picks up a branch cut along the real axis, across which the imaginary part

is discontinuous. The physically measured quantity corresponds toM(s+ iϵ), which is related

to the discontinuity across the cut by

DiscM(s) = 2i ImM(s+ iϵ).

• As an example, we consider ϕ4 theory. For 2 → 2 scattering, at loop level we have s, t, and

u-channel diagrams. The latter two don’t give rise to branch cuts, so we focus on the s-channel.

Let k = k1 + k2 be the total incoming momentum.

• Applying the Feynman rules, this diagram yields

i(δM) =
λ2

2

∫
d̄q

((k/2− q)2 −m2 + iϵ)((k/2 + q)2 −m2 + iϵ)
.

Now we consider the (contour) integral over q0. In the center of mass frame, k = (k0,0), and

defining Eq =
√
|q|2 +m2 as usual, the integral has poles at

q0 =
1

2
k0 ± (Eq − iϵ), q0 = −1

2
k0 ± (Eq − iϵ).

To perform the integral, we close the contour downward, picking up the residues of the poles in

the lower half-plane. Only the pole at q0 = −(1/2)k0 + Eq will contribute to the discontinuity,

and accounting for it is equivalent to replacing

1

(k/2 + q)2 −m2 + iϵ
→ −i/δ((k/2 + q)2 −m2)

in the original integral.

• Straightforwardly performing the integral gives

i(δM) = −i λ
2

2

∫
d̄q

2Eq

1

(k0 − Eq)2 − E2
q

= −i λ
2

2

1

2π2

∫ ∞

m
dEqEq|q|

1

2Eq

1

k0(k0 − 2Eq)
.

The integrand has a pole at Eq = k0/2, which thus produces a branch cut if the integral goes

over it, k0 > 2m. To find the discontinuity across the branch cut, note that

1

k0 − 2Eq ± iϵ
= P

1

k0 − 2Eq
∓ iπδ(k0 − 2Eq)
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so we may replace this factor with a delta function. This is equivalent to replacing

1

(k/2− q)2 −m2 + iϵ
→ −i/δ((k/2− q)2 −m2)

in the original integral. (Of course, the original integral is also divergent and must be regularized.

We don’t need to talk about a specific regulator here, however, because any reasonable regulator

must preserve unitarity.)

• Now we return to the original integral, rewriting the loop integral as∫
d̄q =

∫
d̄p1

∫
d̄p2 /δ(p1 + p2 − k).

If we make the two replacements above, we simply put the momenta pi on shell, and integrating

the p0i against the delta functions produces the standard factors for Lorentz invariant phase

space, giving

DiscM(k) = 2i ImM(k) =
i

2

∫
d̄p1

2E1

d̄p2

2E2
λ2/δ(p1 + p2 − k).

This is precisely the prediction of the optical theorem, where the 1/2 in front is the phase space

factor for identical final particles, and the λ2 is the squared matrix element.

• This logic above can be generalized to yield “Cutkosky cutting rules” to compute the disconti-

nuity of any diagram:

– Cut through the diagram, so that it falls apart into two pieces, separating the initial and

final particles.

– For each cut, replace 1/(p2 −m2 + iϵ)→ −i/δ(p2 −m2).

– Sum over all possible cuts.

This can be used to prove the optical theorem to all orders in perturbation theory.

• Another way to arrive at this is to note that the Feynman propagator and retarded propagator

differ only in that the retarded propagator has both poles in the upper half plane, so

DF (p) = DR(p) +
π

Ep
δ(p0 − Ep).

If we apply this formula to all propagators in a loop, then the resulting term consisting of

a product of only retarded propagators has zero contour integral, by closing the contour in

the lower half plane. By applying the formula in reverse, we recover terms with Feynman

propagators, but each term has at least one delta function, thereby reducing a loop amplitude

to a tree amplitude.

• We could also treat the example by just evaluating the integral explicitly in, e.g. dimensional

regularization, in which case the discontinuity appears through a logarithm.

• Now consider applying the same logic to particles with spin. The right-hand side of the

optical theorem will involve spin sums, e.g. for decay into two fermions ψ(p1)ψ(p2) we get

tr((/p1 +m)(/p2 −m)), as shown in the previous section. The optical theorem hence requires

that the numerator of a propagator must involve a sum over physical spin states.
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• For Dirac fermions this is clearly true, as /p+m indeed appears in the numerator. The result

is also clearly true for massive vectors. But for massless vectors, the spin sum is over the two

physical polarizations, while the propagator numerator is ξ-dependent! However, as we’ve seen,

we can replace the spin sum with ηµν by the Ward identity, and we can freely choose ξ = 1 by

gauge invariance to make the propagator match.

Next, we apply the optical theorem to unstable particles.

• Recall that we wrote the exact propagator for a scalar particle as

DF (p
2) =

i

p2 −m2
0 −M2(p2)

where −iM2(p2) was the sum of all 1PI diagrams. On the other hand, these same diagrams

can be used to compute 1→ 1 forward scattering, and the LSZ reduction formula gives

M(p→ p) = −ZM2(p2).

• Suppose that the scalar particle is stable. Then by the optical theorem,M(p→ p) is real, so

the self-energy is real, which implies that the pole of the propagator is simply shifted along the

real axis, as we’ve seen before.

• If the particle can decay, then M2(p2) acquires an imaginary part, shifting the pole off the real

axis. In this case, the particle is not an asymptotic state, so we can’t assign it an unambiguous

mass; equivalently, we have some freedom over what to call the mass. A reasonable choice for

a slowly decaying particle is to let m be the “real pole mass”,

m2 −m2
0 − ReM2(m2) = 0.

Then for p2 ≈ m2, the exact propagator is

DF (p
2) ∼ iZ

p2 −m2 − iZ ImM2(p2)
.

For particles such as the bottom quark, which immediately hadronize, the standard choice is

to instead use the MS mass.

• If the propagator appears in the s-channel of a Feynman diagram, then the cross section obeys

σ(s) ∝
∣∣∣∣ 1

s−m2 − iZ ImM2(s)

∣∣∣∣2 = 1

(s−m2)2 + (Z ImM2(s))2

which gives a Breit–Wigner resonance peak. The optical theorem thus tells us that the width

of this peak is related to the particle’s decay rate,

Γ = −Z
m

ImM2(m2).

Above we have treated ImM2(p2) as a constant near the peak, so this holds in the case of narrow

resonances, Γ≪ m. For broad resonances, there can be deviations from the Breit–Wigner shape.
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• Suppose we are searching for a weakly coupled particle produced in the s-channel of a scattering

process. There is naively a paradox here. If we consider just the first half of the Feynman

diagram, involving the on-shell production of the new particle, then there is only one vertex,

so the cross section scales as g2. But if we consider the full Feynman diagram, which includes

the particle’s subsequent decay, then there are two vertices and the cross section scales as g4.

• The resolution is that in the full diagram, we should perform the integral
∫
σ(s) ds to get the

full rate, and the sharp peak of the Breit–Wigner distribution gives a factor of 1/Γ ∝ 1/g2.

Therefore, the two calculations give equivalent results. This enhancement was used by LEP

when it ran at the Z-pole.

• The above story does not hold if the kinematics are such that the weakly coupled particle is

always far off-shell; in that case the diagram cannot be cut, and the rate scales as g4. Also, there

is a limit to how long in g one can probe, because for sufficiently low g the particle becomes so

long-lived that it does not decay before exiting the detector.

• If we trace through the definitions above, the shifted pole in s is below the real axis, while

for stable particles, the physical values of s were iϵ above the real axis. So if we place the

multiparticle branch cut along the real axis, we reach this pole by analytically continuing

downward through it, so the pole is really on the “second sheet”.

Finally, we discuss unitarity bounds.

• Consider a 2→ 2 elastic scattering in the CM frame. The total cross section is

σel =
1

32πE2
cm

∫
d cos θ |M(θ)|2

where θ is the final angle between the particles. In quantum field theory, the partial wave

expansion is simply the decomposition

M(θ) = 16π

∞∑
j=0

aj(2j + 1)Pj(cos θ).

• By logic similar to the nonrelativistic version of the partial wave expansion,

σel =
16π

E2
cm

∞∑
j=0

(2j + 1)|aj |2.

• The optical theorem gives us the relation

ImM(θ = 0) = 2Ecmpcmσtot ≥ 2Ecmpcmσel

where σtot is the cross section for scattering into any final state. This yields

∞∑
j=0

(2j + 1) Im aj ≥
2pcm
Ecm

∞∑
j=0

(2j + 1)|aj |2.

In fact, the sum on j can be dropped, by considering scattering of angular momentum eigenstates

rather than plane waves.
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• For simplicity, consider the ultrarelativistic limit, where pcm ≈ Ecm/2. Then

Im aj ≥ |aj |2

which is the interior of a circle of unit diameter in the complex plane, centered at i/2, so

|aj | ≤ 1, 0 ≤ Im aj ≤ 1, |Re aj | ≤
1

2
.

• The coefficients aj can be computed order by order in perturbation theory. If the partial wave

unitarity bound is violated at some order, we say the theory violates “perturbative unitarity”.

This doesn’t mean that the theory violates unitarity; rather, it means that the results of

perturbation theory cannot be trusted, and we must switch to a new description that can be.

• This was one of the main motivations for searching for the Higgs boson. If one calculates

the amplitude for W+W− →W+W− in the Standard Model without including the diagrams

with the Higgs boson, the amplitude scales as M ∼ g2E2/m2
W , leading to a breakdown of

perturbative unitarity above a few hundred GeV. However, adding the diagrams involving the

Higgs precisely cancels this growth.

• Another useful fact is the Froissart bound: the total cross section cannot grow faster than

log2(Ecm) at high energies.

• Finally, recall that the spectral representation writes the exact time-ordered two-point function

as a combination of bare Feynman propagators with positive spectral weight. This implies that

propagators cannot fall off faster than 1/p2 at large p2.

• For example, the theory

L ⊃ −1

2
ϕ

(
∂2 +

∂4

Λ2
+m2

)
ϕ

has a propagator that falls off as 1/p4 at large p2. Thus, it is tempting to use this to construct

a UV finite quantum field theory, but the point above forbids this. As we’ll see later, terms like

this do appear in effective theories, but this is acceptable because this behavior only kicks in

as we approach the cutoff, at which point infinitely many other terms become important and

the naive calculation of the propagator falls apart.

6.3 Polology (TODO)

6.4 Soft Theorems

In this section, we use the soft limit and Lorentz invariance to establish strong constraints on how

massless particles can interact.

• Consider an arbitrarily complicated amplitude with an incoming particle of momentum pi,

M0(pi). Now suppose a photon of momentum q is emitted off that particle’s incoming line,

giving the amplitudeMi(pi, q).

• For concreteness, we suppose the particle is a scalar with charge e. Using the Feynman rules of

scalar QED, and assuming the photon polarization is real to avoid having to write ϵ∗µ everywhere,

Mi(pi, q) = (ie)
i(pµi + (pµi − qµ)
(pi − q)2 −m2

ϵµM0(pi − q).
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Since external particles are on-shell, we have p2i = m2 and q2 = 0. Since the photon polarizations

are transverse, qµϵµ = 0. Thus, we have

Mi(pi, q) = e
pi · ϵ
pi · q

M0(pi − q).

• Next, we take the soft limit of small q, which strictly speaking means |q · pi| ≪ |pj · pk| for all
external momenta pj and pk. Then we have

Mi(pi, q) ≈
(
e
pi · ϵ
pi · q

)
M0(pi).

• Now, consider the total scattering amplitudeM(q) involving all of the original particles inM0,

and an extra outgoing soft photon with momentum q. To compute this, we need to sum over all

possible attachment points for the photon. However, the “soft factor” that we pick up is large

only when the photon attaches to an on-shell particle. For generic amplitudes, this can only

happen on external lines or in loops, but in loops the on-shell part is softened by an integration

over momenta, so the contributions of external lines dominate.

• Repeating the reasoning above, we find that when we attach the photon on incoming particles,

we get a factor of the charge eQi, while attaching the photon on outgoing particles gives the

same result with the opposite sign. Thus,

M(q) ≈ e

 ∑
i incoming

Qi
pi · ϵ
pi · q

−
∑

i outgoing

Qi
pi · ϵ
pi · q

M0.

• Now, the amplitude M(q) must be Lorentz invariant. Under a Lorentz transformation, the

amplitude can only pick up a trivial phase factor due to the little group action on the photon.

But we also know that in general, a Lorentz transformation shifts the polarization vector,

ϵµ → ϵµ + qµ, which changes the amplitude by

e

 ∑
i incoming

Qi −
∑

i outgoing

Qi

M0.

Demanding this be zero implies conservation of the charge the photon couples to.

• Note that we have already shown that a photon must couple to a conserved current using

the canonical formalism, but this derivation is much more minimal, requiring only Lorentz

invariance of the S-matrix and the soft limit.

Next, we generalize this derivation.

• First, it’s not clear that the logic above holds for any type of external particle. Let’s suppose

that the particle is a scalar, but the interaction vertex is arbitrary,
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• In general, we can write the vertex in terms of form factors,

Γµ = 2pµF (p2, q2, p · q) + qµG(p2, q2, p · q).

The form factor G is irrelevant because qµϵµ = 0.

• Since p2 = m2 and q2 = 0, the dependence of F can be written as

Γµ = 2pµF
(p · q
m2

)
by dimensional analysis. In the soft limit, the vertex simplifies further to 2pµF (0). Thus

everything goes through as before, with F (0) being the definition of the conserved charge, as

we’ve already seen in QED.

• For a minimally coupled Dirac spinor, we would instead pick up the factor

us(p)γµ(/p+m) =
∑
s′

us(p)γµus
′
(p)us(p)

in the numerator. However, we end up getting precisely the same result, by the identity

us(p)γµus
′
(p) = 2pµδss

′
.

The analysis proceeds similarly for a non-minimally coupled Dirac spinor.

• Next, we consider a massless spin 2 field. Such a field has two polarizations ϵiµν , satisfying

qµϵµν = 0, ηµνϵµν = 0.

Under a little group transformation, we have

ϵµν → ϵµν + Λµqν + qµΛν + Λqµqν

where Λµ and Λ depend on the little group transformation in a way we do not write out here.

• Therefore, the Ward identity must be that for any amplitude involving such an external particle,

M = ϵµνMµν , we must have

qµMµν = qνMµν = 0

so that the amplitude is properly Lorentz invariant.

• Now we can repeat our above argument. By similar logic, an arbitrary interaction vertex is

where the index structure must be pµpν , because we cannot use factors of qµ as the polarizations

are transverse, and we cannot use factors of ηµν as the polarizations are traceless.
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• Therefore, in the soft limit,

M(q) ≈

 ∑
i incoming

F̃i(0)
pµi ϵµνp

ν
i

pi · q
−

∑
i outgoing

F̃i(0)
pµi ϵµνp

ν
i

pi · q

M0.

By Lorentz invariance, this must vanish if we substitute ϵµν → qµΛν , so

M0Λν

 ∑
i incoming

F̃i(0)p
ν
i −

∑
i outgoing

F̃i(0)p
ν
i

 = 0.

However, we already know that the sum of incoming and outgoing momenta must be equal, by

momentum conservation. So the quantity above can only vanish in general if the F̃i(0) are all

equal, which means that massless spin 2 particles must couple with universal strength. This is

indeed the case for the only massless spin 2 particle we know of, the graviton.

• For higher spin, the soft limit becomes even more restrictive. For massless spin 3,∑
i incoming

F̃i(0)p
µ
i p

ν
i =

∑
i outgoing

F̃i(0)p
µ
i p

ν
i

but when combined with momentum conservation, this only has solutions for general momenta

if the F̃i(0) are all zero. As a result, higher spin massless particles cannot mediate long-range

forces, though they can mediate interactions with a faster falloff.

• One loophole is the case of continuous spin particles, which contain all possible helicities. These

evade the reasoning above because their little group transformation is more general than just a

phase, but rather can mix different helicity states, thereby allowing them to interact.

• By applying this reasoning to two soft particles, one can get further constraints. For example,

it is possible to show that Yang–Mills theory is essentially the unique theory of interacting

massless spin 1 particles (e.g. the quartic gauge boson interaction that appears in Yang–Mills is

required by the soft limit). Similar reasoning can be used to constrain the graviton self-coupling,

in a way that matches what appears in the Einstein–Hilbert action.

(what about half-integer helicity?) (what about scalar QED, where you can couple

to 2 soft photons?)

https://arxiv.org/abs/1302.1198
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7 Path Integrals in Zero Dimensions

7.1 Introduction

We begin by specifying what a quantum field theory is, from the path integral perspective.

• First, we specify the space where the fields live, usually a smooth manifold with metric (M,d).

– For most applications to particle physics, we choose (M, g) = (R4, η).

– In cosmology, we choose a different background metric, e.g. an FRW metric.

– For most applications in condensed matter, we choose (M, g) = (R3, δ) where δ is the

Euclidean metric.

– The worldsheet description of string theory uses (Σ, [g]) where Σ is a Riemann surface and

g is a metric defined up to conformal equivalence.

– Applications of quantum field theory to knot theory typically use an orientable three-

manifold M with no metric at all.

In all cases, we regard the metric as fixed; making it dynamical requires quantum gravity.

• The fields are maps ϕ :M → N where N is called the target space.

– Ordinary nonrelativistic quantum mechanics can be thought of as a d = 1 quantum field

theory living on the interval I = [0, 1] called the worldline, with target space R3.

– In particle physics, pions live in a coset space, so N ∼= G/H for Lie groups G and H.

– In string theory, some of the worldsheet fields map to a Calabi-Yau manifold N .

– In gauge theories, the gauge field is a connection on a principal G-bundle P → M , and

matter charged under this field is a section of a an associated vector bundle E →M specified

by a representation of G.

• Let C denote the space of field configurations on M . Typically, C is an infinite-dimensional

function space. An action is a function S : C → R. The critical set where δS = 0 correspond to

classical solutions, where the variation δ should be thought of as an exterior derivative.

• We usually assume the action is local, so that, e.g. for a single scalar field ϕ,

S[ϕ] =

∫
M
ddx
√
gL(ϕ(x), ∂ϕ(x), . . .).

This is a very strong constraint; local actions are a very small subset of the set of all actions.

Classically, the Euler–Lagrange equations become integro-differential equations, leading to

action at a distance, which we think of as unphysical. However, nonlocal actions do appear in

quantum field theory and must be treated carefully. We’ll often suppress the
√
g.

Next, we consider what we want to compute.

• The most important quantity to compute is the partition function

Z =

∫
C
Dϕ exp

(
−S[ϕ]

ℏ

)
where we are working in Euclidean signature, Dϕ is some sort of measure over the set of field

configurations, and the integral makes sense if M is closed and compact. This depends only on

S, the space M , the metric g, and ℏ, not on the fields, which are the integration variables.
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• Conceptually, the exponential factor damps the impact of ‘wild’ field configurations with rapid

fluctuations. We’ve seen the ‘fight’ between the two in statistical mechanics, where the e−βH

factor favors smooth field configurations, but rapidly varying configurations are favored by

sheer numbers; it is “the eternal struggle between energy and entropy”. This leads to rich and

unexpected phenomena such as phase transitions.

• In the case of quantum field theory, the issues are even worse, since the configuration spaces

are infinite-dimensional. We won’t deal with these issues, but we will pay respect to them by

using only Euclidean path integrals, which are somewhat nicer.

• We also may want to compute correlation functions, defined as〈∏
i

Oi[ϕ]

〉
=

1

Z

∫
C
Dϕ exp

(
−S[ϕ]

ℏ

)∏
i

Oi[ϕ].

Mathematically, we are computing moments of the probability distribution Dϕe−S/ℏ/Z. We

call the Oi operator insertions, which will make sense once we relate path integration to the

canonical picture.

• Often we are interested in local operators, such as ϕ3(x)∂µϕ(x)∂µϕ(x) or e
ϕ(x), but we can also

consider nonlocal operators. For example, the Wilson loop

WΓ[A] = trP exp

(
−
∮
A

)
depends on the value of the gauge field A along the loop Γ. Again, correlation functions of such

operators don’t depend on the fields themselves, only on the theory.

• Formal differentiation of the partition function allows us to recover correlation functions of

operators in the action. For example, if the action has a term

O = λ

∫
M
ddxϕ4(x)

then differentiating with respect to λ gives

∂Z
∂λ

= −1

ℏ

∫
C
Dϕ e−S[ϕ]/ℏ

∫
M
ddxϕ4 = −Z⟨O⟩

ℏ
.

Thus, correlation functions tell us about the response of the partition function to changes in

the parameters of the theory.

• Similarly, suppose we add a source term to the action,

S[ϕ]→ S[ϕ] +

∫
M
ddxJi(x)Oi(x).

Then the sources Ji(x) are fields, and Z is a functional of it; varying with respect to it gives

correlation functions of local operators,

−ℏ δZ[Ji]
δJi(xi)

=

∫
C
Dϕ e−(S[ϕ]+

∫
JjOj)/ℏOi(xi) = Z⟨Oi(xi)⟩.

Repeating this procedure, we have

⟨O1(x1) . . .On(xn)⟩ =
(−ℏ)n

Z
δnZ[J ]

δJ1(x1) . . . δJn(xn)

∣∣∣∣
J=0

.
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• The most common case is when the operators Oi are just the fields; for example, with one scalar

field we have

⟨ϕ(x1) . . . ϕ(xn)⟩ =
(−ℏ)n

Z
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

.

However, there’s no reason we can’t do this for composite operators, i.e. operators that are

nonlinear in the fields. For example, under a metric variation

δS[ϕ] =
1

2

∫
M
ddx
√
g Tµν(x)δg

µν(x)

which implies that

− 2ℏ√
g(x)

δ logZ
δgµν(x)

= ⟨Tµν(x)⟩

where everything is evaluated at the background metric, δg = 0.

Next, we link path integrals to the Hilbert space.

• Suppose our manifold M has boundaries, ∂M = ∪iBi. Then to specify the path integral, we

must choose boundary conditions on the Bi. For each Bi, the set of boundary conditions forms

a Hilbert space Hi, so the path integral defines a map Z : ⊗iHi → C by

Z[Bi] =
∫
ϕ|Bi=φi

Dϕ e−S[ϕ]/ℏ.

We won’t specify an inner product on the Hi, because it’s unknown how to define it in general.

• An important special case is M = N × I where I is an interval of length T with respect to the

metric g on M . Then the path integral gives a map

U(T ) : H → H, ⟨φ1|U(T )|φ0⟩ =
∫ ϕ|N×{T}=φ1

ϕ|N×{0}=φ0

Dϕ e−S[ϕ]/ℏ.

This is simply the time evolution operator. However, it is difficult to show that this map is

unitary; that’s one of the advantages of the canonical picture.

• Now we take a detour in classical field theory, i.e. considering only the action and not integrating

over the fields. The variation of the action takes the form

δS[ϕ] = (bulk eom) δϕ+
∑
i

∫
Bi

nµi
δL

δ(∂µϕ)
δϕ
√
g dd−1x

where we allow the variation to be nonzero on the boundary. Define the field momentum

πi =
√
g nµi

δL
δ(∂µϕ)

.

For example, when ∂M is a constant time slice of flat spacetime, then π(t) = δL/δϕ̇(t).
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• Now, the variation δ maps functions on H to one-forms, since δS[ϕ] is a number, so we may

extend its definition so it is an exterior derivative on differential forms. Then

0 = δ2S[ϕ]|eom =

∫
N×{T}

δπ ∧ δϕ dd−1x−
∫
N×{0}

δπ ∧ δϕ dd−1x.

This implies that there is a conserved quantity

Ω =

∫
N
δπ ∧ δϕ dd−1

which is a symplectic form on the space of fields. The symplectic form defines a Poisson bracket,

and its conservation implies Liouville’s theorem. This is the structure that we aim to quantize

in canonical quantization, replacing brackets with commutators.

• For example, for the canonical quantization on (R4, η) of the free real scalar field,

ϕ(x) =

∫
d̄p√
2E

(
eipxa(p) + e−ipxa†(p)

)
, [ϕ(x), π(y)] = iδ(x− y).

The commutation relations are only canonical at equal times, since the symplectic form is

defined on timeslices. We defined ϕ(x) on all of spacetime, rather than timeslices, but this

isn’t a big difference since the values of ϕ and π on one timeslice determine it everywhere, so

boundary values and full solutions are equivalent.

• Next, we look at the state space. A general state on the boundary Hilbert space is

|Ψ⟩ =
∫
C[B]

[dφ] |φ⟩⟨φ|Ψ⟩, Ψ[φ] = ⟨φ|Ψ⟩

where we are vague about the inner product and measure. That is, a general state is a

superposition of |φ⟩ states, each of which correspond to a function on N , representing a definite

field configuration.

• In canonical quantization, we used wavefunctions that were polynomials, with monomials∫
N⊗n

dx1 . . . dxn ψ(x1, . . . ,xn)ϕ(x1) . . . ϕ(xn)

interpreted as n-particle states. For example, the monomial ϕ(x) corresponds to the state

ϕ̂(x)|0⟩, i.e. a single particle at x. This state is a superposition of the states |φ⟩, weighting
states with larger ϕ(x) more.

• Assuming our particles are bosons, n-particle states live in the Fock space

H = C ⊕ V ⊕ Sym2V ⊕ Sym3V ⊕ . . .

where V is the one-particle Hilbert space. Working in the Fock basis, which is not always

available, is analogous to expanding a solution to the quantum harmonic oscillator in terms of

Hermite polynomials (times Gaussian weights). The general problem is analogous to working

in the position basis in quantum mechanics, which is mathematically much trickier.

• If M is non-compact, there may be a region that is asymptotically far away. Then to define the

path integral, we must specify asymptotic values of the fields. The simplest choice is ϕ → 0,

but another important choice is ϕ→ ϕi in the asymptotic past and ϕ→ ϕf in the asymptotic

future, in which case the path integral gives the scattering amplitude ⟨ϕf |ϕi⟩. These are related
to correlation functions by the LSZ reduction formula.
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7.2 Zero Dimensional Field Theory

We begin with the case of zero dimensions, where some important ideas will appear simply.

• If our spacetime M is zero-dimensional and connected, it must be a single point. There is no

metric, and the Lorentz group is trivial, so all of its representations are; all fields are scalars.

In the path integral, fields are just maps from the single point to R, so C ∼= R.

• The path integral measure Dϕ becomes the usual measure dϕ on R and the partition function

Z =

∫
R
dϕ e−S(ϕ)/ℏ

is an ordinary real integral.

• The action can’t have derivatives, so there are no kinetic terms. We’ll usually choose it to be a

polynomial, such as S(ϕ) = m2ϕ2/2 + gϕ4/4!, where the highest term must have even degree

and positive coefficient for the partition function to converge. We can think of the coupling

constants as coordinates on an infinite-dimensional ‘space of theories’.

• The partition function is a function of these coupling constants, Z = Z(m2, g, . . .). We denote

the free partition function Z0 to be the partition function where the action is quadratic.

• Correlation functions are defined as

⟨f⟩ = 1

Z

∫
R
dϕ f(ϕ)e−S(ϕ)/ℏ.

The only restriction is that f cannot grow so fast the integral diverges; in practice we restrict f to

be polynomial. Thinking of e−S(ϕ)/ℏ as a probability distribution, ⟨f⟩ is simply the expectation

value of f .

• Again, we can recover correlation functions from the partition function. For example,

1

p!
⟨ϕp⟩ = − ℏ

Z
∂

∂gp
Z(m2, λi)

where the action has terms gpϕ
p/p!.

Now we turn to some explicit computations in a free field theory.

• We consider n fields ϕa with action

S(ϕ) =
1

2
M(ϕ, ϕ) =

1

2
Mabϕ

aϕb

where Mab is real, positive-definite and symmetric. Then the partition function

Z0 =

∫
Rn
dnϕ e−M(ϕ,ϕ)/2ℏ

is a Gaussian integral.
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• We may diagonalize M using an orthogonal transformation, which leaves the measure invariant.

Then applying the standard Gaussian integral,∫
R
dχ e−mχ

2/2ℏ =

√
2πℏ
m

, Z0 =
(2πℏ)n/2√
detM

.

• More generally, we can consider a linear source term,

S(ϕ) =
1

2
M(ϕ, ϕ) + J · ϕ =

1

2
M(ϕ̃, ϕ̃)− 1

2
M−1(J, J), ϕ̃ ≡ ϕ+M−1(J, ·)

where the shift from ϕ to ϕ̃ removes the linear term and leaves the measure invariant. Then

Z(J) = exp

(
M−1(J, J)

2ℏ

)
Z0.

• Now we consider the correlation function ⟨P (ϕ)⟩ where P is a polynomial in the n fields. By

linearity, it suffices to let P be a monomial. We will treat the case where P is a product of

linear factors ℓ(ϕ) = ℓ · ϕ, so we compute

⟨ℓ1(ϕ) . . . ℓp(ϕ)⟩ =
1

Z0

∫
Rn
dnϕ e−M(ϕ,ϕ)/2ℏ

p∏
i=1

ℓi(ϕ).

If p is odd, the integrand is odd in ϕ and hence the integral vanishes. For p = 2k,

⟨ℓ1(ϕ) . . . ℓ2k(ϕ)⟩ =
1

Z0

∫
Rn
dnϕ

2k∏
i=1

ℓi(ϕ) e
−M(ϕ,ϕ)/2ℏ−J(ϕ)/ℏ

∣∣∣∣
J=0

=
(−ℏ)2k

Z0

∫
Rn
dnϕ

2k∏
i=1

ℓi · ∂J e−M(ϕ,ϕ)/2ℏ−J(ϕ)/ℏ
∣∣∣∣
J=0

=
2k∏
i=1

ℓi · ∂J
(−ℏ)2k

Z0

∫
Rn
dnϕ e−M(ϕ,ϕ)/2ℏ−J(ϕ)/ℏ

∣∣∣∣
J=0

= ℏ2k
2k∏
i=1

ℓi · ∂J
(
eM

−1(J,J)/2ℏ
) ∣∣∣∣

J=0

.

Every factor of ∂J pops out a factor of M−1(ℓi, J). Each of these factors must be differentiated

with respect to J , to leave a factor of M−1(ℓi, ℓj), since we set J = 0 at the end.

• For example, for a two-point function

⟨ℓ1(ϕ)ℓ2(ϕ)⟩ =M−1(ℓ1, ℓ2)

and more generally

⟨ℓ1(ϕ) . . . ℓ2k(ϕ)⟩ = ℏk
∑

pairs (ai,bi)

k∏
i=1

M−1(ℓai , ℓbi)

where, for example, the four-point function has three terms. We callM−1 the (free) propagator;

it is simply the inverse of the kinetic term. When all the ℓi are the same,

⟨(ℓ · ϕ)2k⟩ = (2k)!

2kk!
(ℏM−1(ℓ, ℓ))k.

The terms can be represented with free field Feynman diagrams with 2k external points.
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• The result we’ve just proven is called Wick’s theorem. In the context of probability theory, it’s

a result about moments of the Gaussian distribution called Isserlis’ theorem.

• For fermionic variables that anticommute, θaθb = −θbθa, the starting point is∫
dnθdnθ exp(M(θ, θ) + η · θ + θ · η) = eM

−1(η,η) detM

and we can use this to derive an analogue of Wick’s theorem.

7.3 Perturbation Theory

Next, we turn to perturbation theory.

• In general, we can’t evaluate the path integral exactly for an interacting theory, even in zero

dimensions. We might hope to Taylor expand in the small parameter ℏ. However, the radius

of convergence is zero, because the integral diverges in the region Re(ℏ) < 0.

• However, it is possible to obtain an asymptotic expansion. Suppose S(ϕ) has a global minimum

at ϕ0. Then the method of stationary phase gives∫
Rn
dnϕ f(ϕ)e−S(ϕ)/ℏ ∼ (2πℏ)n/2

f(ϕ0)e
−S(ϕ0)/ℏ√

det(∂a∂bS(ϕ0))
(1 + ℏA1 + ℏ2A2 + . . .)

as ℏ→ 0+, where the first term is the ‘semiclassical’ term. This is an asymptotic series.

• In general, an asymptotic series
∑

n anℏn for I(ℏ) means that

lim
ℏ→0+

1

ℏN

∣∣∣∣I(ℏ)− N∑
n=0

anℏn
∣∣∣∣ = 0

so the truncated series is arbitrarily good for fixed N and sufficiently small ℏ. But we cannot

make the series arbitrarily good for fixed ℏ. Instead, for sufficiently high N , the error goes back

up; the entire series diverges.

• Consider a single scalar field with action S(ϕ) = m2ϕ2/2 + λϕ4/4! where we need λ > 0 for

convergence and m2 > 0 to get a unique minimum at ϕ0 = 0. The leading term is

(2πℏ)1/2
e−S(ϕ0)√
S′′(ϕ0)

=

√
2πℏ
m

.

Going further, we can construct an asymptotic series by expanding the action,

Z(m2, λ) =

∫
R
dϕ e−(m2ϕ2/2+λϕ4/4!)/ℏ =

∫
R
dϕ e−m

2ϕ2/2ℏ
∞∑
n=0

1

n!

(
−λ
4!ℏ

)n
ϕ4n.

It is illegitimate to exchange the sum and integral because the integral does not converge when

λ is negative. However, we can cut off the sum and then exchange the finite sum, for

Z(m2, λ) ∼
N∑
n=0

1

n!

(
−λ
4!ℏ

)n ∫
R
dϕ e−m

2ϕ2/2ϕ4n =

√
2ℏ
m

N∑
n=0

1

n!

(
−ℏλ
3!m4

)n
Γ(2n+ 1/2)

where we recognized the integral representation of the gamma function, and the ∼ denotes

asymptotic equality, i.e. equality in the limit ℏ→ 0+.
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• Expanding the gamma function, we have the asymptotic series

Z(m2, λ) ∼
√
2πℏ
m

N∑
n=0

(
−ℏλ
m4

)n (4n)!

(4!)nn!4n(2n)!
=

√
2πℏ
m

(
1− ℏλ

8m4
+

35

384

ℏ2λ2

m8
− . . .

)
.

Note that up to the overall factor of
√
2πℏ, the series only depends on the combination ℏλ.

Thus our series can either be thought of as a semiclassical expansion in ℏ, or a weak coupling

expansion in λ, and this is generally true for graphs with a fixed number of external lines by

some graph theory.

• The series is asymptotic, because n! ∼ en logn, so the numerical factor goes as en logn. Then even-

tually it overwhelms the exponential suppression, and the series has zero radius of convergence.

However, it is possible to recover Z from this asymptotic series using Borel summation.

• The theory is well-defined if m2 < 0, but then our asymptotic series is invalid, because we end

up integrating a divergent Gaussian. The issue is that we expanded about a maximum instead

of a minimum. In physical terminology, we have expanded about an ‘unstable vacuum’ and

found tachyons.

We can also find this series via Feynman diagrams.

• There are two Feynman rules: a propagator is ℏ/m2 and a four-point vertex is −λ/ℏ. Note

that various factors of i are different since we are in Euclidean signature. Here, since the path

integral’s integrand is proportional to e−S , every vertex comes with a factor of −1.

• The partition function is the sum of graphs with zero external points. For instance,

The hard part is explaining the numerical factors, which we do below.

• We let a graph be a Feynman diagram where every vertex and edge has a distinguishable label,

and let Dn be the set of graphs with n vertices. Adding the labels introduces overcounting;

formally the group Gn = (S4)
n ⋊ Sn performs arbitrary relabelings, and we have overcounted

by a factor of |Gn|. Then

Z
Z0
∼

∞∑
n=0

(
−ℏλ
m4

)n |Dn|
|Gn|

, |Gn| = (4!)nn!, Z0 = Z(m2, 0)

where the dimensional factors are just from the Feynman rules. Meanwhile, we have

|Dn| = (4n− 1)(4n− 3) . . . (3)(1) =
(4n)!

4n(2n)!

which reproduces the coefficients we found before.
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• There is another way to find the factors |Dn|/|Gn|. Note that Gn acts on Dn, partitioning it

into orbits On. Each orbit Γ ∈ On is a ‘topological graph’, i.e. a graph without labellings. Then

the orbit-stabilizer theorem states that

|Dn|
|Gn|

=
∑
Γ∈On

1

|AutΓ|

where AutΓ is the stabilizer of any element of Γ. The quantity |AutΓ| is also called the

symmetry factor. For example, for the lowest order term, we can flip within each loop and

interchange the loops, giving a symmetry factor of 8.

• Finally, we can then express our sum as a sum over orbits,

Z
Z0

=
∑
Γ

ℏe(Γ)−v(Γ)

|AutΓ|
(−λ)v(Γ)

(m2)e(Γ)
.

This recovers the usual Feynman diagram expansion.

• It is useful to define the free energy or Wilsonian effective action by W = −ℏ logZ, so

Z
Z0

= e(−W+W0)/ℏ.

Then by the standard combinatoric argument, W contains only connected diagrams; note that

the empty diagram is not connected. Note that because of the sign, W is really the opposite of

the sum of connected diagrams.

Note. The explicit combinatoric argument. Let F (Γ) be the contribution of a Feynman graph

without the symmetry factor. We may expand any graph as the product of disconnected pieces,

|Aut(Γn1
1 . . .Γnkk )| =

k∏
j=1

(nj !)|Aut(Γj)|nj , F

∏
j

Γ
nj
j

 =
∏
j

F (Γj)
nj .

Therefore we have

Z
Z0

=
∑
Γ

F (Γ)

|Aut(Γ)
=
∑
{nj}

F
(∏

j Γ
nj
j

)
∣∣∣Aut(∏j Γ

nj
j

)∣∣∣ =
∑
{nj}

∏
j

1

nj !

(
F (Γj)

|Aut(Γj)|

)nj
= exp

∑
j

F (Γj)

|Aut(Γj)|

 .

Therefore, W is the opposite of the sum of connected vacuum graphs,

−W +W0 = ℏ
∑

connectedΓ

F (Γ)

|Aut(Γ)|
.

In a general quantum field theory, since Z sums over vacuum graphs, it measures the ‘vacuum to

vacuum’ transition amplitude e−iEt/ℏ where E is the vacuum energy. Then W directly measures

the vacuum energy.

Note. Counting powers of ℏ. Propagators are proportional to ℏ and vertices are inversely propor-

tional to ℏ, so a graph contributes ℏℓ(Γ) where ℓ(Γ) = e(Γ)− v(Γ)+ 1 in the expansion forW. For a
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connected graph, this is the number of loops by Euler’s theorem, as loops are just faces of a planar

graph, and the ‘outside face’ doesn’t count.

To count powers of ℏ in detail, let there be va vertices with a fields. Then for vacuum graphs,

2e =
∑
a

ava

where we suppress the Γ argument, so

ℓ = 1 + e−
∑
a

va = 1 +
∑
a

(a
2
− 1
)
va.

The ℏ0 term is from classical field theory, and corresponds to tree-level diagrams; there are none

here because we’re focusing on vacuum diagrams. The ℏ1 term comes from one-loop diagrams,

and we see above that such diagrams only have quadratic vertices. This makes sense, because

the semiclassical contribution comes from integrating over fluctuations in the Gaussian (quadratic)

ensemble, and hence only depends on the quadratic part of the action. Finally, all vacuum graphs

with an interaction vertex are two-loop or higher. Note that while loops correspond to powers of ℏ
in general, the result may be shifted by a constant by field insertions, external states, and external

sources.

7.4 Effective Actions

Zero-dimensional field theory also provides simple examples of effective theories.

• Consider two real scalar fields with

S(ϕ, χ) =
m2

2
ϕ2 +

M2

2
χ2 +

λ

4
ϕ2χ2.

Then we have propagators ℏ/m2 and ℏ/M2, and a vertex −λ/ℏ.

• We can then expand the partition function as we did before,

We can also compute expectation values of powers of ϕ, represented by external points,

• Now suppose that we only want to evaluate correlation functions of ϕ. For example, the mass

M of the χ may be very high, so we cannot produce it in an experiment. Then it is useful to

“integrate out” the χ, defining the effective action

Seff(ϕ) ≡ −ℏ log
(∫

R
dχ e−S(ϕ,χ)/ℏ

)
.

Then correlation functions of ϕ can be evaluated with the weight e−Seff(ϕ)/ℏ.
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• In this case, the action is quadratic in χ, so we can explicitly compute∫
R
dχ e−S(ϕ,χ)/ℏ = e−m

2ϕ2/2ℏ

√
2πℏ

M2 + λϕ2/2
.

However, in general we must use perturbation theory. Here we have, exactly,

Seff(ϕ) =
m2

2
ϕ2 +

ℏ
2
log

(
1 +

λ

2M2
ϕ2
)
+

ℏ
2
log

M2

2πℏ
.

We ignore the final term, which is a constant, but its appearance is a manifestation of the

cosmological constant problem.

• By expanding the logarithm, the effective action takes the form

Seff(ϕ) ≡
m2

eff

2
ϕ2 +

λ4
4!
ϕ4 +

λ6
6!
ϕ6 + . . . , m2

eff = m2 +
ℏλ
2M2

so we have a mass renormalization, and an infinite set of couplings

λ4 = −
3ℏ
2

λ2

M4
, λ6 = 15ℏ

λ3

M6
, λ2k = (−1)k+1ℏ

(2k)!

2k+1k

λk

M2k
.

We note that all these effectives are quantum effects, since they are proportional to ℏ, and they

are suppressed by powers of M .

• We can compute the effective action diagrammatically. It is a polynomial in ϕ, where the

contribution to the ϕn term comes from diagrams with n external ϕ fields, only connected

diagrams are used since we take the logarithm, and only χ propagators appear since the ϕ is

not dynamical:

Terms that depend only on ϕ can be simply pulled out of the integral; here we have represented

the original mass term using a diagram with a special green vertex. The solid lines aren’t ϕ

propagators; they’re for visual convenience, to separate the ϕ fields from their vertices.

• In this theory, all contributions to Seff(ϕ) have one χ loop, so the corrections to the couplings

are O(ℏ). In general, the corrections will each themselves be asymptotic series in ℏ. We can

imagine the process of integrating out χ as ‘zooming out’ until we can’t see the loop.

• Using the effective action, it is much easier to compute ⟨ϕ2⟩ to O(λ2),
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In general, we think of the world as a series of nested effective field theories. As a result,

every field theory has an infinite amount of terms, i.e. all terms allowed by symmetry, and

every computation is actually using an effective action. However, if the new physics is at a

much higher energy scale, the effective action will look like a low-order polynomial because only

renormalizable terms are significant.

Note. We’ve talked about two kinds of effective action, W and Seff. These are essentially the same;

consider adding an external current, so the action becomes S[ϕ, J ]. Then W[J ] is the effective

action for J after integrating out ϕ. Since we’ve done everything with J = 0, only vacuum diagrams

appear in the expansion forW, but generally there would be external J points just like in Seff. Both

W and Seff are examples of Wilsonian effective actions.

There’s yet another kind of effective action, the 1PI effective action.

• As we’ve seen above, the effective action W[J ] is the effective action for J once the field ϕ has

been integrated out; it is analogous to the Helmholtz free energy F (H) for a magnet. However,

for an isolated system there is no clear external source.

• In thermodynamics, we deal with this by switching to the Gibbs free energy G(M). By

minimizing G(M), we may find the equilibrium magnetization M = ⟨s(x)⟩. We can perform a

simple minimization because G(M) already accounts for thermal effects, unlike H(s(x)).

• Similarly, in quantum field theory we Legendre transform from the effective action W(J) to

the 1PI effective action Γ(Φ), where the ‘classical field’ Φ is the vev in the presence of a source,

Φ = ⟨ϕ⟩J .

We will see that minimizing Γ(Φ) can tell us about phase transitions, just like G(M).

• Explicitly, note that

∂W
∂J

= − ℏ
Z(J)

∂

∂J

∫
dϕ e−(S+Jϕ)/ℏ =

1

Z(J)

∫
dϕ e−(S+Jϕ)/ℏϕ = ⟨ϕ⟩J

so that Φ = ∂W/∂J , analogous to the relation M = −∂F/∂H.

• We define the quantum effective action Γ(Φ) by the Legendre transformation

Γ(Φ) =W(J)− ΦJ.

Then by the usual logic for Legendre transformations,

J = −∂Γ
∂Φ

and assuming the Legendre transformation is invertible, we can transform back and forth

between W(J) and Γ(Φ).

• To understand the meaning of Γ(Φ), note that when J = 0, possible values for Φ correspond to

extrema of Γ. Then in higher dimensions, the action S yields the classical equations of motion

δS/δϕ = 0 while Γ yields the ‘quantum’ equations of motion for δΓ/δΦ = 0 which account

for quantum effects. In zero dimensions these are simply algebraic equations, but in higher

dimensions we can have nontrivial spatial dependence, yielding solitons.
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• Next, we define a quantum theory by a path integral of Φ, where we let Γ(Φ) play the role of

the classical action. We define

e−WΓ(J)/g =

∫
dΦ e−(Γ(Φ)+JΦ)/g

where g takes the formal role of ℏ, which is in Γ(Φ). As before, this means

WΓ(J) =
∞∑
ℓ=0

gℓW(ℓ)
Γ (J)

where W
(ℓ)
Γ (J) is the sum of all ℓ-loop connected Feynman graphs built from Γ(Φ).

• Next, suppose we take the limit g → 0. Then only the tree-level connected Feynman graphs

contribute; alternatively, the path integral is dominated by the minimum of the argument of

the exponential, so

lim
g→0
WΓ(J) =W

(0)
Γ (J) = Γ(Φ) + JΦ

∣∣∣∣
J=− ∂Γ

∂Φ

=W(J).

Therefore, the connected graphs built from the classical action S(ϕ) + Jϕ are equal to the tree

graphs built from the effective action Γ(Φ) + JΦ, another sense in which Γ includes quantum

corrections to S.

• Diagrammatically, every connected diagram is a tree whose vertices are one-particle irreducible

(1PI) graphs. Therefore, we can interpret Γ(Φ) as the sum of 1PI graphs built from S(ϕ), where

a 1PI diagram with n external ϕ fields contributes to the Φn term/vertex in Γ(Φ).

• Explicitly, suppose we have fields ϕa and sources Ja. Then

−ℏ ∂2W
∂Ja∂Jb

= −ℏ ∂

∂Ja

(
1

Z(J)

∫
dnϕ e−(S(ϕa)+Jaϕa)/ℏϕb

)
= ⟨ϕaϕb⟩J − ⟨ϕa⟩J⟨ϕb⟩J ≡ ⟨ϕaϕb⟩connJ .

The first term contains both connected and disconnected diagrams, but the disconnected ones

are canceled out by the second term, leaving the connected correlation function, also called the

exact propagator. It is the quadratic term in W[J ], as expected.

• On the other hand, note that

⟨ϕaϕb⟩connJ = −ℏ ∂2W
∂Ja∂Jb

= −ℏ∂Φ
b

∂Ja
= −ℏ

(
∂Ja
∂Φb

)−1

= ℏ
(

∂2Γ

∂Φb∂Φa

)−1

.

That is, the exact propagator is the inverse of the quadratic term of the 1PI effective action,

which is exactly what we expect.

• To connect this to diagrams, note that we have the diagrammatic recurrence relation

connected ∼ connected× 1PI× connected

which is indeed compatible with what we found.
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• For more than two external fields, we can continue differentiating W with respect to J . The

details are messy, but the key identity is

∂

∂Φ
=
∂J

∂Φ

∂

∂J
= (⟨ϕ2⟩conn)−1 ∂

∂J
.

That is, adding another external Φ leg to Γ is the same as adding another external J to W and

amputating the resulting leg; this is exactly how 1PI diagrams are produced.

• In general dimension, Γ is extensive and dividing it by the spacetime volume gives the effective

potential Veff(Φ). As in thermodynamics, the effective potential must be convex; taking the

convex hull is the same as the Maxwell construction for the var der Waals gas.

Note. There are various sign flips above, so W[J ] and Γ[Φ] are not really the sum of connected

and 1PI diagrams, but rather the sum up to a sign. Explicitly, we have

W [J ] =
∑
n

(−1)n−1

n!
Jn⟨ϕn⟩conn, Γ[Φ] = −

∑
n

1

n!
Φn⟨ϕn⟩1PI

as can be shown using the identities above. The only exception is the case n = 2 for the 1PI effective

action. Note that for n > 2, the nth order terms in the action contribute directly to ⟨ϕn⟩1PI, but
the quadratic terms don’t contribute directly to Π. This is because we treated the quadratic part of

the action as ‘free’ and hence differently from the ‘interacting’ part when setting per perturbation

theory. By summing a geometric series, we hace

⟨ϕ2⟩conn(p2) = 1

p2 −m2
0 −Π(p2)

, Π(p2) =
∑

1PI diagrams

which implies that the quadratic term of the 1PI effective action is

⟨ϕ2⟩conn(p2)−1 = p2 −m2 −Π(p2)

with an extra inverse bare propagator.

Example. In the case of no external sources, J = 0, we have

W [0] = Γ[Φ]

∣∣∣∣
∂Γ/∂Φ=0

.

Thus, by plugging in the equilibrium value of Φ, we get a relationship between the set of connected

vacuum bubbles and the set of 1PI diagrams. For example, in the simple case Φ = 0 we find∑
connected vacuum bubbles =

∑
1PI vacuum bubbles

which holds because all non-1PI connected vacuum bubbles have tadpoles, which vanish when Φ = 0.

Note. Here we make the analogy with statistical mechanics more explicit.

• We consider a magnet with spin field s(x) and energy E(s). Then the partition function is

Z =

∫
ds e−β(E(s)−Hs)

where H is an external field. We define the Helmholtz free energy by

F (H) = − 1

β
logZ

where we integrated out the spin field, leaving a function of the external field. We leave the

dependence on T implicit, because in quantum field theory its analogue ℏ can’t be varied.
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• We define the magnetization M = ⟨s⟩ = −∂F/∂H. This is the spin seen on a macroscopic scale,

accounting for thermal corrections. We define the Gibbs free energy

G(M) = F (H) +MH,
∂G

∂M
= H

by Legendre transform so it is directly a function of M .

• To compute the equilibrium value of M , we simply find the minima of G. That is, we don’t

have to do a path integral over configurations of M , so G ‘accounts for thermal corrections’. In

particular, it’s easy to tell where phase transitions occur.

• For example, in the ferromagnetic phase transition, the energy is minimized by having the spins

aligned, but thermal effects favor disorder; we can tell which wins by looking at G(T,M). In

quantum field theory, an analogue is the Coleman-Weinberg potential: a ϕ4 theory can exhibit

spontaneous symmetry breaking because the effective potential has a nonzero minimum.

7.5 Fermionic Fields

We now turn to the description of fermionic fields.

• A fermionic field is an anticommuting field. In zero dimensions, there is no notion of spin, but

in d = 3 + 1 fermionic fields have half-integer spin by the spin-statistics theorem.

• The Grassmann algebra is an algebra over the complex numbers, generated by n elements θa

that anticommute, θaθb = −θbθa. Note that scalar multiplication still commutes, θaα = αθa

for α ∈ C. Also, products of an even number of Grassmann numbers commute with everything,

so they are ‘bosonic’.

• Every Grassmann number squares to zero, so a general element of the algebra is

F (θ) = α+ ρaθ
a +

1

2!
ga1a2θ

a1θa2 + . . .+
1

n!
ha1...anθ

a1 . . . θan

where we can take the coefficients to be totally antisymmetric.

• Next, we define differentiation and integration. The derivative is defined by

∂θa

∂θb
= δab ,

∂α

∂θa
= 0, α ∈ C

so it anticommutes with multiplication by a Grassmann number,

∂

∂θa
θb + θb

∂

∂θa
= δba.

where the derivatives act on everything to the right, i.e. on a test function. Then the Grassmann

derivative obeys a product rule with an extra minus sign. (Note the spatial derivative of a

product of Grassmann fields obeys the product rule, with no extra signs.)

• To define the integral, we consider the case of one Grassmann number, so the most general

function is f(θ) = α+ ρθ. We demand the integral be linear, so∫
dθ (α+ ρθ) = α

∫
dθ + ρ

∫
dθ θ.
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We also demand invariance under a shift of the integration variable by η. For complex η,∫
dθ f(θ) =

∫
dθ f(θ + η) = (α+ ρη)

∫
dθ + ρ

∫
dθ θ.

• Using our choice of normalization for the measure, we conclude∫
dθ 1 = 0,

∫
dθ θ = 1.

More generally, η can be Grassmann valued, which shows that the dθ integral of anything not

linear in θ vanishes; in particular, Grassmann differentiation and integration are equal!

• Using the definition of integration, we find∫
dθ

∂

∂θ
F (θ) = 0

since the derivative removes the term linear in θ. This allows us to integrate with parts, though

there’s an extra sign flip.

• If we have n Grassmann variables θa, we define dnθ = dθn . . . dθ1, so∫
dnθ θ1 . . . θn = 1

with all lower-order terms integrating to zero, and in general,∫
dnθ θa1 . . . θan = ϵa1...an .

• Next, consider a change of variables θ′a = Na
b θ

b. Then by linearity,∫
dnθ θ′a1 . . . θ′an = Na1

b1
. . . Nan

bn

∫
dnθ θb1 . . . θbn = Na1

b1
. . . Nan

bn
ϵb1...bn = (detN)ϵa1...an

which shows that

dnθ = (detN)dnθ′.

This is the exact opposite of the transformation for bosons, e.g. dθ = 2d(2θ).

• It is also occasionally useful to consider Grassmann Dirac delta functions, which obey∫
dη δ(η − θ)f(η) = f(θ).

By considering the general form f(η) could take, we see that δ(η − θ) = η − θ.

Note. Concretely, the θa can be thought of as one-forms, and the product can be thought of as

the wedge product. The Grassmann integral
∫
dnθ can be thought of as integration of a differential

form over Rn, where only the integral of a top-dimensional form is nonzero.

Next, we consider a simple calculation in a fermionic free field theory.
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• To get a nontrivial theory, we need two fermionic fields, θ1 and θ2. The action must be bosonic,

so it must be even in the fields, so we must have

S(θ) =
1

2
Aθ1θ2.

Then the partition function is simply

Z0 =

∫
d2θ e−S(θ)/ℏ =

∫
d2θ

(
1− A

2ℏ
θ1θ2

)
= − A

2ℏ
where we took a Taylor expansion. Note that S is Grassmann-valued, but Z0 is not.

• More generally, consider 2m fermionic fields θa with

S(θ) =
1

2
Aabθ

aθb

where A is antisymmetric. Then the partition function is

Z0 =

∫
d2mθ e−A(θ,θ)/2ℏ =

(
− 1

2ℏ

)m 1

m!

∫
d2mθ Aa1a2 . . . Aa2m−1a2mθ

a1 . . . θa2m

where we used the fact that only the mth order term can contribute.

• We define the Pfaffian of a 2m× 2m antisymmetric matrix A by

Pfaff A =
1

2mm!
ϵa1...a2mAa1a2 . . . Aa2m−1a2m

and one can show that

(Pfaff A)2 = detA.

Thus we conclude that

Z0 = ±
√

detA

ℏn
while for free bosons we had the ℏ’s in the numerator and the determinant in the denominator.

• We can also consider sources,

S(θ, η) =
1

2
Aabθ

aθb + ηaθ
b

where the source η must be fermionic. As before, we may complete the square for

S(θ, η) =
1

2
(θa + ηc(A

−1)ca)Aab(θ
b + ηd(A

−1)db) +
1

2
ηa(A

−1)abηb

where the two cross-terms are equal because A is antisymmetric and θ and η anticommute.

• Therefore, the partition function is

Z0(η) = exp

(
− 1

2ℏ
A−1(η, η)

)
Z0(0)

which allows us to compute the two-point function as

⟨θaθb⟩ = ℏ2

Z0(0)

∂2Z0(η)

∂ηa∂ηb

∣∣∣∣
η=0

= ℏ(A−1)ab

where we use Taylor expansion and the fact that derivatives anticommute with Grassmann

numbers. This is just the same as the bosonic result: the free propagator is always the inverse

of the kinetic term.
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• The fact that functions of a finite number of Grassmann variables can always be represented

as polynomials means that in d = 0, all fermionic path integrals can be evaluated exactly. In

higher dimensions, we use Grassmann-valued fields which contain infinitely many independent

Grassmann variables, and turn to perturbation theory with Feynman diagrams.

Note. Strictly speaking, all fermionic fields in relativistic quantum field theory must be Grassmann

numbers, even when we are performing canonical quantization. For example, as we will see in

the notes on the Standard Model, a Majorana mass term cannot be written down in a classical

Lagrangian unless the spinors are anticommuting variables; otherwise the term vanishes identically.

One might worry our classical analysis of the Dirac Lagrangian missed some sign flips. The

results are unchanged as long as we define π = ∂L/∂ψ̇ as a derivative to the right of L acting to

the left, and H = πψ̇ − L. Practically speaking, just as there are ambiguities when going from a

classical to a quantum theory (which are, e.g. fixed by normal ordering and other prescriptions),

there are ambiguities when going from a classical to a semiclassical theory, where the spinors become

Grassmann valued. As with normal ordering, we pick the conventions so that the results work.

We now give an example where supersymmetry makes a path integral much easier to evaluate.

• Consider a theory with one bosonic field ϕ and two fermionic fields ψ1 and ψ2, normalizing the

measure so that

Z =

∫
dϕdψ1dψ2√

2π
e−S(ϕ,ψi).

We suppose the action takes the special form

S(ϕ, ψ1, ψ2) =
1

2
(∂h)2 − ψ1ψ2∂

2h

where h(ϕ) is a real-valued polynomial and ∂h is its derivative with respect to ϕ. This action

has the most general possible fermionic term, so this just restricts the purely bosonic piece.

• Now consider the zero-dimensional supersymmetry transformations

δϕ = ϵ1ψ1 + ϵ2ψ2, δψ1 = ϵ2∂h, δψ2 = −ϵ1∂h

where the ϵi are fermionic. Then the action transforms as

δS = ∂h ∂2h (ϵ1ψ1 + ϵ2ψ2)− (ϵ2∂h)ψ2∂
2h− ψ1(−ϵ1∂h)∂2h = 0

and is thus invariant; one can show the measure is invariant as well. We also have δ21 = δ22 =

[δ1, δ2] = 0.

• Now consider the variation δO of some operator O(ϕ, ψi). Then

⟨δO⟩ = 1

Z0

∫
dϕd2ψ e−SδO =

1

Z0

∫
dϕd2ψ δ(e−SO).

Now, the quantity in parentheses is at most linear in the ψi, so the terms that come from

varying ψi don’t depend on ψi and hence integrate to zero. The terms that come from varying

ϕ are total derivatives in ϕ. Then ⟨δO⟩ = 0.

https://knzhou.github.io/notes/sm.pdf
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• Now suppose we choose O = (∂g)ψ1 for some g(ϕ). Setting ϵ1 = −ϵ2 = ϵ, we have

0 = ⟨δO⟩ = ϵ⟨∂g∂g − ∂2gψ1ψ2⟩.

But this is also the first-order change of the action under the deformation h → h + g. That

is, we can replace h in the action with any h + g as long as we don’t change the behavior at

infinity. In particular, if g = h, then we can scale h up. Then the path integral only depends

on regions right around extrema of ϕ, a phenomenon known as localization.

• We can explicitly find the partition function. Near an extremum ϕ∗, we have

h(ϕ) = h(ϕ∗) +
c∗
2
(ϕ− ϕ∗)2, S(ϕ, ψi) ≈

c2∗
2
(ϕ− ϕ∗)2 + c∗ψ1ψ2.

The contribution to the partition function is

1√
2π

∫
dϕd2ψ e−c

2
∗(ϕ−ϕ∗)2/2(1− c∗ψ1ψ2) =

c∗√
2π

∫
dϕ e−c

2
∗(ϕ−ϕ∗)2/2 =

c∗√
c2∗

= sign(c∗)

• Then the full partition function is

Z[h] =
∑

extremaϕ∗

sign(∂2h|ϕ∗).

This is a very simple result: if h has odd degree, then the partition function is zero, and if h

has even degree, the partition function is ±1.

• Localization is also useful for computing correlation functions of operators Oi. We are interested

in supersymmetry-invariant operators, δO = 0. On the other hand, if O = δO′ then the

correlator is automatically zero. Thus the nontrivial observables in the theory correspond to

the cohomology of δ. That is, one can use supersymmetric quantum field theories to compute

the cohomologies of interesting spaces.
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8 Path Integrals in Higher Dimensions

8.1 Quantum Mechanics

Finally, we turn to quantum mechanics, a one-dimensional quantum field theory.

• We recall that we usually consider fields of the form x :M → N where (N, g) is a Riemannian

manifold. In the one-dimensional case, M is either the circle S1, parametrized by t ∈ [0, T )

with endpoints identified, or the interval I, parametrized by t ∈ [0, T ].

• For every time t, x(t) is a point in N . We let xa(t) denote its coordinates; specifically this is

the pullback to M by x of coordinates on a patch of N . A standard choice of action is

S[ϕ] =

∫
M

1

2
gab(x)ẋ

aẋb + V (x) dt

where gab(x(t)) is the pullback to M of the Riemannian metric on N , and V : N → R is a

‘potential’ and V (x(t)) is its pullback. We’ve implicitly chosen the metric on M to be the

Euclidean metric δtt = 1.

• Directly varying this action gives the Euler–Lagrange equation

d2xa

dt2
+ Γabcẋ

bẋc = gab(x)
dV

dxb
, Γabc =

1

2
gad(∂bgcd + ∂cgbd − ∂dgbc)

which is simply the geodesic equation. However, there is no minus sign on the right-hand side

because of the Wick rotation t→ it. In Euclidean signature, F = −ma because a picks up a

factor of i2 in the Wick rotation.

• We interpret the target space N as being the space where we live, and x(t) as the trajectory

of a quantum particle; we call either M or x(M) ⊂ N the worldline of the particle. However,

note that we usually interpret M as being the space where we live, and N as an abstract space

of fields, e.g. a Grassmann algebra for fermion fields. Even within quantum mechanics, with

two particles N is no longer space, but a configuration space with twice the dimension.

Next, we recover the path integral picture from standard quantum mechanics.

• We work in the Hilbert space H = L2(N) with Hamiltonian

H =
1

2
∆ + V, ∆ =

1
√
g

∂

∂xa

(
√
ggab

∂

∂xb

)
where ∆ is the Laplacian on (N, g).

• We define the heat kernel

KT (y0, y1) = ⟨y1|e−HT |y0⟩ = ⟨y1, T |y0, 0⟩

representing the amplitude for a particle to travel from y0 to y1 in time T , in Schrodinger and

Heisenberg picture respectively. In the Heisenberg picture expression, |yi, t⟩ is defined as an

eigenvector of ŷ(t) with eigenvalue yi.
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• The heat kernel obeys the differential equation

∂

∂t
Kt(x, y) +HKt(x, y) = 0

which is the Schrodinger equation in Euclidean signature, with ℏ = 1.

• In the case where N ∼= Rn, the metric is gab = δab, and V = 0, we have the usual heat kernel

Kt(x, y) =
1

(2πt)n/2
exp

(
−|x− y|

2

2t

)
.

It can be shown that for a general metric, the heat kernel has this form for small t, specifically

lim
∆t→0

K∆t(x, y) ∼
1

(2π∆t)n/2
a(x) exp

(
−d(x, y)

2

2∆t

)
where d(x, y) is the geodesic distance from x to y and a(x) is a polynomial in the Riemann

curvature tensor.

• The heat kernel can be rewritten by inserting copies of the identity, giving

⟨y1|e−HT |y0⟩ = lim
N→∞

(
1

2π∆t

)nN/2 ∫ N−1∏
i=1

dnxi a(xi) exp

[
−∆t

2

(
d(xi+1, xi)

∆t

)2
]
.

This recovers the path integral, if we may define

Dx = lim
N→∞

(
1

2π∆t

)nN/2 ∫ N−1∏
i=1

dnxi a(xi).

If the paths are differentiable, then the sum over (d(xi+1, xi)/∆t)
2 converges to the integral

over gabẋ
aẋb and we recover the path integral expression

KT (y0, y1) =

∫
CT [y0,y1]

Dx e−S

where S is the action we wrote down earlier with V = 0, and CT [y0, y1] specifies boundary

conditions x(0) = y0 and x(T ) = y1.

Next, we turn to the computation of correlation functions.

• A local operator is one which depends on the field (in this case, x) at only one point of the

worldline. For example, any function O : N → R corresponds to a local operator Ô. Let |y, t⟩
be the Heisenberg state that will be peaked at y at time t. Then in Heisenberg picture,

⟨y1, T |Ô(t)|y0, 0⟩ = ⟨y1, 0|e−H(T−t)Ô(0)e−Ht|y0, 0⟩ = ⟨y1|e−H(T−t)Ôe−Ht|y0⟩

where the final expression is in Schrodinger picture.
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• Inserting a complete set of states, we find this is equal to∫
dnxO(x)KT−t(y1, x)Kt(x, y0) =

∫
CT [y1,y0]

Dx e−SO(x(t)).

Therefore, in general correlation functions are computed from the path integral by

⟨y1, T |Ôn(tn) . . . Ô1(t1)|y0, 0⟩ =
∫
CT [y0,y1]

Dx e−S
n∏
i=1

Oi(x(ti)).

Note that we don’t need to divide by a partition function here, because the normalization is

implicitly in the definition of the path integral measure.

• Note that when we insert complete sets of states, we find a path of the form (y0, 0)→ (x1, t1)→
. . .→ (xn, tn)→ (y1, T ) and integrate out the internal points to get an arbitrary path (y0, 0)→
(y1, T ). This is only possible if the points are in time order, as otherwise we’d end up with an

integral over paths that go forward and backward in time. Then

⟨y1, T |T
n∏
i=1

Ôi(ti)|y0, 0⟩ =
∫
CT [y0,y1]

Dx e−S
n∏
i=1

Oi(x(ti)).

This is fitting, as we know the Oi commute, but the Ôi do not, and time ordering makes

everything inside it effectively commute. Time-ordered products appear ubiquitously when

dealing with the path integral, and we will often drop the time-ordering symbol.

• Note that if there are no derivative terms, positions at arbitrarily close times ‘decouple’, and

the path integral splits into individual independent integrals for each time. Then all correlation

functions split as

⟨Ô1(t1)Ô2(t2)⟩ = ⟨Ô1(t1)⟩⟨Ô2(t2)⟩

so there are no nontrivial correlations. This corresponds to the statement that fields without

kinetic terms are nondynamical and do not propagate.

• More generally, we can consider operators that depend on derivatives of x. In particular, the

canonical momentum for our action is

pa =
∂L

∂ẋa
= gabẋ

b

so we could replace the function O(xa, ẋa) with the operator Ô = O(x̂a, gab(x̂)p̂b). However,

this is also puzzling because the latter depends on an ordering prescription while the former

does not. One can simply define Ô to be normal ordered, but we would like to understand

where this comes from in the path integral.

Note. Such ordering problems also occur in canonical quantization. Here, given the Poisson bracket

structure {f, g} = h we would like to define operators satisfying [f̂ , ĝ] = iℏ ĥ which act irreducibly

on the Hilbert space. However, the Groenewald-van Hove theorem states that this is impossible

in general; in fact, it’s even impossible for polynomials in the positions and momenta, once we go

beyond quadratics. The idea of quantizing a classical system in general remains ambiguous.

To understand ordering problems, we carefully examine the continuum limit.
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• For a free particle in one dimension, let 0 < t− < t < t+ < T . Then∫
CT [y0,y1]

Dx e−Sx(t)ẋ(t−) = ⟨y1|e−H(T−t+)x̂e−H(t+−t)p̂e−Ht|y0⟩

and ∫
CT [y0,y1]

Dx e−Sx(t)ẋ(t+) = ⟨y1|e−H(T−t)x̂e−H(t−t−)p̂e−Ht|y0⟩.

Taking the limits t+ → t from above and t− → t from below, the difference of the right-hand

sides is nonzero, as

⟨y1|e−H(T−t)[x̂, p̂]e−Ht|y0⟩ = ⟨y1|e−HT |y0⟩.

• To take the same limits on the left-hand side, we explicitly restore the discretization ∆t. Then

the furthest we can take the limit is

x(t)ẋ(t−)− x(t)ẋ(t+)→ xt
xt − xt−∆t

∆t
− xt

xt+∆t − xt
∆t

.

This is a discretized second derivative times xt∆t, which would vanish in the limit ∆t→ 0 if

our paths were smooth. However, we integrate over paths that are not even differentiable.

• More explicitly, the part of the path integral that depends on xt is∫
dxtK∆t(xt+∆t, xt)

(
xt
xt − xt−∆t

∆t
− xt

xt+∆t − xt
∆t

)
K∆t(xt, xt−∆t)

but using the known form of the heat kernel, this is equal to

−
∫
dxt xt

∂

∂xt
(K∆t(xt+∆t, xt)K∆t(xt, xt−∆t)) = K2∆t(xt+∆t, xt−∆t)

by integration by parts. Performing the other integrals gives ⟨y1|e−HT |y0⟩ as desired. Similarly,

the operator ordering in the Hamiltonian is also determined by the discretization procedure.

• To understand the result more quantitatively, note that

Kt(x, y) =
1

2πt
e−(x−y)2/2t

has ⟨(x− y)2⟩ = t, typical for a diffusion process. Then a typical derivative is actually O(
√
∆t)

instead of O(1), allowing it to contribute in ways it naively should not. For example, changing

a forward derivative to a backward derivative within a single timeslice yields a change of

xt+∆t
xt+∆t − xt

∆t
− xt

xt+∆t − xt
∆t

= ∆t

(
xt+∆t − xt

∆t

)2

= O(1).

Hence the operator ordering is hidden in the discretization procedure.

Next, we consider the issue of the path integral measure.

• Naively, we may take the limit of infinitely many position-space integration measures to yield

the path integral measure Dx. Alternatively, one might want to do this in Fourier space, taking

the limit of arbitrarily high frequencies; in this picture it is clear we only need a countable

infinity of integrations. However, both these limits do not exist.
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• We say dµ is a Lebesgue measure on RD if it assigns a strictly positive volume

vol(U) ≡
∫
U
dµ

to every non-empty open set U , is translationally invariant, and if for every x ∈ RD there is at

least one open neighborhood Ux of x with finite volume. A standard choice is dµ = dDx.

• There is no non-trivial Lebesgue measure on a vector space with countably infinite dimension.

Let C(L) denote an open hypercube of side length L. Dividing it gives

vol(C(L)) ≥ 2Dvol(C(L/2)).

Then if D →∞, the only way for the measure to remain finite is for vol(C(L/2)) to go to zero,

so the measure of any hypercube must be zero. Since the dimension is countably infinite any

open set can be covered with countably many cubes, so the measure is identically zero.

• For the path integral in one dimension, there is a nontrivial measure,

dµ = lim
N→∞

(
1

2π∆t

)nN/2 ∫ N−1∏
i=1

dnxi exp

(
−∆t

2

(
xti+1 − xti

∆t

)2
)
.

This is called the Wiener measure, and it necessarily involves the Dx and e−S[x] factor together.

It evades the above theorem because it is not translationally invariant, i.e. shifting one of the

xi changes the measure.

• In higher dimensions, the naive generalization of the Wiener measure does not generally exist,

but it is believed that quantum field theories that are asymptotically free, such as Yang–Mills,

do have a continuum limit. However, a continuum limit almost certainly doesn’t exist for

general relativity or quantum electrodynamics, and probably doesn’t exist for the Standard

Model. This is acceptable in practice because we can just treat them as effective theories.

8.2 Effective Quantum Mechanics

In this section, we give some examples of calculations in quantum mechanics.

• First, we consider a circular worldline with two fields x and y, with action

S[x, y] =

∫
S1

1

2
ẋ2 +

1

2
ẏ2 + V (x, y) dt, V (x, y) =

1

2
(m2x2 +M2y2) +

λ

4
x2y2.

As a quantum mechanical system, it’s two coupled harmonic oscillators in periodic time T . In

quantum field theory language, it’s a theory of two interacting fields with masses m and M .

• Using the usual procedure, we arrive at the Feynman rules

where k is the worldline momentum, which is quantized in units 2π/T .
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• Alternatively, we can integrate out the y field, giving∫
Dy exp

(
−1

2

∫ T

0
dt y

(
− d2

dt2
+M2 +

λ

2
x2
)
y

)
∼ det

(
− d2

dt2
+M2 +

λ

2
x2
)−1/2

where we integrated by parts with the boundary terms canceling by periodicity, and then

performed a formal Gaussian integral. Therefore the effective action is

Seff[x] =

∫ T

0
dt

(
1

2
ẋ2 +

m2

2
x2
)
+

1

2
log det

(
− d2

dt2
+M2 +

λ

2
x2
)

• We also know that log det(AB) = log detA+ log detB, so

log det(AB) = tr logA+ tr logB.

We also define the worldline Green’s function G(t, t′) by(
d2

dt2
−M2

)
G(t, t′) = δ(t− t′).

Explicitly, it can be shown that

G(t, t′) =
1

2M

∑
n∈Z

e−M |t−t′+nT |

• Then we can expand the new term perturbatively as

tr log

(
− d2

dt2
+M2 +

λ

2
x2
)

= tr log

(
− d2

dt2
+M2

)
+ tr log

(
1− λ

(
d2

dt2
−M2

)−1
x2

2

)
.

The first term is a divergent constant, while the next term can be expanded in a series. The

inverse is simply the Green’s function, and the trace is over time, giving

−λ
2

∫
S1

dtG(t, t)x2(t)− λ2

8

∫
S1×S1

dtdt′G(t′, t)x2(t)G(t, t′)x2(t′) + . . .

with the general term

−
∞∑
n=1

λn

2nn

∫
(S1)n

dt1 . . . dtnG(tn, t1)x
2(t1)G(t1, t2)x

2(t2) . . . G(tn−1, tn)x
2(tn)

so that we generate an infinite series of new interactions as usual.

• The striking new feature is that the new interactions are non-local in time. To understand this,

we consider the Feynman diagrams for the first two terms,

Since the y field is dynamical, it has its own propagator which allows it to move around on the

worldline, so integrating it out gives a nonlocal interaction.
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• To estimate the size of the nonlocal interactions, we Taylor expand in t− t′ for∫
dtdt′G(t, t′)2x2(t)x2(t′) =

∫
dtdt′G(t, t′)2xt(t)

(
x2(t) + 2x(t)ẋ(t)(t− t′) + . . .

)
.

Note that G(t, t′) only depends on t − t′ through the combination M(t − t′). Then we can

integrate over t− t′, giving a power of 1/M for every time derivative. The terms look like∫
dt
x4(t)

M
+

two derivatives

M3
+

four derivatives

M5
+ . . .

where we’ve suppressed numerical factors, and all terms are quartic in x. Therefore, as long as

the derivatives are small in units of M−1, we can truncate the series and get a local action.

• Note that we have a double expansion in λ and M . The former is relatively innocuous, but the

latter breaks down for energies on the scale of M , where all terms are important; if we continue

to try to use only a few terms, we’ll find violations of unitarity, signaling that perturbation

theory is breaking down. To fix it in a tractable way, we must ‘un-integrate out’ the y field.

• This same scenario was important in the discovery of the W boson. Fermi’s theory of weak

decay was an effective theory that had integrated out the W boson, but which led to a violation

of unitarity at high energies.

Note. Perturbative unitarity violation is a typical feature of nonrenormalizable theories. For

example, consider the innocuous case of massless ϕ6 theory in d = 4, with interaction term λϕ6/M2.

The coupling constant gives a mass scaleM where perturbation theory must break down. Specifically,

the lowest-order contribution to 2ϕ→ 4ϕ scattering is

M∼ λ

M2
, |M|2 ∼ λ2

M4
, σ ∼ λ2

M4
p2

where we included the p2 factor by dimensional analysis. Then for p ≳M the cross section violates

unitarity bounds. The full nonperturbative result could still be unitary, but in reality the most

common case is that some new physics takes over. This situation looks a bit different from the

infinite tower of terms found above, but it’s really the same, since these terms will be generated by

renormalization.

Next, we show the worldline approach to perturbative quantum field theory. In this approach, we

think about the particles of a quantum field theory in terms of ordinary quantum mechanics.

• The simplest way to describe a relativistic particle is to consider maps x : [0, T ]→ Rn with

S[x] =

∫ T

0
dt
√
Gab(x)ẋaẋb

where G is the metric on Rn and t is interpreted as a parameter; this is just the standard path

length action, and it is invariant under diffeomorphisms of the worldline.

• We claim that this is equivalent to the action

S[g, x] =

∫
M
dt
√
g

(
1

2
Gab(x)g

tt(t)ẋaẋb +
1

2
V (x)

)
where we vary with respect to both the worldline metric g on M and the fields x. Without the

square root, this naively looks like the nonrelativistic action. The difference is that now we’re

dealing with a one-dimensional quantum gravity theory, since g is varied too.
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• The metric g is specified by a single function
√
g = |e| with gtt = e−2. The Riemann tensor

vanishes, so the Einstein-Hilbert term vanishes. The Einstein equation is simply

Ttt =
2
√
g

δ(
√
gL)

δgtt
∝ 1

|e|

(
Gab(x)ẋ

aẋb − e2(t)V (x)
)
= 0

which yields

gtt(t) = e2(t) =
1

V (x)
Gab(x)ẋ

aẋb.

We see the metric is non-dynamical; it is simply determined by a constraint.

• Plugging this into our action S[g, x] in the case V (x) = V0 gives

S[x] =
√
V0

∫
M
dt
√
Gab(x)ẋaẋb

which is the geometrically natural action we encountered earlier.

• To see this another way, the momentum conjugate to the field xa is

pa =
∂L
∂ẋa

=
1

|e|
Gab(x)ẋ

b

so the Einstein equation gives the constraint

Gab(x)papb + V (x) = 0

which becomes the Klein–Gordan equation, where m2 = V0. The Hamiltonian is

H = paẋ
a − L = p2 +m2

which vanishes on shell; this occurs generically for reparametrization-invariant theories. (typos

here?)

• To see this a third way, we can perform the path integral explicitly in the case where G is

the Minkowski metric. In one dimension, diffeomorphisms of the worldline, which are gauge

transformations, let us set gtt = 1. Then integrating over all possible metrics is equivalent

to integrating over T , which is called a Schwinger parameter. In formal language, we are

integrating over the moduli space of Riemannian metrics.

• With fixed T , the propagator is

⟨y|e−HT |x⟩ =
∫
dp dq ⟨y|p⟩⟨p|e−HT |q⟩⟨q|x⟩ =

∫
d̄p eip(x−y)e−T (p

2+m2)

Integrating over T , we indeed find the propagator for a free scalar field in the target space,∫ ∞

0
dT

∫
CI [x,y]

Dx e−S =

∫ ∞

0
dT ⟨y|e−HT |x⟩ =

∫
d̄p

eip(x−y)

p2 +m2
.

• We would like to use one-dimensional quantum gravity to describe interacting scalar fields.

We can do this by summing over possible topologies of M , replacing the worldline I with a

worldgraph Γ. More elaborate setups allow us to include spin.
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• Specifically, to compute an r-point correlation function, we sum over all graphs with r endpoints,

where, e.g. for ϕ4 theory all vertices have four edges. Each edge e has a Schwinger parameter

Te integrated over (0,∞). Each vertex has a position, which is also integrated over, produc-

ing momentum-conserving delta functions, and an appropriate factor involving the coupling

constant. As usual, we also divide by the symmetry factor.

• Explicitly, in ϕ4 theory one contribution to the propagator is

which yields the factor

−λ
4

∫ ∞

0
dT1

∫
CT1 [x,z]

Dx e−S
∫ ∞

0
dT2

∫
CT2 [y,z]

Dx e−S
∫
dz

∫ ∞

0
dT3

∫
CT3 [z,z]

Dx e−S

which simplifies to what we know from the Feynman rules,

−λ
4

∫
dz d̄p d̄q d̄ℓ

eip(x−z)

p2 +m2

eiq(y−z)

q2 +m2

eiℓ(z−z)

ℓ2 +m2
= −λ

4

∫
d̄p d̄ℓ

eip(x−y)

(p2 +m2)2(ℓ2 +m2)
.

• The formalism we’ve used here is called the worldline approach to quantum field theory, a

predecessor to the modern path integral formulation using fields. (The quantum gravity inter-

pretation came much later.) It is explicitly perturbative, since it directly deals with particles

and Feynman diagrams.

• In d = 2 and d = 3, we have a Riemann tensor but no Weyl tensor, so gravitational degrees of

freedom do not propagate and the path integral for quantum gravity can be performed. The

standard approach to string theory is just the case d = 2, where the graph becomes a Riemann

surface, and we sum over the topologies of this surface. This approach is thus a perturbative

picture of “string field theory”, a mysterious subject about which little is known.

8.3 Quantum Statistical Mechanics

Our results above are also useful for thermal/statistical field theory (SFT). First we’ll lay out the

analogies between SFT and QFT, distinguishing Euclidean and Lorentzian signature explicitly.

• Consider a QFT with fields ϕ :M → N where dimM = D, so

ZQFT =

∫
Dϕ eiS/ℏ.

Wick rotation flips the sign the relative signs of the potential and kinetic terms, giving

ZQFT =

∫
Dϕ e−SE/ℏ, β =

1

ℏ
.

That is, we have

QFT in D spacetime dimensions ∼ classical SFT in D spatial dimensions
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in the sense that their partition functions are simply related. For example, for D = 1 we have

quantum mechanics ∼ classical SFT in 1 spatial dimension.

We’ve been making this correspondence implicitly above.

• A different correspondence starts with a quantum SFT defined on D spatial dimensions. Parti-

tion functions in SFT have the form of a path integral, but with a periodic imaginary “time”,

ZSFT = tr e−βH =
∑
n

⟨n|e−βH |n⟩ =
∑
n

∫
Ct[n,n]

Dϕ e−SE/ℏ =

∫
C[M×S1]

Dϕ e−SE/ℏ.

Here SE is the Euclidean action in D + 1 spatial dimensions. Hence we have

quantum SFT in D spatial dimensions ∼ classical SFT in D + 1 spatial dimensions

where one dimension in the classical SFT has period t = ℏβ.

• To compute an amplitude in such a theory, integrals
∫
dk are replaced with sums over discrete

frequencies in the periodic time direction. In the high temperature limit β → 0, only the zero

frequency matters, so we recover classical SFT in D dimensions. Hence the high temperature

limit of a quantum SFT in D dimensions is a classical SFT in D dimensions, as expected.

• As we saw in the notes on Undergraduate Physics, amplitudes in quantum mechanics are related

to matrix elements of the thermal density matrix ρ = e−βH in quantum statistical mechanics,

if the time evolution is taken to be imaginary. The diagonal elements of ρ are of course the

occupancies, but the off-diagonal elements are harder to interpret.

• Conceptually, the reason that ZQFT doesn’t have boundary conditions but ZSFT does is because

the time direction in a QFT is infinite, and the iϵ damping automatically projects out the

vacuum at temporal infinity. By contrast, ZSFT doesn’t have a dynamical time at all.

Next we show how to perform computations in quantum statistical mechanics.

• In quantum statistical mechanics, our goal is to compute thermal expectation values. Quantum

statistical mechanics takes place in zero spatial dimensions and periodic time, so〈∏
i

Ôi

〉
=

∫
C[S1]Dϕ

∏
i Ôi e

−SE/ℏ∫
C[S1]Dϕ e−SE/ℏ

.

• More explicitly, in the case of a one-dimensional harmonic oscillator,

⟨xn⟩ =

∫
dxxn

∫
Ct[x,x]

Dϕ e−SE/ℏ∫
dx
∫
Ct[x,x]

Dϕ e−SE/ℏ

where the time period t = ℏβ, and the Euclidean action is

−1

ℏ
SE [x(τ)] = −

1

ℏ

∫ ℏβ

0
dτ

m

2

(
dx

dτ

)2

+
k

2
x2 = −1

2

∫ ℏβ

0
dτ x(τ)D̂x(τ), D̂ = −m

ℏ
d2

dτ2
+
κ

ℏ
.

Here we pulled the xn out of the functional integral, because it doesn’t depend on τ . However,

we can formally consider τ -dependent operators, which behave just as in quantum mechanics.

In particular, we get τ -ordered correlators on the left-hand side.

https://knzhou.github.io/notes/phy.pdf


139 8. Path Integrals in Higher Dimensions

• As before, we may define a generating functional

Z[J ] =

∫
Dx(τ) exp

(∫ ℏβ

0
dτ − 1

2
x(τ)D̂x(τ) + J(τ)x(τ)

)
.

Then ⟨xn⟩ may be obtained by differentiating with respect to J(0) and then setting J(τ) = 0.

• By the same logic as in the zero-dimensional theory, for a free theory Z[J ] may be written in

terms of the imaginary time Green’s function,

Z[J ] = Z[0] exp

(
1

2

∫
dτdτ ′ J(τ)G(τ − τ ′)J(τ ′)

)
, D̂τG(τ−τ ′) = δ(τ−τ ′), G(0) = G(βℏ).

• Since the Green’s function takes place in periodic time, we take a Fourier series,

G(τ) =
1√
βℏ
∑
n

gne
iωnτ , ωn =

2πn

βℏ
, n ∈ Z

where the ωn are the Matsubara frequencies. Plugging this into the defining equation,

G(τ) =
1

βκ

∑
n

ω2

ω2 + ω2
n

eiωnτ , ω =

√
κ

m
.

This is equivalent to

G(τ) =
ℏω
2κ

(
eω|τ |

eℏβω − 1
+

e−ω|τ |

1− e−ℏβω

)
as can be shown by contour integrating the latter.

Now we give some explicit examples of computations.

• Correlators may be expanded by Wick’s theorem. For example, we have

⟨x̂2n+1⟩ = 0, ⟨x̂2⟩ = G(0).

To extend to an arbitrary imaginary time, we define the “Heisenberg” operators

x(τ) = eHτ/ℏx̂e−Hτ/ℏ.

One must take some care, since x(τ) is not Hermitian. Now we have

⟨Tx(τ1)x(τ2)⟩ = G(τ1 − τ2)

while higher correlators are also decomposed by Wick’s theorem.

• Using the form of the Green’s function, we have

⟨x̂2⟩ = ℏω
κ

(
1

e−βℏω − 1
+

1

2

)
.

Using ⟨H⟩ = 2⟨V ⟩ = κG(0) and Ĥ = ℏω(n̂+ 1/2), we find the Bose-Einstein distribution.
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• We can compute the position probability distribution by using our knowledge of the moments.

Alternatively, we can perform the computation in one step, as the probability distribution is

⟨δ(x̂− x0)⟩ ≡
∫
d̄k ⟨eik(x̂−x0)⟩ =

∫
d̄ke−ikx0

Z[ikδ(τ)]

Z[0]
=

∫
d̄k e−ikx0e−k

2G(0)/2

where we used the explicit form of Z[J ]. Thus, we conclude

⟨δ(x̂− x0)⟩ =
e−x

2
0/2G(0)√
2πG(0)

.

In the low temperature limit this gives the ground state probability distribution, while in the

high temperature limit this gives the Boltzmann distribution.

• For the harmonic oscillator, the computations done above can also be done in the “Heisenberg”

picture. Starting with the usual creation and annihilation operators, define

a(τ) = eHτ/ℏae−Hτ/ℏ, a† = eHτ/ℏa†e−Hτ/ℏ.

Again we must be careful, as a†(τ) ̸= (a(τ))†. Integrating the Heisenberg equation of motion,

a(τ) = e−ωτa, a†(τ) = eωτa†.

• Now we may straightforwardly compute imaginary time-dependent thermal averages,

⟨a(τ)a†(0)⟩ = 1

Z(β)
tr e−βHa(τ)a†(0) =

e−ωτ

1− e−βℏω
.

Using the relationship between x̂ and â† and â, which continues to hold with τ -dependence, we

may compute ⟨x(τ)x(0)⟩, which agrees with the Green’s function computed above.

• We can set up perturbation theory with Feynman diagrams just as we did earlier. For example,

for the anharmonic oscillator with a λx̂4/4! term, we have

Zλ[J ] =

∫
Dx(τ) exp

(
−SE

ℏ
+

∫ ℏβ

0
dτ Jx− λ

4!ℏ
x4
)

= exp

(
− λ

4!ℏ

∫ ℏβ

0
dτ

δ4

δJ(τ)4

)
Z0[J ]

where SE is the Euclidean action for the harmonic oscillator. We can then expand the expo-

nential in a series, using our simple expression for Z0[J ], and simplify each term by Wick’s

theorem. Each set of contractions yields a Feynman diagram.

• Hence we have the following Feynman rules for computing the partition function Zλ[0].

– Draw n internal points at times τi.

– For every point, multiply by −λ/ℏ and integrate over τi.

– Contract the 4n edges pairwise. For each edge, write G(τi − τj).
– Multiply by Z0[0] and sum over all contractions.

Summing over contractions, we get equivalence classes of diagrams, where we must divide by

the symmetry factor as usual. We can evaluate correlators similarly, though now there are

external points.
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8.4 Quantum Fields

Finally, we generalize to quantum fields, returning to Lorentzian signature, and tie up some loose

ends from the previous sections.

• For a scalar field, we may define field eigenstates by

ϕ̂(x)|ϕ(x)⟩ = ϕ(x)|ϕ(x)⟩

and similarly field momentum eigenstates |π(x)⟩, and use them to construct a path integral as

before using the formal completeness relation∫
Dϕ(x) |ϕ(x)⟩⟨ϕ(x)| =

∫
Dπ(x) |π(x)⟩⟨π(x)| = 1.

The path integral then yields the transition amplitude between two states |ϕa⟩ and |ϕb⟩.

• In relativistic quantum field theory, we are usually interested in vacuum expectation values,

since they appear in the LSZ reduction formula. If we let the vacuum be |Ω⟩, then we can isolate

it from arbitrary boundary conditions, as long as they have some overlap with the vacuum

state, by taking the time to infinity in a slightly imaginary direction. The result is

⟨Ω|T
n∏
i=1

Ôi(xi)|Ω⟩ = lim
T→∞(1−iϵ)

∫
Dϕ(x) eiS

n∏
i=1

Oi(xi)∫
Dϕ(x) eiS

where the paths on the right-hand side run from −T to T , and the denominator cancels out

the phase and overlap factors, so that ⟨Ω|Ω⟩ = 1. We will keep this implicit below.

• Taking the time to infinity this way effectively provides an infinitesimal damping which makes

the path integral converge. It is always necessary in the definition of the path integral, even in

Lorentzian signature, and it is what makes the transition to Euclidean signature natural. It is

equivalent to add an iϵ term in the action like

L ⊃ (m2 − iϵ)ϕ2.

This manifestly yields the expected iϵ in the Feynman propagator. In all cases, whenever we

write m2, we really mean m2 − iϵ.

• A general state of the quantum field is a superposition of the field eigenstates, so it is a

wavefunctional of the classical field configurations. For example, the vacuum wavefunctional

can be computed from the path integral as

⟨ϕ(x)|Ω⟩ = lim
ti→−∞(1−iϵ)

∫
Dϕ(x) eiS

where the final boundary condition is ϕ(x) and the initial boundary condition is arbitrary.

• The partition function can be interpreted as the vacuum to vacuum amplitude,

⟨Ω|e−iHT |Ω⟩ =
∫
timeT

Dϕ(x) eiS = Z[0] = sum of vacuum diagrams

which implies that it is equal to e−iET where E is the vacuum energy, which is generally

divergent. Thus dividing by Z[0] to compute expectation values is equivalent to renormalizing

the vacuum energy to zero. Then W[0] is simply the vacuum energy times T .
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Since Dirac fields are complex, we’ll also have to deal with complex Grassmann numbers.

• We can construct complex Grassmann numbers from real Grassmann numbers, e.g.

θ =
1√
2
(η1 + iη2), θ∗ =

1√
2
(η1 − iη2).

Using the change of variables formula derived earlier,∫
dθ∗dθ θθ∗ = (−i)(i)

∫
dη2dη1 η1η2 = 1.

For multiple Grassmann variables we define dnθdnθ∗ = dθndθ
∗
n . . . dθ1dθ

∗
1. Note that dθidθ

∗
i is

Grassmann-even.

• By convention, we take complex conjugation to reverse the order of products, (θη)∗ = η∗θ∗.

• A complex Gaussian integral takes the form∫
dnθdnθ∗ e−θ

∗
iMijθj =

∫
dnθdnθ∗ e−

∑
i θ

∗
imiθi =

∏
i

mi = detM

where the mi are the eigenvalues ofM . Note that the derivation of this formula does not require

θ∗ to be the conjugate of θ, and that the final result has no square root.

• The partition function with anticommuting sources χ and χ∗ is

Z(χ) =

∫
dnθdnθ∗ e−θ

∗
iMijθj+χ

∗
i θi+θ

∗
i χi

and performing the shift θ → θ +M−1χ yields

Z(χ) = (detM) eχ
∗
i (M

−1)ijχj .

Note that M must be antisymmetric. When n is odd, M has a zero eigenvalue and hence M−1

does not exist, so the above formula does not apply.

• In the case of a Dirac field, there is an independent Grassmann algebra at every point in

spacetime, and we write

ψ(x) =
∑
i

ψiϕi(x)

where the ϕi(x) are a basis of four-component spinors, and the ψi form a basis of the Grassmann

algebra at x. In particular, this is how one should think of relativistic spinors even on the

classical level; otherwise, the anticommutativity must be put in ‘by hand’ upon quantization.

• As an example, in d = 4, every interaction of the form (ψψ)5 is trivial, because there are only

eight independent Grassmann variables at every point. This is physically sensible, because

interactions are contact interactions, and we cannot put five Dirac fermions at the same point.

Next, we explicitly construct the fermionic path integral using coherent states.
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• We consider a single fermionic degree of freedom, e.g. a single mode that could be occupied by

one kind of fermion. We construct the path integral using coherent states,

ψ̂|ψ⟩ = ψ|ψ⟩

where ψ is a complex Grassmann number and ψ̂ is an annihilation operator. The operators ψ̂

and ψ̂† obey

{ψ̂, ψ̂†} = 1

with all other anticommutators zero. Note that we are allowing ‘scalar multiplication’ with

Grassmann numbers in our Hilbert space, though our final answers will be ordinary numbers.

• We postulate a unique ground state |0⟩ so that ψ̂|0⟩ = 0 and define ψ̂†|0⟩ = |1⟩. Then there are

no other states. The desired coherent state is

|ψ⟩ = |0⟩ − ψ|1⟩.

To show this very explicitly, note that

ψ̂|ψ⟩ = −ψ̂ψ|1⟩ = ψψ̂|1⟩ = ψψ̂ψ̂†|0⟩ = ψ|0⟩ = ψ|ψ⟩.

It is easy to make a mistake, as everything can have Grassmann parity. The matrix elements

of ψ̂ are Grassmann numbers, and the state |ψ⟩ itself has Grassmann coefficients.

• To make the analogy clearer, note that

|ψ⟩ = e−ψψ̂
† |0⟩.

In the bosonic case, coherent states are defined as

a|µ⟩ = µ|µ⟩, |µ⟩ = eµa
† |0⟩.

The latter expression is identical up to a sign.

• The complex conjugate state ⟨ψ| is defined by

⟨ψ|ψ̂† = ⟨ψ|ψ∗, ⟨ψ| = ⟨0| − ⟨1|ψ∗ = ⟨0|e−ψ̂ψ∗
.

The inner product of two coherent states is

⟨ψ|ψ′⟩ = ⟨0|0⟩+ ⟨1|ψ∗ψ′|1⟩ = 1 + ψ∗ψ′ = eψ
∗ψ′
.

• Finally, the completeness relation is∫
dψ∗dψ |ψ⟩e−ψ∗ψ⟨ψ| = 1.

This result holds because the left-hand side is equal to |0⟩⟨0|+ |1⟩⟨1|.

We now use this setup to compute transition amplitudes.
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• We compute the transition amplitude

⟨ψf |e−iĤ(tf−ti)|ψi⟩, Ĥ = ψ̂†Mψ̂

for a quadratic Hamiltonian. As in the bosonic path integral, we split the time interval by

inserting copies of the identity.

• Each copy comes with a factor of∫
dψ∗

jdψj ⟨ψj+1|e−iĤδt|ψj⟩e−ψ
∗
jψj ⟨ψj |.

Expanding the exponential, we find

⟨ψj+1|e−iĤδt|ψj⟩ = (1− iψ∗
j+1Mψjδt)⟨ψj+1|ψj⟩ = eψ

∗
j+1ψje−iψ

∗
j+1Mψjδt.

Then some of the phase factors telescope, and we find

⟨ψf , tf |ψi, ti⟩ = lim
N→∞

∫ N∏
j=1

dψ∗
jdψj exp

 N∑
j=0

−ψ∗
j+1(ψj+1 − ψj)− iδtH(ψ∗

j+1, ψj)


=

∫
Dψ∗Dψ ei

∫ tf
ti

dt (ψ∗i ∂ψ
∂t

−H)

and in the usual case the quantity in parentheses is the Lagrangian.

• Now, the Dirac field is a relativistic field, so the field operator necessarily contains both creation

and annihilation operators. Hence the interpretation is somewhat different from above, but the

same manipulations work. In this case we integrate DψDψ and define the generating functional

Z[η, η] =

∫
DψDψ eiS[ψ,ψ]+iηψ+iψη

and by the same manipulations in the bosonic case, we have

⟨Ω|Tψ(x1)ψ(x2)|Ω⟩ =
1

Z[0, 0]

δ

iδη(x1)

−δ
iδη(x2)

Z[η, η]

∣∣∣∣
η=η=0

where we pick up an extra minus sign by anticommutation.

• By our earlier result for a Gaussian integral with linear sources, the Feynman propagator is

again the inverse of the kinetic term −i(i/∂ −m), recovering the usual result in Fourier space.

Note. As mentioned earlier, spinors should be Grassmann-valued in classical field theory, leading

to tricky signs. We defined the complex conjugate so that (θ1θ2)
∗ = θ∗2θ

∗
1, and define the transpose

of a single Grassmann number to do nothing. Then for spinor fields ψi,

(ψ1ψ2)
T = −ψT2 ψ1

because the terms in the sum have the order of the Grassmann variables flipped. But more nicely,

(ψ1ψ2)
† = −(ψT2 ψ

T
1 )

∗ = ψ†
2 ψ

†
1

so the adjoint simply applies to everything in flipped order.
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8.5 Symmetries of the Path Integral

In this section, we derive the Ward–Takahashi identities. They are exact, nonperturbative relations

between correlation functions that result from symmetries of the path integral. We begin by

reviewing Noether’s theorem.

• We work in curved spacetime using the language of differential forms, restating every result in

coordinates. Consider the infinitesimal transformation

δϵϕ(x) = ϵf(ϕ, ∂µϕ).

The transformation is local if f depends only on the fields and their derivatives at x, in which

case it is generated by the vector

Vf =

∫
M
ddx
√
g f(ϕ, ∂ϕ)

δ

δϕ(x)

acting on the space of fields.

• This transformation is a symmetry if it leaves the action invariant. Now, we introduce the

so-called “Noether trick”, promoting ϵ to be spacetime-dependent. Since we have a symmetry

for constant ϵ, the variation of the action should depend only on derivatives of ϵ, so we can

always find some j so that

δϵS[ϕ] = −
∫
M
∗j ∧ dϵ = −

∫
M
ddx
√
g gµνjµ(x)∂νϵ(x).

One can check j is just the conserved current found in the usual proof of Noether’s theorem.

• When the equations of motion hold, the action is invariant under any infinitesimal change in

the fields, δϵS[ϕ] = 0. Integrating by parts and choosing ϵ(x) to have compact support,

d ∗ j = ∂µ(
√
ggµνjν) = 0.

• We define the charge Q on a hypersurface N of codimension one by

Q[N ] =

∫
N
∗j =

∫
N
dd−1x

√
gN jµn

µ

where gN is the metric pulled back to N and nµ is a unit normal.

• Now consider two such hypersurfaces N0 and N1 bounding a region M ′. Then

Q[N1]−Q[N0] =

∫
∂M ′
∗j =

∫
M ′
d ∗ j = 0.

That is, the charge depends on N only through its homology class. In the simple case where

the Ni are constant time-slices of Minkowski space, this means Q is conserved in time.

Example. For the complex scalar field we have

S[ϕ] =

∫
M
dϕ ∧ ∗dϕ+ ∗V (|ϕ|2)
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where we write conjugation with a bar to avoid confusion with the Hodge star. Then by direct

computation, the current is j = i(ϕdϕ− ϕdϕ) and for a time-slice,

Q[N ] = i

∫
N
∗(ϕdϕ− ϕdϕ) = i

∫
dxϕ∂0ϕ− ϕ∂0ϕ.

The canonical momenta are

π =
∂L

∂(∂0ϕ)
= ∂0ϕ, π =

∂L
∂(∂0ϕ)

= ∂0ϕ

so the charge is

Q = i

∫
dx (ϕπ − ϕπ)

which indeed generates the transformations by Poisson brackets.

Note. Dynamical symmetries are symmetries of the equations of motion that are not symmetries

of the Lagrangian; they are associated with integrable systems. For example, for a free particle, the

Lagrangian has an O(n) symmetry, while the equation of motion has a GLn(R) symmetry because

it only requires the particle to move uniformly on a line.

Next, we turn to symmetries in the quantum theory.

• In the quantum theory, the local field transformation ϕ→ ϕ′(ϕ) must leave the product of the

path integral weight and measure invariant to be a symmetry,

Dϕ e−S[ϕ] = Dϕ′ e−S[ϕ′].

This is necessary and sufficient, but since we have more experience with symmetries of the

action from classical field theory, we often use those and hope the measure is invariant as well.

• For example, suppose S[ϕ] only depends on the derivatives of ϕ. Then classically we have

the shift symmetry ϕ(x)→ ϕ(x) + ϕ0. It would appear that the measure would obviously be

invariant, but the measure is not defined without regularization, and the regularized measure

might not be invariant.

• If M = T d, we might expand ϕ(x) in a Fourier series, then cut off the sum. Since the constant

translation only affects the lowest Fourier mode, and the regularized measure integrates over

all values of this coefficient, the measure is indeed invariant.

• As another example, consider rotational symmetry in Euclidean space. The action is SO(d)

invariant if it is a scalar under rotation. We can regularize the path integral by integrating

over all Fourier modes where the SO(d) invariant quantity pµpµ is less than some cutoff; this

is slightly more subtle for SO(d− 1, 1) in Minkowski space. Alternatively, we can regularize by

replacing space with a lattice, but this breaks SO(d) down to the lattice’s point group.

• Sometimes we may run into tradeoffs, where only some symmetries can be preserved, and we

may intentionally choose which to lose. A worse situation is when there doesn’t exist any

regulator that preserves a symmetry, in which case the symmetry is said to be anomalous; it is

said to be incompatible with quantum mechanics itself.



147 8. Path Integrals in Higher Dimensions

• For example, QED in four dimensions with a massless fermion is conformally invariant, but there

is a conformal anomaly; indeed, the beta functions are nonzero in DR, with a hard cutoff, and

on a lattice. It’s possible to prove that a symmetry is anomalous by considering the geometry

and topology of the space of fields, using sophisticated mathematics such as the Atiyah-Singer

index theorem.

• The Standard Model contains a number of anomalies, such as the global symmetry of baryon

number. In general, it’s acceptable for global symmetries to be anomalous, but not gauge

symmetries, since we lose the Ward identity and hence unitarity. The hypercharges in the

Standard Model are fixed by requiring gauge anomalies to vanish.

• Consider operators whose only variation under a symmetry transformation is through the

transformation of the field, e.g. scalar operators for rotations. Then O(ϕ)→ O(ϕ′), and on a

compact manifold M we have∫
Dϕ e−S[ϕ]

∏
i

Oi(ϕ(xi)) =
∫
Dϕ′ e−S[ϕ′]

∏
i

Oi(ϕ′(xi)) =
∫
Dϕ e−S[ϕ]

∏
i

Oi(ϕ′(xi))

where we simply renamed the dummy variable in the first step, then defined ϕ′ in terms of ϕ

and used the definition of a symmetry in the second.

• Therefore, we conclude (leaving the time ordering implicit)

⟨O1(ϕ(x1)) . . .On(ϕ(xn))⟩ = ⟨O1(ϕ
′(x1)) . . .On(ϕ′(xn))⟩.

In general, we will call any identity between correlation functions derived from a symmetry a

Ward or Ward–Takahashi identity. This is an example of a ‘global’ Ward–Takahashi identity.

Example. Consider the U(1) symmetry of a complex scalar field,

ϕ→ ϕ′ = eiαϕ, ϕ→ ϕ
′
= e−iαϕ.

The path integral measure is invariant under this symmetry as long as we integrate over as many

modes of ϕ as we do of ϕ. Therefore for Oi = ϕriϕ
si , we have

⟨O1(x1) . . .On(xn)⟩ = eiα
∑
i(ri−si)⟨O1(x1) . . .On(xn)⟩.

Then correlators vanish unless they contain the same number of ϕ and ϕ fields.

Example. If the action and path integral measure are translationally invariant, and the operators

Oi depend on x only through their dependence on ϕ(x), then

⟨O1(x1) . . .On(xn)⟩ = ⟨O1(x1 − a) . . .On(xn − a)⟩

so correlators only depend on position differences. Similarly, Lorentz invariance ensures that

correlators can only depend on the invariant interval between the insertion points.

Note. Formally, the path integral measure picks up a Jacobian factor,

Dϕ′ = det

(
δϕ′(x)

δϕ(y)

)
Dϕ.
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In the case of the transformation described above, we have

δ

δϕ(y)
(ϕ(x) + ϵf(x)) = δ(x− y) + ϵ

∂f(ϕ(x))

∂ϕ(y)

and hence the Jacobian is

det

(
δϕ′(x)

δϕ(y)

)
= 1 + tr

(
ϵ
δf(ϕ(x))

δϕ(y)

)
.

Then classical symmetries linear in the fields should remain symmetries in the quantum theory,

because the argument of the determinant is field-independent, so the Jacobian is just a constant

that cancels out. However, this formal argument is deceptive, because we are working with an

undefined, “ideal” path integral measure. Instead we must check invariance directly.

These results roughly correspond to charge conservation, but we can derive more powerful identities

that correspond to current conservation, usually called the Ward–Takahashi identities. To warm

up, we derive the Schwinger–Dyson and Ward–Takahashi identities in standard notation.

• We consider the partition function of a generic theory Z[J ] and a transformation

ϕ(x)→ ϕ′(x) = ϕ(x) + ϵ∆ϕ(x),

not necessarily a symmetry, which leaves the measure invariant. Then infinitesimally

Z[J ] =

∫
Dϕ ei(S[ϕ]+ϕ·J) =

∫
Dϕ′ ei(S[ϕ′]+ϕ′·J) =

∫
Dϕ ei(S[ϕ]+ϕ·J)

(
1 + i

(
δS

δϕ
+ J

)
ϵ∆ϕ

)
which shows that ∫

Dϕ ei(S[ϕ]+ϕ·J)
∫
dy

(
δS

δϕ(y)
+ J(y)

)
∆ϕ(y) = 0.

• Next, we consider the specific transformation that shifts the field at one point,

∆ϕ(y) = δ(y − x)

which should leave a reasonable measure invariant; this shift-invariance was the motivation

behind our definition of Grassmann integration. Then we find∫
Dϕ

(
δS

δϕ(x)
+ J(x)

)
ei(S[ϕ]+J ·ϕ) = 0

which states that the classical equations of motion hold in vacuum expectation.

• To get relationships between correlation functions, we act by n field derivatives δ/iδJ(xi). This

yields one term with n factors of ϕ, and n terms with n − 1 factors of ϕ, where one of the

derivatives hits the J(x) factor. Setting J = 0 gives〈
δS

δϕ(x)

n∏
i=1

ϕ(xi)

〉
= i

n∑
i=1

〈
ϕ(x1) . . . ϕ̂(xi)δ(x− xi) . . . ϕ(xn)

〉
where the hat denotes a missing argument. This is the Schwinger–Dyson equation, as we derived

earlier. Letting X stand for all the fields, it can be concisely written as〈
δS

δϕ(x)
X

〉
= i

〈
δX

δϕ(x)

〉
.

Indeed, here X can be any function of the fields.
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• The classical equivalent of a time-ordered correlator is just a product of numbers,

⟨ϕ(x1) . . . ϕ(xn)⟩ → ϕ(x1) . . . ϕ(xn)

so in the classical limit, the left-hand side is zero as δS/δϕ(x) = 0. Thus the contact terms on

the right encode the difference between classical products and quantum correlation functions.

• As an example, consider a free scalar field. Then the Schwinger–Dyson equation for n = 1 reduces

to the statement that the Feynman propagator is a Green’s function for the Klein–Gordan

operator; the contact term supplies the required delta function. For an interacting theory, we

would instead find a relationship between the two-point correlator and higher correlators, which

we can use to organize a perturbative expansion.

• To derive the Ward–Takahashi identities, we do the same procedure, but for a classical global

symmetry associated with a field change δϕ. Here we have

∆ϕ(y) = δ(y − x)δϕ(x), δS

δϕ(x)
δϕ(x) = −∂µjµ(x).

Assuming this transformation leaves the measure invariant as well, we have∫
Dϕ ei(S[ϕ]+ϕ·J)(−∂µjµ(x) + J(x)δϕ(x)) = 0.

Taking derivatives as before gives the Ward–Takahashi identity

∂µ

〈
jµ(x)

n∏
i=1

ϕ(xi)

〉
= −i

n∑
i=1

〈
ϕ(x1) . . . ϕ̂(xi)δϕ(x)δ(x− xi) . . . ϕ(xn)

〉
where the derivative acts on x. In the case n = 0, we see the current jµ is conserved in

expectation, ∂µ⟨jµ⟩ = 0.

Note. It is conventional in theoretical physics to write the Schwinger–Dyson equation as, e.g.

δS

δϕ(x)
ϕ(y) = iδ(x− y)

and call this an “operator equation”, even though the two sides are not equal as operators on

the Hilbert space. The sociological reason behind this is that statements about operators are

difficult to make, since they are fraught with short-distance singularities. In the mathematical

physics community, these difficulties are addressed in a formalism which replaces operators with

operator-valued distributions. In the theoretical physics community, these issues are avoided by

simply redefining the phrase “operator equation” to mean something weaker. The operator equation

O1 = O2 means that

⟨O1X⟩ = ⟨O2X⟩

for any product of operators in X involving fields evaluated at times different from those of O1 and

O2. (If the times matched, we would pick up extra contact terms.)

Next, we rederive the Ward–Takahashi identity a bit more generally. We will work in curved

spacetime, and use symmetries of the path integral, which need not be classical symmetries.
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• We consider an infinitesimal symmetry of the path integral, ϕ → ϕ′ = ϕ + ϵδϕ, where ϵ is

constant. Then if we allow ϵ to vary in space, falling off at infinity to avoid boundary terms,

Z =

∫
Dϕ′ e−S[ϕ′] =

∫
Dϕ e−S[ϕ]

(
1−

∫
M
∗j ∧ dϵ

)
as we saw classically, but the variation of the measure may also contribute to j. Then

0 = −
∫
M
∗⟨j(x)⟩ ∧ dϵ =

∫
M
ϵ(x) d ∗ ⟨j(x)⟩

which implies that jµ(x) is a conserved current in expectation, ∂µ⟨jµ(x)⟩ = 0.

• Now, as before, we introduce local operators which transform as

O → O′ = O + ϵδO.

Accounting for both the change in the action and measure, and the operators, we find∫
M
ϵ(x) ∧ d ∗

〈
j(x)

n∏
i=1

Oi(xi)

〉
= −

n∑
i=1

〈
ϵ(xi)δOi(xi)

∏
j ̸=i
Oj(xj)

〉
.

Note that the exterior derivative d acts on x, and the correlators are time-ordered as usual.

• To finish up, we would like to strip off the parameter ϵ(x). Note that

ϵ(xi)δOi(x) =
∫
M
∗δ(x− xi)ϵ(x)δOi(xi) =

∫
M
δ(x− xi)ϵ(x)δOi(xi)

√
g dx.

Having expressed both sides as integrals, we simply have

d ∗

〈
j(x)

n∏
i=1

Oi(xi)

〉
= − ∗

n∑
i=1

δ(x− xi)

〈
δOi(xi)

∏
j ̸=i
Oj(xj)

〉
.

This is the Ward–Takahashi identity in a curved spacetime. In more pedestrian notation, in

flat spacetime, this reduces to

∂µ

〈
jµ(x)

n∏
i=1

Oi(xi)

〉
= −

n∑
i=1

δ(x− xi)

〈
δOi(xi)

∏
j ̸=i
Oj(xj)

〉
.

• Next, we integrate over x to investigate charge conservation. Consider integrating over some

region M ′ ⊂M with δM ′ = N1−N0, as we studied classically, where M ′ contains all the points

xi. Then

⟨Q[N1]
∏
i

Oi(xi)⟩ − ⟨Q[N0]
∏
i

Oi(xi)⟩ = −
n∑
i=1

⟨δOi(xi)
∏
j ̸=i
Oj(xj)⟩.

If M is compact without boundary and M ′ =M , the left-hand side vanishes, and

n∑
i=1

⟨δOi(xi)
∏
j ̸=i
Oj(xj)⟩ = 0

which is just the infinitesimal form of the global Ward–Takahashi identity under the symmetry

generated by Q.
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• If M has a boundary, we pick up extra terms. For example, we saw earlier that correlation

functions of ϕ vanish if they have nonzero U(1) charge. In this more general context, they

vanish unless their charge is equal to the difference of the initial and final U(1) charges.

• A more subtle example is when M is non-compact. In this case we must impose boundary

conditions at infinity, e.g. that the field approaches a constant that is a minimum of the effective

potential. This can result in spontaneous symmetry breaking.

Note. We may use the Ward–Takahashi identity to show that the conserved charge generates the

symmetry transformation. We integrate over a spacetime region bounded by t = t− and t = t+,

where the time interval contains x01 but none of the other x0i . Then

⟨Q(t+)O1(x1)Y ⟩ − ⟨Q(t−)O1(x1)Y ⟩ = −⟨δO1(x1)Y ⟩, Y =
n∏
i=2

Oi(xi).

Taking the limits t− → x01 and t+ → x01, the left-hand side becomes a commutator because the

correlators are time-ordered. Since Y is arbitrary, we conclude

[Q,O] = −δO

as an operator equation in the Hilbert space.

Finally, we relate quantum symmetries to symmetries of the 1PI effective action.

• Under the infinitesimal symmetry ϕ→ ϕ′ = ϕ+ ϵf(ϕ, ∂ϕ) we have

Z[J ] =
∫
Dϕ′ exp

(
−1

ℏ

(
S[ϕ′] +

∫
M
dx J(x)ϕ′(x)

))
=

∫
Dϕ exp

(
−1

ℏ

(
S[ϕ] +

∫
M
dx J(x)ϕ′(x)

))
= Z[J ]

(
1− ϵ

ℏ

∫
M
dx J(x)⟨f(ϕ, ∂ϕ)⟩J

)
where the expectation value is taken in the presence of the source J . Then we have∫

M
dx J(x)⟨f(ϕ, ∂ϕ)⟩J = 0.

• Next, we evaluate the current at

JΦ(y) = −
δΓ[Φ]

δΦ(y)
, ⟨ϕ⟩JΦ = Φ

to give ∫
M
dx

δΓ[Φ]

δΦ(x)
⟨f(ϕ, ∂ϕ)⟩JΦ = 0.

Therefore, the effective action is invariant under the transformation

Φ→ Φ′ = Φ+ ϵ⟨f(ϕ, ∂ϕ)⟩JΦ

which involves expectation values of the transformations, which can be rather complicated. This

result is called a Slavnov–Taylor identity.
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• When the symmetry is linear, i.e. f is linear in the fields, we have

⟨f(ϕ, ∂ϕ)⟩JΦ = f(Φ, ∂Φ)

so the effective action is invariant under the transformation

Φ→ Φ′ = Φ+ ϵf(Φ, ∂Φ).

Therefore, all symmetries of the classical action linear in the fields, under which the path

integral measure is invariant, become symmetries of the quantum 1PI action. For example, this

result ensures that a ϕ3 coupling cannot be generated in ϕ4 theory by Z2 symmetry, that O(n)

symmetry is preserved in the O(n) model, and that Lorentz invariance is preserved.
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9 Wilsonian Renormalization

9.1 Effective Actions

We now turn to the Wilsonian picture of quantum field theory.

Note. Consider a bead constrained to a steel hoop, in classical mechanics. The hoop itself has

degrees of freedom, but they cost a huge amount of energy to excite. Then minimizing the action

means that the hoop is in the ground state; plugging this back into the action gives a Lagrange

multiplier than constrains the location of the bead. This is inherently a low-energy description,

since the hoop can be excited by, e.g. smashing it with a sledgehammer.

In quantum field theory the situation is subtler, because we no longer have to sit at a minimum

of the action. Instead, quantum fluctuations appear which involve degrees of freedom at arbitrarily

high energies, e.g. in loop integrals. The content of renormalization is that it is still possible to

calculate at low energies without knowing what those high-energy degrees of freedom are.

• We consider a scalar field theory with action

SΛ0 [φ] =

∫
ddx

1

2
∂µφ∂µφ+

∑
i

Λd−di0 gi0Oi(x).

The subscript Λ0 refers to the UV cutoff, which must be included to define the path integral.

The Oi(x) are arbitrary local operators with dimensions di > 0, where the dimensions are found

with ordinary dimensional analysis, and the gi0 are defined so they are dimensionless.

• The partition function is

ZΛ0(gi0) =

∫
C∞(M)≤Λ0

Dφe−SΛ0
[φ]/ℏ

where C∞(M)≤Λ0 is the space of smooth functions on M with momenta bounded by Λ0. There

are also IR divergences, which we can regulate by putting the system in a box.

• Since C∞(M)≤Λ0 is a vector space, we may split the modes as

φ(x) = ϕ(x) + χ(x), ϕ ∈ C∞(M)≤Λ, χ ∈ C∞(M)(Λ,Λ0], Dφ = DϕDχ.

Integrating over the high-energy modes χ gives the effective action

Seff
Λ [ϕ] = −ℏ log

∫
C∞(M)(Λ,Λ0]

Dχ exp(−SΛ0 [ϕ+ χ]/ℏ).

We can iterate this process, yielding a semigroup called the renormalization group. Note that

the effective action W[J ] is just a Wilsonian effective action with Λ = 0.

• Setting ℏ = 1, we may separate out the kinetic terms of the action as

SΛ0 [ϕ+ χ] = S0[ϕ] + S0[χ] + Sint
Λ0

[ϕ, χ]

where there are no ϕχ mixing terms by momentum conservation. Therefore the interaction

terms, which include mass terms, obey

Sint
Λ [ϕ] = − log

∫
C∞(M)(Λ,Λ0]

Dχ exp(−S0[χ]− Sint
Λ0

[ϕ, χ])
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which yields effective couplings gi(Λ). Note that if we expand the right-hand side in powers of

Sint
Λ0

, the even-power terms contribute with an extra minus sign, and the logarithm ensures we

only sum over connected diagrams.

• By definition, we must have

ZΛ(gi(Λ)) = ZΛ0(gi0)

because both sides are the same integral; the left-hand side depends on Λ through both the

cutoff and the couplings. We can also include external currents to have partition functions Z[J ].
Then we have ZΛ[J ] = ZΛ0 [J ] as long as J has no Fourier components in (Λ,Λ0].

• Therefore, the total derivative with respect to log Λ is zero,

dZΛ(g)

d log Λ
=

(
∂

∂ log Λ

∣∣∣∣
gi

+
∂gi(Λ)

∂ log Λ

∂

∂gi

∣∣∣∣
Λ

)
ZΛ(g) = 0.

This is an example of an RG equation, which we’ll generically call a Callan-Symanzik equation.

• It will be useful to adjust our definitions to maintain canonical normalization of the kinetic

term. With a generic initial action, the effective action will have the form

Seff
Λ [ϕ] =

∫
ddx

ZΛ

2
∂µϕ∂µϕ+

∑
i

Λd−diZ
ni/2
Λ gi(Λ)Oi(x)

where ni is the number of factors of ϕ in Oi(x), and we have redefined gi(Λ) to pull out factors

of ZΛ. We then define the renormalized field

φ = Z
1/2
Λ ϕ

so that Seff
Λ [φ] has a canonically normalized kinetic term and dimensionless couplings gi(Λ).

• For convenience, we define the beta function

βi(gj(Λ)) =
∂gi

∂ log Λ
= (di − d)gi(Λ) + bqi (gj).

where the first term is just from the variation of the explicit power of Λ, and the second

represents the inherently quantum effect of integrating out high-energy modes. This term

generically depends on all of the couplings; for example a ϕ6 vertex can renormalize a ϕ4 vertex

by contracting two of the legs. It also depends on the field renormalization.

• We define the anomalous dimension γϕ of the field ϕ by

γϕ = −1

2

∂ logZΛ

∂ log Λ
.

This is essentially what the beta function for the kinetic term would be, if we weren’t fixing

its normalization, and it appears in the RG flow of correlation functions. More generally, for

multiple fields we would have a matrix of wavefunction renormalization factors, since the fields

may mix as modes are integrated out. In practice, this matrix can be computed perturbatively,

as we saw in the notes on Statistical Field Theory.

We now use our setup to compute correlation functions.

https://knzhou.github.io/notes/sft.pdf
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• We define the n-point correlator

⟨ϕ(x1) . . . ϕ(xn)⟩ =
1

Z

∫
C∞(M)≤Λ

Dϕ e−Seff
Λ ϕ(x1) . . . ϕn(xn).

In terms of the canonically normalized field, this is

⟨ϕ(x1) . . . ϕ(xn)⟩ = Z
−n/2
Λ ⟨φ(x1) . . . φ(xn)⟩ ≡ Z−n/2

Λ Γ
(n)
Λ (x1, . . . , xn; gi(Λ))

where all other factors cancel out due to division by Z.

• As long as the ϕ insertions involve modes with energy less than Λ, we can compute the ϕ

correlator in either the original theory or the effective theory. Therefore we have

Z
−n/2
sΛ Γ

(n)
sΛ (x1, . . . , xn; gi(sΛ)) = Z

−n/2
Λ Γ

(n)
Λ (x1, . . . , xn; gi(Λ))

for s < 1. Taking the differential gives the Callan-Symanzik equation

d

d log Λ
Γ
(n)
Λ (x1, . . . , xn; gi(Λ)) =

(
∂

∂ log Λ
+ βi

∂

∂gi
+ nγϕ

)
Γ
(n)
Λ (x1, . . . , xn; gi(Λ)) = 0.

• It is also useful to consider an “autonomous” RG transformation, where the cutoff Λ remains

the same. To do this, we perform the change of variables

x′ = sx, ϕ′(x′) = s(2−d)/2ϕ(x)

where the new field ϕ is chosen so that the kinetic term is invariant,∫
ddx (∂ϕ(x))2 =

∫
ddx (∂ϕ′(x))2 =

∫
ddx′ (∂′ϕ′(x′))2.

If ϕ(x) has UV cutoff k = sΛ, then ϕ′(x′) has UV cutoff k′ = Λ where k′ is formally the

Fourier conjugate to x′. Note that all of the dimensionless couplings are left invariant by

this transformation. (Equivalently, everything dimensionful transforms with its engineering

dimension.)

• At this point, the physical UV cutoff scale has not actually been changed; we have merely

performed a change of coordinates. We next perform an active rescaling of the metric so that

physical distances shrink by a factor of s. Then the new primed metric coordinates match the

old unprimed metric coordinates.

• The composition of these steps (integrating out, changing to primed coordinates, actively rescal-

ing the metric, renaming primed coordinates to unprimed) leaves Λ and the metric invariant,

but changes the dimensionless couplings from gi(Λ) to gi(sΛ). It is hence an autonomous RG

transformation.

• It can be a bit puzzling to physically interpret the rescaling. In the nonrelativistic context, one

might imagine pointing a camera at a physical sample. Then scaling the metric corresponds to

“zooming out” the camera. In high energy physics, we would not include the scaling at all: we

should not physically rescale the UV cutoff because it represents the scale of new physics. The

calculational issues that would arise in the absence of rescaling are moot, because we do not

use Wilsonian RG in practice for high energy physics anyway; we instead use “continuum RG”.

However, for the remainder of this section we will include the rescaling.
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• Integrating out by a factor of s and then rescaling by a factor of s gives

Γ
(n)
Λ (x1, . . . , xn; gi(Λ)) =

(
ZΛ

ZsΛ

)n/2
Γ
(n)
sΛ (x1, . . . , xn; gi(sΛ))

=

(
s2−d

ZΛ

ZsΛ

)n/2
Γ
(n)
Λ (sx1, . . . , sxn; gi(sΛ)).

Finally, replacing xi with xi/s gives

Γ
(n)
Λ (x1/s, . . . , xn/s; gi(Λ)) =

(
s2−d

ZΛ

ZsΛ

)n/2
Γ
(n)
Λ (x1, . . . , xn; gi(sΛ)).

For s→ 0, this says we can study the long-distance behavior of our theory by consider correlation

functions at fixed separation, but using the couplings in the low-energy effective theory, which

is intuitive.

• Taking the differential, every factor of the field scales as if the field had mass dimension

∆ϕ = (d− 2)/2 + γϕ

so the anomalous dimension is the difference between the scaling dimension and the naive

classical dimension. Note that we pick up a minus sign here since mass dimension is inverse to

length dimension.

9.2 RG Flow

Next, we consider the general picture of RG flow.

• A critical point is a point where all of the beta functions vanish, so the couplings are scale

independent. A simple example is the Gaussian critical point, where g∗i = 0. At a nontrivial

fixed point, quantum effects exactly cancel the classical scaling; this usually requires strong

coupling, since the classical terms are always O(1).

• Now, the anomalous dimension γϕ is only a function of the couplings, so at a critical point it is

scale-invariant as well, γϕ(g
∗
i ) = γ∗ϕ. Then we have

∂Γ
(2)
Λ (x, y)

∂ log Λ
= −2γ∗ϕΓ

(2)
Λ (x, y)

so that Γ(2) ∝ Λ−2γ∗ϕ . By Lorentz invariance, correlation functions only depend on |x− y|. By
classical dimensional analysis,

⟨ϕ(x)ϕ(y)⟩ = Λd−2G(Λ|x− y|, g∗i ).

Combining these results together, we have

Γ
(2)
Λ (x, y; g∗i ) =

Λd−2

Λ2∆ϕ

c(g∗i )

|x− y|2∆ϕ
.

This power-law behavior of correlation functions is typical at critical points; this is just a special

case of our more general result above.
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• Performing an RG step at a critical point leaves the partition function invariant, since it leaves

the couplings invariant. On the other hand, an RG step is composed of (1) integrating out

degrees of freedom, (2) changing to primed coordinates, and (3) rescaling the metric. The first

two never change the partition function by definition. Hence at a critical point, the partition

function is invariant under rescaling the metric alone, gµν → e2Ωgµν . Now we have

0 = δgµν(x)
δ logZ
δgµν(x)

= −δgµν(x)
〈

δS

δgµν(x)

〉
∝ δgµν(x)⟨Tµν(x)⟩

so at an RG critical point, the spacetime integral of ⟨Tµµ ⟩ is zero.

• All known examples of Lorentz invariant, unitary QFTs that are scale invariant are actually

invariant under conformal transformations gµν → e2Ω(x)gµν . It is believed this is true in general;

it has been proven in d = 2 and is an open question in high dimensions. Assuming this holds,

at RG critical points ⟨Tµµ (x)⟩ = 0.

We now linearize about a critical point.

• Near a critical point, at g∗i + δgi, the beta functions are

βi = Bijδgj +O(δg2).

Let σi be an eigenvector of Bij and let its eigenvalue be ∆i − d, so the coupling scales as

σi(Λ) =

(
Λ

Λ0

)∆i−d
σi(Λ0).

The definition of ∆i is slightly different from that of ∆ϕ because we are taking the couplings

to be dimensionless but the field to be dimensionful.

• Classically, we would have ∆i = di, but more generally σi has an anomalous dimension

γi = ∆i − di

which is defined analogously to the anomalous dimension for ϕ. For the Gaussian fixed point,

all anomalous dimensions are zero, as we’ll show below.

• It is a bit of an approximation to assign σi a classical dimension, because in general the σi will

be complicated linear combinations of all the operators. However, when the corrections are

‘weak’ the off-diagonal elements of Bij are small compared to the classical diagonal terms, and

the eigenvectors are close to the classical ones.

• Now imagine starting near a critical point and turning on the coupling to any operator with

∆i > d. Then the coupling becomes smaller as the scale Λ is lowered, so we say the corresponding

operator is irrelevant, as it does not affect long-distance physics; we just flow back to the critical

point.

• More generally, the critical surface C is the set of points that flow back to the critical point

under RG flow; then the irrelevant operators provide coordinates for C in the neighborhood of

the critical point.
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• Couplings with ∆i < d instead grow as the scale is lowered, and are called relevant; RG

flow instead drives us away from the critical surface. This flow may eventually terminate at a

different critical point, or in exotic cases perform a limit cycle. Since each new field or derivative

increases ∆i classically, there are finitely many relevant operators for fixed d.

• In the classical approximation, and the convention where couplings have dimensions, irrelevant

operators have couplings with negative mass dimension, and relevant operators have couplings

with positive mass dimension. Then it is clear that a mass term is relevant.

• A marginal coupling is an RG eigenvector with ∆i = d, or equivalently about the Gaussian

fixed point, di = d. In this case, we need to expand to second order about the fixed point,

yielding a weak, logarithmic dependence on Λ. Depending on the sign of the next term, the

coupling is marginally irrelevant or marginally relevant. Note that the kinetic term is exactly

marginal by definition.

Note. Consider calculating the beta function to first order about the Gaussian fixed point. This is

equivalent to considering diagrams with only one vertex, so renormalization only goes one way. For

example, ϕ6 can renormalize ϕ4 but not vice versa. The matrix Bij is thus upper-triangular with

the classical values on the diagonal, so all anomalous dimensions are zero. The only effect is that

the eigenvectors are slightly tilted.

We must go to second order to figure out what classically marginal operators do. Note that in

most practical computations in particle physics, we are implicitly expanding about the Gaussian

fixed point. Also note that while the dimensionless couplings change, the dimensionful couplings

are approximately constant.

Note. Given a term λiOi in a weakly coupled field theory, its contribution to the action for a field

configuration of energy E ≪ Λ is λiE
∆i−d by dimensional analysis. We don’t use Λ here because

the field configuration can’t know what Λ is. To show this more quantitatively, consider a field

configuration with lengthscale L ∼ 1/k and dimensionless amplitude ϕ̂ = ϕ/k. Then∫
dx (∂ϕ)2 ∼ ϕ̂2,

∫
dxm2ϕ2 ∼ m2

k2
ϕ̂2,

∫
dx (∂ϕ)pϕq ∼ k2p+q−4ϕ̂p+q.

Assuming the kinetic term dominates, when we perform the path integral, configurations with ϕ̂ ∼ 1

dominate. Then the contribution of a term depends on k just as our dimensional analysis suggests.

Then a dimensionless coupling gi has effect

∆Si ∼ gi
(
E

Λ

)∆i−d

where the kinetic term has ∆S ∼ 1. This measures the effect of the term on observable quantities

derived from the action, such as cross sections. The tree-level RG evolution of gi simply states

that ∆Si is independent of Λ. Because loops are sensitive to Λ, anomalous dimensions appear at

loop-level.

Relevant terms such as masses are more important at E ≪ Λ, while all irrelevant terms become

important as E approaches Λ. For marginal terms, which are the majority of couplings we consider,

the value of gi itself is a good estimate of its effect, so perturbation theory really does break down

when gi is O(1).
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Example. For a scalar field d = 4 with Z2 symmetry near the gaussian fixed point, we have

relevant: 1, ϕ2, marginal: ϕ4, (∂ϕ)2

and everything else is irrelevant. The physical mass is independent of the cutoff, as one would expect.

In d = 3, ϕ4 becomes relevant while ϕ6 becomes marginal. In d = 2, the field is dimensionless, so

relevant: 1, ϕ2, ϕ4, . . . , marginal: (∂ϕ)2, ϕ2(∂ϕ)2, . . . .

That is, we get an infinite series of relevant terms, which is quite rare.

Note. The origin of universality. The theory space is generically infinite-dimensional. Now consider

the finite-dimensional set of theories obtained by starting from an RG fixed point, turning on a

relevant operator, and performing RG flow, creating a ‘renormalized trajectory’. By the discussion

above, every initial condition will approach a renormalized trajectory, so theories in the IR are

described by a finite number of parameters.

If we continue RG flowing into the deep IR, we often end up at a trivial fixed point, like the

“infinite temperature” fixed point in statistical field theory, since we integrate out all massive particles.

Alternatively, we may end up at a nontrivial fixed point/CFT, such as the Wilson–Fisher fixed

point, where the particles are massless; renormalization exactly cancels the tree-level mass.

We now consider a converse question, more relevant to particle physics: is it possible to fix a

low-energy theory at scale Λ while sending the cutoff Λ0 to infinity?

• The simplest case is when SΛ0 is on the critical surface C. Then taking Λ0 → ∞ gives Seff
Λ

exactly at the critical point. Since C has finite codimension, we have to tune a finite number of

parameters to do this, e.g. the temperature in a statistical field theory.

• Theories such as QCD and Yang–Mills are not CFTs, but instead have relevant and marginally

relevant terms in their actions. In this case, to fix the low-energy theory we must modify the

high-energy theory as Λ0 varies, which is done perturbatively by adding counterterms. For

example, we could parametrize the high-energy theory as

SΛ0 [φ] = Seff
Λ [φ] + ℏSCT[φ,Λ0]

so that the counterterms vanish when Λ = Λ0. The counterterms are tuned so that the limit

e−S
eff
Λ [ϕ]/ℏ = lim

Λ0→∞

∫
C∞(M)(Λ,Λ0]

Dχ exp

(
−
Seff
Λ [ϕ+ χ]

ℏ
− SCT[ϕ+ χ,Λ0]

)
exists. We separate out the counterterms explicitly to organize perturbation theory. In pertur-

bation theory, we work order by order in ℏ, canceling the (regularized) divergences produced by

the bare action Seff
Λ by counterterms. The extra factor of ℏ is because the one-loop divergences

are canceled by tree-level counterterm diagrams, and so on.

• We need our low-energy theory to lie on a renormalized trajectory. Then the counterterms are

chosen so that, as Λ0 is increased, SΛ0 gets closer and closer to the critical point along the

renormalized trajectory. Then there’s one counterterm for each relevant operator, as we’ve seen

perturbatively, and the continuum limit is the critical point.
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• The existence of relevant operators leads to a fine-tuning problem. Suppose we have a very high,

fixed cutoff Λ0 = ΛPlanck. Then if the dimensionless coupling at scale Λ is not extremely large,

the dimensionless coupling at scale Λ0 must be extremely small. This is ‘unnatural’, because we

expect a fundamental theory, where the couplings can be calculated, to have O(1) dimensionless

couplings. Note there’s no problem with having very large or very small dimensionless couplings

in an effective theory.

• Marginally relevant operators aren’t nearly as problematic as log(ΛPlanck/1TeV) ≈ 40 isn’t

huge, where 1TeV is about the minimum possible cutoff Λ for the Standard Model.

• In the case of a mass term, the only way to avoid unnaturalness would be to have m ∼ Λ0,

i.e. we need particles so heavy we can’t even produce them at Λ in the first place.

• More generally, we could include finite coefficients for irrelevant operators in SΛ0 . This affects the

required tuning for the relevant operators, since the two will renormalize each other. However,

the effects of the irrelevant operators will disappear exactly in the limit Λ0 →∞. The point is

that we only need one fine tuning for each relevant parameter.

• Note that generically, we should always think of every operator as being present. Even the

points on a renormalized trajectory don’t only have the relevant couplings turned on; instead

these relevant couplings immediately turn on all others, so in general every coupling is nonzero,

though the irrelevant operators remain small because they decay away as they’re produced.

• As a result, the true coefficient of an irrelevant operator in the IR isn’t nearly as small as naive

scaling suggests. The real meaning of “irrelevant” is that the value of the coupling in the UV is

irrelevant to the value in the IR, since the quick initial decay washes it out; irrelevant operators

are still present in Seff
Λ even when Λ0 →∞, but with small coefficients.

Now suppose that our low-energy effective theory contains an irrelevant operator with a large

coefficient, which is often required to match experimental results.

• In this case, there is no hope of our theory lying on a renormalized trajectory. Since there are

infinitely many irrelevant operators, which generically all renormalize each other, we now need

an infinite number of counterterms and an infinite number of renormalization conditions.

• Moreover, the counterterm coefficients apparently diverge in the limit Λ0 →∞, so we cannot

take the continuum limit. Instead, we say the theory comes with a cutoff Λcutoff.

• Specifically, Λcutoff is the scale where the dimensionless irrelevant couplings are O(1). Now, the

theory is perfectly predictive at energies E ≪ Λcutoff, because the effects of more irrelevant

terms are suppressed by more powers of E/Λcutoff, so we can truncate the Lagrangian after a

few terms. On the other hand, perturbation theory breaks down as E approaches Λcutoff. All of

the terms become important at once, and we cannot determine all of the couplings with finite

data, so the theory is not predictive.

• Generally, what must happen is that new physics takes over. This means that we switch to a

new set of degrees of freedom (i.e. new fields, or even non-fields, such as in the Ising model)

where the theory is either renormalizable or effective with a higher cutoff, at which point we

can truncate the Lagrangian and do calculations again.
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• Another possibility is a Landau pole, where a coupling diverges at finite energy, such as the

marginally irrelevant coupling in QED. In practice this just means that new physics must take

over before then. If it doesn’t, then the theory is ‘quantum trivial’, meaning that the only way

for it to have a continuum limit is for the coupling to be exactly zero.

• The usual exposition of the Landau pole uses a perturbatively computed beta function. This

isn’t valid since perturbation theory breaks down; instead we must establish a Landau pole

nonperturbatively, through lattice simulations. Simulations of ϕ4 theory indicate a Landau

pole indeed exists, so the theory is quantum trivial. On the other hand, simulations of QED

indicate that we don’t hit the Landau pole; instead chiral symmetry breaking occurs.

• The Standard Model is also suspected to be quantum trivial, through the marginally irrelevant

quartic Higgs interaction. Of course, this isn’t the main reason we suspect the Standard Model

to be incomplete, or even a minor reason. A more compelling reason is the hierarchy problem:

the Higgs mass is relevant, so as the usual logic goes, the Standard Model must be extended at

the TeV scale to preserve naturalness. A critical evaluation of this argument is given here.

• A final possibility is that we simply flow to some unknown UV fixed point. This is the hypothesis

of the asymptotically safe approach to quantum gravity. In this case, new physics need not

take over, and our description can be valid up to arbitrarily high energies.

• All of these issues also occur in reverse for relevant couplings, such as in QCD, where the

coupling would naively hit a Landau pole at ΛQCD ∼ 1GeV. In this case, confinement and

chiral symmetry breaking occur; we must describe the dynamics in terms of hadrons rather

than quarks and gluons.

Note. Relating our results to the old picture of perturbative renormalization.

• In the old picture, the counterterms are divergent order by order in ℏ. Here, they are perfectly

finite. This is simply because limits don’t commute with sums; for instance,

lim
x→∞

e−x = 0

but all the individual terms in the Taylor series for e−x diverge as x→∞. If we always maintain

a finite cutoff and do the path integral exactly, there are never any divergences.

• Before, we thought of the regularization scale Λ0 as an unphysical scale that had to be sent to

infinity at the end of the calculation. Now, we think of it as a physical cutoff, beyond which

might lie new physics. Taking Λ0 to infinity is not essential, and not physical.

• Before, in renormalized perturbation theory, we thought of a bare Lagrangian as composed of

a renormalized Lagrangian plus counterterms. Now, we identify the bare Lagrangian with the

fundamental theory, at scale Λ0, and the renormalized Lagrangian with the effective theory, at

scale Λ.

• Before, we thought of irrelevant (nonrenormalizable) operators as dangerous and relevant (su-

perrenormalizable) operators as benign. Now, we see that turning on an irrelevant operator

changes nothing in the IR, while relevant operators present fine-tuning problems.

https://knzhou.github.io/writing/Relaxation.pdf
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• Before, we identified a renormalizable theory as one that required only a finite number of

counterterms to absorb the infinities. Now, we think of a renormalizable theory as one that

admits a sensible continuum limit.

Note. Conventions differ between SFT and high energy QFT, for physical reasons. In SFT, we

typically know the UV theory and want to find the IR behavior, so we keep Λ the same by rescaling;

the only thing that matters about the atomic cutoff is that it’s very far away. In high energy physics,

we know the IR behavior and are trying to find the UV behavior, so we keep the variation of Λ

explicit; this is what we’ve done above.

There is also another convention, which is whether to work with dimensionless couplings by pulling

out factors of Λ, or to work with dimensionful couplings. For concreteness, consider L ⊃ m2ϕ2.

In a free theory, integrating out UV degrees of freedom keeps the dimensionful coupling m2 the

same. However, one could also consider the dimensionless coupling g = m2/Λ2 (common in QFT),

or stick with dimensionful couplings but keep Λ the same by rescaling (common in SFT). These

are essentially the same idea phrased in different ways. In both cases, the coupling will grow.

Philosophically, in SFT, the slogan is to “find something relevant”. This is because we’re

interested in macroscopic behavior, and the atomic scale is so small that all effects of irrelevant

operators are completely undetectable. The fact that relevant operators require fine tuning is

acceptable because there is fine tuning in the lab, e.g. by tuning the temperature to a phase

transition. In QFT, we already know the low-energy physics, and irrelevant operators are useful

as a window into higher-energy physics. Relevant operators are a larger problem because there is

nothing outside the universe that does the tuning.

Note. Before, we’ve argued that contributions to the action from various operators go as gi(E/Λ)
∆i−d.

However, naive power counting can break down because of loops. For instance, in scalar field theory

with a hard cutoff, a ϕ6 loop renormalizes the ϕ4 coupling at one-loop as

δg4 ∼
g6
Λ2

∫ Λ d̄k

k2 −m2
∼ g6

which is too large. This occurs because only the external legs are fixed at energy E, while particles

in the loop can go up to Λ. But if we regulate with a mass-independent scheme such as DR, we get

a result compatible with power counting,

δg4 ∼
g6µ

2ϵ

Λ2

∫
d̄4−ϵk

k2 −m2
∼ g6

ϵ

m2

Λ2
+ g6

m2

Λ2
log

m2

µ2
= O(m2/Λ2).

That is, DR removes the Λ2 power divergence entirely; intuitively DR “only sees logarithmic

divergences”, which show up as 1/ϵ terms that are subtracted out. Thus, if we don’t use something

like DR, it is difficult to self-consistently truncate the Lagrangian in an EFT. It is still possible, but

one has to carefully keep track of counterterms, which can remove the contributions that violate

naive power counting. (In this sense, it’s the same as using a regulator that violates a symmetry:

it’s perfectly legal, but requires counterterms to be added with care.) For this reason, MS is used

almost universally in practical EFT calculations.

Note. It is tempting to say that if a dimension-6 operator is measured with coefficient 1/Λ2, then

new physics appears at scale Λ. This is deceptive, because operators come with UV couplings.

What we really can conclude is that if nothing UV completes the theory, then the theory becomes

strongly coupled at scale Λ. It is perfectly possible for new particles to appear at a lower scale.

Indeed, there are many very small couplings in the SM, such as the electron Yukawa coupling, to

which this reasoning applies.
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9.3 Calculating RG Evolution

Next, we present an explicit, though somewhat impractical method for computing RG evolution.

• Concretely, we would like to evaluate

Sint
Λ [ϕ] = − log

∫
C∞(M)(Λ,Λ0]

Dχ exp(−S0[χ]− Sint
Λ0

[ϕ+ χ])

but this is hard in general, as the right-hand side is a general interacting path integral. The

general approach is to expand e
−Sint

Λ0
[ϕ+χ]

as a series in χ,

e
−Sint

Λ0
[ϕ+χ]

= e
−Sint

Λ0
[ϕ]

+

∫
dxχ(x)

δ

δϕ(x)
e
−Sint

Λ0
[ϕ]

+
1

2

∫
dxdy χ(x)χ(y)

δ

δϕ(x)

δ

δϕ(y)
e
−Sint

Λ0
[ϕ]

+ . . . .

then perform the χ path integral. Note that we’re Taylor expanding in position space, since

eventually we want an action in position space.

• When we perform the χ path integral, we get factors of the position space propagator,

DΛ(x, y) =

∫
Λ<|p|≤Λ0

d̄p
eip(x−y)

p2 +m2
.

Now the trick is to consider an infinitesimal RG step, Λ = Λ0 − δΛ, so that

DΛ(x, y) =
1

(2π)d
Λd−1δΛ

Λ2 +m2

∫
Sd−1

dΩ eiΛp̂(x−y).

This is an enormous improvement, because we only need keep track of terms linear in δΛ, which

means we only want diagrams with a single χ propagator.

• Therefore, only the zeroth and second order terms in the Taylor expansion matter, and an

explicit calculation yields Polchinski’s equation,

−
∂Sint

Λ [ϕ]

∂ log Λ
=

∫
dxdy

δSint
Λ

δϕ(x)
DΛ(x, y)

δSint
Λ

δϕ(y)
−DΛ(x, y)

δ2Sint
Λ

δϕ(x)δϕ(y)
.

More concretely, let gn be the coefficient of ϕn. Then schematically we have

which corresponds with the intuition of zooming out, shrinking χ propagators to points.

• Note that since the action is local, we must have x = y in the second term to get a nonzero result.

On the other hand, we can have x ≠ y in the first term, leading to non-local contributions,

as the χ propagator falls off as e−
√
Λ2+m2r/rd−3. As usual, we simply Taylor expand to get a

series of local terms with derivatives.
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• Note that the variation of the action is

δS

δϕ(x)
≡ ∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

+ . . .

so Polchinski’s equation indeed accounts for the derivative terms.

• It’s convenient to rewrite Polchinski’s equation as

∂

∂t
e−S

int[ϕ] = −
∫
dxdy DΛ(x, y)

δ2

δϕ(x)δϕ(y)
e−S

int[ϕ], t = logΛ

which has the general form of a heat equation, with the ‘Laplacian’

∆ =

∫
dxdy DΛ(x, y)

δ2

δϕ(x)δϕ(y)
.

The eigenfunctions of the Laplacian grow or decay exponentially under RG flow; they are simply

the RG eigenvectors we’ve seen earlier.

Next, we use the local potential approximation to explicitly compute RG evolution.

• We work in d > 2 near the Gaussian fixed point. Then besides the kinetic term, all operators

involving derivatives are irrelevant, so we restrict attention to actions of the form

Seff
Λ [ϕ] =

∫
ddx

1

2
∂µϕ∂µϕ+ V (ϕ), V (ϕ) =

∑
k

Λd−k(d−2) g2k
(2k)!

ϕ2k

where for simplicity we’ve imposed Z2 symmetry. Neglecting the derivative interactions is called

the local potential approximation, and works for slowly varying fields.

• Next, we set up our approximation somewhat differently. Before, we expanded e−S
int
Λ [ϕ+χ],

yielding a Gaussian path integral for χ. Now we instead write

Seff
Λ [ϕ+ χ] = Seff

Λ +

∫
dx

1

2
(∂χ)2 +

1

2
χ2V ′′(ϕ) + . . .

so that we maintain a nontrivial action for χ.

• We now consider an infinitesimal RG step δΛ and work in momentum space. Then the

momentum-space propagators are not small, but every loop picks up a factor of δΛ, so we

only consider one-loop graphs. Note that there are no tree level graphs at all since the action

is even in χ, though we could also relax this assumption.

• We claim that one-loop graphs can only contain the χ2 vertex. To prove this rigorously, let

there be vi copies of the χ
i vertex. Then Euler’s identity gives

e−
∑
i

vi = ℓ− 1

where ℓ is the number of loops. Since there are no external lines,

2e =
∑
i

ivi, ℓ = 1 +
∑
i

i− 2

2
vi.

Therefore only v2 can be nonzero, and we recover a quadratic action for χ, which is tractable.
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• The types of diagrams that contribute are shown below.

Now, suppressing the position-dependence of ϕ, the action for χ becomes

S(2)[χ, ϕ] =

∫
Λ−δΛ<|p|≤Λ

d̄p χ̃(p)

(
1

2
p2 +

1

2
V ′′(ϕ)

)
χ̃(−p)

=
1

2

Λd−1δΛ

(2π)d
(Λ2 + V ′′(ϕ))

∫
Sd−1

dΩ χ̃(Λp̂)χ̃(−Λp̂).

• Performing the Gaussian integration, we find

e−δΛS
eff[ϕ] =

∫
Dχ e−S(2)[χ,ϕ] = C

(
π

Λ2 + V ′′(ϕ)

)N/2
where N is the number of momentum modes. To regularize this, we put the theory in a box of

side length L and use periodic boundary conditions, giving

N =
vol(Sd−1)

(2π)d
Λd−1δΛLd.

We can thus rewrite our result as

δΛS
eff[ϕ] = aΛd−1δΛ

∫
dx log(Λ2 + V ′′(ϕ(x)))

where we restored the position-dependence of ϕ, turning a factor of Ld into an integral over x.

• Finally, expanding the logarithm gives an infinite series of corrections,

dg2k
d log Λ

= (k(d− 2)− 2)g2k − aΛk(d−2) ∂
2k

∂ϕ2k
log(Λ2 + V ′′(ϕ))

∣∣∣∣
ϕ=0

where the first term is from the classical scaling. For example, the first two terms are

dg2
d log Λ

= −2g2 −
ag4

1 + g2
,

dg4
d log Λ

= (d− 4)g4 −
ag6
a+ g2

+
3ag24

(1 + g2)2
.

For example, we see that in d = 4, g4 is marginally irrelevant.

• Looking back, we’ve traded one kind of complexity for another. In the local potential approx-

imation, the beta functions are exact at one loop, but can contain arbitrarily high powers of

the couplings. In Polchinski’s equation, the beta functions are also exact at one loop, and

are linear in the couplings, but we need to account for all derivative terms. One can think of

the local potential approximation as solving for the derivative term couplings in terms of the

non-derivative ones, and plugging them back into the beta functions to eliminate them.
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Using our result, we can explicitly look at some simple RG flows.

• First, we consider the Gaussian fixed point. Linearizing the beta function about it gives

β2k = (k(d− 2)− d)g2k − ag2k+2.

Thus as anticipated, there are no anomalous dimensions since the matrix B in βi = Bijgj is

upper-triangular, though the eigenvectors are mixed a bit.

• In d = 4, we see that the mass term is relevant, while ϕ6 and higher couplings are irrelevant,

as expected. To understand g4, we expand to quadratic order for

β4 =
3

16π2
g24

so that the quartic interaction is marginally irrelevant; explicitly,

g4(Λ) =
16π2

3 log(Λ0/Λ)

where Λ0 is an integration constant, we need Λ0 > Λ for g4 > 0, ensuring stability, and the

theory has a Landau pole at Λ0 = Λ.

• The fact that a dimensionless coupling implies an energy scale is known as dimensional trans-

mutation. We’ve already seen this for irrelevant couplings, which give a natural cutoff for the

effective field theory; marginal couplings have the scale appear in a logarithm. There’s nothing

puzzling about this, since all theories come with a natural energy scale, the cutoff Λ.

• We can find another critical point in d = 4− ϵ, the Wilson–Fisher fixed point, where

g2 = −
1

6
ϵ+O(ϵ2), g4 =

1

3a
ϵ+O(ϵ2), g2k = O(ϵ2) for k > 2.

Staying near d = 4, where g4 is marginal, allows us to find a nontrivial fixed point without

requiring strong coupling.

• Linearizing about the fixed point gives

d

d log Λ

(
δg2
δg4

)
=

(
ϵ/3− 2 −a(1 + ϵ/6)

0 ϵ

)(
δg2
δg4

)
which has eigenvalues ϵ/3− 2 and ϵ, so only one direction is relevant. Explicitly, we have

a =
1

(4π)d/2
1

Γ(d/2)

∣∣∣∣
d=4−ϵ

=
1

16π2
+

ϵ

32π2
(1− γ + log 4π) +O(ϵ2).

More sophisticated techniques can be used to show that the Wilson–Fisher fixed point indeed

exists in d = 3 and d = 2.

• The RG flows in three dimensions are shown below.
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Theories in region I flow to an interacting massive theory in the IR, and have the Gaussian

theory as the continuum limit. Theories in region II are similar, but exhibit spontaneous

symmetry breaking since g2 < 0. Theories on the red line have the Wilson–Fisher fixed point

as their continuum limit, while all others have no continuum limit at all.

• The situation in two dimensions in more complicated, as all of the operators ϕ2n are marginal.

It turns out there are infinitely many fixed points, where the nth fixed point can be reached from

the Gaussian fixed point by turning on ϕ2(n+1). The nth fixed point has n relevant operators,

which are essentially ϕ2, ϕ4, . . . , ϕ2n. This result can be derived by conformal field theory.

9.4 Effective Field Theories

In this section, we give an array of examples of effective field theories, illustrating the general way

of thinking about theories in the Wilsonian picture.

Example. In some cases, we can pick up extra symmetries just from the requirement of renormaliz-

ability; such symmetries are called “accidental” or “emergent”. A familiar example is the emergence

of rotational symmetry for a lattice spin system. As another example, consider electromagnetism

with several fermions, where the most general renormalizable Lagrangian is

L =
1

4e2
Z3F

µνFµν + (ZL)ijψLj /DψLi + (ZR)ijψRj /DψRi +MijψLiψRj +M ijψRiψLj .

Here, ZL/R/3 are general wavefunction renormalizations. To have a real Lagrangian, we require

ZL/R to be Hermitian. Note that we have no Majorana masses since the fields are charged.

We can dramatically simplify the Lagrangian by defining

ψL = SLψ
′
L, ψR = SRψ

′
R

so the Lagrangian for the primed fields has

Z ′
L = S†

LZLSL, Z ′
R = S†

RZRSR, M ′ = S†
LMSR.

Then it is possible to choose SL so that Z ′
L is the identity, and similarly choose SR so that Z ′

R is

the identity, giving the usual kinetic terms. We can still redefine SL/R by unitaries, which we can

use to make M diagonal. Dropping the primes,

L =
1

4e2
Z3F

µνFµν +
∑
i

ψi( /D +mi)ψi.
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Then the number of ψi particles is conserved, but this is an accidental symmetry; it could be broken

by a nonrenormalizable term such as Yijklψiγ
µψjψkγµψℓ. In the Standard Model, this is the origin

of baryon and lepton number symmetry.

Note. More generally, it is believed that there are no continuous global symmetries in a quantum

theory of gravity. Then from this perspective, all continuous symmetries we’ve found in particle

physics are accidental! One piece of evidence in favor of this picture is Hawking radiation. The

formation and evaporation of a black hole does not conserve baryon or lepton number, but it does

conserve gauge quantum numbers, such as electric charge, since they may be measured by flux

integrals at infinity. In string theory, it is a folk theorem that all exact symmetries, even discrete

symmetries, are gauge symmetries.

Example. The Schrodinger field has kinetic term ∇2ψ/2m. Since the coefficient 1/2m has negative

mass dimension, the operator is irrelevant. Hence upon renormalization, the Hamiltonian should

have all terms allowed by symmetry, giving

H ∼ p2

2m

(
1 + a1

p2

m2
+ a2

p4

m4
+ . . .

)
+ V (r)

where the factors of m are put in by dimensional analysis. Note that here we are thinking of the

renormalized theory which has no cutoff, Λ→∞, so the only mass scale is m.

This theory is perfectly predictive at energies where p2 ≪ m2, despite the infinitely many

unknown parameters ai. But when p
2 ∼ m2, perturbation theory breaks down and all of the ai are

important. The Schrodinger field can be UV-completed to either the Klein–Gordan or Dirac field,

both of which are renormalizable.

Example. The classic example of an effective field theory is the 4-Fermi theory for β decay,

L ∼ GFψpψnψeψν

where we suppress gamma matrices and spinor indices. Similar operators can be used to describe

the decay of the muon; this is used to determine

GF =

(
1

292.9GeV

)2

which indicates the energy where the theory breaks down; higher-dimension terms contribute in

a series in p2GF . The specific values of these terms may be found by UV completing the 4-Fermi

theory to the electroweak theory.

Sticking with only the dimension 6 term, the 4-Fermi theory is quite predictive. It can compute

relations between decay rates, and angular distributions of decays. One can also include loops to

get genuinely quantum predictions, which appear in cross sections as logarithmic dependence on

the external momenta.

Example. Light scattering; or, why the sky is blue. We consider Rayleigh scattering of visible

light off a nitrogen molecule, where the wavelength of the light is much larger than the size of the

atom. We assume the photon energy is too weak to excite the molecule, so we can ignore its internal

degrees of freedom and model it as a complex scalar field ϕ. The molecule remains at rest since it

is heavy, so we break Lorentz invariance, allowing us to use the four-velocity uµ = (1, 0, 0, 0) in our
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Lagrangian. Finally, the nitrogen molecule is electrically neutral, so the minimal coupling vanishes,

Dµϕ = ∂µϕ.

Given this setup, the kinetic term is π†ivµ∂µϕ, which shows that ϕ has mass dimension 3/2.

Here, we can use relativistic dimensional analysis because the photon is relativistic, and the nitrogen

is static. The effective interactions are

Sint[A, ϕ] =

∫
dx

g1
8Λ3

ϕ2F 2 +
g2
8Λ3

ϕ2(u · F )2 + . . .

where the gi are dimensionless and the higher terms are suppressed by more powers of Λ. Now

consider the tree-level contribution to ϕ + γ → ϕ + γ scattering. Since the field F contains a

derivative, the amplitude is proportional to ω2 and hence the cross section is proportional to ω4,

σ ∼ g22
ω4

Λ6
.

Thus we get the frequency dependence of Rayleigh scattering almost for free! Note that when the

scatterer is comparable in size to the wavelength, our effective field theory breaks down and we

enter the regime of Mie scattering. It also breaks down once the light can excite the atom, which

creates a Lorentzian scattering peak.

Example. Light propagation in an insulator. In vacuum, the unique gauge, Lorentz, and parity

invariant action we can write for the photon is

S[A] =
1

4

∫
dx ϵ0E

2 − 1

µ0
B2.

Now we suppose the light propagates in a medium, whose degrees of freedom are modeled with

additional fields Φ. The Euler–Lagrange equations become

∂µFµν = µ0Jν , Jµ(x) =
δSint

δAν(x)
.

For example, in a conductor, we might ignore higher energy bands for the electrons, so Λ would be

the band gap. Then in an insulator, Λ has the same interpretation, but since the Fermi surface lies

in a band gap there are no relevant degrees of freedom at all! Then it would appear that Sint must

contain only irrelevant terms. But the insulator also picks out a preferred frame of reference, so we

can write down non-Lorentz invariant terms,

Sint
Λ [A,Φ] =

∫
dx

1

2

(
χeE

2 − χmB2 + . . .
)

where the dimensionless couplings χe(Λ) and χm(Λ) are the susceptibilities. Then light can travel

at a different speed, and this is the leading effect an insulator has. More generally, a crystalline

insulator breaks rotational symmetry, so we can have

Sint
Λ [A,Φ] =

∫
dx

1

2
((χe)ijEiEj − (χm)ijBiBj + . . .)

which leads to birefringence. At higher orders, we will find nonlinear terms such as E4/Λ2, yielding

nonlinear optical effects.
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Note. Quantum gravity may also be treated as an effective field theory. The action is

S[g] =

∫
dx
√
−g
(
λ+

R

16πG

)
where the dimensions are

[λ] = 4, [gµν ] = 0, [R] = [∂∂g] = 2, [G] = −2.

In particular, one can see the metric is dimensionless because in flat spacetime its elements are

simply δ. Perturbing about the flat metric,

g = δ +
√
Gh

where h is scaled to have canonically normalized kinetic terms. Higher-order terms in h come with

positive powers of G and hence negative powers of Mpl, so they are all irrelevant. Their form can

be obtained from taking the most general diffeomorphism invariant action,

Seff
Λ [g] =

∫
dx
√
−g
(
c0Λ

4 + c1Λ
2R+ c2R

2 + c3R
µνRµν + c4R

µνρσRµνρσ + . . .
)

where the ci are dimensionless, and ordinary GR only uses c0 and c1. In the UV, either new

degrees of freedom appear, such as strings, or the theory flows to a fixed point, a proposal known

as asymptotic safety. (Note that “asymptotic freedom” as used above is just the case where this

fixed point is the Gaussian fixed point.)

Of course, even though the interaction of gravity with matter is “irrelevant”, it is very relevant

to everyday life! This is because the gravitational interactions between the particles in macroscopic

objects add up coherently, a fact which is not captured in our simple analysis above.

Note. Multiple kinds of renormalizability. So far we’ve been talking about Wilsonian renormal-

izability, which, near the Gaussian fixed point, simply corresponds to having no couplings with

negative mass dimension. However, historically renormalizability was defined by demanding that

all the divergences in a theory could be absorbed by redefinitions of the couplings already in the

Lagrangian, which in turn must have a finite number of terms; we will call this counterterm renor-

malizability. In our picture, this means the Lagrangian must include all renormalizable terms

consistent with symmetries; for instance, massless ϕ4 theory is not permitted. (Thus counterterm

renormalizability is obliquely related to naturalness.) The main point is that it directly demands

that all predictions up to arbitrary energy can be made given a finite number of parameters.

By contrast, in an effective field theory one requires more and more parameters to get an

accurate prediction as one goes to higher energies. In practice, one fixes a desired precision, and

then computes up to the order in 1/Λ required (or more generally, to the required order in the

power counting parameter), neglecting all effects associated with higher-order terms. Then it is

useful to say an EFT is renormalizable if it is renormalizable in the historic sense, at each order

of the power counting expansion. (That is, divergences can appear associated with higher-order

terms, but they can be simply neglected.) For example, ϕ6 theory is renormalizable at this sense,

even though it induces a ϕ8 coupling, because the ϕ8 coupling is order 1/Λ4, while the ϕ6 coupling

is only order 1/Λ2. EFTs are discussed further in the notes on the Standard Model.

Note. Counterterm renormalizability can be much more difficult to show than Wilsonian renor-

malizability, though the two are related.

https://knzhou.github.io/notes/sm.pdf
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• Consider the linear sigma model, a case with spontaneously broken global symmetry. Naively,

there are more divergences than there are free parameters, so it looks like the theory is not

renormalizable. But the divergences are still constrained by the broken SO(n) symmetry, which

is still present but nonlinearly realized, so “secret symmetry yields secret renormalizability”.

• Consider a gauge theory. The gauge symmetry constrains the terms in the Lagrangian, but it

does not manifestly constrain the divergences, because we need to gauge fix before quantization;

that is, the divergences never “see” the gauge symmetry. Thus renormalizability is nontrivial,

but can be proven using Ward identities. Using BRST symmetry, one can also prove Yang–Mills

is indeed renormalizable.

• Now consider Yang–Mills with an explicit mass term m2AµAµ. This makes the analysis of

renormalizability even more difficult because the propagator no longer falls off at high momenta,

so superficial degrees of divergence get worse. However, it turns out that it is renormalizable if

and only if the gauge group is abelian.

• The Standard Model is more complicated, as it is a gauge theory with spontaneous symmetry

breaking. ’t Hooft proved its renormalizability in 1971 and we can perform this proof explicitly

by working in Rξ gauge, introduced in the notes on the Standard Model.

These nontrivial facts should not be confused with Wilsonian renormalizability, which is easy

to see in all these cases. Sometimes, counterterm and Wilsonian renormalizability are called

perturbative and nonperturbative renormalizability. However, Wilsonian renormalizability does not

imply counterterm renormalizability, e.g. in the case of quantum gravity if it were asymptotically

safe. Here perturbative renormalizability fails because it expands about the Gaussian fixed point,

while the nonperturbatively the theory is determined by a different fixed point in the UV.

https://knzhou.github.io/notes/sm.pdf
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10 Perturbative Renormalization

10.1 Power Counting

In this section, we explore the systematics of perturbative renormalization. We begin by estimating

the degree of divergence of a Feynman diagram.

• We consider a scalar field theory with a ϕn interaction. Consider a connected diagram with V

such vertices, I internal propagators, E external lines, and L loops. Euler’s formula gives

L = I − V + 1

while counting the number of edges in two different ways gives

nV = 2I + E

• The momentum integral will contain L d̄dk integrals and I factors of 1/k2, so we define the

superficial degree of divergence

D = dL− 2I.

We estimateM∼ ΛD, so diagrams with D > 0 are superficially divergent, diagrams with D = 0

are superficially log-divergent, and diagrams with D < 0 are superficially finite. Note that for

particles with half-integer spin, propagators would instead contribute as 1/k.

• Superficially divergent diagrams can actually be finite due to a symmetry. Moreover, superficially

finite diagrams may diverge: the superficial estimate assumes that all of the loop momenta are of

the same order Λ, but divergences can come from regions where only some of the loop momenta

are large. One can show, rather tediously, that all such divergences come from superficially

divergent subdiagrams.

• Rewriting D in terms of V and E, we have

D = d−
(
d− nd− 2

2

)
V − d− 2

2
E.

Note that the quantity in brackets is simply the mass dimension of the ϕn coupling, while the

coefficient of E is simply the mass dimension of the field. This generalizes straightforwardly to

multiply types of vertices and fields.

• We see in general that more external lines decreases D, while more internal vertices increases

or decreases D depending on the dimension of V . We say that a theory is (power-counting)

– renormalizable if the number of superficially divergent amplitudes is finite, but superficial

divergences appear at every order in perturbation theory,

– superrenormalizable if the number of superficially divergent diagrams is finite,

– nonrenormalizable if the number of superficially divergent amplitudes is infinite.

In general, the couplings in a renormalizable or superrenormalizable theory all have nonnegative

mass dimensions, while in a superrenormalizable theory the dimensions are all strictly positive.

A single coupling with negative mass dimension renders a theory nonrenormalizable.
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• Ignoring the issue of divergent subdiagrams, if a theory is (power-counting) renormalizable,

then at every order in perturbation theory only a finite number of divergent diagrams appear,

parametrized by a finite number of divergent constants.

• The BPHZ theorem ensures that divergent subdiagrams cannot change these conclusions; the

divergences there are simply canceled by “counterterm subdiagrams”, requiring no new countert-

erms to be introduced. The proof is by giving an explicit algorithm to perform this cancellation,

and it is nontrivial because of the possibility of “overlapping divergences”, where two divergent

subdiagrams overlap, and hence their loop integrals can’t be treated separately.

Note. A glimpse of higher-order renormalization. Consider the following two-loop diagram in QED.

This diagram contains two overlapping divergences. It is canceled by the counterterm diagrams

shown below.

When k2 is large, the points x, y, and z are “close together”, so the divergence is canceled by the

first counterterm diagram. Similarly, the second counterterm diagrams accounts for the divergence

where k1 is large, while the third accounts for the divergence where both k1 and k2 are large. In

DR, such a divergence appears as a double pole in ϵ.

As an example, we apply power counting to QED.

• In QED, the interaction term is eψ /Aψ and the superficial degree of divergence of an amplitude

with Eγ external photons and Ee external electrons is

D = 4− Eγ −
3

2
Ee

since [e] = 0. The theory is hence renormalizable.

• The amplitudes with D ≥ 0, that don’t vanish automatically by Lorentz invariance, are:

– The vacuum energy with D = 4.

– The photon tadpole with D = 3, and the three-photon amplitude with D = 1.

– The four-photon amplitude with D = 0.

– The photon propagator with D = 2, the electron propagator with D = 1, and the renor-

malized vertex with D = 0.

Only the amplitudes in the final group are important, as we’ll justify below.

• The vacuum energy is divergent, and we can absorb it with a vacuum energy counterterm. Since

it has no observable consequences, we typically ignore it entirely by normal ordering.
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• The one-photon and three-photon amplitudes all vanish by symmetry. QED is invariant under

charge conjugation, jµ → −jµ, which requires Aµ → −Aµ. Therefore a correlation function

of an odd number of photons vanishes, a result known as Furry’s theorem. Diagrammatically,

each diagram cancels against another with all of the electron loops reversed.

• The four-photon amplitude is finite by the Ward identity. To see this, let the amplitude be Aµνρσ.

By the Ward identity, kµA
µνρσ = 0, which implies that the amplitude must be proportional to

something like gµνkσ − gµσkν .

• To show this more explicitly, the divergent part of one diagram is

Aµνρσ ∼
∫
d̄k

tr(/kγµ/kγν/kγρ/kγσ)

k8

and there are five more diagrams corresponding to the different ways to attach the photons to

the electron loop. Using spherical symmetry, we simplify the integral to

Aµνρσ ∼
∫
d̄k

tr(γα1γµγα2γνγα3γργα4γσ)

k4
(ηα1α2ηα3α4 + perms.)

which can be simplified using the standard trace identities. Finally, symmetrizing over µνρσ

to account for the six diagrams yields zero.

• Pulling this factor out leaves an amplitude with D = −1, which is hence finite. One might

naively think this means the amplitude is proportional to 1/Λ and hence vanishes, but the

four-photon vertex is nonzero; it mediates light-by-light scattering. The point is that D only

gives us the UV dependence of the amplitude on Λ, while the finite contribution comes from

the IR part of the loop integral.

• Finally, we arrive at the propagators. In our one-loop analysis of QED we found they were only

logarithmically divergent, and this is indeed guaranteed by symmetries as we see below. For

the degree of divergence, it suffices to look at the self energies.

• The electron self energy takes the form

A0 +A1/p+A2p
2 + . . .

and has mass dimension 1. Then the only place a linear divergence can appear is in the A0

coefficient. Now, A0 is an analytic function in the electron mass,

A0 ∼ Λ +me log (. . .) +
m2
e

Λ
log (. . .) + . . . .

When me = 0 the theory has an axial symmetry, by opposite rotations of the left and right-

handed Weyl spinors; then a mass term cannot be generated by renormalization. Thus A0 has

no term independent of me and the divergence is at most logarithmic in Λ.

• The photon self energy has mass dimension 2 and takes the form

Πµν ∼ B0ηµν +B2qµqν +B′
2ηµνq

2 + . . .

where quadratic divergences can come from B0. But we saw that the Ward identities required

Πµν = (ηµνq2 − qµqν)Π(q2)

where Π(q2) is regular in q. Then we must have B0 = 0.
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• These results ensure that the divergences of QED can be absorbed by renormalizing terms

already present in the Lagrangian. For example, if B0 had been nonzero, we would have had a

quadratic divergence independent of q in Πµν . This could only be absorbed by adding a term

AµA
µ to the Lagrangian, which would break gauge invariance. Similarly, if the four-photon

amplitude had been divergent, we would have had to add the term (AµA
µ)2. Of course, these

terms would appear, and be necessary, in QED with a massive “photon”.

• The more general lesson here is that, in order to absorb all divergences, a renormalizable theory

must contain all renormalizable terms that are allowed by symmetry, and no more.

Note. The logic above requires that the divergent part of an amplitude be written as a polynomial

in external momenta, with divergent coefficients. To see this in general, note that we may simply

differentiate any superficially divergent loop integral D+1 times with respect to external momenta

to get a convergent integral (ignoring the issue of divergent subdiagrams), which has a finite result.

Integrating D+1 times produces a finite piece plus the advertised divergent polynomial. The finite

piece contains all the analytically nontrivial dependence on the external momenta, such as the

logarithms.

10.2 Renormalization of ϕ4 Theory

In this section, we perform renormalization in ϕ4 theory with a hard cutoff. We will consider

the renormalization of the propagator and the ϕ4 coupling. Equivalently, we are computing the

quadratic and quartic terms in the 1PI effective action.

• We consider the action

SΛ0 [ϕ] =

∫
dx

1

2
(∂ϕ)2 +

1

2
m2ϕ2 +

λ

4!
ϕ4

where we are working in four dimensions and Euclidean signature. We work perturbatively,

which means we are near the Gaussian fixed point, so λ is marginal.

• The exact propagator/connected two-point function in momentum space is

∆(k2) =

∫
dx eikx⟨ϕ(x)ϕ(0)⟩c =

1

k2 +m2 −Π(k2)

which Π(k2) is the sum of 1PI diagrams, by the usual geometric series argument.

• The terms in Π(k2) up to two loops are shown below.

Here, a dotted line denotes an amputated propagator, i.e. they are not associated with 1/(p2+m2)

factors. At one loop, the contribution is simply

Π(k2) ⊃ −λ
2

∫
|p|≤Λ0

d̄p

p2 +m2
= −λVol(S

3)

2(2π)4

∫ Λ0

0

p3 dp

p2 +m2
= −λ

2

m2

16π2

∫ Λ2
0/m

2

0

u du

1 + u
.
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Here, we used Vol(S3) = 2π2 and let u = p2/m2. We see the appearance of the generic 1/16π2

“loop factor” that appears in four dimensions. Explicitly performing the integral gives

Π(k2) ⊃ − λ

32π2

(
Λ2
0 −m2 log

(
1 +

Λ2
0

m2

))
which has a quadratic and a logarithmic divergence.

• To “cancel” these divergences, we “add counterterms” to the action, subject to the same caveats

as before. That is, we work with the action

SΛ0 [ϕ] + ℏSCT[ϕ,Λ0], SCT[ϕ,Λ0] =

∫
dx

1

2
δZ(∂ϕ)2 +

1

2
δm2ϕ2 +

1

4!
δλϕ4.

Note that this is rather different from what we did earlier, where we started from the low-energy

effective action we wanted and added counterterms to get the high-energy action. At this point,

the terms SΛ0 and SCT have no physical meaning individually.

• At O(ℏ), the counterterms contribute two diagrams,

so that

Π1 loop(k2) = −k2δZ − δm2 − λ

32π2

(
Λ2
0 −m2 log

(
1 +

Λ2
0

m2

))
and we must choose δZ and δm2 so the result is finite.

• At two loops, the corresponding counterterm diagrams have one loop, as shown.

• Since the counterterms guarantee we get finite results, we may take the continuum limit Λ0 →∞
while fixing our action to match experiment. This is done by requiring the exact propagator have

a pole at p2 = −m2
phys with residue one, where mphys is the physical mass, which is measured by

‘weighing’ a stable particle, or more generally by looking for peaks in cross sections for processes

involving the exchange of the particle.

• Quantitatively, this means we require

Π(−m2
phys) = m2 −m2

phys,
∂Π

∂k2

∣∣∣∣
k2=−m2

phys

= 0.

Note that these are only constraints on the total action; we are still free to pick how it is split

into SΛ0 and SCT. In the on-shell scheme, we choose SΛ0 so that the parameter m is equal to

the physical mass, so

Π(−m2) = 0,
∂Π

∂k2

∣∣∣∣
k2=−m2

= 0.

Hence, in the on-shell scheme SΛ0 does have a physical meaning, being roughly equivalent to

the low-energy effective action encountered in Wilsonian renormalization. However, in other

schemes SΛ0 has no direct interpretation.
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• In our case, at one loop we have

δZ = 0, δm2 = − λ

32π2

(
Λ2
0 −m2 log

(
1 +

Λ2
0

m2

))
so that the one loop correction exactly vanishes. This is rather special; the reason it happened

is that the loop is a tadpole, which doesn’t depend on the external momenta at all. The tadpole

only renormalizes the mass, so its effects may be entirely canceled by a counterterm. One can

reformulate perturbation theory so that all tadpoles are set to zero from the start, reflecting

the fact that they don’t affect the physics.

• More generally, a loop will generate an infinite series of terms, such as ϕ2, (∂ϕ)2, and all higher

derivatives, though the higher derivative terms will be suppressed by powers of Λ0 rather than

divergent. The on-shell scheme only fixes Π and its derivative at a single point, so loop effects

can be seen away from this point, e.g. in virtual particle exchange.

Next, we turn to the renormalization of the quartic coupling, which we take to mean the quartic

part of the 1PI effective action.

• The one-loop corrections come from the graphs below.

Letting the external momenta ki all flow into the diagram, the diagrams sum to

λ2

2

∫ Λ0 d̄p

p2 +m2

(
1

(p+ k1 + k2)2 +m2
+

1

(p+ k1 + k4)2 +m2
+

1

(p+ k1 + k3)2 +m2

)
.

Since the external momenta also flow through the loop, we generate an infinite series of derivative

terms, as anticipated above.

• The contribution to the pure quartic coupling λ comes from the momentum-independent part,

3λ2

2

∫ Λ0 d̄p

(p2 +m2)2
=

3λ2

32π2

(
log

(
1 +

Λ2
0

m2

)
− Λ2

0

Λ2
0 +m2

)
which is logarithmically divergent. One possible choice for the counterterm is

δλ =
3λ2

32π2

(
log

Λ2
0

m2
− 1

)
.

The quartic term in the 1PI effective action is the negative of the sum of 1PI diagrams, so

λeff = λ− 3ℏλ2

32π2

(
log

(
1 +

m2

Λ2
0

)
+

m2

m2 + Λ2
0

)
.

This choice ensures that in the continuum limit, λeff = λ, in the spirit of the on-shell scheme.

• The contributions for terms with more derivatives come in a power series in k2/Λ2
0, and are

hence finite, vanishing in the continuum limit Λ0 →∞.
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• The integrals here are essentially the same as in Wilsonian renormalization. There, we integrated

loops over momenta in [Λ,Λ0], getting a renormalized coupling constant. Here, we are integrate

over momenta in [0,Λ0] in essentially the same expressions. Hence in the limit Λ0 → ∞ the

functional dependence is the same. This mean we know, e.g. that a marginal coupling gets

logarithmically divergent corrections.

• While the above is true at one loop, matters are complicated at higher loops due to divergent

subdiagrams, and we need the BPHZ theorem to ensure the divergences don’t get worse than

expected. But the Wilsonian intuition makes it clear that the BPHZ procedure must work.

• We now do a full calculation to see the derivative terms explicitly. Using Feynman’s trick,

1

(p+ k12)2 +m2

1

p2 +m2
=

∫ 1

0

dx

[x((p+ k12)2 +m2) + (1− x)(p2 +m2)]2

so completing the square gives the loop integral

λ2

2

∫ 1

0
dx

∫
d̄ℓ

(ℓ2 +M2)2
, ℓ = p− xk12, M2 = m2 + x(1− x)k212.

Note that integrating over the region |p| ≤ Λ0 is the same as integrating over the region |ℓ| ≤ Λ0

up to error terms of order |k12|/Λ, which vanish in the continuum limit Λ0 →∞. For simplicity,

we discard these terms now.

• Working in spherical coordinates, we get a factor of Vol(S3) for

π2
∫ 1

0
dx

∫ Λ2
0

0

ℓ2d(ℓ2)

(ℓ2 +M2)2
= π2

∫ 1

0
dx log

Λ2
0 +M2

M2
+

M2

Λ2
0 +M2

− 1

Keeping only terms that survive in the continuum limit, our three loop diagrams yield

λ2

32π2

∫ 1

0
dx log

Λ2
0

m2 − x(1− x)s
+ log

Λ2
0

m2 − x(1− x)t
+ log

Λ2
0

m2 − x(1− x)u
− 3

where the Mandelstam variables are

s = −(k1 + k2)
2, t = −(k1 + k4)

2, u = −(k1 + k3)
2.

• Using the same choice of counterterm as in our rough calculation above, the quartic term in

the effective action is

A(ki) = λ+
ℏλ2

32π2

∫ 1

0
dx log

(
1− x(1− x)s

m2

)
+ log

(
1− x(1− x)t

m2

)
+ log

(
1− x(1− x)u

m2

)
.

Since this expression is in momentum space, expanding to get powers of the Mandelstam

variables yields derivative terms. As expected, these terms correspond to no UV divergences,

since they are irrelevant. But they are nonzero, because they are generated by the ϕ4 coupling.

• At this point, we can compute everything else using just tree-level diagrams. For example, the

amplitude for ϕ4 scattering only contains one diagram, the quartic vertex, which is −δ4Γ/δϕ4 =

A(ki). Similarly for ϕ6 scattering we have
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so we only need the ϕ2, ϕ4, and ϕ6 terms in Γ[ϕ].

Note. A subtlety with getting a “pure coupling” is that with a hard cutoff, the effective action

in momentum space is not analytic! Concretely, if the coupling is f(k), then RG modifies it by

an analytic function times step functions in the external momenta. This was not a problem here,

but in general, computing f(0) by taking zero external momenta will not give the same result as

computing f(k) for nonzero k, expanding in a Taylor series in k, and taking the constant term. The

proliferation of step functions is one reason the hard cutoff is not practical.

Another fact we know from the Wilsonian picture is that irrelevant couplings in the high-energy

theory should not affect anything at low energies. We can see this explicitly by including irrelevant

couplings from the start.

• In this case, we take the action

SΛ0 [ϕ] =

∫
dx

1

2
(∂ϕ)2 +

1

2
m2ϕ2 + V (ϕ), V (ϕ) =

∑
k≥2

g2kΛ
4−2k
0 ϕ2k.

We would like to compute the ϕ2m coupling in the 1PI effective action. At one loop, all such

diagrams have the form below.

This is merely the O(ℏ) contribution to the effective action we’ve seen in the zero-dimensional

case; it can also be found by expanding the functional determinant det(−∇2+m2+V ′′(ϕ))−1/2.

• We already know that the derivative terms are suppressed by powers of k/Λ0, so we focus on

the renormalization of the ϕ2m coupling. A one-loop graph with e propagators contributes

∫
d̄p

e∏
j=1

1

(p+Kj)2 +m2
∼
∫

d̄p

p2e
∼


Λ2
0 e = 1

log Λ0 e = 2

finite but nonzero e > 2.

For each vertex ϕ2k+2, we also pick up a factor of Λ
2(1−k)
0 .

• Therefore, the only divergent one-loop diagrams are the mass and quartic vertex diagrams,
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which we’ve already considered. Almost all other one-loop diagrams vanish in the continuum

limit, but we find finite contributions from

which has no new effect, since we are already setting the ϕ4 coupling with a counterterm, and

where all of the vertices are ϕ4. That is, in the continuum limit the effective strength of

the irrelevant interactions is totally fixed by the λϕ4 coupling, while the original high-energy

irrelevant couplings play no role at all, just as in the Wilsonian picture.

Note. This result is very different from what we got by naive power counting, where we concluded

that a single irrelevant coupling made every amplitude diverge. The difference is that there, we fixed

the value of the dimensionful coupling. This corresponds to thinking about an effective field theory

(e.g. the dimensionful masses should be fixed to match experiment), and indeed one cannot take the

continuum limit of an effective field theory, and one should require infinitely many counterterms.

By contrast, here we’ve been thinking about SΛ0 , the action of a fundamental theory. Then

we’ve been fixing the dimensionless couplings, since they should all be presumably O(1), and there

is no issue with irrelevant couplings.

Finally, we repeat our calculations using DR and MS.

• First, we consider the mass renormalization. We define the dimensionless coupling g(µ) by

λ = µ4−dg(µ)

where µ is an arbitrary mass scale. Then the one-loop correction to Π(k2) is

Π(k2) ⊃ −1

2
g(µ)µ4−d

∫
d̄p

p2 +m2
= − g(µ)m2

2(4π)d/2

( µ
m

)4−d
Γ

(
1− d

2

)
by our usual DR formulas, with some extra signs due to the Euclidean signature.

• Setting d = 4− ϵ and expanding as usual, we find

g(µ)m2

32π2

(
2

ϵ
− γ + log

(
4πµ2

m2

)
− 1

)
+O(ϵ)

as ϵ→ 0+. In MS we choose the counterterm

δm2 = −g(µ)m
2

16π2ϵ

to remove the divergence only, while in MS we choose

δm2 = −g(µ)m
2

32π2

(
2

ϵ
− γ + log 4π

)
, Π1 loop(k

2) =
g(µ)m2

32π2

(
log

µ2

m2
− 1

)
.



181 10. Perturbative Renormalization

The one-loop mass correction now depends on µ, but this is perfectly acceptable, as µ is part

of the specification of the renormalization scheme. If we sum the corrections to all orders, µ

must drop out, since we should just arrive back at the pole mass. Note that the pole mass is

no longer equal to m, as we’re not using the on-shell scheme.

• Next, we turn to the quartic coupling, where the 1PI diagrams are

g2µ4−d

2

∫
d̄dp

(p2 +m2)((p+ k1 + k2)2 +m2)
+ 2 other channels.

We set the external momenta ki to zero to focus on the pure quartic coupling, giving

3g2

2(4π)d/2

( µ
m

)4−d
Γ

(
2− d

2

)
=

3g2

32π2

(
2

ϵ
− γ + log

4πµ2

m2

)
+O(ϵ).

Then in the MS scheme we have

δλ =
3g2

32π2

(
2

ϵ
− γ + log 4π

)
, geff(µ) = g(µ)− 3ℏg2(µ)

32π2
log

µ2

m2
+O(ℏ2)

where we restored ℏ to emphasize the one-loop effect is quantum.

• If we work to all orders, the dependence of geff(µ) on µ must drop out, because it’s just the ϕ4

coefficient of the effective action. Therefore its derivative is zero,

dgeff
d logµ

= 0.

This is a “continuum RG” equation, not to be confused with a Wilsonian RG equation.

• Differentiating our result and keeping only the lowest order terms, we have

β(g) =
dg

d logµ
=

3ℏg2

16π2
+O(ℏ2)

where the classical term, independent of ℏ, vanishes since the ϕ4 coupling is marginal. Therefore,

at one loop the coupling is marginally irrelevant.

• Separating and integrating, we find

1

g(µ′)
=

1

g(µ)
+

3ℏ
16π2

log
µ

µ′
, g(µ) =

16π2

3ℏ
1

log(Λϕ4/µ)

at least at one-loop order. The fact that a dimensionless initial condition can be exchanged for

a dimensionful scale, Λϕ4 , where the coupling diverges, is called dimensional transmutation.

Note. Interpreting the running coupling g(µ). The amplitude to all orders can’t depend on µ, but

changing µ modifies each of the terms. Generically, we have a perturbation series in g(µ) log(µ2/E2)

where E is the energy scale of the process. Thus we can significantly improve the convergence of the

series if we take µ ≈ E. In particular, when µ ≈ E the sum of the series geff is well-approximated

by its first term g(µ). Thus g(µ) estimates the strength of interactions at energy scale µ.

Previously, we used the on-shell scheme, where the coupling e was fixed. Using this fixed coupling

we computed the one-loop amplitude for e+e− → e+e− by exchange of a photon with momentum

q, and found it depended on q2, yielding a running coupling. While the particulars were different,

in both cases the running coupling referred to the fact that the vertices in the 1PI effective action

are momentum-dependent.
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Note. The energy scale µ is not to be interpreted as a cutoff, but it does have a relationship. Note

that DR integral measures take the form
∫
d̄4−ϵp µϵ. For positive ϵ, we have more momentum modes

at energies less than µ, and less at energies greater than µ. DR removes a greater and greater

fraction of the momentum modes as their energy increases, acting like a smooth cutoff.

Of course, there’s more to DR than just that, because DR is defined in more subtle way that

preserves symmetries, but this can lead to some useful intuition. Note that the density of momentum

modes starts to be significantly changed when (p/µ)ϵ ∼ 1 + ϵ log(p/µ) is significantly greater than

one, which corresponds to ϵ log(p/µ) ∼ 1. Treating this momentum scale as a UV cutoff, p ∼ Λ, we

have 1/ϵ ∼ log(Λ/µ). This is the reason 1/ϵ poles in DR correspond to logarithmic divergences in

cutoff regularization.

10.3 Renormalization of Quantum Electrodynamics

Finally, we revisit QED from a more sophisticated perspective.

• We work in Euclidean signature. In a theoretical context, we would define the action as

S[A,ψ] =

∫
ddx

1

4e2
FµνFµν + ψ( /D +m)ψ, /D = /∂ + i /A.

Under these conventions we have

[e] =
4− d
2

, [A] = 1

in general dimensions, so the kinetic term is irrelevant when d < 4. Then the only relevant and

marginal terms are topological ones, such as the Chern–Simons term, and this normalization

is convenient for highlighting this fact: irrespective of normalization, the topological terms

dominate the kinetic ones.

• However, when we do practical calculations for QED in d = 4, we would like the photon field

to be canonically normalized. This is done by multiplying it by e−1, giving

S[A,ψ] =

∫
ddx

1

4
FµνFµν + ψ(/∂ +m)ψ + ieψ /Aψ, /D = /∂ + ie /A

so that the photon field now has the usual dimension [A] = (d− 2)/2 and the kinetic term is

marginal in all dimensions. There is no contradiction: while being marginal or relevant depends

on the normalization, the Chern–Simons term is more relevant in all normalizations. We’ll use

this convention below and suppress the d dependence.

• The Clifford algebra is modified since the metric is, giving

{γµ, γν} = 2δµν , (γµ)† = −γµ, tr γργσ = 4δρσ

so that γ0 is no longer distinguished. Then the boost generators

Sµν =
i

4
[γµ, γν ]

are Hermitian, reflecting the fact that SO(d) is compact, and the action is real, and

tr(γµγργνγσ) = 4(δµρδνσ − δµνδρσ + δµσδνρ)
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• To find the classical photon propagator, we expand the kinetic term in momentum space, for

1

4

∫
dxFµνFµν =

1

4

∫
dk (−i)(kµÃν(−k)− kνÃµ(−k))i(kµÃν(k)− kνÃµ(k))

=
1

2

∫
dk k2

(
δµν − kµkν

k2

)
Ãµ(−k)Ãν(k).

The propagator is the inverse of the kinetic term, and one possible inverse is

∆0
µν(k) =

1

k2

(
δµν −

kµkν
k2

)
.

The other possibilities are indexed by the ξ parameter in Rξ gauge. Here we have chosen

Landau/Lorenz gauge, ∂µAµ(x) = 0 or equivalently kµ∆0
µν(k) = 0.

• Next, we define the exact photon propagator

∆µν(k) =

∫
dx eikx⟨Aµ(x)Aν(0)⟩

and by the usual argument, denoting the sum of 1PI diagrams as Πρσ,

∆µν(k) = ∆0
µν(k) + ∆0

µρ(k)Π
ρ
σ(k)∆

0σ
ν + . . . .

• Using the Ward identity, we can show that

Πµν(k) = k2π(k2)Pµν , Pµν =

(
ηµν −

kµkν
k2

)
.

The quantity in brackets is just an idempotent projection operator, kµPµν = 0, so the series

sums to

∆µν(k) =
∆0
µν(k)

1− π(k2)

• Since ∆µν(k) is the inverse of the quadratic term in the 1PI effective action Seff,

S
(2)
eff [Ã] =

1

2

∫
dk (1− π(k2))k2

(
δµν − kµkν

k2

)
Ãµ(−k)Ãν(k).

Then in position space, we get a wavefunction renormalization of 1−π(0), along with an infinite

series of derivative interactions suppressed by powers of the electron mass.

Note. Showing that the photon self-energy is transverse. By diagrammatics, we have

⟨jµjν⟩(k) = Πµν(k) + (Π∆Π)µν(k)

where jµ = ψγµψ. Then the Ward identity ensures

kµ(Π + Π∆Π)µν = 0.

Expanding order by order and using the fact that Π starts at order e gives kµΠ
µν = 0, as claimed.

Note that in both this proof and our earlier proof, we’ve had to work perturbatively. Indeed, the

statement does not hold in general; it fails in the case of spontaneous symmetry breaking.
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Now we turn to the one-loop contribution to Πρσ(k).

• We use dimensional regularization, defining the dimensionless coupling g by e2 = µ4−dg2(µ).

The only diagram that contributes is

where there is no symmetry factor, since the electron and positron are distinct.

• Applying the Feynman rules, we have

Πρσ1 loop(k) = −µ
4−d(ig)2

∫
d̄p tr

(
1

i/p+m
γρ

1

i(/p− /k) +m
γσ
)

where we picked up a minus sign from the fermion loop. As in the canonical formalism, we can

understand this minus sign by going back to the level of contractions. When we apply Wick’s

theorem, we will always need to perform an odd number of Grassmann anticommutations to

get the spinors all ‘in order’. Equivalently, the path integral for fermions gives det( /D +m) in

the numerator rather than the denominator, and taking a logarithm gives the sign.

• Simplifying, the loop integral becomes∫
d̄p

tr
(
(−i/p+m)γρ(−i(/p− /k) +m)γσ

)
(p2 +m2)((p− k)2 +m2))

.

We begin by using the Feynman trick to complete the square, turning the denominator into∫ 1

0

dx

((p2 +m2)(1− x) + ((p− k)2 +m2)x)2
=

∫ 1

0

dx

((p− kx)2 +m2 + k2x(1− x))2
.

We then shift p→ p+ kx, noting that this also changes the numerator.

• Next, we apply the trace identities, giving

Πρσ1 loop(k) = 4µ4−dg2
∫
d̄p

∫ 1

0
dx

numerator

(p2 +∆)2
, ∆ = m2 + k2x(1− x)

where the numerator is

−(p+ kx)ρ(p− k(1− x))σ + (p+ kx) · (p− k(1− x))δρσ − (p+ kx)σ(p− k(1− x))ρ +m2δρσ.

• We can dramatically simplify the numerator using symmetry. All terms odd in p must vanish,

while since the integral is isotropic we may replace

pµpν → 1

d
δµνp2.

We finally use two of our DR results to find

Πρσ1 loop = (k2δρσ − kρkσ)π1 loop(k2)
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as required by the Ward identity, where

π1 loop(k
2) = −8g2(µ)Γ(2− d/2)

(4π)d/2

∫ 1

0
dxx(1− x)

(
µ2

∆

)2−d/2
.

Finally, setting d = 4− ϵ yields

π1 loop(k
2) = −g

2(µ)

2π2

∫ 1

0
dxx(1− x)

(
2

ϵ
− γ + log

4πµ2

∆

)
.

Next, we set the counterterms.

• As argued earlier, we require three counterterms for QED, which are

SCT[A,ψ] =

∫
dx δZ3

1

4
FµνFµν + δZ2 ψ /Dψ + δmψψ.

Here we’ve used Z1 = Z2 to combine the electron field strength renormalization and the vertex

renormalization into one term. This guarantees the counterterm Lagrangian is gauge invariant,

as it must be if our regulator preserved gauge invariance.

• In MS the δZ3 counterterm contributes

with

δZ3 = −
g2(µ)

12π2

(
2

ϵ
− γ + log 4π

)
.

Thus, the total one-loop contribution is

π1 loop(k
2) =

g2(µ)

2π2

∫ 1

0
dxx(1− x) log m

2 + x(1− x)k2

µ2
.

• The logarithm produced here is typical for loop corrections. Moreover, it creates a branch cut

for the photon propagator in the region m2 + x(1 − x)k2 ≤ 0. This is inaccessible for real

Euclidean momenta, but in Lorentz signature with k0 = iE we have

x(1− x)(E2 − k2) ≥ m2

so the branch cut starts at E = 2m, the threshold for creating a real electron-positron pair.

• Now, reverting to our original normalization of the photon field, where the coefficient of the

kinetic term is 1/e2, we find

1

g2eff
=

1− π(0)
g2(µ)

=
1

g2(µ)
+

ℏ
12π2

log
µ2

m2
.

where we explicitly restore factors of ℏ. Note that there is no contribution from the vertex

renormalization because, as we’ve shown, the covariant derivative Dµ = ∂µ + ieAµ is renormal-

ized as a ‘single piece’ (i.e. Z1 = Z2) and hence is absorbed by a field renormalization of ψ

alone, without changing e.
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• Setting ∂geff/∂ logµ to zero gives

β(g) =
ℏg3(µ)
12π2

+O(ℏ2), g2(µ) =
6π2

ℏ
1

log(ΛQED/µ)
, ΛQED ≈ 10286GeV

where we set α(me) = g2(me)/4π ≈ 1/137. That is, the QED coupling is marginally irrelevant

and there is a Landau pole.

Note. How are our results here compatible with our earlier analysis of QED? In this section, we

think in terms of the 1PI effective action. For simplicity, we set m = 0. Then

L =
1

4
F 2
0 + ψ0/∂ψ0 + ie0ψ0 /A0ψ0.

This is gauge invariant because the interactions are built from the covariant derivative D = ∂+ie0A0.

The effective Lagrangian in Fourier space takes the form

Leff ⊃ 1

4
f3(q

2)|F q0 |
2 +

1

Z2
f2(q

2)ψ
q
0/∂ψ

q
0 + ie0f1(q, p)ψ

q+p
0 /A0

qψp0 .

Here, we’re using an abbreviated notation where superscripts stand for momenta; we get this

momentum dependence because the effective action has an infinite series of derivative terms. The

parameters Z1, Z2, and Z3 are defined by

1

Z3
= f3(q

2)|q2=0,
1

Z2
= f2(q

2)|q2=m2
e
,

1

Z1
= f1(q, p)|q2=0

where me is the pole mass of the electron, in this case zero. Therefore, at low momenta, we have

Leff ⊃ 1

4

1

Z3
F 2
0 +

1

Z2
ψ0/∂ψ0 +

ie0
Z1
ψ0 /A0ψ0.

We are thus motivated to define the renormalized fields and renormalized/physical coupling

A =
A0√
Z3
, ψ =

ψ0√
Z2
, e =

Z2

Z1

√
Z3 e0

which gives

L =
1

4
Z3F

2 + Z2ψ/∂ψ + iZ1eψ /Aψ, Leff ⊃ 1

4
F 2 + ψ/∂ψ + ieψ /Aψ.

Therefore, e is a direct measure of the all-orders interaction strength at low momentum. In terms

of these rescaled fields and couplings, the covariant derivative in L is D = ∂ + i(Z1/Z2)eA. On

the other hand, Leff is built from ∂ + ieA. Hence conceptually the result Z1 = Z2 tells us that the

effective action is built from covariant derivatives in the same way as the original action.

We are now working solely in terms of physical variables, which is the essential point of renormal-

ization. The last step is to split L into a finite and “counterterm” part. In renormalized perturbation

theory, we set the finite part of L equal to Leff evaluated at on-shell momenta, i.e. low momenta

here. The running coupling arises because the coefficient of ψ /Aψ in Leff depends on momentum.

In MS, we instead set the counterterm to have a simple form; then the parameters in the finite

part of L are not physical parameters; instead we have an ‘MS mass’ and ‘MS coupling’ e(µ). But

as argued earlier, e(µ) is physically meaningful because it approximates the coefficient of ψ /Aψ in

Leff at momentum scale µ.
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Note. The MS scheme is a bit strange, since it does not have “decoupling”. The coupling continues

to run even when we are far below the mass of the electron, even though one would intuitively

think the electron should have no effect at these energies. As another example, applying MS to the

SU(5) GUT, all three gauge couplings are equal at all energies, since MS knows nothing about the

symmetry breaking. This is perfectly consistent, as the full perturbation series in principle sums to

the same thing, but not physically transparent.

An alternative scheme that makes the decoupling explicit is to demand that the quantum

corrections vanish at an arbitrary scale k2 = µ2, which is the MOM/momentum space subtraction

scheme. That is, we set

δZ3 = −
ℏg2(µ)
2π2

∫ 1

0
dxx(1− x)

(
2

ϵ
− γ + log

4πµ2

m2 + x(1− x)µ2

)
so the total one-loop contribution is

π(k2) =
ℏg2(µ)
2π2

∫ 1

0
dxx(1− x) log

(
m2 + x(1− x)k2

m2 + x(1− x)µ2

)
+O(ℏ2).

Then the beta function is

β(µ) =
g3(µ)

2π2

∫ 1

0
dx

x2(1− x)2µ2

m2 + x(1− x)µ2

which indeed goes to zero when µ≪ m, freezing α ≈ 1/137. This is an example of the Appelquist–

Carazzone decoupling theorem. In general, a mass-dependent (or “physical”) scheme is one where

the beta function depends explicitly on the renormalization scale µ, and hence explicitly on the

particle mass m. Decoupling only holds for mass-dependent schemes, which include this scheme

and a hard cutoff, where Λ plays the role of the renormalization scale.

The disadvantage of mass-dependent schemes is that perturbation theory is harder; we’ve seen

that for a hard cutoff the loops are not small. Thus in practice, a modified version of MS is used,

where the decoupling is put in by hand. We consider two theories, one with an electron, valid

for µ > me, and one with no electron, valid for µ < me. We perform renormalization in both

theories with MS or another mass-independent scheme and match physical quantities at µ = me,

such as S-matrix elements. At leading order, this means that g(µ) is continuous at µ = me, and

stops running below me. However, at higher orders, or if we choose µ ≠ me, the coupling jumps

discontinuously at the matching. This is a “threshold correction”, and must be computed carefully

to get, e.g. gauge coupling unification to work out correctly.

This method is called “continuum EFT” in contrast to “Wilsonian EFT”, since we never have a

momentum cutoff. The idea is so common today that it is often used implicitly. For example, the

QCD beta function is written in terms of nf , the “number of light quarks”. But in MS all of the

quarks contribute in the same way to the beta function, regardless of mass. The standard g(µ) for

QCD is actually using successive matchings, integrating out each heavy quark as we pass its mass.

Note. The first two terms of the beta function, corresponding to the one-loop and two-loop

contributions, are independent of the subtraction scheme, provided that we maintain canonical

normalization. Changing the normalization clearly adds terms to the beta function even at tree

level; in this case that corresponds to setting Z = 1 at the physical mass pole. We did this for MS

but not for our other scheme, which instead sets Z = 1 at µ.

Note. In MS, the mass is not the same as the pole mass, so what is its physical meaning? One

can think of the mass term as like any other renormalized coupling. For example, the up quark
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mass provides an extra two-point vertex in QCD scattering problems. The MS mass at scale µ

approximates the overall all-order effect of this interaction term at tree level. (Note that there is

nothing preventing MS mass terms from being negative!) The PDG gives most quark masses as

MS masses (the universal choice for modern theory calculations), since there is no way to define a

pole mass for them. But its top quark mass is a “Pythia” mass, meaning it’s simply what one gets

by fitting to Pythia, which has no direct link to any theoretical calculation. When speaking of the

mass of any fundamental particle, we need to specify the scheme in which it’s defined.

It should be noted that not all people agree with the use of MS. The “right” choice of renormal-

ization scheme has been hotly debated by a handful of devotees. For recent entry points into this

literature, see this paper and this paper.

Finally, we prove that Z1 = Z2 using the Ward–Takahashi identity.

• Starting from the global U(1) symmetry of QED,

ψ → ψ′ = eiαψ, jµ = iψγµψ

we may apply the Ward–Takahashi identity to find

∂µ⟨jµ(x)ψ(x1)ψ(x2)⟩ = −iδ(x− x1)⟨ψ(x1)ψ(x2)⟩+ iδ(x− x2)⟨ψ(x1)ψ(x2)⟩.

Note that the presence of gauge fixing terms makes no difference here, because we’re only

considering global symmetry transformations. However, we will see an alternate derivation

below that uses the local symmetry.

• We define the exact electron propagator by Fourier transforming the two-point function,

⟨ψ(k1)ψ(−k2)⟩ ≡
∫
dx1 dx2 e

ik1x2e−ik2x2⟨ψ(x1)ψ(x2)⟩ = /δ(k1 − k2)S(k)

where we defined

S(k) =

∫
dx eikx⟨ψ(x)ψ(0)⟩ = 1

i/k +m− Σ(/k)

and Σ(/k) is the sum of 1PI diagrams.

• We define the exact vertex by

⟨jµ(k)ψ(k1)ψ(−k2)⟩ ≡ /δ(p+ k1 − k2)S(k1)Γµ(k1, k2)S(k2).

To understand this expression, consider computing the left-hand side diagrammatically. Here,

it can be useful conceptually to draw a ‘phantom’ photon attached to x, though no such photon

field actually appears in the correlator. The lowest-order term is γµ, so indeed

Γµ(k1, k2) = γµ + quantum corrections.

At one-loop order, either the ψ and ψ can emit and reabsorb a photon. This has nothing to

do with the vertex, and is accordingly absorbed by the S(k1) and S(k2) factors. Recalling that

1PI and amputated diagrams are equivalent for three external fields, we end up computing the

sum of 1PI diagrams with an external photon and two external fermions.

https://arxiv.org/abs/2409.01228
https://arxiv.org/abs/2308.05072
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• Finally, taking the Fourier transform of the Ward–Takahashi identity,

(k1 − k2)µS(k1)Γµ(k1, k2)S(k2) = iS(k1)− iS(k2)

which is equivalent to

(k1 − k2)Γµ(k1, k2) = iS−1(k2)− iS−1(k1).

This result relates the vertex to electron kinetic term in the 1PI effective action.

• To extract the desired result, differentiate with respect to k1 and then take k1, k2 → k for

Γµ(k, k) = −i
∂

∂kµ
S−1(k) = γµ + i

∂

∂kµ
Σ(/k).

Thus, at lowest order in k, the effective action looks like

Seff ⊃ ψ
(
γµ + i

∂

∂kµ
Σ(/k)

)
Dψ

so the covariant derivative Dψ is renormalized as a single piece. Expanding our result in a

series in k shows that interactions must come in the form ψDpψ.

10.4 The Euler–Heisenberg Lagrangian

Finally, we sketch the derivation of the Euler–Heisenberg Lagrangian, which results from integrating

out the electron. Remarkably, this result was first derived in 1936, long before renormalization was

understood or Feynman diagrams were introduced.

• We expect we should be able to integrate out the electron because it appears quadratically in

the QED action,

S[A,ψ] =

∫
dx

1

4
FµνFµν + ψ( /D +m)ψ.

Since the electron is fermionic, we get a functional determinant in the numerator,

Γeff[A] =
1

4

∫
dxFµνFµν − ℏ log det( /D +m).

Here, the determinants are in both spinor space and functional space.

• To understand the functional determinant better, note that we can expand

log det( /D +m) = log det(/∂ +m) + tr log(1 + ie(/∂ +m)−1 /A)

where we used log detM = tr logM . The first term comes from an electron loop vacuum bubble.

The other term gives an infinite series in powers of A,

tr log(1 + ie(/∂ +m)−1 /A) = −
∞∑
n=1

(−ie)n

n

∫ n∏
i=1

dxi tr(S(xn, s1) /A(x1) . . . S(xn−1, xn) /A(xn))

where the trace on the right is just a Dirac trace, and the functional trace is handled by

the integration. All terms odd in A vanish by Furry’s theorem, and S(xi, xi+1) is the Dirac

propagator, i.e. the inverse of the kinetic term.
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• Thus the diagrams that contribute are

so the effective action has interaction terms for any even number of photons. To make the

calculation tractable, we will assume the electromagnetic field is constant while taking the trace,

which is equivalent to neglecting derivative terms; from an effective field theory standpoint this

is valid if we consider light with frequency much less than the electron mass.

• As a result, the first diagram contributes only to vacuum energy, the second renormalizes the

photon field, and all the others produce new interactions, which mediate light-by-light scattering.

Thus the Euler–Heisenberg Lagrangian is useful when considering high-intensity, low-frequency

light.

• We now turn to the explicit evaluation of log det( /D +m). Since the trace of an odd number of

gamma matrices vanishes, we must have

tr log( /D +m) = tr log(− /D +m)

which gives

tr log( /D +m) =
1

2

(
log det( /D +m) + log det(− /D +m)

)
=

1

2
log det(− /D2

+m2).

• Next we can simplify /D
2
as

/D
2
= γµγνDµDν =

(
1

2
{γµ, γν}+ 1

2
[γµ, γν ]

)
DµDν = DµDµ − eSµνFµν .

The same manipulations yield the electron’s magnetic moment in the Dirac equation.

• Therefore, we want to evaluate the functional

1

2
tr log(−D2 + eSµνFµν +m2)

=
1

2
tr log

(
−((∂ + ieA)2 +m2)

(
1 0

0 1

)
+ e

(
(B+ iE) · σ 0

0 (B− iE) · σ

))
where the σ are the usual Pauli matrices and the electromagnetic field is constant.

• Suppressing the spinor indices temporarily, we can perform the functional trace in position

space, giving

Γeff[A] =

∫
dx

1

4
FµνFµν +

1

2
⟨x| log(−D2 + eSµνFµν +m2|x⟩.

To remove the logarithm, we use the asymptotic relation

lim
s0→0+

∫ ∞

s0

e−sX
ds

s
= − log(s0X) + finite
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to find

1

2
⟨x| log(−D2 + eSµνFµν +m2)|x⟩ = lim

s0→0+

1

2

∫ ∞

s0

ds

s
e−sm

2/2⟨x|e−s(−D2+eSµνFµν)|x⟩.

Thus the problem has been reduced to nonrelativistic quantum mechanics; we essentially have

to find the energy eigenstates of the Pauli equation in position space. For example, in the case

of a constant magnetic field, the solutions are Landau levels.

• A complicated calculation yields the effective Lagrangian

1

4
FµνFµν − lim

s0→0+

e2

64π2

∫ ∞

s0

ds

s
e−sm

2 Re cosh(esX)

Im cosh(esX)
ϵµνρσFµνFρσ, X =

√
E2 −B2 +E ·B.

Finally, we need to handle the UV divergences, which occur for small s. Expanding the integrand

as a series in es, we find

Re cosh(esX)

Im cosh(esX)
ϵµνρσFµνFρσ =

4

e2s2
+

2

3
FµνFµν −

e2s2

45

(
(FµνFµν)

2 +
7

4
(F̃µνFµν)

2

)
+O(e4)

and the first two terms are a vacuum energy and photon field renormalization, which we

remove by minimal subtraction, and all other terms are finite. This yields the Euler–Heisenberg

Lagrangian. It is fully nonperturbative in e, since the real expansion parameter is E/me.

Note. One might wonder what the most general terms in the series above look like. In particular,

is it true that every term is built out of F 2 ∼ E2 − B2 and FF̃ ∼ E ·B? One slick way to prove

this is to consider the complex vector E + iB. Boosts correspond to imaginary rotations of this

vector, so rotations and boosts together cover all possible rotations. But the only invariant of a

vector with respect to rotation is its square, and

(E+ iB) · (E+ iB) = (E2 −B2) + 2i(E ·B).

Note that this proof only works in d = 4.

10.5 Scalar QED

As a final example, we’ll consider the one-loop renormalization of scalar QED in (+−−−) signature
with MS. Note that switching from MS to MS is equivalent to using µ2

MS
= µ2MS4πe

−γ throughout,

so if we define µ = µMS, we won’t need to add extra “macaroni and pie” to the counterterms. We

will use a new technique, to be explained below, that can compute the beta functions from only the

divergent parts of the counterterms, hence displaying the simplicity of the MS scheme.

• The scalar QED Lagrangian is

L = |∂µϕ|2 −m2|ϕ|2 − 1

4
FµνFµν −

λ

4
|ϕ|4 − ieAµ(ϕ∗∂µϕ− ϕ∂µϕ∗) + e2AµA

µϕ∗ϕ.

Here we must include a ϕ4 interaction because it is consistent with the symmetries, or equiva-

lently because it may be generated by the other interaction terms. The Feynman rules are:
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However, for this analysis, we will work in Landau gauge, so the photon propagator comes with

a factor of Pµν = ηµν − qµqν/q2 rather than just ηµν . As we’ll see, this sets many diagrams to

zero, shortening the analysis.

• Relabeling all the fields above as bare fields with 0 subscripts, and defining physical fields as

ϕ =
ϕ0√
Z2
, A =

A0√
Z3
, e =

Z2

Z1

√
Z3e0

we have

L = Z2|∂µϕ|2 − Zmm2|ϕ|2 − Z3

4
FµνFµν

− Zλ
λ

4
|ϕ|4 − iZ1eAµ(ϕ

∗∂µϕ− ϕ∂µϕ∗) + Z4e
2AµA

µϕ∗ϕ.

Here we have Z4 = Z2
1/Z2, and we should have Z1 = Z2. In the calculations below we will not

assume these results, but rather directly compute the Zi at one-loop order in DR and MS to

demonstrate they hold.

• Defining Zi = 1 + δi, it is convenient to split the Lagrangian as

L = L0 + L1 + Lct

where

L0 = |∂µϕ|2 −m2|ϕ|2 − 1

4
FµνFµν , Lct = δ2|∂µϕ|2 − δmm2|ϕ|2 − δ3

4
FµνFµν

and L1 contains the interactions. Below we will work to order O(e2) and O(λ) in the Zi.

First, we consider the photon propagator.

• As we’ve seen before, the exact photon propagator remains transverse in Landau gauge, as

∆µν(k) =
∆0
µν(k)

1− π(k2)

where π(k2) is determined by the sum of 1PI diagrams,

Πµν(k
2) = k2π(k2)Pµν

which is transverse by the Ward identity.
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• At order e2, we have the contributing diagrams:

• Since Zi = 1 +O(e2), we can replace Z1 and Z4 in the first two diagrams with just 1, giving

iΠµν(k2) = (−ie)2i2
∫
d̄ℓ

(2ℓ+ k)µ(2ℓ+ k)ν

(ℓ+ k)2 −m2)(ℓ2 −m2)

+ (2i)e2ηµνi

∫
d̄ℓ

ℓ2 −m2
− i(Z3 − 1)(k2ηµν − kµkν).

The first two terms can be combined into

e2
∫
d̄ℓ

Nµν

((ℓ+ k)2 −m2)(ℓ2 −m2)
, Nµν = (2ℓ+ k)µ(2ℓ+ k)ν − 2((ℓ+ k)2 −m2)ηµν .

• Applying Feynman parameters as usual, this term becomes

e2
∫ 1

0
dx

∫
d̄q

Nµν

(q2 −∆)2
, q = ℓ+ xk, ∆ = −x(1− x)k2 +m2.

Replacing ℓ with q in Nµν , it simplifies to

Nµν ∼ 4qµqν + (1− 2x)2kµkν − 2(q2 + (1− x)2k2 −m2)ηµν

where we removed terms odd in q as they integrate to zero. We replace qµqν → q2ηµν/D by

isotropy, leaving two standard DR integrals.

• Performing these integrals with the standard formulas and then performing the x integral gives

iΠµν(k2) = ie2µϵ(kµkν − k2ηµν)
(
Z3 − 1 +

1

3

1

(4π)d/2
Γ

(
4− d
2

)
+ finite

)
where ϵ = 4− d, with the transverse structure required by the Ward identity. The finite parts

are momentum-dependent and can be used to compute the running coupling, as in QED.

• In this section, we’ll work with MS, and hence can ignore the finite parts. Then we have

Z3 = 1− e2

24π2
1

ϵ

at one loop. We will use this later to recover the running coupling by another way.

Note. In QED, we used the Ward–Takahashi identity associated with the global U(1) symmetry to

derive Z1 = Z2. For variety, we can do the same here using a somewhat different setup, essentially

using the Schwinger–Dyson equation corresponding to a U(1) gauge transformation. In this case,

we must account for the gauge fixing term, which in Rξ gauge is

L ⊃ Lgf = −
1

2ξ
(∂µA

µ)2.
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The bare photon propagator is now

∆0
µν(k) =

1

k2

(
ηµν − (1− ξ)kµkν

k2

)
=

1

k2

(
Pµν(k) + ξ

kµkν
k2

)
.

Now, the sum of 1PI diagrams remains transverse, so the additional non-transverse piece is unaffected

when we sum over 1PI diagrams, giving the exact propagator

∆µν(k) =
Pµν

k2(1− π(k2))
+ ξ

kµkν
k2

.

The strategy we will use to derive our relations is to start with the generating functional with

currents. Schematically, consider some local symmetry ϕ→ ϕ′ = ϕ+ ϵ(x)δϕ under which the path

integral measure is invariant. Then we have

Z[J ] =

∫
Dϕ ei(S[ϕ]+ϕJ) =

∫
Dϕ′ ei(S[ϕ′]+ϕ′J) =

∫
Dϕ ei(S[ϕ]+ϕJ)

(
1 + i

(
δS +

∫
dx Jδϕ

))
.

Therefore, we must have ∫
Dϕ ei(S[ϕ]+ϕJ)

(
δS +

∫
dx Jδϕ

)
= 0.

Integrating by parts to get an overall factor of ϵ(x), we can use the fact that ϵ(x) is arbitrary to peel

it off and remove the dx integral, leaving an correlation function identity. Since we are working with

the generating functional, we can differentiate with respect to J to yield identities for higher-point

functions.

In this context, we will use the gauge transformation

δϕ(x) = ieα(x)ϕ(x), δAµ(x) = ∂µα(x).

In this case δS is solely due to the gauge fixing term Lgf,

δS = −
∫
dx

1

ξ
α(x)∂2∂µA

µ(x).

We also get three terms from the variations of the currents, so we have, suppressing x arguments,∫
DϕDϕ∗DAµ ei(S[ϕ,Aµ]+ϕJ

∗+ϕ∗J+JµAµ)

∫
dx

(
−1

ξ
α∂2∂µA

µ

)
+ J∗δϕ+ Jδϕ∗ − iJµδAµ = 0.

Integrating by parts to get a factor of α(x) and using the fact that α(x) is arbitrary, we have〈
−1

ξ
∂2∂µA

µ + ieϕJ∗ − ieϕ∗J + i∂µJ
µ

〉
= 0.

Dividing by Z[Jµ, J∗, J ] puts this in terms of the connected generating functional W [Jµ, J∗, J ],

1

ξ
∂2∂µ

δW

δJµ(x)
− ieJ∗(x)

δW

δJ∗(x)
+ ieJ(x)

δW

δJ(x)
+ ∂µJ

µ(x) = 0.

Acting with (δ/δJ∗(y))(δ/δJ(z)) on both sides and setting the currents to zero,

1

ξ
∂2∂µ⟨Aµ(x)ϕ(y)ϕ(z)⟩c + ieδ(y − x)⟨ϕ(x)ϕ∗(z)⟩c − ieδ(z − x)⟨ϕ∗(x)ϕ(y)⟩c = 0.
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The last two terms are exact scalar propagators, while the first term is the product of the exact

photon propagator, two exact scalar propagators, and the exact three-point vertex. However, upon

a Fourier transform the derivatives on the photon propagator yield

1

ξ
k2kµ∆µν(k) = kµ.

This reduces the identity we have here to the Ward–Takahashi identity we saw earlier for QED, and

the proof continues in the same way.

Next, we consider the scalar propagator, where Landau gauge will be somewhat useful.

• The scalar propagator iΠϕ(k
2) has five contributions:

Here, the final diagram contains both the δ2 and δm counterterms.

• The second diagram is a “scaleless” integral, and using the DR formulas gives an answer of

zero. But this is too quick: the DR formulas are not actually valid at all, because there does

not exist any value of d for which a scaleless integral converges (i.e. it is always either UV or

IR divergent), so there are no values of d to analytically continue from!

• A glib way to justify the result is to say “the DR answer has to depend on µ, but there are no

other mass scales in the integral, so what else could it be?” A bit more seriously, the integral

can be IR regulated, in which case the DR formulas legitimately give

iΠϕ(k
2) ⊃ (2Z4ie

2ηµν)(−i)
∫
d̄ℓ

Pµν
ℓ2 −m2

γ

.

The resulting integral is proportional to m2
γ/ϵ in DR, which vanishes in the limit mγ → 0.

• The first diagram contributes

iΠϕ(k
2) ⊃ (−iZ1e)

2(−i)i
∫
d̄ℓ
Pµν(ℓ)(ℓ+ 2k)µ(ℓ+ 2k)ν

ℓ2((ℓ+ k)2 −m2)

in Landau gauge, and since ℓµP
µν = 0 we have

iΠϕ(k
2) ⊃ −e2

∫
d̄ℓ

4(ℓ2k2 − (k · ℓ)2)
ℓ4((ℓ+ k)2 −m2)

where we again set Z1 = 1 since we only want the O(e2) terms.

• The denominator can be simplified using Feynman parameters,

1

ℓ4((ℓ+ k)2 −m2)
= 2

∫ 1

0
dx1

∫ 1−x1

0
dx2

dx1dx2
((1− x1 − x2)ℓ2 + x2ℓ2 + x1((ℓ+ k)2 −m2))3

.
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The x2 dependence drops out, so evaluating the x2 integral and renaming x1 to x,

1

ℓ4((ℓ+ k)2 −m2)
= 2

∫
(1− x) dx

(ℓ2 + 2xℓ · k + xk2 − xm2)3
.

Using the usual shift q = ℓ+ xk we have

iΠϕ(k
2) ⊃ −8e2

∫ 1

0
dx

∫
d̄q
q2k2 − (q · k)2

(q2 −∆)3
, ∆ = −x(1− x)k2 +m2.

Applying isotropy and a standard DR formula we find

iΠϕ(k
2) ⊃ −i 3e

2

8π2
1

ϵ
k2.

• Next, for the scalar loop contribution, we have

iΠϕ(k
2) ⊃ (−iλ)(i)

∫
d̄ℓ

ℓ2 −m2
=

iλ

8π2
1

ϵ
m2

by a standard DR formula.

• For comparison, the counterterms contribute

iΠϕ(k
2) ⊃ iδ2k2 − iδmm2

from which we conclude

Z2 = 1 +
3e2

8π2
1

ϵ
, Zm = 1 +

λ

8π2
1

ϵ
.

Note. A bit more about scaleless integrals in DR. The argument above is sketchy, because it

requires a separate IR regulator; in principle DR can handle both UV and IR divergences by itself.

Within pure DR, the justification for setting the integral to zero is the ‘t Hooft–Veltman conjecture,

which simply states that “no inconsistencies” arise from doing this.

A bit more precisely, a proper treatment of DR would begin with a list of postulates that DR

integrals must obey, just as we begin with postulates for Grassmann integration. Changing notation

for clarity, these postulates are linearity, shift invariance, and the scaling∫
ddp f(λp) = λ−d

∫
ddp f(p).

It can be shown (e.g. in Collins) that these postulates essentially uniquely determine the DR

prescription. The result is equivalent to how we’ve presented DR earlier: take the measure to be

ddp = pd−1Ωd dp, do the integral for the d where it is defined, and analytically continue in d.

Now, using linearity, we can split the scaleless integral as

I =

∫
d̄ℓ

ℓ2
=

∫
d̄ℓ

ℓ2

ℓ2(ℓ2 −m2)
−
∫
d̄ℓ

m2

ℓ2(ℓ2 −m2)

where m is an arbitrary scale, thereby converting it into two ordinary DR integrals. Both integrals

are convergent in an open region of the complex plane, so they may be analytically continued as

usual, and the standard DR formulas apply as d→ 4. We find that as long as the ϵ’s and µ’s used



197 10. Perturbative Renormalization

in each are the same, the two results cancel, yielding the desired result. Further arguments can be

used to show that, due to the DR postulates,
∫
d̄ℓ (ℓ2)α = 0 for any α.

Of course, in this view the ’t Hooft–Veltman conjecture simply reduces to the conjecture that

these postulates do not lead to inconsistencies. (This is by no means guaranteed, as inconsistencies

can arise when we try to account for spinors and the associated γµ.) The “proof” for our purposes

is simply experience. However, it turns out that it will eventually lead to trouble, in the form of

“renormalons”, i.e. poor convergence at large orders in perturbation theory, which are connected to

the fact that the QFT perturbation series is asymptotic.

Note. There are more subtleties for integrals which are simultaneously UV and IR divergent, like

I =

∫
d̄ℓ

ℓ4
.

Using the same trick as above, we can split this into a UV divergent and an IR divergent integral,

which are each evaluated in DR with (ϵUV, µUV) and (ϵIR, µIR) respectively. The integrals converge

for ϵUV > 0 and ϵIR < 0 respectively, and the integral is zero when we take ϵUV = ϵIR. The subtlety

here is that this integral cannot simply be ignored, because the counterterm, being a UV quantity,

only can cancel the 1/ϵUV pole; something else is required to cancel the 1/ϵIR pole. That is, the

UV and IR divergences are conceptually distinct. (think more about this)

Now we consider the vertices, where clever choices for the external momenta will greatly simplify

the calculation in Landau gauge.

• First, we consider the one-loop corrections to the three-point vertex V µ
3 .

These are renormalized by Z1. Since we only care about the divergence structure, we are free

to choose any external momenta we want, so we choose the incoming ϕ to have zero momentum

and the outgoing ϕ to have k. Then in the second and third diagrams, the left vertex yields

a factor of ℓµ which vanishes when contracted with the Pµν(ℓ) from the photon propagator in

Landau gauge.

• The remaining terms take the form

iV µ
3 (k, 0) = ieZ1k

µ + (iZ1e)(−2iZ4e
2ηµν)(−i)2

∫
d̄ℓ

Pνρ(ℓ)(ℓ+ 2k)ρ

ℓ2((ℓ+ k)2 +m2)

+ (−iZλλ)(iZ1e)(−i)2
∫
d̄ℓ

(2ℓ+ k)µ

(ℓ2 +m2)((ℓ+ k)2 +m2)
.

Upon Feynman parametrization, shifting the loop momentum, and integrating over x, the final

term is proportional to ℓµ and hence vanishes by symmetry. Evaluating the remaining integral

by the usual methods gives

Z1 = 1 +
3e2

8π2
1

ϵ
.
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• Next, consider the four-point, scalar-scalar-photon-photon vertex. In this case, a convenient

choice is to set all external momenta to zero, so that only five diagrams survive.

For each of the first two diagrams, there is another diagram which swaps how the photon lines

attach. Then we have

iV µν
4 (0, 0, 0) = −2iZ4e

2ηµν + (−2iZ4e
2)2(−i)2

∫
d̄ℓ

Pµν

ℓ2(ℓ2 +m2)
+ (µ↔ ν)

+ (iZ1e)
2(−iZλλ)(−i)3

∫
d̄ℓ

(2ℓ)µ(2ℓ)ν

(ℓ2 +m2)3
+ (µ↔ ν)

+ (−iZλλ)(−2iZ4e
2ηµν)(−i)2

∫
d̄ℓ

1

(ℓ2 +m2)2
.

All of these may be evaluated in the usual ways to find

Z4 = 1 +
3e2

8π2
1

ϵ
.

We’ve now shown Z1 = Z2 = Z4, as expected and required by general considerations above.

• Finally, consider the four-scalar vertex. Again we may set all external momenta to zero, giving

the remaining diagrams below.

Note that the first three have a symmetry factor of 2. The first two and the last three all have

the same structure, giving

iV4(0, 0, 0) = −iZλλ+

(
1

2
+

1

2

)
(−2iZ4e

2)2(−i)2
∫
d̄ℓ
Pµν(ℓ)Pµν(ℓ)

(ℓ2 +m2
γ)

2

+

(
1

2
+ 1 + 1

)
(−iZλλ)2(−i)2

∫
d̄ℓ

1

(ℓ2 +m2)2

which may be evaluated in the usual ways to find

Zλ = 1 +

(
3e4

2π2λ
+

5λ

16π2

)
1

ϵ
.

We now consider the running couplings.
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• One of the best features of MS is that we can read off the beta functions directly from the Zi,

without ever having to compute the momentum-dependence of the vertices. We note that

e0 = Z
−1/2
3 µϵ/2e, λ0 = Z−2

2 Zλµ
ϵλ.

The Zi may be expanded in a series in the couplings e2 and λ, and in 1/ϵ.

• The key result is that the e0 and λ0 are independent of µ. Now note that

log e0 = log(Z
−1/2
3 ) + log e+

ϵ

2
logµ+ . . . =

e2

48π2
1

ϵ
+ log e+

ϵ

2
logµ+ . . . .

Differentiating with respect to log µ on both sides and letting βe = de/d logµ, we have

0 =
ϵe

2
+ β +

e2

24π2
1

ϵ
β.

Solving for β and taking the limit e→ 0 (crucially, before the limit ϵ→ 0), we get

β = −ϵe
2

(
1 +

e2

24π2
1

ϵ

)−1

+ . . . = −ϵe
2

(
1− e2

24π2
1

ϵ

)
+ . . . =

e3

48π2
+ . . .

which is the beta function in scalar QED.

• A slightly more complicated calculation along the same lines gives

βλ =
1

16π2
(
5λ2 − 6λe2 + 24e4

)
+ . . .

for the quartic coupling.

• For reference, the analogous factors for QED are

Z1 = Z2 = 1− e2

8π2ϵ
, Zm = 1− δm

m
= 1− e2

2π2ϵ
, Z3 = 1− e2

6π2ϵ

where Z3 immediately gives the QED beta function

β =
e3

12π2

by the same argument as in scalar QED.
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11 Non-Abelian Gauge Theory

11.1 Classical Yang–Mills

Before beginning, we review classical pure Yang–Mills theory to establish notation.

• We consider a Lie group H with Lie algebra h, so every h ∈ H can be written as

h = eigα, α = αaT
a, T a ∈ h.

Here the generators T a satisfy

[T a, T b] = ifabcT
c.

Note that conventions differ here, as one can flip the sign of g, α, or Aµ. In our current

convention, also used by Peskin and Schroeder, the covariant derivative comes with a minus

sign, D ∼ ∂ − igA, and gauge transformations come with plus signs.

• The Lie algebra contains a symmetric bilinear form called the Killing form,

κab ≡ T a ◦ T b

which is invariant under the adjoint action,

hT ah−1 ◦ hT bh−1 = T a ◦ T b.

Note that when we focus on the Lie algebra alone, we usually take the infinitesimal version of

this equation by setting h ≈ 1− igα, for

[T a, T c] ◦ T b + T a ◦ [T c, T b] = 0

as defined earlier.

• For an abstract Lie algebra, the Killing form is defined as we’ve seen earlier,

κab = tr[T a, [T b, ·]].

On the other hand, for a matrix Lie group where the generators are traceless we have

T a ◦ T b = trT aT b.

We will normalize generators in the fundamental representation as

T a ◦ T b = 1

2
δab

and think of all generators below as being in the fundamental representation. There’s no reason

to do this at this point, but when we introduce physical matter, it will be in the fundamental

representation, so we’ll only need one set of generators.

• Under a gauge transformation U(x) = eigα(x) the gauge potential/connection transforms as

Aµ → UAµU
−1 − i

g
(∂µU)U−1

where infinitesimally we have

Aµ → Aµ +Dµα, Dµα ≡ ∂µα− ig[Aµ, α]

where we have defined the covariant derivative acting on a h-valued field. Note that Aµ doesn’t

transform in a representation of H, but the difference of two Aµ’s transforms in the adjoint.
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• It will be useful to write the above in components,

Dµα
a = ∂µα

a + gAbµα
cfabc.

The same applies to any other quantity transforming in the adjoint.

• We define the curvature/field strength as

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

as can be shown by acting with both sides on a “test object”.

• The field strength transforms in the adjoint representation, so that

Fµν → UFµνU
−1 = Fµν + ig[α, Fµν ] +O(α2).

Since the covariant derivative obeys the Jacobi identity, we have the Bianchi identity,

DµFαβ +DβFµα +DαFβµ = 0.

• The pure Yang–Mills Lagrangian is

L = −1

2
trFµνF

µν = −1

4
F aµνF

µνa.

Note that this automatically contains terms cubic and quartic in A.

• To derive the equation of motion, it is useful to note that

δFµν = DµδAν −DνδAµ.

Then the variation of the action is proportional to

tr(Fµν(∂
µδAν + ig[Aµ, δAν ])) = − tr(δAνDµFµν)

using the fact that δAµ is in the adjoint, the cyclic property of the trace, and integration by

parts. Since δAµ is arbitrary, and the Killing form is nondegenerate, we have the equation of

motion

DµF
µν = ∂µF

µν − ig[Aµ, Fµν ] = 0.

• Matter fields in a representation R will be introduced through the Lagrangian

L ⊃ ψ(i /D −m)ψ, (i /D −m)ψ = 0, ψ → eigαψ = (1 + igαaT aR)ψ +O(α2).

The covariant derivative acts on ψ in whatever representation it transforms in,

Dµψi = ∂µψi − igAaµ(T aR)ijψj

which leads to the interaction term

L ⊃ gψiγµAaµ(T aR)ijψj .
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• The matter provides a current for the gauge fields, so that the equation of motion is

DµF
µν = Jν , Jµa = −gψγµT aRψ.

By the transformation properties of DµF
µν , we see that Jν transforms in the adjoint. Acting

with Dν on both sides and using symmetry, we have DµJ
µ = 0, so the current is “covariantly

conserved” rather than conserved; this can also be shown with the equation of motion for ψ.

• In fact, there is no gauge-invariant conserved current in this theory. This result is a special

case of the Weinberg–Witten theorem, which states that any theory with a global non-abelian

symmetry under which massless spin 1 particles are charged does not admit a gauge-invariant

conserved current.

• The second part of the Weinberg–Witten theorem implies that any theory with a conserved,

Lorentz-covariant energy-momentum tensor cannot contain a massless particle of spin 2. This

rules out scenarios where the graviton is a composite particle and space is fundamentally flat.

Note. The reason the classical Yang–Mills equations are not relevant to everyday life is best seen

in the “theoretical” normalization, where the Yang–Mills action has a prefactor 1/g2ℏ. Then the

classical limit is the weak coupling limit. However, in everyday life we’re looking at the low energy

limit, and since Yang–Mills is asymptotically free, this is precisely where the coupling is strong!

Note. The statements made above are straightforward to prove by expanding in components, but

one can show them using differential forms, in a clean index-free notation. We define

A′ = −igA

and hereafter work with A′, dropping the prime. We regard A as as one-form and suppress explicit

wedge products. Then the transformation of A is

A→ UAU−1 − (dU)U−1 = UAU−1 + UdU−1.

Taking the exterior derivative of both sides,

dA→ (dU)AU−1 + U(dA)U−1 − UAdU−1 + (dU)(dU−1)

where we picked up a minus sign from anticommuting d and A. Similarly, we have

A2 → UA2U−1 + UA(dU−1) + U(dU−1)UAU−1 + U(dU−1)U(dU−1).

This may be simplified by noting that 0 = d(UU−1) = U(dU−1) + (dU)U−1, giving

A2 → UA2U−1 + UA(dU−1)− (dU)AU−1 − (dU)(dU−1).

Adding these expressions, we see that

F → UFU−1, F = dA+A2.

In this notation, the covariant derivative is

D = d+A, F = D2.
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Furthermore, the Bianchi identity is simply DF = 0. To prove this, note that the A in D acts on

F by commutator, so

DF = dF +AF − FA = d(A2) +AdA+A3 − (dA)A−A3 = 0

where we expanded d(A2) = (dA)A − AdA. In this notation, the usual kinetic term is tr(F ⋆ F ),

and the theta term is trF 2. Expanding the theta term, we have

trF 2 = tr((dA)(dA) +A2dA+ (dA)A2 +A4).

Due to the trace, the final term vanishes while the second and third term are in fact equal. This is

easiest to see by expanding explicitly in components. For instance,

trA4 = AaµA
b
νA

c
ρA

d
σ tr(T

aT bT cT d)dxµdxνdxρdxσ

which vanishes because the trace is symmetric under cyclic permutations while the wedge product

on the right is antisymmetric. In fact, we have

trF 2 = d tr

(
AdA+

2

3
A3

)
.

where the quantity differentiated is the Chern–Simons current. This result will play a role in the

theory of anomalies below.

11.2 Faddeev–Popov Quantization

First, we discuss some of the challenges associated with quantizing the theory.

• In canonical quantization, we again find that

Π0 =
∂L
∂Ȧ0

= 0

as in QED, so it is a non-dynamical field which enforces the constraint

DiF
0i = 0

which is the non-abelian generalization of Gauss’s law.

• As in QED, we can enforce the constraints using Dirac brackets, as we did in Coulomb gauge.

Alternatively, we can quantize naively and then restrict our Hilbert space to a ‘physical’ Hilbert

space, as we did in the Gupta-Bleuler method. However, these methods are more involved for

non-abelian gauge theory because the constraints are more complicated.

• Again as in QED, we still have a gauge symmetry. The gauge symmetry must always be fixed to

define the quantum theory in the first place; for instance, with a gauge symmetry the propagator

is not defined since the kinetic term is not invertible.

• Unlike for QED, we will first quantize using the path integral, which is much easier. To handle

first-class constraints/gauge redundancies, we restrict the path integral to integrate over only

one point in each gauge orbit. Note that in Yang–Mills, there are no second-class constraints,

so we don’t have to worry about them.
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Next, we formally introduce the Faddeev–Popov method.

• Let A be the space of all gauge fields Aµ(x), and let H be the space of gauge transformations.

The physically inequivalent gauge field configurations live in the quotient space A/H, where

we identify

Aµ ∼ Ahµ, Ahµ = hAµh
−1 +

i

g
(∂µh)h

−1.

Thus we want to define the path integral partition function as

Z =

∫
A/H

dµ[A] eiS[A]

but this is computationally inconvenient, since A/H is complicated. In the Faddeev–Popov

method, we cleverly insert the identity to equate this path integral with another path integral

over all of A.

• Specifically, note that the naive path integral measure DA over A factors as∫
A
DA =

∫
H
dµ[h]

∫
A/H

dµ[A].

Here, we will take µ[h] to be the Haar measure over H, which is shift-invariant,

µ[g(x)h(x)] = µ[h(x)].

• Now consider a Lie-algebra valued gauge fixing function F , such as F (A) = ∂µA
µ, so that

F (A) = 0 once on every gauge orbit, say F (Ah0) = 0. Then we have

1 =

∫
H
dµ[H] δ[F (Ah)]M(Ah), M(Ah) = det

∂F (Ah)

∂h

which holds in analogy with the delta function identity

1 =

∫
dx δ[f(x)]

∣∣∣∣∂f∂x
∣∣∣∣.

• Inserting the identity, we have∫
A
DA =

∫
H
dµ[h]

∫
A
DAδ[F (Ah)]M(Ah).

Next, we make the nontrivial assumption that we can find a measure DA so that

DA = DAh

which means the gauge symmetry is not anomalous. Upon relabeling, we thus have∫
A
DA =

(∫
H
dµ[h]

)∫
A
DAδ[F (A)]M(A).
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• Equating this to our other expression for
∫
ADA and canceling a factor of the volume of H, we

find that the partition function is

Z =

∫
A
DAδ[F (A)]M(A) eiS[A]

where we used the fact that the action was gauge-invariant.

• Next, we find a more explicit expression for M . Using the shift-invariance of the Haar measure

we can bring the delta function peak to the identity,

1 =

∫
H
dµ[h] δ[F (Ãh)]M(Ãh), Ã = Ah0

so that the peak is at h(x) = e. Expanding h = eiα, we get

1 =

∫
h
dα δ[F (Ãα)]M(Ãα), M(Ãα) = det

∂F (Ãα)

∂α

for a suitably normalized Lie algebra measure dα. Using the chain rule,

∂F (Ãα)

∂α
=
∂F (Ãα)

∂Ãα
∂Ãα

∂α
=
∂F (Ãα)

∂Ãαµ
Dµ.

• Finally, using the gauge invariance of DA and S[A], we have the partition function

Z =

∫
A
DAδ[F (A)] det∆FP e

iS[A], ∆FP =
∂F (A)

∂Aµ
Dµ.

Note that the covariant Dµ acts on the Lie algebra, in the adjoint representation. Similarly, we

may define expectation values of gauge invariant operators.

Note. In the absence of matter, the measure is, formally, automatically invariant under gauge

transformations. Infinitesimally we have

A′a
µ = Aaµ + ∂µα

a + igfadeAdµα
e.

The Jacobian factor is

det
∂A′a

µ

∂Abν
= det

(
δµν δ

a
b + igδµν f

abcαc
)

where the determinant is over both color and Lorentz indices. Using det(1+A) = 1+tr(A)+O(A2),

det
∂A′a

µ

∂Abν
= 1 + igfaacαc = 1

by the antisymmetry of the structure constants, so we pick up no Jacobian at all.

Note. In more mathematical language, we begin with a principal G-bundle P → M and pick a

‘base-point’ connection A0. Then any connection can be written as

A = A0 + δA, δA ∈ A.
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The space A is an affine space, i.e. a vector space without an origin, and there is a natural inner

product on it, obtained by integration over the manifold along with contraction by the Killing form,

giving a natural path integral measure.

We want to integrate over connections on the bundle, but note that A counts a connection and

the very same connection with a different local trivialization as distinct. Hence we want to integrate

over A/G where G is the space of all gauge transformations; note this is much larger than G. The

space A/G is much more complicated than A, and it is unclear how to define a measure on it.

The purpose of the Faddeev–Popov procedure is to write the desired path integral over A/G in

terms of a path integral over all of A but with a delta function, which is easier to handle. Many

sources describe this procedure essentially in reverse, starting with a naive path integral over all of

A and then “factoring out the volume of G”.

Note. Gauge fixing is more complicated in the non-abelian case. It’s difficult to show that Lorenz

gauge can even be attained. A worse problem is the Gribov ambiguity: generically gauge orbits

intersect the gauge slice more than once. To see this, note that A is a principal bundle over A/G
with structure group G, and a gauge slice is equivalent to a global section. Thus we require the

bundle to be trivial,

A ∼= B × G.

Since A is a vector space, it has trivial homotopy groups. However, it can be shown that G doesn’t,

giving the result. We won’t worry about the ‘Gribov copies’ since we’ll only work perturbatively.

At this point, we have a path integral with a DA measure, but it contains inconvenient extra factors.

We now perform a few more tricks to absorb these terms into the action.

• First, we rewrite the delta function as an action contribution by introducing a new field, called

the Nakanishi–Lautrup field. The simplest way to do this is

δ[F (A)] =

∫
DBa(x) ei

∫
dxBa(x)Fa(A).

Since F (A) is Lie-algebra valued, B(x) = Ba(x)T a is as well and hence transforms in the

adjoint; it is a bosonic scalar. The auxiliary field just acts like a Lagrange multiplier. Note

that BaF a is not gauge-invariant and we shouldn’t expect it to be, because we are using the

delta function to do gauge fixing.

• Next, we can simplify the determinant using the general formula∫
dθ∗dθ eθ

∗
iMijθj = detM.

Since the Faddeev–Popov matrix acts on the Lie algebra, we have

det∆FP =

∫
DcDc e−i

∫
dx ca(x)(∆FPc(x))

a

where c and c are h-valued Grassmann fields, called Faddeev–Popov ghosts and anti-ghosts,

which transform in the adjoint. Note that we have added a factor of −i to ∆FP. This is allowed

since it merely multiplies Z[J ] by a phase and will ensure a canonical kinetic term for the ghosts

in the gauge we’ll use below.
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• The ghosts are fermionic scalars, violating the spin-statistics theorem; this is allowed because

the theorem assumes a positive-definite norm, but the ghost states do not have one. Their

role is to cancel the unphysical polarizations of the Yang–Mills field: if the Aµ field has 4

polarizations, the ghosts heuristically have −2 because of their fermionic statistics, which cause

them to contribute oppositely in loops.

• Now, the partition function is

Z =

∫
D[A,B, c, c] eiS[A,B,c,c], S =

∫
dx

(
−1

4
(F aµν)

2 +BaF a(A) + ca(∆FPc)
a

)
which is the desired form. However, we can make it even more convenient.

• Our gauge fixing condition was F (A) = 0, but we could also have required F (A(x)) = f(x) for

any h-valued function f(x). We may also integrate over f with a Gaussian weight,

δ[F (A)]→
∫
Df δ[F (A)− f ]e−

i
2ξ

∫
dx fa(x)fa(x)

.

The point of this manipulation is that we do not need an auxiliary field; we may simply perform

the integral over f , using the delta function, to get a contribution to the action quadratic in F ,

Z =

∫
D[A, c, c] eiS[A,c,c], S =

∫
dx

(
−1

4
(F aµν)

2 − 1

2ξ
F aF a + ca(∆FPc)

a

)
.

• Alternatively, we can express the delta function using the auxiliary field as before, then integrate

over f . This gives

Z =

∫
D[A,B, c, c] eiS[A,B,c,c], S =

∫
dx

(
−1

4
(F aµν)

2 +BaF a +
ξ

2
BaBa + ca(∆FPc)

a

)
.

Both of these results are commonly used, and integrating out B in the latter gives the former.

• Specializing to F (A) = ∂µA
µ, we have

∆FP = ∂µDµ

so the former action becomes

Z =

∫
D[A, c, c] eiS[A,c,c], S =

∫
dx

(
−1

4
(F aµν)

2 − 1

2ξ
F aF a + ca(−∂µDµc)

a

)
.

This is known as Rξ gauge.

• We now revisit QED. In Rξ gauge, we recover the gauge-fixed QED action we had postulated

earlier. The covariant derivative Dµ in the adjoint representation is simply ∂µ, giving a de-

terminant factor of det(−∂2). This is independent of the gauge field, so we factor it out as a

constant; this is why we didn’t see ghosts in QED. However, we can encounter ghosts in QED

if we use other gauges.

• The choice ξ = 0 is called Landau gauge, while ξ = 1 is called Feynman gauge; we often use it

by default. In the path integral, it’s conceptually clear the results do not depend on ξ, since ξ

just parametrizes how we do the gauge fixing.
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Example. The axial gauge, F (A) = nµAµ. In this case we have

∆FP =
∂F (A)

∂Aµ
Dµ = nµDµ.

The ghosts automatically decouple, because when we use the delta function, the dependence on

∆FP on Aµ via nµAµ vanishes. Then det∆FP is simply a constant which can be ignored. The

downside is that the gauge explicitly breaks Lorentz invariance.

Alternatively, we can perform the same integration over f as above, giving

L = −1

4
(F aµν)

2 − 1

2ξ
(nµAµ)

2 − cnµDµc.

In this case it is straightforward, if a bit tedious, to invert the quadratic part of the Lagrangian to

find the propagator for Aµ, which gives

i∆µν
ab (k) =

iδab
k2 + iϵ

(
ηµν − kµnν + nµkν

k · n
− ξk2 − n2

(k · n)2
kµkν

)
.

Note that the interaction vertex between the ghosts and gauge boson contains the factor nµA
µ, and

hence is proportional to

nµ∆
µν
ab (k) = −

ξ

k · n
δabk

ν .

Hence in the limit ξ → 0 where the gauge condition is exactly imposed, all diagrams where a ghost

attaches to a gluon vanish, so the ghosts decouple as we’d expect. A useful special case of this

gauge is light cone gauge, the limit ξ → 0 with n2 = 0, giving

i∆µν
ab (k) =

iδab
k2 + iϵ

(
ηµν − kµnν + nµkν

k · n

)
.

11.3 Canonical Quantization

Next, we proceed to the canonical quantization of Yang–Mills theory.

• Motivated by the path integral treatment above, we take the gauge-fixed Lagrangian

L = −1

4
(F aµν)

2 − ∂µBaAaµ +
ξ

2
BaBa + ∂µcaDµc

a

where the derivatives only act on the field immediately to their right.

• The field momenta are

ΠaµA =
∂L
∂Ȧaµ

= F aµ0, Πac =
∂L
∂ċa

= −ċa, ΠaB =
∂L
∂Ḃa

= −Aa0, Πac =
∂L
∂ċ

a = ċa − gfabcAb0cc.

The conjugate momentum of A0 still vanishes, but this is just because we have the auxiliary

field B. We can eliminate B by plugging in its equations of motion.

• Next, we perform canonical quantization, imposing the usual commutation relations

[Aµ(t,x),ΠνA(t,y)] = iηµνδ(x− y).
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Then by direct computation, we find for spacelike j and k,

[Aaj (t,x), Ȧ
b
k(t,y)] = iδabδkjδ(x− y).

Meanwhile, we have

[Aa0(t,x), B
b(t,y)] = iδabδ(x− y).

• Since the ghosts were Grassmann variables, we impose the anti-commutation relations

{ca(t,x),Πbc(t,y)} = {ca(t,x),Πbc(t,y)} = iδabδ(x− y).

We also define

ca† = ca, (ca)† = −ca

which ensures that L = L†, yielding a unitary S-matrix.

• At this point we would usually construct the Fock space, but Yang–Mills is an intrinsically

interacting theory. Thus the spectrum will contain complicated bound states, e.g. hadrons and

glueballs. On the other hand, to compute S-matrix elements it suffices to define ‘in’ and ‘out’

states via the LSZ reduction formula. These asymptotic states are free fields, which are fully

renormalized but have gauge coupling g = 0.

• Therefore, we instead consider the free Lagrangian

L0 = −
1

4
(∂µA

a
ν − ∂νAaµ)2 − ∂µBaAaµ +

ξ

2
BaBa + ∂µca∂µc

a.

We set ξ = 1 and integrate out Ba using the equation of motion Ba = −∂µAaµ, giving

[Aaµ(t,x), Ȧ
b
ν(t,y)] = −iδabηµνδ(x− y)

just as we had in QED.

• The gauge field and ghost field have free mode expansions,

Aaµ(x) =

∫
d̄k√
2Ek

∑
λ

ϵaµ(k, λ)(a
a
λ(k)e

−ikx + aaλ
†(k)eikx), ϵ(k, λ) · ϵ(k, λ′) = ηλλ′

and

ca(x) =

∫
dp√
2Ep

ca(p)e−ipx + ca†(p)eipx

with the commutation relations

[aaλ
†(k), abλ′(k

′)] = δabηλλ′/δ(k− k′), {ca(p), cb†(p′)} ∝ {ca(p), cb†(p′)} ∝ δabδ(p− p′).

Thus we have negative norm and zero norm gluon states, as well as zero norm ghost states.

• The physical Hilbert space Hphys must have a positive-definite norm. In addition, the S-matrix

must be unitary when restricted to Hphys, i.e. the unphysical states must decouple. This is

much more difficult to guarantee, but it follows if we define Hphys using a symmetry of the full

interacting theory, as in this case the S-matrix respects this symmetry by assumption.

• We cannot use gauge symmetry for this purpose, because we had to fix the gauge to quantize

at all. In QED, we used the U(1) global symmetry, which gave the Ward–Takahashi identities.

But in a non-abelian gauge theory, this is complicated by the ghost and auxiliary fields. Instead,

we will use the more subtle BRST symmetry.
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11.4 BRST Symmetry

BRST symmetry is a fermionic global symmetry of the interacting, gauge-fixed Yang–Mills La-

grangian, which roughly corresponds to gauge symmetry when applied to the gauge field alone. It

is theoretically useful because it allows us to recover some of the consequences of gauge symmetry,

even though the Lagrangian is gauge-fixed.

• We begin with the gauge-fixed Lagrangian

L = −1

4
F aµνF

µνa +
ξ

2
BaBa +Ba∂µA

a
µ + ca(−∂µDµc)

a.

We define a Grassmann odd operator S so that

SAµ = −Dµc = −(∂µc+ ig[Aµ, c]), Sc =
i

2
gfabccbccta ≡ g

2
[c, c], Sc = −B, SB = 0.

Note that Sc is nonzero since c is Grassmann odd. Also note that Sc is not just the conjugate

of Sc. We regard c and c as independent real Grassmann fields, not conjugates of each other.

• Note that S obeys a graded Leibniz rule: if c is Grassmann odd,

S(cA) = (Sc)A− c(SA).

We now show S2Φ = 0 for any Φ ∈ {A, c, c, B}. This is obvious for B and c, and we have

S2c ∝ tafabcf bdecccdce ∝ ta
(

cyclic∑
cde

fabcf bde

)
cccdce = 0

by the Jacobi identity. The proof that S2Aµ = 0 is similar, but more complicated.

• Now, for a product of any two fields, we have

S2(Φ1Φ2) = S(SΦ1Φ2 ± Φ1SΦ2) = ∓SΦ1 SΦ2 ± SΦ1 SΦ2 = 0

where we used S2Φi = 0 and the fact that S flips the Grassmann parity. Similar logic applies

for any product of fields, which implies S is nilpotent, S2 = 0.

• Next, we note the Lagrangian has the form

L = −1

4
F aµνF

µνa − S
(
ca∂µAaµ +

ξ

2
caBa

)
as can be shown by direct expansion. Then SL = 0, where the first term vanishes by gauge

invariance and the second by nilpotence. We define the BRST symmetry transformation by

δϵΦ = ϵSΦ

where ϵ is a constant independent Grassmann number, so δϵL = 0. Note that the BRST

transformation preserves the Grassmann parity, and obeys the Leibniz rule without grading.

• By Noether’s theorem, we can construct the conserved current and charge

Jµ =
∑
I

∂L
∂(∂µΦI)

δϵΦI , ∂µJ
µ = 0, Q =

∫
dx J0, Q̇ = 0.
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• Upon canonical quantization, one can show that we find a BRST charge operator Q̂† = Q̂ which

generates the BRST transformation, by

[Q̂, X̂] = iSX̂

where the bracket is a commutator or anticommutator depending on whether X̂ is bosonic or

fermionic. The conservation of Q̂ is expressed as [Ĥ, Q̂] = 0, and the nilpotency of the BRST

transformation implies

Q̂2 = 0.

• The continuous symmetries of the Yang–Mills Lagrangian are Lorentz invariance, global gauge

invariance, BRST invariance, ghost number (a U(1) assigning +1 charge to ca and−1 to ca), and

anti-ghost translation invariance c→ c+ χ. In fact, the Lagrangian already contains all terms

consistent with these symmetries whose coefficients have nonnegative mass dimension. Upon

renormalization, BRST symmetry will ensure that the separate appearances of g renormalize

in the same way, providing identities analogous to Z1 = Z2 in QED.

• There are some minor variations we can consider. We can easily include matter fields, which,

like the gauge field, transform as under a gauge transformation with gauge parameter α = −ϵc,

δψi = −igϵcataijψj .

It is straightforward to show that S2ψi as well.

• We could also integrate out the B field, in which case the only change is

Sc =
1

ξ
F a =

1

ξ
∂µA

µ

in Rξ gauge. However, to show that S2c = 0, we have to use the equation of motion for the ghost

field. This is a general phenomenon: if we eliminate auxiliary fields, then often symmetries that

held off-shell will only hold on-shell, reducing their power.

We now use the BRST operator to define a cohomology and physical Hilbert space.

• Since Q̂2 = 0, it defines a cohomology.

– An element |ψ⟩ ∈ ker Q̂ is called Q̂-closed.

– An element |ψ⟩ ∈ im Q̂ is called Q̂-exact. All exact states are closed.

– For |ψ⟩ exact, note that

⟨ψ|ψ⟩ = ⟨χ|Q̂†Q̂|χ⟩ = ⟨χ|Q̂2|χ⟩ = 0.

Then all exact states are null. More generally, all exact states are orthogonal to all closed

states, and any two closed states differing by an exact state have the same norm. Physically,

an exact state is gauge-equivalent to vacuum.

– We define the Q̂-cohomology by

cohom(Q̂) =
ker(Q̂)

im(Q̂)
.

Then there is a well-defined inner product on cohom(Q̂).
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• Consider the variation of the time evolution operator

Û = exp

(
i

∫
Πϕ̇− L dt

)
, L = −1

4
F aµνF

µνa − Sψ

under a change in the gauge fixing condition F (A) = 0. Only S depends on F , so

δF ⟨α|Û |β⟩ = ⟨α|iδFSψ|β⟩ = ⟨α|iSδFψ|β⟩ = ⟨α|Q̂δFψ − δFψQ̂|β⟩.

For this to vanish for all δFψ, we require Q̂|β⟩ = 0. Since the time-evolution of physical states

should not depend on the gauge choice, the physical Hilbert space must be BRST closed.

• Within this space, the BRST exact states have zero overlap with all other states and hence can

never be measured. Thus we identify Hphys = cohom(Q̂).

• We can explicitly find the physical Hilbert space for the free in/out states. The states are

|Aaµ(k)⟩ =
∑
λ

ϵaµ(k, λ)a
a
λ
†(k)|0⟩, |ca(k)⟩ = ca†(k)|0⟩, |ca(k)⟩ = ca†(k)|0⟩

and we don’t have separate B states since B ∼ ∂A. The BRST transformation is

SAµ = −∂µc, Sc = 0, Sc = −B = −∂A, SB = 0

where we work in Feynman gauge.

• Therefore, the BRST charge acts as

Q̂|Aµa(k)⟩ = αkµ|ca(k)⟩, Q̂|ca(k)⟩ = 0, Q̂|ca(k)⟩ = βkµ|Aaµ(k)⟩

where α, β ̸= 0. Since Q̂2 = 0, we have k2 = 0. We now drop the a index.

• The states that are BRST closed must have no c excitations, and moreover

|ξ⟩ = ξµ|Aµ(k)⟩

is only closed if ξµkµ = 0, removing one of the unphysical polarizations.

• Note that c excitations are BRST exact, as is kµ|Aµ(k)⟩. Therefore, the physical one-particle

Hilbert space consists of states

|ψ⟩ = ξµ|Aµ(k)⟩, k2 = 0, ξµkµ = 0

where ξµ ∼ ξµ + kµ. These are indeed the two degrees of freedom we want.

• Next, we check unitarity of the S-matrix. Since L† = L, the S-matrix is unitary on the entire

Fock space. Letting |γ⟩ be a basis,∑
γ

⟨α|S†|γ⟩⟨γ|S|β⟩ = ⟨α|β⟩.

The nontrivial thing to check is that it is unitary on Hphys,∑
χT

⟨ϕT |S†|χT ⟩⟨χT |S|ψT ⟩ = ⟨ϕT |ψT ⟩, |ϕT ⟩, |ψT ⟩ ∈ Hphys

where |χT ⟩ is a basis for Hphys.



213 11. Non-Abelian Gauge Theory

• Since Q̂ commutes with Ĥ, it commutes with S, so

Q̂S|ψT ⟩ = SQ̂|ψT ⟩ = 0.

Therefore, S maps ker Q̂ to itself. However, it can and does produce BRST exact states. These

don’t spoil unitarity because such states are orthogonal to BRST closed states. Explicitly,

⟨ϕT |ψT ⟩ =
∑
γ

⟨ϕT |S†|γ⟩⟨γ|S|ψT ⟩ =
∑
χT

⟨ϕT |S†|χT ⟩⟨χT |S|ψT ⟩

as desired. Here, γ ranges over physical states, BRST exact states, and states that are not

BRST closed, and the latter two don’t contribute by the arguments above.

• In the special case of QED in Lorenz gauge, the ghosts automatically decouple, and the con-

straints above reduce to the Gupta-Bleuler condition ∂A+|ψ⟩ = 0. The difference in the

non-abelian case is that such a constraint is not preserved by time evolution, as we can create

BRST exact states.

• Accordingly, the Ward identity kµMµ = 0 does not hold in the non-abelian case, and this

is related to the nonexistence of a conserved current. Instead, we use the BRST current to

construct Slavnov–Taylor identities, which can be used to prove decoupling just like the Ward

identities. The Slavnov–Taylor identities also ensure the gluon remains massless, as the Ward

identities did for the photon.

• To see the role of the ghosts, note that the optical theorem relates a loop amplitude to a

production amplitude squared, where the latter sums over physical external particles. Only

two gauge boson polarizations are physical, but all four run around the loop. To maintain the

optical theorem and hence unitarity, the ghosts also run around the loop with an extra factor

of −1, canceling the unphysical polarizations. In the abelian case, the ghosts aren’t necessary

because the unphysical polarizations contribute nothing to loop amplitudes.

11.5 Perturbative Renormalization

Next, we show the non-abelian gauge theories are asymptotically free. We continue to follow the

Peskin and Schroeder conventions.

• By the same reasoning as in QED, the gauge boson propagator is

Dµνab
F (p) =

−iδab

p2 + iϵ

(
ηµν − (1− ξ)p

µpν

p2

)
.

The propagator is diagonal in color space. Incoming gauge bosons get ϵaµ(k, λ) and outgoing

gauge bosons get ϵ∗aµ(k, λ).

• Next, in our convention the gauge boson interaction terms are

L ⊃ gfabcηνρ∂µAaνAbµAcρ −
g2

4
fabcfadeηµρηνσAbµA

c
νA

d
ρA

e
σ.

For the cubic Feynman rule, note that every interaction comes with an automatic factor of

i, while the derivative contributes −ipµ for incoming momentum p. There are six distinct

contractions, yielding:
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• As for the quartic interaction, there are 4! ways to perform the contractions. It turns out that

they come in identical groups of 4, canceling the 1/4 factor and giving six terms:

• Next, when we include matter fields in a representation ta, they have the interaction

where again our convention’s sign is flipped. The propagator is the same as usual, with an extra

δij in flavor space.

• Finally, we consider the ghost fields, where

L ⊃ ca(−∂µDµc)
a = ca(−∂2δab)cb + gfabcca∂µ(Abµc

c).

The resulting Feynman rules are shown below.

The propagator is just the usual one, but it has a direction because the ghosts are fermionic;

also note that a ghost loop contributes a factor of −1. To get the ghost vertex, we integrate by

parts to put the derivative on ca. Also note that here, p is outgoing rather than incoming.

Next, we briefly discuss the “group theory” factors that appear in amplitudes.

• In QED, we saw that the spinor-related parts of amplitudes could be constructed by following

every fermion line, then writing the entries right-to-left. Similarly, in QCD, we get color factors

by following the quark lines, with a generator ta every time a gluon attaches. The ordering is

the same: reading matrix indices along the fermion line will give them ordered right-to-left.

• We also get color factors from gluons, since they themselves are colored. These yield products

of structure factors, which are essentially matrix products in the adjoint representation, since

(taA)
bc = ifabc.
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• We define the Dynkin index and quadratic Casimir as

tr(taRt
b
R) = T (R)δab, taRt

a
R = C(R)

with implicit summation over repeated indices and an identity in the second result. Conven-

tionally, we normalize the generators so that

T (F ) =
1

2

which implies that

C(F ) =
N2 − 1

2N
=

4

3
, T (A) = C(A) = N = 3.

Here F stands for the fundamental representation.

• We also often get factors of the dimensions of these representations,

d(F ) = N = 3, d(A) = N2 − 1 = 8.

Further rules for computing these constants are given in the lecture notes on Group Theory,

but these will suffice for our purposes.

Example. The process qg → qg at tree level. There are three diagrams:

which are in the s-channel, u-channel, and t-channel respectively. We’ll focus on the color factors,

since the kinematics are quite complicated. Setting the quark mass to zero for simplicity, we have

Ms = g2us′(p2)/ϵ
∗
2

i(/p1 + /p2)

s
/ϵ1us(p1) t

b
jkt

a
ki

and

Mu = g2us′(p2)/ϵ1
i(/p1 − /q2)

u
/ϵ∗2us(p1) t

a
jkt

b
ki

and

Mt = g2us′(p2)γ
µus(p1)

(
−i
t

)
fabctcjiϵ

∗
2
ρϵν1 (η

νρ(q1 + q2)
µ + ηρµ(q1 − 2q2)

ν + ηµν(q2 − 2q1)
ρ) .

where repeated color indices are not summed. Upon squaring, and summing over final spins and

averaging over initial spins, we get complicated expressions involving traces of up to eight gamma

matrices, which can be simplified using the Clifford algebra. Ignoring this, we get, for example,

|Ms|2 ∼ (tbta)ji(t
bta)∗ji = (tbta)ji(t

bta)†ij = (tbta)ji(t
atb)ij .

Summing over final colors and averaging over initial colors, and keeping only the color factor,

|Ms|2 ∼
1

3

1

8
tr(tbtatatb) =

1

24
d(F )C(F )2 =

2

9
.

https://knzhou.github.io/notes/grp.pdf
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As another example, we have

|Mt|2 ∼
1

24
fabcfabd tr(tctc) =

1

24
T (F )fabcfabc =

1

24
T (F )C(A)d(A) =

1

2
.

As a final example,

MtM∗
s ∼

1

24
fabc tr(tatbtc) =

1

48
fabc tr(ta[tb, tc]) =

i

48
fabcf bcd tr(tatd) =

i

48
C(A)d(A)T (F ) =

i

4
.

Now we proceed to computing the beta function of Yang–Mills. (todo)

•

•

•
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12 Solitons

12.1 Kinks

We begin with a brief introduction to solitons.

• Solitons are stable, spatially localized smooth solutions of classical PDEs. We will focus on

their description in classical field theory. Often, we will find that they “connect distinct vacua”,

giving them topological stability. The solitons have a topological charge that makes them

distinct from the vacuum.

• To have soliton solutions, we need nonlinear equations, which can be achieved by nontrivial

interactions between fields, or by self-interaction, as in ϕ4 theory.

• Solitons can be quantized, at which point we can interpret them as particles. For example,

solitons carry energy and momentum. By Lorentz invariance, a stationary soliton with energy

E0 can be boosted to yield moving solitons, obeying

E2 = p2 +m2

where the mass of the soliton is m = E0. Solitons can also interact with each other like particles.

• However, solitons cannot be seen by perturbing about a vacuum state. Instead, we fix a soliton

solution and treat it as a background for quantization. This is difficult, as we typically can’t

write down exact soliton solutions; we won’t consider this subject too closely.

• Another feature that distinguishes solitons is that ordinary quantum particles have masses

proportional to ℏ, since E = ℏω, while the masses of solitons are independent of ℏ.

• We will focus on a few types of solitons, all in relativistic field theory.

– In one spatial dimension, we have kink solutions.

– In two spatial dimension, we have vortices. We will also investigate solitons in nonlinear σ

models.

– In three spatial dimensions, we have Skyrmions.

Nonrelativistic solitons include domain walls in ferromagnets and two-dimensional “baby”

Skyrmions in exotic magnets. Solitons also appear in cosmology, where we can have domain

walls, cosmic strings, and monopoles.

• Skyrmions are solitons in an effective field theory of interacting pions, representing the (fermionic)

nucleons. They were pioneered by Skyrme, who had the strong philosophical opinion that all

fermionic fields had to be emergent in this way. Though the skyrmion approach is not particu-

larly accurate in real QCD, it was famously shown by Witten to be a good description in the

large Nc limit.

• Finally, we comment on quantization. Typically, for a field whose particles have mass m and

coupling g, solitons classically have energy and size

E ∼ m

g
, ℓ ∼ 1

m

in natural units; this will hold for our examples below.
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• Then the Compton wavelength of a soliton is

λ ∼ 1

E
∼ gℓ.

Therefore, we don’t expect quantization to significantly affect the soliton when the coupling is

weak; we simply find perturbative corrections to E. The fact that E diverges as g → 0 also

indicates the solitons cannot be seen in perturbation theory.

• We can also have some insight in the strong coupling regime. For example, the sine-Gordan

theory and massive Thirring model are dual, with strong coupling in one mapping to weak

coupling in the other, and solitons exchanging with elementary particles. Hence there is no

intrinsic difference between an elementary particle and a soliton; all that matters is which

viewpoint is more convenient for calculation in a particular regime.

Next, we introduce the basic kink solution.

• We work in 1 + 1 dimensions with metric diag(1,−1). The action is

S =

∫
d2x

(
1

2
∂µϕ∂

µϕ− U(ϕ)

)
.

The equation of motion is

∂µ∂
µϕ+

dU

dϕ
= 0

which is called a nonlinear Klein-Gordan equation.

• For explicit calculations, it will be useful to work ‘nonrelativistically’. We define ϕ̇ = ∂ϕ/∂t

and ϕ′ = ∂ϕ/∂x with

L = T − V, T =

∫
1

2
ϕ̇2 dx, V =

∫
1

2
ϕ′2 + U(ϕ) dx.

• We are interested in static solutions, which obey ϕ′′ = dU/dϕ. We choose the potential

U(ϕ) =
1

2
(1− ϕ2)2

so two static solutions to the field equations are the vacua ϕ(x) = ±1. There are soliton

solutions that connect these vacua.

• There are plenty of other choices, such as

U(ϕ) = 1− cosϕ

which is called the sine-Gordan theory since the field equation contains sinϕ. This theory is

integrable, which means that we can find explicit exact solutions involving interacting solitons.

• Sticking with our original choice, the field equation is

ϕ′′ = −2(1− ϕ2)ϕ.
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This is a nonlinear second order differential equation, so instead we think in terms of energy.

By Noether’s theorem, we have a conserved energy

E =

∫
1

2
ϕ̇2 +

1

2
ϕ′2 + U(ϕ) dx

which is simply V for a static solution. For static solutions, the action is proportional to V and

is also extremized, which means that E is minimized.

• We shift U(ϕ) so that it is nonnegative, and its minimum value is zero. Then finite energy

solutions have fixed boundary conditions U(±∞). Now, we define the function W by

U(ϕ) =
1

2

(
dW

dϕ

)2

.

Now the energy is quadratic, so we may complete the square for

E =
1

2

∫
ϕ′2 +

(
dW

dϕ

)2

dx

=
1

2

∫ (
ϕ′ ∓ dW

dϕ

)2

dx±
∫
dW

dϕ

dϕ

dx
dx

=
1

2

∫ (
ϕ′ ∓ dW

dϕ

)2

dx± (W (ϕ(∞))−W (ϕ(−∞))).

• Since the second term is fixed, the energy is minimized if the first term vanishes, so

ϕ′ = ±dW
dϕ

while the energy of the solution is

E = ±(W (ϕ(∞))−W (−∞))

where we take the positive solution. Moreover, any soliton will have at least this energy; this is

an example of a so-called Bogomolny bound.

• Note that the equation ϕ′′ = dU/dϕ for static solutions is equivalent to that of a particle of

unit mass and position x(t) in the potential −U . This is just like the situation for instantons,

and provides some intuition.

• In the case of the ϕ4 kink, we have

W = ϕ− 1

3
ϕ3.

Fixing the boundary conditions ϕ(∞) = 1 and ϕ(−∞) = −1, we have E = ±4/3. Since the

energy is positive, we take the plus sign, so M = 4/3 and

ϕ′ =
dW

dϕ
= 1− ϕ2, ϕ(x) = tanh(x− a)

where a is a constant of integration, the position of the soliton. We thus call a a modulus (or

collective coordinate) of the solution, and the set of possible moduli is the moduli space; in this

case it is R.
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• We can also have moving kink solutions, by simply performing a Lorentz transformation,

ϕ(x, t) = tanh γ(x− vt).

It is useful to focus on slowly moving solitons. Then

ϕ(x, t) ≈ tanh(x− a(t)), a(t) = vt

which looks like a static solution with a time-dependent modulus.

• We can write the action in terms of the time-varying modulus in this ‘adiabatic’ approximation.

We have ϕ̇ = −ȧϕ′, so
T =

∫
1

2
ϕ̇2 dx =

1

2
ȧ2
∫
ϕ′2 dx =

1

2
Mȧ2

where the final result can be simply written down using Lorentz invariance or computed by

an ugly integral. Alternatively, the Bogomolny equation shows that the two terms in the E

integral above contribute equally, which means that the integral of ϕ′2 is just M .

• Meanwhile, V doesn’t depend on ȧ, so it is simply 4/3, and we have the particle Lagrangian

L =
1

2
Mȧ2 − 4

3

This is an ‘effective field theory’ style approach; we are restricting our variational problem in

field space to a ‘valley’ given by static solutions, parametrized by a(t).

• The soliton Lagrangian has the equation of motion

Mä = 0, a(t) = vt+ a0

which is exactly what we found above. Geometrically, we can think of the equation of motion

as the geodesic equation on the moduli space R, where M specifies the metric. This is trivial

here, but generalizes to higher-dimensional systems and multi-soliton dynamics.

• In general, zero modes arise whenever a soliton breaks a symmetry in the Lagrangian; in this

case the soliton breaks translational symmetry. Later we’ll see more complex examples where

a soliton breaks an internal symmetry, i.e. it carries a conserved charge.

12.2 Dynamics of Kinks

Next, we consider interactions of kinks.

• In our current theory, there aren’t multi-kink solutions. However, we can ask how a solution

consisting of a kink and anti-kink behaves.

• First, it’s useful to look at conserved quantities. We have

Tµν = ∂µϕ∂νϕ− δµνL.

The energy is the integral of T 0
0 , giving the same result we found earlier. The momentum is

P = −
∫
T 0

1 dx = −
∫
ϕ̇ϕ′ dx.
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For our moving kink solution ϕ = tanh(x− a(t)) we have, by the same tricks as above,

P =Mȧ

which is what we would expect for a particle of mass M .

• Next, we would like to compute the interaction force between a widely separated kink and

antikink, as only this regime is analytically tractable. Let the kink and antikink be located at

±a, and let b be a point in between them far away from each of them; we’ll show the result

doesn’t depend sensitively on b. We define the momentum of the kink as

P = −
∫ b

−∞
ϕ̇ϕ′ dx.

By conservation of energy-momentum we have

∂tT
0
1 + ∂xT

1
1 = 0.

• The force on the kink is defined as

F = Ṗ = −
∫ b

−∞
∂tT

0
1 dx =

∫ b

−∞
∂xT

1
1 dx = T 1

1 (b) =

(
−1

2
ϕ̇2 − 1

2
ϕ′2 + U

)
x=b

• To make further progress, we need to explicitly write down ϕ. An approximate solution is

ϕ(x) = tanh(x+ a)− tanh(x− a)− 1 ≡ ϕ1 + ϕ2 − 1

as long as a≫ 1. We will assume that the kinks are initially at rest, ϕ̇ = 0, though they will

begin moving as they exert a force on each other.

• Next, at the point b, ϕ2 − 1 and hence ϕ′2 are small, so we expand to first order in them,

F =

(
−1

2
ϕ21 + U(ϕ1)− ϕ′1ϕ′2 + (ϕ2 − 1)

dU

dϕ
(ϕ1)

)
x=b

.

The first two terms cancel out by the Bogomolny equation; physically they must cancel because

a kink cannot exert a force on itself.

• Next, the field equation gives (dU/dϕ)(ϕ1) = ϕ′′1, so we have

F = (−ϕ′1ϕ′2 + (ϕ2 − 1)ϕ′′1)x=b.

This is as far as we can go without using the explicit solution.

• To keep the calculations manageable we use the asymptotic form of tanh,

ϕ1(x) ∼ 1− 2e−2(x+a), ϕ2 ∼ 1− 2e2(x−a)

which is valid when x is far from both ±a. The factors of 2 here are called the ‘amplitude of

the tail’. Plugging this in and simplifying,

F = 32e−4a

where the value of b drops out.
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• To understand this solution better, we restore parameters to find

F = 2m2A2e−ms

where s = 2a is the separation, A is the amplitude of the tail, and m is the mass of the quanta

in the theory. But this looks just like the result from tree-level exchange of quanta of mass

m. Physically, applying perturbation theory makes sense because the interaction happens at b,

where the field is close to vacuum.

• Evidently, the kink and antikink attract, eventually colliding. We have to resort to numerics

to find what happens. Generally, if the kinks are moving slowly, they annihilate into ‘meson

radiation’. If they are moving very quickly, they can bounce off each other.

Next, we turn to kinks in sine-Gordan theory.

• In this case, the potential has minima at multiples of 2π,

U(ϕ) = 1− cosϕ,
dW

dϕ
= 2 sin

ϕ

2
.

The Bogomolny equation is

dϕ

dx
= 2 sin

ϕ

2
, ϕ(x) = 4 tan−1(ex−a)

which describes a kink that interpolates between 0 and 2π, with M = 8.

• However, there is no solution to the Bogomolny equations which interpolates between 0 and

4π. The reason is that sine-Gordan kinks repel each other (since we know a kink and antikink

attract), no matter how far apart they are. Thus the energy can be continually lowered by

bringing the kinks further apart; there are no static multi-kink solutions.

• We can describe dynamical multi-kink solutions. One explicit example is

ϕ(x, t) = 4 tan−1 v sinh γx

cosh γvt
.

Physically, the kinks move towards each other until t = 0, then bounce off each other, so

evidently they repel. There is also a “breather” solution consisting of a kink and antikink

bound together and oscillating.

• We might expect that a system of many kinks and antikinks, all with different velocities, will

behave in a complicated way. Numerical simulations indicate that the result is simple; there is

no energy loss due to “radiation”. This is because the sine-Gordan theory is integrable.

• Since everything is periodic modulo 2π, we can choose to physically identify ϕ ∼ ϕ+ 2π. Then

we have ϕ : R→ S1 and the boundary condition is ϕ(x) = 0 at infinity.

• For a topological approach to classifying solitons, we can compactify R to get ϕ : S1 → S1, and

solitons are classified by their winding number, i.e. their homotopy class in π1(S
1). We call this

winding number the topological charge Q.
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• We can also take a “physics” style approach. Define the topological current

jµ =
1

2π
ϵµν∂νϕ =

1

2π
(∂xϕ,−∂tϕ), ϵ01 = 1.

This current is conserved by the symmetry of mixed partial derivatives. This is remarkable

because it is completely independent of the field equations, making its conservation topological

rather than dynamical.

• The conserved charge associated with the current is

Q =

∫
j0 dx =

1

2π

∫
∂xϕdx

which is simply the topological charge Q as defined earlier.

• Finally, we can define Q geometrically. The target space S1 has a normalized volume form∫
S1

ω = 1

where one example is ω = dϕ/2π.

• Given a mapping ϕ : R→ S1 we can pullback the volume form,

ϕ∗ω =
1

2π

dϕ

dx
dx

and we define the degree of the map to be

Q =

∫
R
ϕ∗ω =

1

2π

∫
dϕ

dx
dx

which agrees with the previous expressions.

Next, we briefly discuss quantization of the kink.

• At the simplest level, we can use the moduli space approximation,

L =
1

2
Mȧ2, H =

P 2

2M

and hence upon canonical quantization we get the ordinary Schrodinger equation for a free

particle of mass M . Stationary states take the plane wave form

ψ(a) = eika, P = ℏk, E =
ℏ2k2

2M
.

Note that the wavefunction is on the moduli space.

• More properly, we would quantize the field about a kink solution; this is similar to quantizing

a field in a curved spacetime, in that we just generalize the usual plane-wave mode expansion.

For example, one can form wavepackets far from the kink that don’t feel it at all, while there

are also modes that are “bound to the kink”, and look like the kink’s shape wobbling.
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• The zero-point energies of these modes provide an infinite renormalization of the kink mass.

This is acceptable, since we get a finite result when we subtract it against the zero-point energy

of the vacuum solution. The remainder is a finite shift to the kink mass, which is indeed small

when the coupling is weak.

• This computation will be complicated by the presence of zero-frequency modes. These corre-

spond to moduli, and we can’t ignore them; they remain important even when the coupling

goes all the way to zero. Accounting for the moduli alone and ignoring all other terms in the

Lagrangian is exactly what we did above.

• Another way to see the weak coupling requirement is to say that the soliton is essentially

unchanged by quantization if there is a length scale L, much smaller than the kink size, where

the size of the quantum fluctuations is small; this is the same requirement to treat the electro-

magnetic field classically. One can show explicitly this is equivalent to weak coupling.

• In the case of strong coupling, the soliton typically survives in the quantum theory, but it

doesn’t behave anything like the classical soliton.

12.3 Vortices

We will first attempt to find vortices in the simplest possible model, a complex scalar field in 2 + 1

dimensions.

• We take the Lagrangian

L =
1

2
(∂µϕ)

∗(∂µϕ)− λ

4

(
|ϕ|2 − µ2

λ

)2

where the potential is minimized for |ϕ| = v =
√
µ2/λ.

• We expect solitons on topological grounds. Letting ϕ = ρeiα and defining the winding number

N =
1

2π

∫
C
dℓ · ∇α

we find that N takes integer values. On the other hand, it appears that N must be zero if ϕ is

non-singular since we can shrink the loop to zero. Thus for N to be nonzero, there must be at

least one point where ϕ vanishes. The solutions with nonzero N = n are topologically stable

with vorticity n ∈ Z.

• To make further progress we must solve the field equations

∇2ϕ− λ(|ϕ|2 − v2)ϕ = 0.

We will try the rotationally symmetric ansatz ϕ(x) = f(r)eiθ. Also, if we demand symmetry

by a reflection about the x-axis followed by complex conjugation, f(r) must be real.

• There is a general reason the ansatz will work. Naively, taking an ansatz makes the equations

of motion overdetermined, so we generically have no solutions at all. But suppose the action is

invariant under a group of transformations G, and the ansatz has the most general possible form

invariant under G. A variation of the ansatz can be decomposed into a part that is G-invariant
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and a part that is not, where the second part averages to zero upon integration. Thus the

only nontrivial equations of motion come from G-invariant variations, so the ansatz has enough

parameters to generically yield a solution. A similar principle in quantum mechanics is that

energy eigenstates have the symmetries of the Hamiltonian.

• However, we do need to look at variations that are not G-invariant to determine whether G-

invariant solutions are stable, since physically there will be external influences that slightly

break the symmetry.

• Now, plugging into the equations of motion gives a single equation for the single function f ,

d2f

dr2
+

1

r

df

dr
− f

r2
+ λ(v2 − f2)f = 0

so we indeed get a solution, by the general reasoning above, with f(0) = 0 and f(∞) = v.

• However, the solution has infinite energy, because

E ⊃
∫
d2x

1

2
|ϕ|2(∇θ)2 ∼

∫
dr

r

which diverges logarithmically. Such configurations could be physically relevant, i.e. we would

have a finite energy per vortex if we had a finite density of vortices, but a single vortex is not

physically meaningful.

It’s possible to understand this result using general scaling reasoning.

• The energy of a finite-energy, static solution ϕ can be written as E = IK+IV where the gradient

energy/“kinetic energy” IK is bilinear in the first derivatives of ϕ and the potential energy IV
is an integral of V (ϕ).

• Now consider the scaled field ϕ(x) = ϕ(λx). In D spatial dimensions,

E(λ) = λ2−DIK + λ−DIV .

Since ϕ is a static solution, it locally minimizes the energy, so dE/dλ = 0 at λ = 1, giving

0 = (D − 2)IK +DIV .

This places strong restrictions on solitons.

– For D = 1, we get IK = IV , which is a generalization of a result we found earlier.

– For D = 2, we require IV = 0. This rules out non-singular solitons in our model above,

since ϕ must vanish at some point, so we cannot have |ϕ| = v everywhere. Solitons can exist

in more complicated models, such as the O(3) sigma model. However, then E(λ) = λ2−DIK
is independent of λ, so the soliton is neutrally stable against expansion and contraction.

– For D ≥ 3, we require IK = IV = 0, so the only solution is the constant vacuum solution.

This result is a version of Derrick’s theorem, and forbids simple solitons in D > 1.
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• Solitons can evade Derrick’s theorem in several ways. They can have infinite energy (as for our

vortices), they can necessarily vary in time (which we won’t consider), or they can be unstable

or neutrally stable against compression, as we saw for D = 2. In this last case, however, this

means we don’t actually have stable solitons at all: when the soliton size shrinks close to the

lattice cutoff, the topological obstruction fades away and the soliton can vanish entirely.

• Thus, in order to have stable finite-energy static solitons, we must add more structure to the

theory. One example is an abelian Higgs model, where the energy is now

E = IF + IK + IV , IF =
1

2

∫
dDx trF 2

ij , IK =
1

2

∫
dDx (Djϕ)

∗(Djϕ).

The new term IF transforms differently under scaling.

• We now consider the scaled fields

ϕ(x) = ϕ(λx), A(x) = λA(λx)

where the factor of λ is necessary to maintain the functional form of IK . Then

E(λ) = λ4−DIF + λ2−DIK + λ−DIV

which is stationary at λ = 1 if

(D − 4)IF + (D − 2)IK +DIV = 0

which allows soliton solutions in D = 2 and D = 3.

• Note that in pure Yang–Mills, we have only IF , in which case a neutrally stable soliton exists

only when D = 4. These solitons are just Yang–Mills instantons in spacetime dimension d = 4,

after a Wick rotation to D = 4. The neutral stability indicates that instantons have any size.

We will next investigate vortices in the abelian Higgs model in 2 + 1 dimensions.

• We have a complex scalar field ϕ and a U(1) gauge potential aµ with

L = −1

4
FµνF

µν +
1

2
(Dµϕ)

∗(Dµϕ)− λ

4

(
|ϕ|2 − µ2

λ

)2

, Dµϕ = ∂µϕ+ ieAµϕ.

The gauge transformations take the form

ϕ(x)→ eieΛ(x)ϕ(x), Aµ(x)→ Aµ(x)− ∂µΛ(x).

Under such a gauge transformation, the winding number transforms as

N → N +
e

2π

∫
C
dℓ · ∇Λ = N

as long as Λ is nonsingular and single-valued, so our topological argument still works.
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• Taking spatial components with ϕ = ρeiα, we find

Dϕ = eiα(∇ρ+ iρ(∇α− eA))

which means the gradient energy is zero at large distances if

A =
1

e
∇α.

Hence the energy does not diverge as it did above.

• Evaluating the winding number by a loop at large r, for a solution with vorticity n,

n =
1

2π

∫
C
dℓ · ∇α =

e

2π

∫
C
dℓ ·A =

e

2π

∫
d2xB, Φ =

2πn

e

so we find a quantized magnetic flux. Since the field is pure gauge at large r, the flux is localized

at small r.

• We now consider a static vortex solution with n = 1. We work in the gauge A0 = 0 and take

the ansatz

ϕ(x) = veiθf(evr), Aj(x) = ϵjkx̂
k a(evr)

er

where f and a are real. This is the most general ansatz with the same symmetries we used for

the global vortex case. The boundary conditions are

f(0) = a(0) = 0, f(∞) = a(∞) = 1

which ensure the vortex is nonsingular at the origin, and has finite energy.

• There is no closed-form analytic solution, but the form of the solution is intuitive. When |ϕ| ≠ 0,

the gauge field acquires a mass, so it is energetically costly to have a magnetic field. Hence it

is localized near the origin, where |ϕ| is small. Since the magnetic energy depends on B2, it

favors a larger vortex core, but the potential for ϕ favors a smaller vortex core. The relative

strength of these two effects is determined by the ratio λ/e2.

• Also note that the same vortex solution can be written in other gauges, though it will no longer

appear rotationally symmetric.

Next, we consider multiple vortices.

• We may also consider the interaction of vortices. Two vortices will interact through both the ϕ

field and the Aµ field. Since the former is spin zero, it mediates a universally attractive force,

while the latter makes like-charged vortices repel. Hence at large distances, the interaction is

determined by the field with the slower falloff; the vortices attract if and only if mϕ < mA, or

equivalently λ/e2 < 1/2.

• It’s harder to say what will happen at smaller distances, since the problem becomes nonlinear,

but numerical simulations indicate that the sign of the force only depends on whether mϕ/mA

is greater or less than one. When they are equal, vortices don’t interact at all, and there are

static solutions with multiple vortices.
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• Otherwise, such static solutions don’t exist, but we can still find a static solution consisting

of a single vortex with n > 1. However, when the force between vortices is repulsive, such a

vortex is not energetically stable.

• This result is important for superconductivity, which is described by the same theory, but in

three dimensions; our vortices are replaced with vortex lines. Consider forcing a magnetic flux

through a superconductor by applying a field; it will then be energetically favorable to form

vortices.

• In a type I superconductor, the superconductivity is lost at a relatively low external field, while

a type II superconductor can persist up to a much higher field in a mixed state where the flux is

confined to separated vortex lines. Physically, type I superconductors have λ/e2 < 1/2, so the

vortex lines attract, combining into extended regions where the superconductor breaks down.

In a type II superconductor they repel, forming a lattice.

12.4 Vortices and Homotopy

Next, we formalize our statements with homotopy theory.

• We consider a theory with symmetry group G broken down to H, so the vacuum manifold

is M = G/H. In two spatial dimensions, we consider a loop at spatial infinity (or at least

well-separated from the vortex cores), which yields a loop in field space. Then naively, if this

loop is not homotopic to the trivial loop, it must contain a soliton.

• However, there is a subtlety in this standard argument. When we consider homotopy of loops,

we deform the loop while fixing a base point. However, when we consider the stability of solitons,

we allow arbitrary variations of the field; there is no point on the loop where the field value is

fixed. We are considering loops up to “free homotopy”.

• As a specific example, consider the setup shown below.

The loops f and g are not homotopic, but they are related by g ∼ afa−1. Hence they are freely

homotopic. More generally, the set of loops up to free homotopy is the set of conjugacy classes

of π1(M).

• Note that the set of conjugacy classes is not a group! Given multiple vortices, there are multiple

paths that go around all of them, whose corresponding loops lie in different conjugacy classes.

• We must also account for gauge invariance. One can show that the freedom due to gauge

transformations keeps loops within the same free homotopy class, so we don’t have to further

modify our conclusions.
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• Below, we will focus on the abelian case, where these subtleties do not appear, as all conjugacy

classes have one element. In this case, the quantum numbers of vortices simply add.

Example. In the models above, the symmetry group was U(1) and completely broken, soM = U(1),

and π1(M) indexes the vortices.

Example. Consider SO(n) broken to SO(n− 1), which occurs when a scalar field transforming in

the vector representation of SO(n) acquires a vev. ThenM = Sn−1 and for N ≥ 3, π1(M) = 0, so

there are no topologically stable vortices.

Example. Consider an SO(3) gauge theory with two scalar fields transforming in the vector

representation, with the potential

V (ϕ,χ) =
λϕ
4
(ϕ2 − v2ϕ)2 +

λχ
4
(χ2 − v2χ)2 + g(ϕ · χ)2.

If g is negative, the vevs are parallel, and the symmetry is broken to U(1). If g is positive they

must be orthogonal, so the SO(3) symmetry is completely broken, soM = SO(3) and π1(M) = Z2.

Hence we have Z2 vortices, where a combination of two is topologically trivial. A simple ansatz is

ϕ= vϕ(0, 0, 1), χ= vχf(r)(cos θ, sin θ, 0), Aj = ϵjkx̂
k a(r)

r
(0, 0, 1)

where the latter two are just an embedding of the U(1) gauged vortex.

Note. Consider the case vϕ ≫ vχ above. Then if we integrate out the ϕ field, we are left with a

U(1) gauge theory, and a combination of two vortices is topologically stable, even though it isn’t

in the original SO(3) gauge theory. This is due to energetics. The deformation that takes two Z2

vortices to the untwisted configuration must involve a non-constant ϕ field at intermediate stages,

but if vϕ ≫ vχ this has a very large energy cost. The lesson here is that topological stability is not

absolute; it can be ‘effective’ like everything else in field theory.

Note. There is some freedom in the gauge groups. In the previous example, we could have taken

gauge group SU(2), in which case a Z2 symmetry would remain when g > 0. We get the same

vacuum manifold, asM = SU(2)/Z2 = SO(3).

Example. The electroweak sector of the Standard Model has

G = SU(2)× U(1), H = U(1), M = S3

because the Higgs vev can take any value with the same norm. Since π1(S
3) = 0, there are no

topological vortices. On the other hand, consider a theory with a local U(1) symmetry but only a

global SU(2) symmetry. Then a vortex configuration with

ϕ =

(
0

f(r)eiθ

)
is indeed topologically stable, as unwinding it would cost an infinite amount of SU(2) gradient

energy. Such a vortex is called a semilocal vortex. As before, we must have f(0) = 0 to avoid a

singularity.
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However, the semilocal vortex has a different source of instability. Recall that we can use a local

SU(2) symmetry to set the upper component of ϕ to zero everywhere, without loss of generality.

With a global SU(2) symmetry, we must consider the more general possibility

ϕ =

(
g(r)

f(r)eiθ

)
.

The scalar potential is minimized if f2 + g2 = v2, so a vortex may be unstable to the formation of

larger and larger regions where f(r) = 0, as long as g(r) = v. By the topological arguments, the

vorticity must still remain at spatial infinity, but it will become unobservable at any finite radius.

This instability occurs when the U(1) gauge coupling is small compared to the scalar self-coupling.

Example. Alice strings. Consider an SO(3) gauge theory with a Higgs field in the 5, i.e. an

traceless symmetric 3× 3 matrix transforming as

ϕ→ RϕRT .

Also suppose that V (ϕ) is minimized when two of its eigenvalues are equal, so

ϕ = R diag(a, a,−2a)RT = a(1− 3eeT ), e = Re0.

Then the vacuum manifold is S2/Z2 with fundamental group Z2. To find the unbroken gauge group,

note that the vacuum remains invariant under rotations about the e axis, but it is also invariant

under a π rotation about the e′ axis, where e′ is an arbitrary vector perpendicular to e. These

operations do not commute; instead the group is

U(1)⋊ Z2 = Pin(2).

Of course, these results are consistent with the general principleM = G/H.

Now consider a vortex solution described by e(θ) = R(θ)e0 at large distances. If R(θ) traverses

a nontrivial path through S2/Z2, then the vortex is topologically stable. If it is present, it is

not possible to define the charge of a particle under the unbroken U(1) subgroup unambiguously,

because it is generated by rotations about e, and following e around a circle flips the sign. In order

to remove the ambiguity, one may perform a gauge transformation so that e is constant everywhere,

except for a “branch cut” running out to infinity, across which it flips. Then we may say the sign

of the charge flips upon crossing the branch cut. In three dimensions, the vortices become strings,

and the branch cuts become surfaces. The location of the surface is not gauge invariant, but its

existence is, leading to the term “Alice strings”.

Now consider two charges and an Alice string that closes on itself to make a circular loop. We

consider two particles with the same charge starting next to each other; this is a physical statement,

as it means that, e.g. they cannot annihilate. If we transport one of them in a circle that goes

through the loop, it will come back with the opposite charge, and hence the two particles can

annihilate; hence this ambiguity in the charge has a real physical effect. We can define the total

charge of the system of the two charges and string at all times by a flux integral at infinity, and

this must be conserved, so charge must have been transferred to the string. But since the surface

associated with the string is arbitrary, it is meaningless to ask when the transfer occurred; hence

we have a system where the total charge is defined but cannot be unambiguously localized!
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Example. A non-abelian fundamental group. Consider the same theory as above, with a potential

that is minimized when the eigenvalues of ϕ are all distinct,

ϕ = R diag(a1, a2, a3)R
T , a1 ̸= a2 ̸= a3.

This vacuum is invariant under only the identity and rotations by π about the x, y, and z axes,

which form the Klein four group. To find π(M), it is more convenient to use the universal cover

G = SU(2). The unbroken groupH has eight elements, {±I,±σx,±σy,±σz} forming the quaternion

group. Since G is simply connected,

π1(G/H) = π0(H)

so the fundamental group is non-abelian.

12.5 Topological Defects

We begin by reviewing topological defects in general, in the SM and GUT theories.

• For a theory with vacuum manifoldM = G/H, the topological defects are classified by π0(M)

(domain walls), π1(M) (vortices/strings), π2(M) (monopoles), and π3(M) (textures).

• The behavior of these objects changes dramatically if there is gauge symmetry, as in the SM.

We call these defects with gauge symmetry “local”, in contrast to “global” textures.

• Only local strings and monopoles are interesting as cosmological defects, because global strings

and monopoles have infinite energy. However, collections of global strings or monopoles can

have finite energy and play a role in other contexts, such as the Kosterlitz–Thouless transition.

• The global/local distinction is not relevant for domain walls; one could add a discrete gauge

symmetry, but this doesn’t do much because it doesn’t produce a gauge field. Local textures are

a bit trivial because the field lies in the vacuum manifold at all points, so the energy vanishes.

Textures are instead interpreted as other vacuum states. (right? anything else?)

• In the SM, the relevant groups are G = SU(2)L × U(1)Y and H = U(1)A, andM∼= S3. (This

is easier to see by considering the possible states of the Higgs doublet, which takes values in

C2.) As a result, the only possible defects are local textures, which are not interesting.

• Using results from the notes on Geometry and Topology, for the SU(5) GUT, G is connected

and simply connected and H = SU(3)C × U(1)A, so

π1(G/H) = π0(H) = 0, π2(G/H) = π1(H) = Z.

This yields monopoles, but not other topological defects. But for more complex GUTs, symmetry

breaking generally occurs in multiple stages, and generically produces cosmic strings.

• Cosmologically, there are strong constraints on domain walls and (local) monopoles coming

from high-scale physics; both generically contain far too much energy and must be inflated

away if they appear. Cosmic (local) strings are acceptable, but CMB measurements show they

cannot play a dominant role in structure formation. Global textures were once hypothesized to

play a role in structure formation, but this has also been ruled out.

https://knzhou.github.io/notes/gt.pdf
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13 Anomalies

13.1 Pion Decay

We begin with an overview of anomalies.

• A anomaly is a symmetry of a classical theory that is not present in the quantum theory.

Specifically, anomalies mean the Ward–Takahashi identities will no longer hold. They arise

because the theory cannot be regularized without breaking the symmetry, or equivalently

because the path integral measure cannot be chosen to be invariant.

• Anomalies can apply to either gauge or global symmetries. A gauge anomaly is dangerous

because it destroys the Ward identities, and hence prevents the decoupling of unphysical states,

leading to violation of unitarity. Thus we must arrange our theories so that all gauge anomalies

cancel. Such a theory is called ‘anomaly free’.

• Global anomalies are not dangerous, and are instead ubiquitous. For example, the U(1)B baryon

number symmetry is anomalous, and this allows for nonconservation of baryon number, which

is required for baryogenesis.

• We will see that anomalies are infrared effects, resulting from massless particles in the spectrum.

This leads to the idea of anomaly matching, which relates the spectrum of massless particles

above and below a phase transition. In renormalizable gauge theories, anomalies arise exclusively

from chiral fermions.

• More specifically, consider a theory with gauge group G and global symmetry group G̃, with

currents jµ and j̃µ. It will turn out that anomalies can be computed by considering correlators

of three currents, each of which may be from G or G̃, at one-loop order with a massless particle

in the loop.

• For reasons that will become clear later, we will write, e.g. the anomaly resulting from three

jµ’s as tr(GGG). As a result, there are four important cases.

– tr(GGG) corresponds to an anomalous gauge symmetry, which is dangerous for the reasons

explained above. The Ward–Takahashi identities correspond roughly to ∂µj
µ ∼ FF̃ .

– tr(GGG̃) and tr(GG̃G̃) may correspond to either an anomalous gauge symmetry or an

anomalous global symmetry, depending on how we regularize the theory; for consistency

we always choose the latter. This results in a non-conserved global current, ∂µj̃
µ ∼ FF̃ .

For historical reasons, this is called a chiral anomaly.

– Note that many anomalies of this mixed form automatically vanish, because tr(Ta) = 0 for

any generator of a semi-simple Lie group.

– tr(G̃G̃G̃) corresponds to a ’t Hooft anomaly. These do not cause nonconservation of the

current, ∂µj̃
µ ∼ 0, because there is no associated gauge field. However, they are an

obstruction to gauging G̃. It is these anomalies that are used in anomaly matching.

– There are also linear/mixed/gravitational anomalies of the form tr(G grav2) or tr(G̃ grav2)

where two of the external legs are gravitons. These cause nonconservation of a current

in the presence of spacetime curvature. This can be understood in terms of the previous

anomalies by working with a vierbein, in which case coupling to gravity is like coupling to

an SO(3, 1) gauge field.
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• Since FF̃ is a total derivative term, one might think that an anomalous global symmetry still

has a conserved charge. However, this is not true if we account for instantons, the subject of

the next chapter, which can occur in non-abelian gauge theories. For gravitational anomalies,

there are also corresponding gravitational instantons.

• Finally, quantum field theories generically break scale invariance. In this case the anomaly is

called the trace anomaly, since scale invariance makes the energy-momentum tensor traceless,

and it is proportional to the β-function. Conformal field theories are trace anomaly free.

• Anomalies were first encountered in the computation of the decay rate for π0 → γγ, where the

chiral anomaly has an effect. In this context, it is also called an ABJ or axial anomaly.

• The anomalies we have described above are sometimes called “perturbative” anomalies, in the

sense that they can be computed using perturbative techniques. There are also more subtle

anomalies, such as Witten’s global SU(2) anomaly (not to be confused with the anomalies of

global symmetries we’ve considered above), which states that an SU(2) gauge theory with an

odd number of fermions in the fundamental representation is inconsistent.

First, we consider the decay π0 → γγ in the context of QCD with the up and down quark.

• An overview of the symmetries of the theory is given in the notes on the Standard Model. As

a quick summary, the symmetry group is

G̃ = U(1)L × U(1)R × SU(2)L × SU(2)R.

This is spontaneously broken to

G̃ = U(1)V × SU(2)V

by the formation of the quark condensate. The U(1)V symmetry is the total quark number,

while the symmetry U(1)EM ⊆ SU(2)V is gauged. The spontaneously broken symmetries U(1)A
and SU(2)A correspond to the η′ and the pions, respectively.

• However, we should also account for the quark masses. Equal masses for the up and down

quark break the symmetry group explicitly to

G̃ = U(1)V × SU(2)V

independent of the quark condensate. In this context SU(2)V is known as isospin. It is broken

by the up-down quark mass difference, which we neglect.

• Now, suppose the π0 couples to the proton ψ by the interaction

Lint = iλπψγ5ψ

and it decays to photons by a proton loop, where the proton has mass m.

• The two contributing diagrams are shown below.

https://knzhou.github.io/notes/sm.pdf
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The diagrams may be computed in the usual way. The amplitude is superficially divergent, of

the form
∫
d4k/k3, but the combination of the two terms turns out to be finite, with

M =
λe2

4π2m
ϵµνρσϵ1∗µ ϵ

2∗
ν q

ρ
1q
σ
2 , Γ =

α2

64π3
λ2m3

π

m2
.

• To make the result more quantitative, we need to find the value of λ. In the context of chiral

perturbation theory, this coupling is related at tree level to the nucleon mass by λ = m/fπ, so

Γ =
α2

64π3
m3
π

F 2
π

.

• The computation can also be done by current algebra. The key fact is that the neutral pion is a

Goldstone boson associated with the spontaneous breaking of SU(2)A. The three pions satisfy

⟨Ω|j5aµ (x)|πa(p)⟩ = ieipxFπpµ, j5aµ = Ψτaγµγ
5Ψ

where Ψ can be taken to be either (p, n) or (u, d). The neutral pion corresponds to a = 3.

• Now, if we had used Ψ = (u, d) instead, there would be contributions from both up quark loops

and down quark loops, of which there are N colors, giving an overall factor of

N
(
(2/3)2 − (1/3)2

)
=
N

3

in the amplitude, where the minus sign comes from the negative isospin of the down quark, and

we get q2 factors from the two photon vertices. Hence the pion decay rate was an early test

that N = 3 in QCD.

So far, nothing seems particularly confusing. But the anomaly appears when we try to reason about

the same process using chiral symmetry.

• Naively, if we integrated out ψ, we would get a term in the effective Lagrangian of the form

Leff ∼
1

4π2
e2

fπ
π0ϵµνρσFµνFρσ

where the fπ is by dimensional analysis, and the extra 1/4π2 is because we are dealing with a

loop effect. This would give a decay rate of the right order of magnitude.
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• However, the pion is a Goldstone boson of SU(2)A, and hence should not have a non-derivative

coupling in the limit that SU(2)A symmetry is exact. Strictly speaking, this symmetry is broken

by the quark masses, so the leading contribution to the term above has to be suppressed by a

factor of mu+md, giving a result which is too small. This paradox is explained by the anomaly:

the SU(2)A symmetry is broken, even in the limit of zero quark masses.

• We can easily see this phenomenon explicitly for the U(1)A symmetry. Since ψ has a mass m,

we classically expect that the U(1)A current is not conserved,

jµ5 = ψγµγ5ψ, ∂µj
µ5 = 2imψγ5ψ.

This basic fact holds whether we think of the loop as containing nucleons or quarks.

• However, the calculation we did above essentially says that

⟨A|ψγ5ψ|A⟩ = i
e2

32π2
1

m
ϵµνρσFµνFρσ

where Fµν is a background electromagnetic field. But then we have

⟨A|∂µjµ5|A⟩ = −
e2

16π2
ϵµνρσFµνFρσ

which means that the axial current is not conserved in a background electromagnetic field, even

when we take the mass m to zero! Thus, the U(1)A symmetry is anomalous.

• There is an analogous anomalous breaking of the SU(2)A symmetry, proportional to ϵµνρσFµνFρσ.

Under an SU(2)A transformation with a = 3, the π0 field shifts, δπ0 = θFπ. Tracking constant

factors, this implies that the effective interaction is

Leff ⊃ −
e2

16π2fπ
π0ϵµνρσFµνFρσ

which yields the correct pion decay rate.

• In the language above, the π0 decay rate is due to an SU(2)AU(1)2EM anomaly. As for U(1)A,

we showed that there is a U(1)AU(1)
2
EM anomaly, but there is also a U(1)ASU(3)

2
C anomaly.

Since QCD is strongly coupled, this explains why the η′ meson is so heavy.

• It turns out that higher-order QCD effects don’t modify the pion decay rate. This occurs

because the chiral anomaly is exact at one loop; the reason will become more apparent below.

13.2 Triangle Diagrams

Next, we compute the anomaly directly, starting with a massless Dirac fermion. In this case we

have the global symmetry U(1)A × U(1)V .

• We consider the correlation function ⟨jα5(x)jµ(y)jν(z)⟩. Under an axial transformation we

have δjµ = 0, so the Ward–Takahashi identity is simply

∂α⟨jα5(x)jµ(y)jν(z)⟩ = 0.

This correlator is closely related to the pion decay amplitude, but without the external lines or

the coupling constants.
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• Defining

iMαµν
5 (p, q1, q2)/δ(p− q1 − q2) =

∫
dx dy dz eipxeiq1yeiq2z⟨jα5(x)jµ(y)jν(z)⟩

and applying the Feynman rules, we find at one loop,

Mαµν
5 =

∫
d̄k tr

(
γµ

1

/k
γν

1

/k + /q2
γαγ5

i

/k − /q1
+

(
µ↔ ν

1↔ 2

))
.

• Using standard identities, we may show

pαM
αµν
5 = 4iϵµνρσ

∫
d̄k

(
kρqσ2

k2(k + q2)2
+

kρqσ1
k2(k − q1)2

)
+

(
µ↔ ν

1↔ 2

)
.

By Lorentz invariance the integrals must be proportional to qρ1q
σ
1 and qρ2q

σ
2 respectively, and

hence vanish when contracted with the Levi–Civita symbol. So naively it looks like the Ward–

Takahashi identity is obeyed.

• Similarly, by contracting with q1µ, we find

q1µM
αµν
5 = −4iϵµνρσ

∫
d̄k

(
(k − q1)ρ(k + q2)

σ

(k − q1)2(k + q2)2
− (k − q2)ρ(k + q1)

σ

(k − q2)2(k + q1)2

)
.

If we shift k → k + q1 in the first term and k → k + q2 in the second, the integral vanishes

identically, so naively it looks like the vector current is conserved as well.

However, these calculations are deceptive. If an integral is well-defined, the integration variable can

be shifted, but we haven’t done regularization yet. But our standard regulators don’t work, because

DR has trouble with γ5 and PV explicitly breaks chiral symmetry by introducing a massive fermion.

One can still make sense of linearly divergent integrals, but their value changes upon a shift.

• To see this, consider the integral

∆(a) =

∫
dx f(x+ a)− f(x)

where the integration bounds are ±∞, and f(x) goes to a constant at infinity. Naively the

integral is zero by shifting the first term, but by Taylor expanding we have

∆(a) =

∫
dx af ′(x) + higher derivatives = a(f(∞)− f(−∞))

where the higher derivatives don’t contribute since f goes to a constant at infinity. This result

holds regardless of whether or how we regulate f(x) at infinity.

• By similar reasoning, one can show that for the linearly divergent integral

∆α(aµ) =

∫
d̄k (Fα(k + a)− Fα(k)), lim

kE→∞
Fα(kE) = A

kαE
k4E

where kE is a Euclidean momentum, we have

∆α(aµ) =
i

32π2
Aaα

where the factor of i comes from Wick rotation.
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• Returning to the vector current calculation above, the quadratic divergences cancel, while for

the linear divergence gives

q1µM
αµν
5 =

1

4π2
ϵανρσqρ1q

σ
2 .

Hence it appears the vector current is not conserved. The resolution is that the definitions of the

loop momenta k are independent between the two contributing diagrams. In other words, by

choosing the k’s we did above, we had implicitly fixed a regularization scheme for the correlator.

• We may choose the vector current to be conserved by shifting k → k + q1 in the first diagram,

which fixes k → k + q2 in the second by Bose symmetry. Then the linear divergences cancel

exactly, but one can show that

pαM
αµν
5 =

1

4π2
ϵµνρσqρ1q

σ
2 .

Taking the most general possible shift k → k+ b1q1 + b2q2 it can be shown that it is impossible

to preserve both the vector and axial symmetry; we choose to preserve the former.

• To compare with what we found earlier, we can relate correlation functions to matrix elements

by LSZ reduction. The form of the LSZ reduction formula for photons is

⟨f |i⟩ = iϵµ
∫
dx e−ikx(−∂2) . . . ⟨Aµ(x) . . .⟩.

By the Schwinger–Dyson equation associated with the classical equation of motion −∂2Aµ = jµ,

⟨f |i⟩ = iϵµ
∫
dx e−ikx . . . ⟨jµ(x) . . .⟩+ contact terms

where the latter do not contribute to S-matrix elements and hence don’t matter here.

• Applying the LSZ reduction formula, we have

⟨q1, q2|jα5(p)|0⟩ = (ig)2ϵµϵ
′
ν (iM

αµν(p, q1, q2) /δ(p− q1 − q2)).

Therefore, contracting both sides with pα, we have

⟨q1, q2|∂αjα5(x)|0⟩ = −
g2

2π2
ϵµνρσq1ρq2σϵµϵ

′
νe

−i(q1+q2)z +O(g4)

where the higher-order terms vanish by the one-loop exactness of the anomaly. This is consistent

with the operator equation

∂µj
µ5 = − g2

16π2
ϵµνρσFµνFρσ.

Note. We haven’t proven the above operator equation; we only showed that a certain matrix

element of both sides matches. Below, we will use the path integral to give a more general proof,

which shows that the two sides are equal when placed inside any time-ordered correlation function.

The reason we hesitate to work with the actual operators is because they are difficult to define:

quantum fields are operator-valued distributions and hence two fields at the same point can’t be

multiplied, but jµ5 contains products of this form. In this case, we can “regularize” by point-splitting,

separating the two ψ fields in jµ5 and connecting them with a Wilson line,

jµ5 = lim
ϵ→0

ψ(x+ ϵ/2)γµγ5 exp

(
−ie

∫ x+ϵ/2

x−ϵ/2
dzµAµ(z)

)
ψ(x− ϵ/2).
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Taking the limit carefully proves the desired operator equation. This somewhat old-fashioned

approach is given in detail in chapter 19 of Peskin and Schroeder. In modern high-energy theory,

many simply circumvent this issue by working exclusively with the path integral. In this language,

an “operator” is just defined as any expression that can go under a path integral, and an “operator

equation” is defined to be any statement that holds underneath a path integral up to contact terms.

Note. As stated above, dimensional regularization has problems with γ5. So far, we’ve mostly

treated dimensional regularization as a series of ad hoc rules. That is, we assume that the trace

obeys the usual properties (linearity, cyclicity), and further assume that

{γµ, γν} = 2ηµν , {γ5, γµ} = 0, (γ5)2 = 1.

These properties can be used to derive others; for instance,

d tr γ5 = tr(γ5γµγµ) = − tr(γ5γµγ
µ) = −d tr γ5

which implies that tr γ5 = 0 for all d ̸= 0. If tr γ5 is to be meromorphic in d, then tr γ5 = 0 for all d.

If γ5 really could satisfy all these properties simultaneously, the axial anomaly would vanish,

but physical results would be incorrect. (As we’ve already seen, the axial anomaly is essential to

explaining the pion decay rate.) As another example, using the above properties, one can show that

(4− d) tr(γ5γµγνγργσ) = 0.

Under the same analyticity assumption, this implies that tr(γ5γµγνγργσ) vanishes for all d, which

makes many amplitudes vanish identically, giving incorrect physical results.

To avoid problems of this sort, we need to give a more constructive definition of dimensional

regularization. For example, Collins defines integrals in non-integer dimensions axiomatically in

chapter 4. One consistent way to define γ5 is to take γ5 = iγ0γ1γ2γ3 in all dimensions. This

formally means that γ5 anticommutes with 4 of the gamma matrices, and commutes with d − 4

of them, breaking Lorentz invariance. Practically, this means that to evaluate loop integrals, we

must split the loop momentum as ℓ = ℓ∥ + ℓ⊥, where the two pieces have 4 and d− 4 components,

respectively, and treat the latter piece like a typical dimensional regularization integral in d − 4

dimensions. This is used to derive the axial anomaly in chapter 19 of Peskin and Schroeder.

For more discussion about defining γ5, see chapter 13 of Collins, this paper, and this paper.

For instance, it turns out that one can proceed naively if one is only interested in amplitudes with

an even number of γ5’s. This is used in chapter 21 of Peskin and Schroeder to handle one-loop

computations in the Standard Model.

Now we reflect on our result.

• We see that we may choose which symmetry to preserve; we could also choose to preserve

neither. If we give the Dirac fermion a charge, we must choose the vector symmetry to be

preserved to avoid a gauge anomaly. If we give the fermion a mass, then axial symmetry is

automatically broken, so we might as well regulate with PV.

• The reason we considered this correlator was that taking more currents would yield divergences

weaker than a linear one. Also, we needed one or three axial currents, because we need an odd

number of γ5 matrices (otherwise they can cancel out and we can use DR) and at least one

vector current to check vector current conservation. However, we could also derive the axial

anomaly by considering a correlator of three axial currents.

https://link.springer.com/article/10.1007%2Fs100520100573
https://arxiv.org/abs/2504.00112
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• In general, anomalies in four dimensions are studied with triangle diagrams, while it turns out

that anomalies in 2n dimensions are studied with (n+ 1)-gons.

• For QED with any number of Dirac fermions, we can define the theory so that the gauge anomaly

vanishes. However, for chiral theories this is generally impossible. For example, consider a

single left-chiral Weyl fermion, coupled to the photon by the current

jµL = ψγµPLψ.

The factors of PL can be manipulated to show that

⟨jαLj
µ
Lj

ν
L⟩ =

1

2
(⟨jαjµjν⟩ − ⟨jα5 jµjν⟩) .

The former vanishes when contracted with any of the momenta, as we may use DR there. Now

we can have pα⟨jα5 jµjν⟩ = 0 or q1µ⟨Jα5 jµjν⟩ = 0, but not both. Then the Ward–Takahashi

identity for jµL cannot be satisfied, and QED with a single Weyl fermion is inconsistent.

• Now suppose we have a left-chiral and right-chiral Weyl fermion with different charges. In this

case the gauge boson Aµ couples to

jµLR = QLψγ
µPLψ +QRψγ

µPRψ.

Since the mass is zero, there is no mixing between left-chiral and right-chiral fermions, so the

contributions just add, giving

⟨jαLRj
µ
LRj

ν
LR⟩ = Q3

L⟨jαLj
µ
Lj

ν
L⟩+Q3

R⟨jαRj
µ
Rj

ν
R⟩ ⊃

1

2
(Q3

R −Q3
L)M

αµν
5 .

Hence the theory is consistent if QL = QR.

• Another way to understand this is to convert the right-chiral Weyl fermions to left-chiral Weyl

fermions, which flips their charge; then the total anomaly is just proportional to
∑

iQ
3
i . Non-

chiral theories are consistent because every Qi is paired with another of the opposite sign.

• Thus, we only have to worry about anomalous vector symmetries if the gauge theory is chiral.

Of course, axial symmetries can be anomalous even in non-chiral theories, as we saw for pion

decay.

• The chiral anomaly looks like an ultraviolet phenomenon, appearing from divergent loop inte-

grals, but it fundamentally is an infrared effect, because chiral fermions in four dimensions have

to be massless. We therefore only need to know the low-energy part of the spectrum to check

anomaly cancellation; we carry this out for the Standard Model below.

• By generalizing the computation of the triangle diagram to a non-abelian gauge symmetry, for

a massless Dirac fermion in a representation R, we have

∂µj
µ5 = − g2

16π2
T (R) ϵµνρσ(∂µA

a
ν − ∂νAaµ)(∂ρAaσ − ∂σAaρ) +O(g3)

which suggests the result

∂µj
µ5 = − g2

16π2
T (R) ϵµνρσF aµνF

a
ρσ = − g2

16π2
ϵµνρσ trFµνFρσ

by gauge invariance. This indeed turns out to be true. As a result, since the term FF̃ can also

annihilate three or four gauge bosons, Ward–Takahashi identities for correlation functions of

the form ⟨j5jjj⟩ and ⟨j5jjjj⟩ are also anomalous.
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13.3 Anomalies from the Path Integral

Next, we see how anomalies can arise from the path integral.

• We consider the quantity

Z(A) =

∫
DΨDΨeiS(A), S(A) =

∫
dxΨ(i /D)Ψ, Dµ = ∂µ − igAµ

for a fixed background gauge field A, under which the Dirac fermion Ψ transforms in a repre-

sentation R. Formally, we have

Z(A) = det(i /D)

but this expression must be regularized.

• Now consider a spacetime-dependent axial U(1) transformation,

Ψ′(x) = e−iα(x)γ
5
Ψ(x), Ψ

′
(x) = Ψ(x)e−iα(x)γ

5
.

If the measure were invariant, we would have

Z(A) =

∫
DΨ′DΨ′ exp

(
i

∫
dxΨ′(i /D)Ψ′

)
=

∫
DΨDΨ exp

(
i

∫
dxΨ(i /D)Ψ + jµA(x)∂µα(x)

)
where we used invariance of the measure in the second step. Integrating by parts and setting

this equal to Z(A), we have ⟨∂µjµA⟩ = 0. If we had other operators present, we would have this

result up to contact terms, which is precisely the Ward–Takahashi identity.

• Now we consider the Jacobian of the transformation more closely. We have

J(x, y) = δ(x− y)e−iα(x)γ5 , DΨ′DΨ′ = (det J)−2DΨDΨ

where the negative power is due to Grassmann variables, and

(det J)−2 = exp (−2 tr log J) = exp

(
2i

∫
dxα(x) tr(δ(x− x)γ5)

)
where the trace is over spin and group indices.

• Again, this result is meaningless without regularization, as the delta function is infinite and the

trace vanishes. Since we need to regularize Z(A) in any case, we should use /D, so we replace

δ(x− y)→ e−(i /Dx)
2/M2

δ(x− y) =
∫
d̄k e−(i /Dx)

2/M2
eik(x−y)

for a mass M that will be taken to infinity. This replaces the delta function with a Gaussian

in a gauge-invariant way, as we’ll see below. Other cutoff functions would also work.

• If one is unsatisfied, one can also define the path integral more explicitly, using the same method

we use for instantons below. That is, we expand Ψ in a basis of suitably orthonormalized

eigenfunctions of /D,

Ψ(x) =
∑
n

anϕn(x), i /Dϕn = λnϕn
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and define the measure by DΨ =
∏
n dan, with a similar definition for DΨ. One can then derive

the Jacobian above more carefully, getting

tr(δ(x− x)γ5)→
∑
n

ϕn(x)γ
5ϕn(x)

which is equally divergent without regularization, but less manifestly nonsensical. One can then

regulate the sum by adding a factor of e−λ
2
n/M

2
, then switch to a plane wave basis, recovering

the expression above.

• Next, moving the derivative through the exponential with the identity

f(∂)eikx = eikxf(∂ + ik)

we have

δ(x− y)→
∫
d̄k eik(x−y)e−(i /D−/k)2/M2

.

Expanding the exponential, we have

−(i /D − /k)2 = −/k2 + i{/k, /D}+ /D
2
= −k2 + 2ik ·D +D2 +

1

2
[γµ, γν ]DµDν

where we used standard gamma matrix identities and γµγν = ({γµ, γν}+ [γµ, γν ])/2. Finally,

we replace DµDν with [Dµ, Dν ]/2 = igFµν/2.

• Finally, rescaling k by M , we have

δ(x− y)→M4

∫
d̄k eiMk(x−y)e−k

2
e2ik·D/M+D2/M2+igFµν [γµ,γν ]/4M2

.

Therefore, we have

tr δ(x− x)γ5 →M4

∫
d̄k e−k

2
tr e2ik·D/M+D2/M2+igFµν [γµ,γν ]/4M2

γ5.

• We now expand the exponential in powers of 1/M , where only terms up to M−4 survive the

M →∞ limit. The only way to get a nonzero trace is to have four gamma matrices, so we get

tr δ(x−x)γ5 →
∫
d̄k e−k

2 1

2

(
ig

4M2

)2

trFµνFρσ[γ
µ, γν ][γρ, γσ]γ5 =

ig2

2
ϵµνρσ tr(FµνFρσ)

∫
d̄k e−k

2

using standard identities, where the remaining trace is over the group. The Gaussian integral is∫
d̄k e−k

2
=

i

(4π)2

where the factor of i is from Wick rotation, and the denominator is the usual loop factor.

• Putting everything together, we have

(det J)−2 = exp

(
− ig2

16π2

∫
dxα(x)ϵµνρσ trFµνFρσ

)
.

Thus, the invariance of Z(A) implies that〈
∂µj

µ
A +

g2

16π2
ϵµνρσ trFµνFρσ

〉
= 0

with the same holding up to contact terms in correlators, as desired.
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Now we reflect on the result.

• For constant α(x), we have shown that a chiral redefinition of a fermion field can induce extra

terms in the Lagrangian. This is key for understanding the strong CP problem, discussed below.

• We took the gauge field to be a fixed background, but nothing about the derivation would

change if the gauge field was instead dynamical, i.e. if it was integrated over in the path integral.

• By direct computation, we see the divergence of the current is a total derivative,

ϵµνρσ trFµνFρσ = ∂µ

(
4ϵµνρσ tr(Aν∂ρAσ −

2

3
igAνAρAσ)

)
where the quantity in brackets is called a Chern–Simons current. In particular, given an

anomalous symmetry, we can construct an alternative current that is conserved. However, note

that this current is not gauge-invariant.

• Note that the total value of the axial charge cannot change for topologically trivial configurations.

Such changes must be mediated via instantons, but instantons don’t exist for U(1) gauge fields,

so the axial charge is conserved even if the current locally isn’t.

• The Adler–Bardeen theorem states that the anomaly is one-loop exact. It is difficult to prove

in diagrammatic language, but follows automatically from the path integral argument, because

that argument never expands perturbatively in g.

• A deeper justification for one-loop exactness comes from topology. Imagine higher-order cor-

rections to the anomaly. The most general answer has the form

∂µj
µ
A = f(g)g2ϵµνρσ trFµνFρσ

by dimensional analysis and parity invariance. Integrating over spacetime,

∆QA = f(g)

∫
dx g2ϵµνρσ trFµνFρσ.

The left-hand side is manifestly an integer, while the integral on the right-hand side can also be

shown to always be an integer, for topological reasons. (In the non-abelian case, we will see this

explicitly for instanton configurations. In the abelian case, there are no nontrivial instantons,

and the integral vanishes automatically on Minkowski space; however, it can be shown to be

quantized on spacetimes with general topology.) Thus, f(g) can’t depend nontrivially on g.

• A similar derivation can be used for any even dimension d = 2n, giving

∂µj
µ5 = (−1)n+1 2gn

n!(4π)n
ϵµ1...µ2nFµ1µ2 . . . Fµ2n−1µ2n .

Note that in d = 2, anomalies only arise from abelian gauge groups, as otherwise trFµν = 0.

Note. The meaning of an anomaly for a global symmetry can be described directly in terms of the

path integral as follows. Suppose jµ is the current for a global symmetry. We can formally couple

the symmetry to a background gauge field, which in the simplest case can be done by adding jµAµ
to the Lagrangian for a background field Aµ, giving a partition function Z[A]. The symmetry can

be gauged if we add in the Yang–Mills action for Aµ and integrate Z[A] over gauge-inequivalent Aµ.

This cannot be done if the global symmetry is anomalous, which occurs precisely when Z[A] is not

gauge-invariant.
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13.4 Anomalies in the Standard Model

Next, we show gauge anomaly cancellation in the SM, introducing non-abelian anomalies.

• In the SM, we have the three currents jCµ , j
L
µ and jYµ , which couple to SU(3)C , SU(2)L and

U(1)Y respectively. (For brevity, we’ll drop the subscripts.) Gauge anomaly cancellation requires

∂µ⟨jiµjjνjkρ ⟩ = 0

for all combinations of i, j, and k.

• In the case where all of the currents are jYµ , we have the U(1)3 anomaly

∂µj
µ
Y =

∑
left

Y 3
i −

∑
right

Y 3
i

 g2

32π2
ϵµνρσBµνBρσ

where Bµν is the U(1) field strength and g is the associated coupling.

• For the anomaly to vanish, we need

0 = (2Y 3
L − Y 3

e − Y 3
ν ) + 3(2Y 3

Q − Y 3
u − Y 3

d )

where the 3 accounts for color charge, the 2 accounts for the two members in a doublet, and

we’ve added a right-handed neutrino for later.

• Plugging in the numbers

YL = −1

2
, Ye = −1, Yν = 0, YQ =

1

6
, Yu =

2

3
, Yd = −

1

3

we find the anomaly vanishes for each generation, but not for the quarks or leptons individually.

• Next, consider triangle diagrams with three of the same non-abelian current. Here a fermion ψ

in a representation R contributes to the current as

jaµ = ψi(T
a
R)ijγ

µTj .

Therefore, the two diagrams pick up factors of tr(T aRT
b
RT

c
R) and tr(T aRT

c
RT

b
R) respectively.

• By substituting T aRT
b
R = ([T aR, T

b
R] + {T aR, T bR})/2, we have

tr(T aRT
b
RT

c
R) =

i

2
TRf

abc +
1

4
dabcR , dabcR = 2 tr(T aR{T bR, T cR}).

The quantity dabcR is a totally symmetric rank 3 tensor. In the case of SU(n), there is only one

such tensor, so we have

dRabc = A(R) dabc

where dabc is defined with the generators in the fundamental representation, and A(R) is called

the anomaly coefficient of the representation R.

• The term proportional to fabc contributes through the difference of the diagrams and is UV

divergent. However, it does not contribute to the anomaly; instead it merely renormalizes the

three gauge boson vertex.
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• The term proportional to dRabc contributes to the anomaly by

∂µj
µa(x) =

∑
left

A(Ri)−
∑
right

A(Ri)

 g2

128π2
dabcϵµνρσF bµνF

b
ρσ

where Fµν is the associated gauge field strength and g is the coupling. The overall factor is

fixed by U(1), where we have T a = 1 and hence dabc = 4.

• Since T a
R
= −(T aR)T , the anomaly coefficient obeys

A(R) = −A(R).

Since the representations of SU(2) are all pseudoreal, there is no SU(2)3 anomaly because

the anomaly coefficients all vanish. Moreover, there is no SU(3)3 anomaly because QCD is

non-chiral. The anomaly coefficient obeys the useful identities

A(R1 ⊕R2) = A(R1) +A(R2), A(R1 ⊗R2) = A(R1)d(R2) + d(R1)A(R2)

so we can compute anomaly coefficients by building up from the fundamental.

Now we consider the mixed anomalies involving different currents. In this case, the trace is taken

over matrices which are tensor products of the matrices associated with each group factor.

• An SU(n)U(1)2 anomaly would be proportional to tr(T aR{1, 1}) ∝ trT aR = 0, so they auto-

matically vanish. Similarly, any anomaly with exactly one factor of SU(2) or SU(3) vanishes.

Therefore, the only cases to check are SU(3)2U(1) and SU(2)2U(1).

• One has to be careful when applying this point: not all SU(n)U(1)2 anomalies vanish, only

those where SU(n) × U(1) is a symmetry. For example, the SU(2)AU(1)
2 anomaly does not

vanish, and this is precisely what accounts for the decay π0 → γγ.

• The SU(3)2U(1) anomaly only receives contributions from quarks, of the form

Y tr({T a, T b}) ∝ δab

which means the overall contribution is

δab(6YQ − 3Yu − 3Yd) = 0

where the right-handed quarks contribute negatively as usual.

• The SU(2)2U(1) anomaly receives contributions from left-handed fields only, giving

δab(2YL + 6YQ) = 0.

• The final constraint is from the gravitational anomaly, which comes from diagrams with two

external gravitons and one external gauge boson. We find

∂µjaµ ∝ tr(T aR)ϵ
µνρσRµναβR

αβ
ρσ .

Since the generators of SU(n) are traceless, the only constraint is from grav2U(1), which gives∑
left

Yi −
∑
right

Yi = 0.
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• In summary, we have four constraints on six hypercharges. There are two two-parameter families

of allowed hypercharges, one of which is ruled out by demanding YQ ̸= 0. The other is

YL = −a
2
− b, Ye = −a− b, Yν = −b, YQ =

a

6
+
b

3
, Yu =

2a

3
+
b

3
, Yd = −

a

3
+
b

3
.

Note that we may also swap Yd and Yu, and Ye and Yν , since the constraints don’t distinguish

between them; there is also an arbitrary hypercharge normalization we’ve neglected. The

coupling a corresponds to hypercharge as it is in the SM, while b corresponds to B − L.

• No matter what the values of a and b are, we must have YL + 3YQ = 0 exactly, indicating that

the electron and proton have exactly opposite electric charges. However, for general b ̸= 0, the

neutron is not electrically neutral, and charge is not quantized.

• If there is no right-handed neutrino, or if it is Majorana, then we must have Yν = 0, implying

b = 0 and therefore fixing the SM hypercharges up to scaling. On the other hand, if the opposite

is true, then it is possible to extend the Standard Model by gauging both U(1)Y as in the usual

Standard Model, and U(1)B−L.

For more about anomaly coefficients, see the notes on Group Theory. Next, we consider global

anomalies in the Standard Model.

• Recall the U(1)A axial symmetry considered earlier. We cannot compute an anomaly from a

U(1)3A triangle diagram, because there is nothing ∂µj
µ
A can be equal to. Instead the anomaly is

due to U(1)AU(1)2V , since the latter is associated with the electromagnetic gauge group.

• By similar reasoning, all anomalies for a global symmetry G come from GH2 triangle diagrams,

where H is one of the gauge groups of the SM. We must use H2 since the trace of a single

factor is zero.

• Two important global symmetries are baryon number and lepton number. Now, we have

anomalies due to SU(2)2U(1)B and SU(2)2U(1)L, giving

∂µj
µB = ∂µj

µL ⊃ ng
g2

32π2
ϵµνρσW a

µνW
a
ρσ

where ng = 3 is the number of generations. But if there is a sterile neutrino, U(1)B−L is

nonanomalous, as we saw earlier, so it can be gauged. Such gauge bosons are common in grand

unified theories and cause baryon number violation. Note that in neutral atoms, such a gauge

boson would couple to neutron number. If gauged U(1)B−L is unbroken, it would need an

exceptionally small coupling. If it is broken, the gauge boson mass is at least 3.5TeV.

• The right-hand side is a total derivative, which means that baryon and lepton number are

conserved perturbatively. However, there are SU(2) instantons for which the right-hand side

integrates to a nonzero value over spacetime; these mediate violation of baryon and lepton

number. The rate for this process is extremely small, but at high temperatures, it can be much

higher because the transitions are caused by thermal fluctuations rather than quantum effects.

In this case, we say the process is mediated by sphalerons.

• There are also anomalies due to U(1)2Y U(1)B and U(1)2Y U(1)L. However, since there are no

U(1) instantons, such anomalies cannot lead to global nonconservation of baryon or lepton

number, so they are less important.

https://knzhou.github.io/notes/grp.pdf
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• Next, we consider theta terms. The theta term of U(1)Y has no physical effects, because there

are no U(1) instantons. The theta term of SU(2) may be rotated away by the SU(2)2U(1)B
anomaly. There is also an SU(2)2U(1)L anomaly, which matches the U(1)B anomaly so that

U(1)B−L is nonanomalous.

• However, the theta term of SU(3) cannot be removed. The reason that we could easily remove

the theta term of SU(2) was because of the chiral structure of the weak force; rotating all

quarks contributes to the anomaly because SU(2) only couples to left-handed quarks.

• For SU(3), we may try SU(3)2U(1)A since U(1)A is chiral, but U(1)A is not a symmetry of the

SM because of the quark masses. Instead, such an axial transformation changes the phases of

the quark Yukawa couplings, and the invariant quantity is

θ = θ − arg detM

where M is the quark mass matrix. The fact that θ is observed to be zero within experimental

error is the strong CP problem, as explained further in the notes on the Standard Model.

Note. A bit more about baryon and lepton number violation. In order to see what an SU(2)L
instanton does, we note there are 12 SU(2)L doublets in the SM (3 families of left-handed leptons,

and 3×3 families and colors of left-handed quarks). The number of corresponding particles changes

by 1 in each, so for a unit instanton we have

∆Le = ∆Lµ = ∆Lτ = 1, ∆B = 3.

Of course such a process must still conserve energy, electric charge, and color charge. Also note that

instantons can’t make isolated protons decay, because baryon number is violated in multiples of 3.

Finally, we describe the technique of anomaly matching.

• As an example, consider pure QCD with three massless quark flavors, where the global symmetry

is G = SU(3)L×SU(3)R×U(1)V . There are no SU(3)2G anomalies, which ensures G remains

a symmetry in a background gauge field, though there are G3 anomalies.

• We now imagine gauging the symmetry G with an arbitrarily weak coupling. The G3 anomalies

now render the theory inconsistent, but they can be removed by adding spectator fermions.

They are only coupled to the existing particles through the gauge field, and can be effectively

decoupled by taking the gauge coupling arbitrarily small.

• Now consider the low-energy theory where quarks are confined. Since anomalies are infrared

effects, gauge anomaly cancellation must still hold. This must be due to massless particles in

the spectrum, which could be either Goldstone bosons or massless hadrons.

• Suppose the latter occurs, so SU(3)L × SU(3)R is not spontaneously broken, and consider the

SU(3)3L anomalies. In the deconfined phase, the left-handed quarks each contribute A(fund) = 1,

and there are three colors, so the spectator fermions contribute an anomaly coefficient of −3.

• Now, for the anomalies to be canceled in the confined phase, color singlet fermions constructed

from quarks must provide a total anomaly coefficient of 3. We have

3× 3× 3 = 10 + 8 + 8 + 1

https://knzhou.github.io/notes/sm.pdf
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and the 8 cannot contribute since it is a real representation. To evaluate A(10), note

A(6) = A(3× 3) = A(3) = 3A(3) + 3A(3)−A(3) = 7

and

A(10) = A(6× 3)−A(8) = 3A(6) + 6A(3)−A(8) = 27.

Hence a 10 of baryons can only contribute in multiples of 27. Thus, for consistency, pure QCD

with three flavors must have spontaneous chiral symmetry breaking!

• In real QCD, chiral symmetry breaking indeed occurs, and the anomalies are transferred over

to the Goldstone bosons. For example, anomaly matching allows us to conclude there must be

a U(1)π0U(1)2V anomaly, where U(1)π0 ⊆ SU(2)A is associated with the π0. Indeed, this was

our original motivating example. It further turns out that anomaly matching can be used to

compute pion self-interactions, which automatically arise from “Wess–Zumino–Witten” terms.
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14 Instantons

14.1 Quantum Mechanics

An instanton is a classical solution of the equations of motion with finite, non-zero action. They

can be used to describe transitions between vacuum states in a semiclassical approximation.

• First, consider ϕ4 theory,

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − g2ϕ4.

In the classical case, we are free to scale the Lagrangian. Letting ϕ′ = gϕ, we have

L =
1

g2

(
1

2
∂µϕ

′∂µϕ′ − 1

2
m2ϕ′2 − ϕ′4

)
which means that g is not a physical parameter.

• In the quantum case, the scale of the Lagrangian is set by ℏ, so g is important; the physically

relevant quantity is
L
ℏ

=
1

g2ℏ

(
1

2
∂µϕ

′∂µϕ′ + . . .

)
.

Then the relevant dimensionless parameter is g2ℏ, and an expansion in ℏ is the same as an

expansion in g, as we’ve seen before.

• Our approximations will be semiclassical and hence require weak coupling. However, they will

extract nonperturbative information essentially by the WKB approximation, which says that

the probability of barrier penetration for a particle of unit mass is

|T (E)| = exp

(
−1

ℏ

∫ x2

x1

dx
√
2(V − E)

)
(1 +O(ℏ))

which is zero to all orders in ℏ.

• We can’t imagine barrier penetration as a classical process, because the velocity would be

imaginary in the classically forbidden region. But this is exactly what we would expect if we

worked in Euclidean (imaginary) time. This motivates us to consider Euclidean solutions.

• Specifically, Euclidean solutions are precisely those which maximize the WKB probability of

barrier penetration. To see this, consider the system

L =

∫
1

2
q̇2 − V (q)

and consider a tunneling path q(s) between minima, where ds2 = dq2, q(0) = q0, q(sf ) = qf .

The tunneling amplitude is approximately e−B/2 where

B = 2

∫ sf

0
ds
√
2(V (q(s))− E).
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• In the case where the motion is between maxima, and hence classically allowed, Jacobi’s principle

tells us these paths correspond to stationary points of the action. By similar reasoning, for

tunneling between minima, the paths minimize the Euclidean action

SE =

∫ τf

τ0

dτ

(
1

2

(
dq

dτ

)2

+ V (q)

)

which has the potential negated.

• The equation of motion is
d2qi
dτ2

=
∂V

∂qi

and the particle is at rest at the start and end of the path q(τ), so

1

2

(
dq

dτ

)2

= V (q)− E, E = V (q0).

• Explicitly, the Euclidean action of the path is

SE [q] =

∫ τf

τ0

dτ 2(V (q)− V (q0)) +

∫ τf

τ0

dτ V (q0)

and the first term is simply B/2 upon a change of variables, so

B

2
= SE(q)− SE(q0)

where q0 is the trivial path q0(τ) = q0.

• Such a Euclidean solution is called an ‘instanton’ because it is centered around some point of

Euclidean time. However, this is not physically related to real time; at this point it’s simply

some parameter related to s. Originally, instantons were called pseudoparticles.

• We may also consider tunneling out of a metastable minimum. In this case, the WKB amplitude

goes across the potential barrier, but the Euclidean solution goes out and ‘bounces’ back in,

doubling the action. Hence we have

B = SE(q)− SE(q0).

Physically, the amplitude for a particle in the minimum q0 to stay there falls exponentially

in time, with the exponent being proportional to e−B/2. Alternatively, one can say the state

peaked in q0 has complex energy. This could be made more precise by starting with a system

where q0 is a true minimum and analytically continuing to the system considered here.

• It is clear here that there are many possible escape paths, and we’ve just found the most

probable one. The other reasonably likely escape paths are simply perturbed about the most

probable one, and their effect on B can be found perturbatively.

Next, we’ll turn to the path integral, which is better at calculating the subleading corrections.
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• Setting m = ℏ = 1 and restricting to one dimension,

⟨xf |e−HT |xi⟩ =
∫ x(T/2)=xf

x(−T/2)=xi
Dx e−SE , H =

p2

2
+ V (x)

where SE is the Euclidean action as above. Expanding in energy eigenstates, H|n⟩ = En|n⟩,

⟨xf |e−HT |xi⟩ =
∑
n

e−EnT ⟨xf |n⟩⟨n|xi⟩

so for large T , we may compute the energy and wavefunction of the lowest energy states by

evaluating the path integral.

• To define the measure, we choose a set of orthonormal functions xn(τ) vanishing at the bound-

aries and choose x obeying the boundary conditions; this is equivalent to the usual Dx measure

up to a constant Jacobian. Then we define the measure by

x(τ) = x(τ) +
∑
n

cnxn(τ), Dx ≡ N
∏
n

dcn√
2π

where N is a divergent normalization factor.

• In the semiclassical limit, we expand around stationary points of S. Suppose x is the only one;

it obeys the classical equations of motion in the potential −V (x). We let the basis functions

xn(t) be eigenfunctions of the second variational derivative of S at x,

−d
2xn
dt2

+ V ′′(x)xn = λnxn.

Expanding about the stationary point, the path integral is a Gaussian, so

⟨xf |e−HT |xi⟩ = Ne−S(x)
∏
n

λ−1/2
n (1 +O(ℏ)) ≈ Ne−S(x) det(−∂2τ + V ′′(x))−1/2.

Higher order terms here come from the higher-order variation of the action with respect to cn.

• This result is a generalization of the usual functional determinants seen in field theory. In that

case, we usually only explicitly perform path integrals when the action is quadratic, in which

case the functional determinant det δ2S|x is independent of x and diagonalized by plane waves.

Example. A trivial example. Let xi = xf = 0 and consider a potential with a minimum at x = 0

and V (0) = 0. Then the only solution for x is the constant x = 0, where S = 0, so

⟨0|e−HT |0⟩ = N det(−∂2t + ω2)−1/2(1 +O(ℏ)), ω = V ′′(0).

To evaluate the functional determinant, note the eigenvalues are

λn =
πn2

T 2
+ ω2

so we have

N det(−∂2τ + ω2)−1/2 = N
∏
n

(
π2

n2
T 2

)−1/2∏
n

(
1 +

ω2T 2

π2n2

)1/2

.
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The constant N is fixed by matching with the result for the free particle, ω = 0, giving

N det(−∂2τ + ω2)−1/2 =
1√
2πT

∏
n

(
1 +

ω2T 2

π2n2

)1/2

=
1√
2πT

(
sinh(ωT )

ωT

)−1/2

.

Taking the limit T →∞ and neglecting exponentially small terms, and restoring ℏ,

N det(−∂2τ + ω2)−1/2 =

√
ω

πℏ
e−ωT/2

which implies that the ground state energy is ℏω/2 +O(ℏ2), and

|⟨x = 0|n = 0⟩|2 =
√

ω

πℏ
(1 +O(ℏ)).

These are indeed the correct semiclassical results.

Next, we consider the extended example of the double well.

• Consider an even potential with minima at ±a with V (a) = 0 and V ′′(a) = ω2. We will compute

⟨a|e−HT |a⟩ and ⟨a|e−HT |−a⟩ semiclassically. As before, we have classical solutions that stay

motionless at ±a, but we also have the ‘instanton’ solution that moves from −a to a, and the

‘anti-instanton’ that moves from a to −a.

• Since we’ll take T to infinity anyway, we take this limit now. Then the instanton solutions have

zero energy, and
dx

dτ
=
√
2V , τ = τ1 +

∫ x

0

dx′√
2V

.

Such a solution is called an instanton centered at τ1. They are like solitons, but localized in

Euclidean time rather than space. The action of an instanton is

S0 =

∫
dt

1

2
(dx/dt)2 + V =

∫
dt (dx/dt)2 =

∫ a

−a
dx
√
2V .

• For large times, when x approaches a, the equation of motion is

dx

dt
= ω(a− x)

which is exponential decay, so instantons have size on the order of 1/ω. Then in the T → ∞
limit, we must account for multi-instanton solutions, where the instanton separation is O(T ),

since they are approximate solutions to the equation of motion.

• Consider a solution with n widely separated instantons, centered at t1, . . . , tn, with

T/2 > t1 > . . . > tN > −T/2.

The action of this solution is nS0. The functional determinant is

N det(−∂2t + V ′′(x))−1/2 =

√
ω

π
e−ωT/2Kn

where the factor K accounts for how each instanton modifies the functional determinant. We

may multiply by Kn because the effect of each instanton on the spectrum of fluctuations is

localized about each one, and they are widely separated.
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• Integrating over the instanton locations gives a factor of Tn/n!, so we have

⟨a|e−HT |a⟩ =
√
ω

π
e−ωT/2

∑
n even

(Ke−S0T )n

n!

and carrying out the sums gives

⟨±a|e−HT |a⟩ =
√
ω

π
e−ωT/2

exp(Ke−S0T )∓ exp(−Ke−S0T )

2
.

• Thus, we have two low-lying energy eigenstates, with energies

E± =
1

2
ω ±Ke−S0 .

These are the two expected energy eigenstates, consisting of even and odd combinations of the

ground states of the two wells; the degeneracy is broken by barrier tunneling. Unlike the WKB

approximation, the path integral allows us to calculate the preexponential factor K, and if we

worked to more accuracy, we could find higher-order corrections.

• Above, we have assumed we were working with an ‘instanton gas’, i.e. that the instantons were

too widely separated to affect each other. To check self-consistency, note that the largest term

in the series
∑

n x
n/n! comes when x ∼ n, so

n ∼ KTe−S0 .

If the instanton has characteristic size δτ , we require

(δτ)Ke−S0 ≪ 1.

On dimensional grounds K ∼ 1/δτ , so we just need S0 ≫ ℏ, which we’ve already assumed.

• To compute the value of K more carefully, formally we would have

K =

∣∣∣∣ det(−∂2τ + ω2)

det(−∂2τ + V ′′(x))

∣∣∣∣1/2.
However, this is not well-defined because the functional determinant in the denominator has a

zero eigenvalue. This zero mode results because the instanton breaks time translation invariance.

Explicitly, it is x1 = S
−1/2
0 dx/dt.

• Making the zero mode into a collective coordinate and evaluating its contribution explicitly,

K =

(
S0
2π

)1/2 ∣∣∣∣ det(−∂2τ + ω2)

det′(−∂2τ + V ′′(x))

∣∣∣∣1/2
where the prime denotes exclusion of the zero mode. The remaining determinants can be

computed using standard methods.

Example. Consider a periodic potential with minima at the integers. By similar reasoning,

⟨j+|e−HT |j−⟩ =
(ω
π

)1/2
e−ωT/2

∑
n,n

1

n!n!
(Ke−S0T )n+nδn−n−j++j−
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where n is the number of instantons and n′ is the number of anti-instantons. Using the identity

δab =

∫ 2π

0
dθ
eiθ(a−b)

2π

we have

⟨j+|e−HT |j−⟩ =
(ω
π

)1/2
e−ωT/2

∫ 2π

0

dθ

2π
ei(j−−j+)θ exp

(
2KT cos θe−S0

)
.

Then the Hamiltonian is diagonalized by states of the form |θ⟩ where

⟨θ|j⟩ = eijθ, E(θ) =
1

2
ω + 2Ke−S0 cos θ.

These |θ⟩ states are analogous to the “θ-vacua” we will encounter in gauge theories.

Example. Decay from a metastable vacuum. We consider a local minimum at x = a with V (a) = 0

and wish to compute the rate of decay. Naively, the instanton solutions x(τ) are bounces, and we

can sum over any number of bounces, giving the answer

⟨a|e−HT |b⟩ =
√
ω

π
e−ωT/2

∑
n

(Ke−S0T )n

n!
=

√
ω

π
e−ωT/2 exp

(
Ke−S0T

)
where as before,

K =

(
S0
2π

)1/2 ∣∣∣∣ det(−∂2τ + ω2)

det′(−∂2τ + V ′′(x))

∣∣∣∣1/2.
We expect the amplitude to decay exponentially, or equivalently for the state in the well to have a

complex energy. Hence taking the logarithm, at large times we have

E0 =
1

2
ω −Ke−S0 .

We get the desired imaginary part because there is a mode with a negative eigenvalue, which renders

K imaginary. To see this, note that the equation for the eigenfunctions xn has the form of the

Schrodinger equation, and hence the mode with lowest eigenvalue should have no nodes. However,

since the instanton solution bounces, the zero mode has one node, and hence there is one lower

mode. This implies that the instanton solution is merely a saddle, not a minimum, of the potential.

To understand this, suppose the ‘bounce’ occurs at x = b, and consider the family of solutions

that bounce at x = c. Then SE(c) has a local minimum at c = 0, corresponding to the trivial

solution, and an extremum at c = b corresponding to the instanton; hence it must be a maximum.

The reason that the bounce can be a local minimum of the barrier penetration integral B but not

a local minimum of SE is that they have different boundary conditions. In our earlier calculations,

both were restricted over paths that went from one minimum to the other. But in this case, we’re

just going from one minimum back to itself, and B has the additional constraint that the paths

must bounce at x = c. (However, note that we must always consider minima of B, since otherwise

our approximation will give a completely wrong result.)
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To integrate over this mode, we must essentially perform the integral

J =

∫ ∞

−∞

dc√
2π

e−S(c).

This integral seems to diverge. To get a sensible result, we deform the contour as shown above,

which gives a finite result. In the semiclassical limit, the only contribution to the integral comes

from the vertical region near c = b, where we may apply the steepest descent approximation to get

Im J =
1

2
e−S(b)|S′′(b)|−1/2

where the factor of 1/2 is because we only have half of the Gaussian peak; this is the factor of 1/2

we anticipated on intuitive grounds earlier. Hence

K =
i

2

(
S0
2π

)1/2 ∣∣∣∣ det(−∂2τ + ω2)

det′(−∂2τ + V ′′(x))

∣∣∣∣1/2
and the decay rate is

Γ = −2 ImE0 =

(
S0
2π

) ∣∣∣∣ det(−∂2τ + ω2)

det′(−∂2τ + V ′′(x))

∣∣∣∣1/2e−S0 .

Note. The ideas above generalize directly to field theory. For the instantons to have finite B, the

deviation of the fields from their initial value must be localized in space as well as time, resulting

in additional zero modes; integrating over them gives a factor of the volume of the space. There

will also be additional UV divergences that must be renormalized.

It’s subtle why tunneling should be permitted in field theory at all. Naively, there are infinitely

many degrees of freedom that all have to tunnel at once, giving an infinite suppression; this is

exactly why spontaneous symmetry breaking is possible in quantum field theory but not in quantum

mechanics. The first caveat is that in d = 1 + 1, the tunneling can occur by the formation and

separation of domain walls, which incurs a finite cost; this corresponds to the Mermin–Wagner

theorem. The second is gauge symmetry, which allows instantons to tunnel between vacua while

being locally gauge-equivalent to zero on almost all of space, avoiding an infinite energy cost.

Note. The above formalism, based on analytic continuation to a Euclidean potential, is almost

universally used in quantum field theory, but physically opaque. The instanton trajectories we sum

over in Euclidean time bear no resemblance to the tunneling events occurring in physical time. (As

they say, “you can’t eat an instanton”.) For a more physical approach based on the Minkowski path

integral, see this paper and this paper.

14.2 Yang–Mills Vacua

We will work primarily in A0 = 0 gauge, and begin with some classical subtleties.

• We use conventions where

Fµν = ∂µAν − ∂νAµ − ie[Aµ, Aν ], Dµ = ∂µ − ieAµ

and normalize generators so that tr(T aT b) = δab/2.

https://arxiv.org/abs/1602.01102
https://arxiv.org/abs/1604.06090
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• In the gauge A0 = 0, the Lagrangian is

L = tr Ȧ2
j −

1

2
trF 2

ij , F0i = Ȧi.

The dynamical variables are the Ai, and the conjugate momenta are

Πj = F j0.

Note that we are working in the non-abelian case, but we suppress group indices.

• The classical equations of motion are

DµF
µj = 0.

By comparison, if we had not fixed the gauge, it would have been DµF
µν = 0. Hence we are

missing the Gauss’s law constraint

C(x) = DµF
µ0(x) = DjΠ

j(x) = 0.

However, the equations of motion do imply Ċ(x) = 0.

• Physically, we have the freedom to make time-independent gauge transformations. If we view

them as genuine symmetries, then they yield conserved charges, which correspond to the

conservation of C(x). Specifically, for a gauge transformation generated by Λ(x) which vanishes

at spatial infinity, the Noether charge is

CΛ = 2

∫
dx trDjΛ(x)Π

j(x) = −2
∫
dx tr Λ(x)DjΠ

j(x) = −2
∫
dx tr Λ(x)C(x).

By Noether’s theorem, CΛ is conserved for any Λ(x), so C(x) is. Hence we can just restrict to

configurations where C(x) = 0.

• The Lagrangian is in the standard T − V form with quadratic kinetic energy, so going to

Euclidean signature is straightforward, with

LE = tr(∂4Aj)
2 +

1

2
trF 2

ij , x4 = τ.

Conventionally, we take ϵ0123 = ϵ123 = ϵ1234 = 1.

• Finally, we may include a field A4(x) which acts as a Lagrange multiplier that enforces Gauss’s

Law, in which case the Euclidean Lagrangian becomes

LE =
1

2
trF 2

rs, r, s ∈ {1, 2, 3, 4}

along with the boundary conditions Fj4 = 0 on the temporal boundaries. This procedure, of

first eliminating A0, then rotating to Euclidean spacetime, then introducing A4, is a bit longer

than the naive approach but avoids some subtleties.

In A0 = 0 gauge, there are topologically distinct vacua.
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• Vacuum configurations have Fµν = 0, which implies in our gauge that

Aj =
i

g
G−1∂jG

where G(x) is an element of the gauge group, which we take to be SU(2).

• We assume that G tends to a constant G∞ as r → ∞, to be justified later, giving a map

S3 → SU(2). The homotopy classes of such maps are classified by π3(SU(2)) = Z.

• To see why homotopy classes are relevant, we need to distinguish between ‘large’ and ‘small’

gauge transformations. Gauge transformations map G(x) to Λ(x)G(x). A small gauge transfor-

mation is one that can be built from a series of infinitesimal gauge transformations, with gauge

functions Λ(x) that vanish at spatial infinity. Large gauge transformations instead connect

vacua in different homotopy classes.

• Physically, small gauge transformations must be ‘do nothing’ transformations, but it is ambigu-

ous whether large gauge transformations are; this is a choice that affects the theory. For our

purposes, it won’t matter; we’ll choose them to not be ‘do nothing’ transformations for clarity.

• We can explicitly compute the homotopy class by the integral

N [G] =
1

24π2
ϵijk

∫
dx trG−1∂iGG

−1∂jGG
−1∂kG

which is normalized so that if G is taken to be in the fundamental representation of SU(2),

with Ta = σa/2, then N [G] is the usual winding number. In the case of gauge group SU(2)

only, it is also the Brouwer degree of the mapping G.

• To see this, note that near a point where G is equal to G0,

G(x) = G0 exp(iσaΛa(x)) ≈ G0(I + iσaΛa(x)).

Plugging this in, we find the spatial integral of

− i

24π2
ϵijk tr(σaσbσc)∂iΛa∂jΛb∂kΛc =

1

12π2
ϵijkϵabc∂iΛa∂jΛb∂kΛc =

1

2π2
ϵijk∂iΛ1∂jΛ2∂kΛ3.

However, this is precisely the Jacobian factor for the transformation from the spatial coordinates

xj to the group coordinates Λa, and 2π2 is simply the area of S3.

• An example of a configuration with unit winding number is

g1(x) = exp(ir̂aσaf(r))

where f(r) is any monotonic function with f(0) = −π and f(∞) = 0.

• Next, we have the useful identity

N [G1G2] = N [G1] +N [G2].

Here the error term is

1

8π2
ϵijk

∫
dx tr

(
G−1

1 ∂iG1∂jG2G
−2
2 ∂kG2G

−1
2 + ∂iG2G

−1
2 G−1

1 ∂jG1G
−1
1 ∂kG1

)
and it can be shown to vanish using the product rule, the antisymmetry of ϵijk, and the fact

that the Gi tend to a constant at infinity.
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• Also note that for an infinitesimal gauge transformation, the winding number is the integral of

1

2π2
ϵijk∂iΛ1∂jΛ2∂kΛ3 =

1

2π2
ϵijk∂i(Λ1∂jΛ2∂kΛ3)

which is a total derivative, so the winding number is zero. Hence N [G] is invariant under

continuous deformations/small gauge transformations.

• Next, we define the current

jµA =
g2

8π2
ϵµνρσ tr

(
Aν∂ρAσ −

2ig

3
AνAρAσ

)
=

g2

16π2
ϵµνρσ tr

(
AνFρσ +

2ig

3
AνAρAσ

)
.

The current is not gauge invariant, but it has a gauge-invariant divergence,

∂µj
µ
A =

g2

16π2
trFµνF̃

µν , F̃µν =
1

2
ϵµνρσFρσ.

To verify this equation, note that the term quartic in Aµ on the right-hand side drops out by

contraction with the Levi–Civita symbol.

• The charge associated with this current is

QA =

∫
dx j0A =

g2

16π2

∫
dx ϵijk tr

(
AiFjk +

2ig

3
AiAjAk

)
.

Therefore, for a vacuum configuration we have

QA = N [G].

Next, we consider tunneling between these vacua.

• Consider a sequence of finite energy configurations Aµ(x, t) interpolating between two vacuum

configurations with winding numbers N1 and N2. We have∫
dx ∂µj

µ
A =

∫
dx (∂0j

0
A + ∂ij

i
A)

which can be reduced to integrals over the bounding surface, conventionally depicted as a

cylinder. The first term yields N2 − N1, while the second is a surface integral over r = ∞,

whose only contribution in A0 = 0 gauge is from the AjF0k term. However, for finite energy

configurations F0k must fall off faster than 1/r3/2, so Aj must fall off faster than 1/r1/2, and

hence this term vanishes in the limit r →∞. Thus,

∆N =
g2

16π2

∫
dx trFµνF̃

µν .

• Note that our derivation above is agnostic over whether t is real or Euclidean time. In the

context of Euclidean time, the most important vacuum tunneling solutions will be instantons.

They connect vacua with N differing by 1, and hence obey∫
dx trFµνF̃

µν =
16π2

g2
.
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• In the quantum theory, the state can be regarded as a wavefunctional of classical field configu-

rations. The CΛ generate small gauge transformations, and the Gauss’s law constraint means

CΛ = 0. Hence the wavefunctional must be constant on classical vacua related by small gauge

transformations, in the same way that a wavefunction with Lz = 0 is independent of θ. From

this point on we ignore these states.

• Next, we have vacua |n⟩ related by large gauge transformations, indexed by an integer n. These

are not energy eigenstates, as tunneling between the vacua can occur.

• We define an operator T by

T |n⟩ = |n+ 1⟩

and note that by gauge invariant, T commutes with the Hamiltonian. Then the energy eigen-

states diagonalize T . They are the θ-vacua,

|θ⟩ =
∑
n

e−inθ|n⟩.

The θ-vacua cannot evolve into each other, and this property extends to Fock spaces built upon

these vacua. Hence we could simply regard θ as a constant of nature.

• When we perform the path integral, we must sum over gauge field configurations with all

possible winding numbers. The net effect is that living in |θ⟩ is equivalent to ignoring such

configurations, at the cost of adding the term

∆L =
θg2

16π2
trFµνF̃

µν

to the Lagrangian. This is a total derivative, but has nonperturbative effects.

Note. The conclusions above depend on the gauge we’re choosing. For example, in the axial gauge

A3 = 0, A2(x, y, 0, t) = 0, A1(x, 0, 0, t) = 0, A0(0, 0, 0, t) = 0

the gauge fixing is complete; there is a one-to-one relationship between Fµν and Aµ and hence

one classical vacuum, where Aµ = 0. Intuitively, this is because the first condition leaves only

z-independent gauge transformations; the second condition fixes z and leaves only z-independent

and y-independent gauge transformations, and so on, leaving only global gauge transformations.

In this gauge, the winding number of the vacuum is always zero. Instanton configurations still

exist, connecting this vacuum to itself. However, in the surface integral of nµj
µ
A considered above,

only the sides of the cylinder contribute rather than the caps; the ‘charge’ created by an instanton

flows out to spatial infinity. In this picture, the θ term is not a consequence of the θ-vacuum, but

simply a parameter in the Lagrangian. (This viewpoint also holds in A0 = 0 gauge, so the theta

term would be the sum of a bare, Lagrangian term and the effective term from living in a θ vacuum.)

The fundamental difference between this gauge and the previous one is that this one counts the

large gauge transformations as ‘do nothing’ transformations. However, the θ term has the same

consequences in both pictures.

A simple analogy is given by the Lagrangian

L =
1

2
Bα̇2 −K(1− cosα).
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For α ∈ R, it describes a particle of mass B moving in a periodic potential, and the energy eigenstates

are the analogues of the θ-vacua. However, we can also regard α as an angle, in which case the

Lagrangian describes a pendulum with moment of inertia B. The analogue of the θ term is

∆L =
θ

2π
α̇

and appears in either case.

14.3 Yang–Mills Instantons

Next, we take a closer look at the instanton solutions. First, we take a detour into topology.

• We compactify Euclidean spacetime to S4 and consider G-bundles over S4. We may cover S4

with two patches, which overlap on the “equator” S3. Here the gauge fields are related by

AII
p = UAI

pU
−1 − i

g
(∂pU)U−1.

We would like to classify all topologically distinct bundles.

• First, we consider the simpler situation of a U(1)-bundle over S2, where

AII
p −AI

p = −∂pΛ

on the overlap region. We define

I1 =
1

4π

∫
d2x ϵpqFpq

where the xp are coordinates on S2. This quantity is manifestly gauge invariant.

• Next, we claim I1 is a topological invariant, i.e. it does not change under a smooth deformation

AI
p → AI

p + δAI
p, AII

p → AII
p + δAII

p .

In particular, it is continuous from one patch to the next, i.e. on the overlap region

δAII
p = δAI

p.

Now the integrand is a total derivative, and

δI1 =
1

4π

∫
d2x ϵpqδFpq =

1

2π

∫
d2x ∂p(ϵ

pqδAq) = 0

since S2 has no boundary.

• Similarly, the value of I1 itself is

I1 =
1

2π

∫
d2x ∂p(ϵ

pqAq) ≡
∫
d2x ∂pj

p.

However, it is incorrect to simply set this to zero, because the current varies from patch to

patch; it is not gauge invariant. Instead, we split it into integrals over the two hemispheres,

yielding two integrals over the equator Σ,

I1 =
1

2π

∫
Σ
dℓp ϵ

pq(AI
q −AII

q ) =
1

2π

∫
Σ
dℓp ϵ

pq∂qΛ
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which is simply the winding number of the map Λ : Σ→ U(1). Hence we have related I1 to the

winding number, a topological invariant of the fibre bundle. The integrand of I1 is called the

first Chern class/form and I1 itself is called the first Chern number; the Chern class/form is

only locally the derivative of the Chern–Simons 1-form.

• In four dimensions, we have the second Chern number

I2 =
g2

32π2

∫
d4x ϵpqrs trFpqFrs.

Again, this is a topological invariant, but now we have

δAII
p = UδAI

pU
−1.

Under a deformation we have

δI2 =
g2

16π2

∫
d4 ϵpqrs trFpqδFrs =

g2

8π2

∫
d4x ϵpqrs trFpqDrδAs

where the covariant derivative is taken with respect to the unperturbed potential. Now

ϵpqrs trFpqDrδAs = ϵpqrs∂r(trFpqδAs)− ϵpqrs tr(DrFpq)δAs

and the second term vanishes by the Bianchi identity. The first term is gauge invariant, so by

the same argument as before δI2 = 0 since S4 has no boundary.

• Next, to relate I2 to the topology of the bundle, we have shown above that

g2

32π2
ϵpqrs trFpqFrs = ∂pj

p
A.

The current jpA is the Chern–Simons 3-form, and is not gauge invariant. Hence by the same

argument as above, we have

I2 =

∫
Σ
dSp (j

Ip
A − j

IIp
A )

where Σ is the ‘equator’ with topology S3.

• An explicit computation shows that

jIpA − j
IIp
A =

1

24π2
ϵpqrs trU−1∂qUU

−1∂rUU
−1∂sU −

ig

8π2
ϵpqrs∂q(trU

−1∂qUAs).

The second term, while not gauge invariant, is non-singular everywhere on S3. That is, it can

be computed using only the gauge field on a single patch. Then since S3 has no boundary, the

integral of this term vanishes, leaving

I2 =
1

24π2
ϵpqrs

∫
Σ
dSp trU−1∂qUU

−1∂rUU
−1∂sU.

As shown above, for G = SU(2) is is simply the winding number that counts the number of

times SU(2) is covered as one goes over Σ. Hence the bundles are classified by π3(S
3).
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• More generally, they are classified by π3(G). Bott’s theorem states that any continuous mapping

from S3 into a simple Lie group G can be continuously deformed into a mapping into an SU(2)

subgroup of G. Hence our analysis holds unchanged for more general gauge groups. For a

general compact Lie group, the U(1) factors don’t matter, while each other factor gives an

independent winding number.

Finally, we return to the tricky business of justifying the boundary conditions.

• Mathematically, a gauge transformation is a fiber-preserving automorphism P → P , and a large

gauge transformation is one which is not connected to the identity. In particular, all gauge

transformations preserve transition functions and hence the instanton number. They simply

are basis changes for the fibers, which change the description of the connection.

• The transition functions between two patches are sometimes called gauge transformations, but

they are completely different objects; they characterize the structure of the bundle itself and

are fixed prior to the introduction of the connection.

• Now, the vacua and instantons were classified in different ways. The vacua are invariant under

spatial gauge transformations; whether or not they are invariant under large spatial gauge

transformations depends on the convention. The instantons, counted by the Chern number,

are invariant under arbitrary continuous deformations of the gauge field, which include gauge

transformations as a subset, as well as under large gauge transformations because the Chern

form is gauge invariant. While instantons correspond to nontrivial fiber bundles over S4, vacua

are all trivial fiber bundles over S3.

• In the case of instantons, one can shrink one of the patches to a very small region, which makes

the transition functions singular. Naively, without the machinery of bundles, this looks like a

singularity in the gauge field; one example is the Dirac string for the magnetic monopole.

• As we’ll see below, we can write down instanton gauge fields on R4, but they will always

be singular in at least one point. If this is the point at infinity, the instanton can described

as the ‘winding of the gauge field at long distances’, allowing a sensible description without

bundles. Alternatively, in the bundle language, the winding number of instanton is encoded

in the transition function between this gauge field and a trivial gauge field in a topologically

trivial patch containing the point at infinity.

• A more common approach in practice, which we will use below, is to take the gauge field to be

constant at x→∞ but singular at x = 0. This is equally valid, and in the bundle language the

winding would be encoded in the transition function between the gauge field in an infinitesimal

patch containing the origin, and a patch containing everything else.

• The compactification to S4 is a mathematical tool rather than a physical requirement. The

physical content of an instanton is that it is a local minimum of the Euclidean action. Compact-

ification of S4 is only necessary to get topologically nontrivial fibre bundles, where the instanton

number is additionally invariant under all continuous deformations, but this requirement has

nothing to do with the physical business of computing tunneling rates: since instantons have

finite sizes, modifying boundary conditions at infinity doesn’t affect the Euclidean action.

• Note that there are two definitions of ‘topological’ going on here. Both the Chern and Chern–

Simons forms are topological terms in the sense that they don’t depend on the metric, but
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only the Chern form is invariant under arbitrary deformations of the gauge field. These two

types of terms yield topological information about the spacetime manifold and bundles over it,

respectively. In the special case where the bundle is the tangent bundle, we can use it to get

topological information about the manifold; the Gauss–Bonnet theorem is one example.

• Instantons are sometimes mistakenly called “vacua”. The confusion arises from the fact that

one may take an instanton background and perturb around it to compute subleading corrections,

just like one does for a vacuum.

• It is simple to justify the condition Aµ(x)→ const in the physical gauge, since this is required

by the uniqueness of the vacuum Aµ(x) = 0.

• The situation is more subtle in A0 = 0 gauge. If we do not take this condition, the quantity

N [G] will not be an integer, intuitively because there is a singular winding ‘near the point at

infinity’. On the other hand, the difference of N [G] for two vacua will always be an integer,

because it’s simply the instanton number. Hence by performing a large gauge transformation

we can always set N [G] to an integer, and instantons will preserve this. Hence we can really

just take Aµ(x) to be constant without loss of generality.

We now find explicit instanton solutions on R4 using the ’t Hooft symbols.

• The trick is to use the relation between so(4) and su(2)⊕ su(2). Define the matrices

ep =

{
iτp p = 1, 2, 3

I p = 4
, e†p =

{
−iτp p = 1, 2, 3

I p = 4

where the τp are the usual Pauli matrices. Then for an SO(4) vector Vp, define

V = e†pVp =

(
V4 − iV3 −V2 − iV1
V2 − iV1 V4 + iV3

)
, detV = VpVp.

Then V is a unitary matrix times a multiple of the identity. We map the other way by

Vp =
1

2
trV ep.

• Rotations of Vp can be implemented on V by

V → U−1
L V UR, UL, UR ∈ SU(2)

where we need UL/UR to be unitary to preserve the form of V and special unitary to preserve

the determinant. Since the transformation UL = UR = −I does nothing, we conclude

SO(4) = (SU(2)× SU(2))/Z2.

• To compute the effect of an infinitesimal transformation, let

UL = e−iωL·τ , UR = e−iωR·τ .

Then infinitesimally we have

δV = i(ωL · τ)V − iV (ωR · τ).
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• By some messy but direct calculation, we can show this implies

δVp = (ωjLη
j
pq + ωjRη

j
pq)Vq

and the numbers ηjpq are best written in terms of the matrices

ηpq = ηjpqτj = −i(epe†q − δpqI), ηpq = ηjpqτj = −i(e†peq − δpqI).

• These matrices are antisymmetric, with the nonzero ηjpq and ηjpq fixed by

ηkij = ηkij = ϵijk, ηki4 = −ηki4 = δik.

This implies that ηpq is self-dual and ηpq is anti-self-dual,

ηpq =
1

2
ϵpqrsηrs, ηpq = −

1

2
ϵpqrsηrs.

Above, we have seen that ηpq determines the effect of UL while ηpq determines the effect of UR.

This is because an antisymmetric rank two SO(4) tensor transforms as (1, 0) ⊕ (0, 1) under

SU(2)× SU(2). These two terms each transform trivially under one of the SU(2) factors, and

are self-dual and anti-self-dual.

• Finally, we will use the identities

ηpqηqr = −2iηpr − 3δprI, ηpqηqr = −2iηpr − 3δprI.

Next, we explicitly construct the unit instanton. It is convenient to proceed without gauge fixing.

• We can bound the action by noting that F 2
rs = F̃ 2

rs, so∫
d4x

1

2
trF 2

rs =

∫
d4x

1

4
tr(F 2

rs + F̃ 2
rs) =

∫
d4x

1

4
tr(Frs − F̃rs)2 +

∫
d4x

1

2
trFrsF̃rs ≥

8π2

g2
k

where k is the instanton number. The unit instanton has k = 1 and locally minimizes the

action, which means its action is 8π2/g2 and the field strength is self-dual. In the case of k < 0,

we may flip a sign above to conclude that anti-instantons have anti-self-dual field strength.

• The result above is a Bogomolny bound, and it is useful because imposing self-duality requires

solving only a first-order differential equation, while naively we would have to solve a second-

order differential equation.

• We take the ansatz

Ap = ηpqxqf(x
2)

with the corresponding field strength

Fpq = 2ηqpf + 2(ηqrxrxp − ηprxrxq)f ′ − ig[ηprηqs]xrxsf2, f ′ =
df

d(x2)
.

Requiring self-duality imposes constraints on f(x2).
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• By rotational invariance, it suffices to examine the fields along the positive x4 axis, where

Fij = −2ηijf − ig[ηi4, ηj4]x2f2, Fk4 = −2ηk4f − 2ηk4x
2f ′

and the self-equality condition Fij = ϵijkFk4 reduces to

f ′ = −gf2, f =
1

g

1

x2 + λ2
.

• Therefore, the unit instanton solution, also called the BPST instanton, is

Ap =
1

g

ηpqxq
x2 + λ2

, Ajp =
2

g

ηjpqxq
x2 + λ2

.

The parameter λ gives the characteristic size of the instanton; all values of λ are allowed by the

scale invariance of classical Yang–Mills. The anti-self-dual anti-instanton has the same form,

with ηpq replaced with ηpq. The field strength is

Fpq = −
2

g

ηpqλ
2

(x2 + λ2)2
.

Note that this falls off as 1/x4 even though Ap falls off as 1/x. This is because the leading

large-distance component of Ap is pure gauge.

• Alternatively, by taking a gauge transformations, we have

A′
p =

1

g

ηpqxqλ
2

x2(x2 + λ2)
.

In terms of bundles over S4, the original gauge field is singular at the point at infinity, while

this gauge field is singular at the origin. Such a singularity is necessary, since the fiber bundle

is nontrivial.

• Yet another way to write the unit instanton is to let

G =
x4 + ix · τ
|x|

, Ap =
x2

x2 + λ2

(
− i
g

)
(∂pG)G

−1.

This works because G wraps around SU(2) once in an S3 slice at constant |x|. Multiple

instantons can be found by taking powers of G. Finally, one can explicitly transform this to

A0 = 0 gauge, giving explicit tunneling between vacua with different winding.

14.4 Physical Consequences

Finally, we investigate the physical consequence of instantons. First we connect them to anomalies.

• Consider a theory of Nf massless fermions. The U(1)A symmetry is anomalous by

∂µj
µ
5 =

Nfg
2

8π2
trFµνF̃

µν .

We can form a divergenceless current

Jµ5 = jµ5 − 2Nf j
µ
A

where jµA is as defined above; this current is not gauge invariant.
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• In the A0 = 0 gauge, the instanton corresponds to tunneling between vacua of different winding

number; moreover this current vanishes at spatial infinity. Hence we have a conserved charge

Q5 = nR − nL − 2Nfn

where n is the winding number of the gauge field. Hence a change in winding number must be

accompanied by a change in fermion chirality,

∆(nR − nL) = 2Nf∆n.

• To understand exactly how this happens, we consider the Dirac equation. The Hamiltonian for

a single particle is

H = −iαjDj , αj = γ0γj =

(
σj 0

0 −σj
)

in a particular representation of the γµ matrices. The four-component fermions naturally split

into a pair of two-component Weyl fermions, where

HR = −iσjDj , HL = iσjDj = −HR.

• Now we work in the Dirac sea picture. Both HL and HR have both positive and negative energy

eigenstates, and we suppose all the negative energy states are filled. During the tunneling

process, Aµ is not in a vacuum state, so the fermion spectrum changes; however it must be the

same in both the initial and final states. However, the spectrum can ‘flow’ as shown below.

Here the heavy line is the zero of energy. If the change is slow, the adiabatic theorem holds,

so that the initial Dirac sea turns into a Dirac sea plus a right-chiral particle and a left-chiral

negative energy hole, corresponding to a right-chiral positive energy antiparticle.

• Even if the adiabatic theorem does not hold, the Hamiltonian only couples fermion fields of

the same chirality, so any transitions between states do not affect the change in net chirality.

Similarly, the initial state need not be the vacuum state.

• The fact that the instanton number is generally equal to the number of energy levels that cross

zero can be proven with an index theorem, which we won’t go into here.

• Now consider the physical gauge. In this case, the vacua have been gauge transformed to all

have the same winding number. However the effect of the instanton of course cannot be gauged

away; the spectral flow occurs as before. Then the charge Q5 is not conserved, which appears

paradoxical. The resolution is that, as we’ve seen already, the current jµA does not vanish at

spatial infinity in this gauge; instead it yields a finite surface integral.
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• The chirality-violating processes associated with instantons can be represented by a nonlocal

effective Lagrangian density,

Leff = Ce−8π2/g2(λ)

Nf∏
s=1

(ψ
s
Rω)(ωψ

s
L)

where we must integrate over the positions of the fermion fields, ω is a fixed Dirac spinor

transforming under the fundamental representation of the gauge group which depends on the

gauge orientation of the instanton, and C is obtained from the one-loop corrections to the

instanton. The Hermitian conjugate of this term accounts for the anti-instanton, and one

must also integrate over instanton positions and scales. One may also integrate over gauge

orientations of ω to get a gauge-invariant result.

• Returning to the U(1)A, note that if we define

Mrs = (qRrω)(ωqLs)

then the anticommutativity of the fermion fields implies

Nf∏
s=1

(qRsω)(ωqLs) =
1

Nf !
detM.

The chiral transformations of the quark fields are

qL → ULqL, qR → URqR, M→ U †
RMUL

under which detM is not invariant for a U(1)A transformation. Hence U(1)A is explicitly

broken when one accounts for instanton effects, and so is not a spontaneously broken symmetry.

• Computing the coefficient C amounts to evaluating functional determinants as we did for

quantum mechanical tunneling, to find how the action varies as the instanton solution is

deformed. We must also integrate over collective coordinates. The troublesome coordinate is

the instanton size; we find a divergence due to large instantons, where the gauge coupling is

strong. Hence unless we have a natural cutoff on the instanton size, it is difficult to estimate

C. We only know that in QCD, instanton effects are significant.

Note. However, the U(1)A problem is a bit more confusing when one thinks in terms of θ-vacua

instead of Lagrangian terms. The charge associated with U(1)A generates θ translations. Hence

it appears the U(1)A symmetry is spontaneously broken by the choice of a θ vacuum, and hence

should yield a PNBG.

Formally, any explicitly broken symmetry can be thought of as a spontaneously broken symmetry

by enlarging the Hilbert space (i.e. treating the symmetry breaking parameter as a spurion), but it

will not correspond to a physical excitation. The key property that distinguishes U(1)A breaking from

the genuine spontaneous rotational symmetry breaking of a ferromagnet is that the magnetization

M(x) is a local field which can have local excitations, while θ is a global property of the state, so it

doesn’t make sense to promote it to θ(x). We dwell on this point because often the introduction of

the axion is oversimplified to saying that “axions result from promoting θ to a field”. As shown in

the notes on the Standard Model, one has to work a bit harder than that!

https://knzhou.github.io/notes/sm.pdf
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Note. A very similar phenomenon occurs in the simpler context of QED with a massless fermion in

d = 2, where we can do the calculations simply and explicitly. In this case, the particles are either

right-movers or left-movers, with the numbers nR and nL separately conserved. The axial charge,

proportional to nR − nL, is violated by the anomaly,

∆(nR − nL) =
∫
d2x

e

2π
ϵµνFµν .

To relate this to spectral flow, suppose we adiabatically turn on a constant A1 field, and for simplicity

compactify space to length L. The Hamiltonian for a Weyl field is

H =

∫
dxψ†(−iα1Da)ψ, α = γ0γ1 = γ5.

Splitting this into right-moving and left-moving components,

H =

∫
dx
(
−iψ†

+(∂1 − ieA1)ψ+ + iψ†
−(∂1 − ieA1)ψ−

)
.

The eigenfunctions of the covariant derivative the form eiknx with k = 2πn/L, which implies the

corresponding single-particle eigenstates of H have the energies

E+
n = kn − eA1, En = −(kn − eA1).

Suppose we shift A1 by ∆A1 = 2π/eL. Then spectral flow occurs in exactly the same manner as

we saw above for d = 4, changing nR − nL by −2. Correspondingly, we have∫
d2x

e

2π
ϵµνFµν =

∫
dt dx

e

π
∂0A1 = −2

as expected. We can understand the spectral flow in a very concrete way: turning on the A1 field

corresponds to giving an equal impulse e∆A1 to each particle. This affects the Dirac sea as follows:

The impulse creates right-moving particles and left-moving antiparticles, violating axial charge

conservation. This derivation, due to Nielsen and Ninomiya, can be generalized to d = 4, where

one must track how Landau levels change as E ·B is turned on.

This derivation didn’t need instantons: we just postulated a background field configuration,

nonzero over all space. Instantons are necessary to get a nontrivial result if we also require the

fields to vanish quickly at infinity, i.e. they are the only contributions that matter in the infinite

volume limit, where constant field configurations like this one would have infinite action.

Note. As with all anomaly effects, the result depends on the UV regularization. This is because

the spectral flow affects energy levels all the way to positive and negative infinity. For example, if

we had a hard cutoff, then spectral flow would never change the charges; in the above example, for
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example, the creation of low-energy right-moving particles would be compensated by the creation

of high-energy right-moving antiparticles. But we cannot just use this regulator because, as we’ve

seen before, it would ultimately lead to an anomaly in the vector current, rendering the theory

inconsistent. An appropriate regulator inevitably leads to the “Hilbert’s hotel” behavior above.

Next, we investigate baryon number violation.

• In the SU(2)×U(1) electroweak theory there are also instantons. The Higgs acquires its usual

vev at infinity but vanishes at the center of the instanton. The Higgs vev hence breaks the

classical scale invariance, by favoring a smaller instanton size. As a result the integration over

instanton size is finite, peaking around λ ∼ 1/⟨ϕ⟩.

• Each electroweak instanton leads to a violation of baryon and lepton number by

∆B = ∆L = 3

where the factor of 3 is from the three generations. The effective Lagrangian is nonlocal at the

electroweak scale and hence, at longer distances, one can approximate the terms as local. For

example, an instanton could mediate the scattering process p+ n→ p+ e+ + e+ + νe.

• The rate of the associated processes is suppressed by(
e−8π2/g2

)2
= e−16π2 sin2 θW /e2 ∼ 10−161

where we evaluated e at the Z mass, since the typical instanton size is set by the electroweak

scale. The universe contains about 1078 protons and has an age of about 1010 years, or 1040

times a typical strong interaction time of 10−23 seconds. Hence baryon number violation by

instantons appears to be completely negligible.

• However, one can also travel between different vacua by thermal fluctuations, rather than

quantum tunneling. For every path connecting two vacua in spacetime, there is a point of

highest energy; the minimum of all such maxima determines the thermal fluctuation rate. Such

a solution is called a sphaleron, and it heuristically looks like the “midpoint” of the unit instanton

solution. In particular, it has half-integer winding number. Sphalerons shouldn’t be confused

with instantons: instantons are spacetime configurations that are minima of the Euclidean

action, while sphalerons are spatial configurations that are saddle points of the energy.

• Since a sphaleron is a critical point of the potential, it corresponds to a static solution (in

A0 = 0 gauge) of the field equations. Since it is a saddle point, it is unstable, leading to its

name; sphaleron is etymologically related to “slippery”.

• The size of the sphaleron is set by the Higgs vev, leading to the estimate

Esph ∼
4πv

g
∼ 10GeV

where g is the SU(2) gauge coupling. We then estimate Γ ∼ e−Esph/T , though a more accurate

calculation would give Γ ∼ e−Fsph/T where the free energy Fsph accounts for finite temperature

corrections to the effective potential, which change the expectation value of the Higgs field.
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• More quantitatively, the rate per spacetime volume goes as

Γ ∼

{
T 4e−Fsph/T T ≲ Fsph

T 4α4
w T ≳ Fsph

where the T 4 is by dimensional analysis, and the casework occurs because electroweak symmetry

is unbroken for T ≳ Fsph.

• In any case, it is clear that at temperatures near or above that of the electroweak phase transition,

baryon number violation can be significant. Depending on the model, this can be an obstacle to

baryogenesis, diluting existing baryon number asymmetry, or the reason for baryogenesis itself.

Next, we discuss the QCD θ term.

• As we’ve motivated above, the Yang–Mills Lagrangian contains the θ term

∆L =
θg2

16π2
trFµνF̃

µν =
θg2

32π2
ϵµνρσ trFµνFρσ.

A constant θ has no classical physical effects, but can have effects in the quantized theory.

• As a simple analogue, consider a particle on a ring, at angular coordinate α, and

L =
1

2
Bα̇2 +

θ

2π
α̇.

The conjugate momentum to α is

J = Bα̇+
θ

2π

is quantized and takes on integer values, so for J = n,

En =
1

2B

(
n− θ

2π

)2

.

Hence a total derivative term affects the spectrum, though θ only matters up to multiples of

2π. For example, when θ = 0 or θ = π, the energy levels are doubly degenerate; in both cases

this is a consequence of time reversal symmetry.

• Now add a potential energy K(1− cosα) where K ≫ 1/B, so we may think of the particle as

a rigid pendulum. In this case, the θ dependence only comes from tunneling processes, so the

θ-dependence of the energy levels is exponentially suppressed.

• As for the physical consequences of the θ term, we cannot consider the θ-dependence of the

vacuum energy, since θ is fixed. (However, such dependence is important when there is an

axion.) The θ term also cannot explain observed CP violating processes, such as kaon decay,

because neutron EDM requirements mean θ must be extremely small. In fact, no effects of the

θ term have ever been observed. This is the strong CP problem.

Finally, we describe the Witten effect.

• The Witten effect links the θ term to the electric charge of magnetic monopoles. Here we must

distinguish between two senses of the electric charge: the quantity that is coupled to electric

fields which can be measured by their Coulomb tail, and the conserved Noether charge Qn
associated with phase rotations.
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• Now consider a global U(1) transformation composed with a gauge transformation,

δAµ =
1

e
Dµ(ϕ/|ϕ|), δϕ= 0

in a theory with gauge coupling e where SU(2) is broken to U(1) by a triplet, and the bold

refers to SU(2) indices.

• The Noether charge is

Qn =

∫
dx δAj ·Πj

where the conjugate momentum Πj is

Πj =
∂L

∂(∂0Aj)
= Fj0

which implies that when θ = 0,

eQn =

∫
dxDjϕ̂ · Fj0 =

∫
dx
(
∂j(ϕ̂ · Fj0)− ϕ̂ ·DjF

j0
)
.

The field equation DjF
j0 = ϕ×D0ϕ shows the second term vanishes, so

eQn =

∫
d2Sj ϕ̂ · Fj0 = QE

where electric charge is defined by the unbroken U(1)) subgroup. Since the Noether charge Qn
is conjugate to a periodic value, it is an integer, so the charge is quantized.

• Adding the θ term changes the conjugate momenta to

Πj = Fj0 − θe2

16π2
ϵjklFkl

and repeating the steps above, using the Bianchi identity ϵjklDjFkl = 0 gives

eQn =

∫
d2Sj ϕ̂ · Fj0 −

θe2

16π2
ϵjklϕ̂ · Fkl = QE −

eθ

2π

(
eQM
4π

)
.

• However, the Noether charge remains quantized to integer values. Thus, a monopole with

magnetic charge QM = 4π/e must have electric charge

QE = ne+
eθ

2π

for some integer n. Note that the result is periodic in θ as required.

• This can be understood by looking at the monopole from a distance, where it looks like a point

charge. The Lagrangian is that of ordinary electromagnetism with the additional term

∆L = − θe
2

8π2
E ·B

so that the abelian Gauss’s law becomes

∇ ·E− θe2

8π2
∇ ·B = ρ

where ρ is a purely electric source, which vanishes for a monopole. Hence magnetic charge must

be accompanied by electric charge.
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• This doesn’t contradict the fact that the θ term does not affect the equations of motion, because

for trivial gauge bundles ∇ · B vanishes identically. It can only be nonzero if the bundle is

nontrivial, in which case the θ term, which is still a total derivative, cannot be converted to a

vanishing surface integral at infinity; instead we get a contribution at the overlap of the patches.

• Note that the Witten effect is conceptually independent of instantons; it only relies on there

being a θ term in the Lagrangian.
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