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3 1. Introduction

1 Introduction

We’ve learned to use statistical mechanics to go between microscopic properties of matter (i.e. the

degrees of freedom for each particle) and macroscopic thermodynamic variables, such as pressure

and temperature. We were able to handle noninteracting systems exactly, and account for weak

interactions using perturbation theory. In statistical field theory, we investigate situations where

the perturbative approach breaks down, often at a phase transition. We would like to answer the

following questions:

1. In the thermodynamic limit, how do distinct macroscopic phases emerge from microscopic

dynamics? What are the thermodynamic variables that describe the macroscopic state of

these phases, and what are their identifying signatures in the measurement of bulk response

functions (e.g. heat capacity, susceptibility)?

2. What are the characteristic low energy excitations of the system? In many cases, such as

phonons in solids or superfluid helium, they are collective modes which involve the motion of

many microscopic degrees of freedom. These low-lying modes are easily excited by thermal

fluctuations, and probed by scattering experiments.

In general, a true ab initio calculation is intractable. However, in some cases, the description may

be simplified by averaging over many particles in the thermodynamic limit. At long wavelengths,

we may coarse-grain the system into a field (the ‘hydrodynamic limit’), and apply classical field

theory techniques.

1.1 Phonons

As a first example, we calculate the phonon contribution to the specific heat capacity of a solid

using both approaches. First, consider an ab initio approach. The steps are as follows.

• Starting with the Schrodinger equation, we perform approximations (i.e. density functional

theory) to yield a many-body potential V (q1, . . . ,qN ).

• We find the lattice ion positions at zero temperature by minimizing V . Typically, we find a

Bravais lattice with

q∗(l,m, n) = la +mb + nc = q∗r, r = (l,m, n).

• We expand the potential to second order about this minimum. If the displacements are u(r),

∆V =
1

2

∑ ∂2V

∂qr,α∂qr,β
uα(r)uβ(r)

where α and β are spatial components. The full Hamiltonian for small deformations is found

by adding
∑
pα(r)2/2m where pα(r) is the conjugate momentum to uα(r).

• By applying translational symmetry,

∂2V

∂qr,α∂qr,β
= Kαβ(r− r′)
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the Fourier transform of the Hamiltonian becomes

H =
∑
k,α,β

(
pα(k)2

m
+Kαβ(k)uα(k)uβ(k)∗

)
where the sum in k is over the Brillouin zone.

• The matrix Kαβ(k) can now be diagonalized separately for each k, which can be done with the

help of the crystal symmetry. This decomposes the Hamiltonian into 3N independent harmonic

oscillators.

• Quantizing each oscillator, we find

H =
∑
k,α

~ωα(k)

(
nα(k) +

1

2

)
where the ωα(k) are the three normal mode frequencies for each k.

• Therefore the average energy at a temperature T is given by

E(T ) =
∑
k,α

~ωα(k)

(
〈nα(k)〉+

1

2

)
, 〈nα(k)〉 =

1

exp(~ωα/kT )− 1

where we applied the Bose–Einstein distribution. We see that E(T ) has complex behavior,

dependent on microscopic details through the ωα.

However, it is possible to extract universal behavior in the long-wavelength limit. To see this, we

switch to a chain of particles in one dimension.

• The most general quadratic translationally invariant potential energy for deformations is

V =
K1

2

∑
n

(un+1 − un)2 +
K2

2

∑
n

(un+2 − un)2 + · · · .

• The normal modes are just the Fourier components, with

un =

∫ π/a

−π/a
d̄k e−iknau(k), u(k) = a

∑
n

eiknaun

where a is the equilibrium separation between the particles.

• Plugging in the Fourier transform, doing the sum over n to get a delta function, and using

u(−k) = u∗(k), which follows from un being real, we have

V ∝ 1

a

∫ π/a

−π/a
d̄k (K1(1− cos ka) +K2(1− cos 2ka) + · · · ) |u(k)|2.

• We thus find the frequency of the normal modes to be

ω(k) ∝
√
K1(1− cos ka) +K2(1− cos 2ka) + · · ·.

In the limit k → 0, the dispersion relation becomes ω(k) = v|k|. While further neighbor

interactions change the value of v, they don’t change this fundamental feature.
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• At low temperatures, only this part of the excitation spectrum is important, so

E(T ) ≈ Na
∫ ∞
−∞

d̄k
~v|k|

exp(~v|k|/kT )− 1
= Na

π2

6~v
(kT )2.

Therefore the heat capacity is linear in T . This is a universal property, independent of the

detailed interatomic interactions.

We can arrive at this conclusion without ever looking at microscopic details, using a phenomenological

(field) approach. Since we only want to look at long-wavelength excitations, we ignore variations

in the field on the scale of a, allowing us to replace the displacements un with a displacement field

u(x). The kinetic energy term becomes ρ
∫
dx u̇(x)2/2, where ρ = m/a is the density. We now use

general principles to constrain the form of the potential functional V [u].

• Locality: in most situations, interactions between particles are short-ranged, so we may write

V [u] =

∫
dxΦ(u, du/dx, . . .)

where Φ is a local potential energy density.

• The above form isn’t strong enough, since if we allow infinitely many derivatives, we can

construct nonlocal interactions like u(x)u(x+ a) by Taylor series. In general, higher derivative

terms are ‘less local’ (in a discrete lattice setup, the dnu/dxn takes n+1 lattice sites to compute),

so locality really implies that higher derivative terms are less significant.

• Translational symmetry: we have Φ[u(x) + c] = Φ[u(x)], so Φ cannot depend directly on u.

• Stability: since the fluctuations are about an equilibrium position, there can be no linear term

in u or its derivatives. Moreover, the quadratic part of V [u] must be positive definite.

As a result, the most general allowed potential can be expanded as a power series. Each term is

of the form (∂xu)n1(∂2
xu)n2 . . .. By locality and translational symmetry, the Fourier transform has

‘conservation of momentum’, with derivatives becoming factors of k, e.g.∫
dx (∂xu)2(∂2

xu) →
∫
d̄k1d̄k2 k1k2(k1 + k2)2u(k1)u(k2)u(−k1 − k2).

In the limit k → 0, higher order derivative terms become unimportant. Moreover, for small

deformations we may neglect terms beyond second order in u. Then we are left with only the (∂xu)2

term, giving

H =
ρ

2

∫
dx
[
(∂tu)2 + v2(∂xu)2

]
.

This is the Hamiltonian of a one-dimensional elastic string; its equation of motion is the wave

equation. Thus ω = v|k| for small k, as seen earlier.

Note. In higher dimensions, the result is slightly more complicated. In Fourier space, rotational

invariance now allows dependence on k2, u2, and k · u. The final quantity allows us to distinguish

longitudinal modes and transverse modes, which may have different velocities. In d dimensions, we

find the universal result E(T ) ∝ T d+1, giving a heat capacity proportional to T d.
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1.2 Phase Transitions

Phase transitions cause sudden changes in thermodynamic response functions. All such response

functions can be derived from the free energy, which implies that the free energy has a singularity.

But since the free energy is analytic for any finite system (since the partition function is), we

conclude that phase transitions can only occur in the thermodynamic limit N →∞.

Example. The liquid-gas phase transition is shown below.

We observe that:

• In the (T, P ) plane, the phase transition occurs along a line that terminates at the critical point

(Tc, Pc).

• In the (v, P ) plane (where v = V/N), the transition appears as a coexistence interval, corre-

sponding to a mixture of gas and liquid of densities ρg = 1/vg and ρl = 1/vl. (Starting from

the van der Waals equation, this interval is found using the Maxwell construction
∫
dµ = 0.)

• It is possible to go from the gas phase to the liquid phase continuously (without passing through

a phase transition), so there is no fundamental difference between them; they are the same

phase!

Mathematically, the free energy of the system is analytic, except for a branch cut along the phase

boundary. Moreover, near the critical point, we find that:

• As T → T−c , ρl and ρg both converge to ρc.

• As T → T+
c , the pressure vs. volume isotherms become more and more flat, so the isothermal

compressibility κT = −(∂V/∂P )|T /V diverges.

• The fluid appears ‘milky’ close to criticality (critical opalescence). This shows that collective

fluctuations are occurring at wavelengths long enough to scatter visible light.

Indeed, we will see that long-range correlations are characteristic of criticality.

Example. A detailed analysis of the van der Waals gas. The equation of state is

(p+ a/V 2)(V − b) = NkT.

To calculate the free energy, note that p = (−∂F/∂V )T , so

p =
NkT

V − b
− a

V 2
, F = Fideal −NkT log(1− b/V )− a/V.
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In general, an equation of state is insufficient to recover the free energy (e.g. the monatomic and

diatomic gases have the same equation of state); here, we fix the integration constant, which is an

arbitrary function of T , by demanding the van der Waals gas reduce to the ideal gas at high V .

These additional terms mean that there are certain unstable states. The simplest way to see

this is to note that ∂p/∂V |T can be positive, so the gas is mechanically unstable. More abstractly,

we can have ∂2F/∂V 2 negative, so the free energy is not convex. The Gibbs free energy, which is

its Legendre transform, will be multivalued, but only the state with lowest Gibbs free energy is

thermodynamically stable. The unstable states are supercooled gas or superheated liquid.

As shown in the figure above, the physical states can be found by taking the convex hull of the

free energy; the physical states are mixtures of liquid and gas. All of these states are mapped to

the same “kink” of the Gibbs free energy. This also serves as an example where nonanalyticity can

appear from thermodynamic conditions.

To identify the location of the kink, we note that∮
∂G

∂p
dP = 0.

Since ∂G/∂p = V , the physical states on a pV diagram can be identified by the Maxwell equal

area construction. Another way of stating this is that, since G = Nµ, we simply set the chemical

potentials of the liquid and gas components equal.

Note. If a supercooled gas is unstable, why can it exist at all? Naively, the result ∂p/∂V < 0

means that such a gas should immediately condense into a liquid. However, condensation must

begin with small droplets, which turn out to be energetically unfavorable due to the surface tension.

Roughly put, the benefit of being condensed scales with volume (bonds in the bulk) but the surface

tension cost scales with surface area, because this counts the number of ‘missing’ bulk bonds. Thus

droplets below a critical radius are unstable. Clouds form when water vapor condenses on small

dust particles instead.

Example. The ferromagnetic-paramagnetic phase transition. The thermodynamic variables are

now the external field h, the magnetization M , and the temperature T , where (h,M) is analogous

to (P, v). The phase diagram is closely analogous to the liquid-gas phase transition, but it is simpler

due to the symmetry h→ −h, which ensures that the critical point occurs at hc = 0.
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To flesh out the analogy, the liquid and gas phases are analogous to the ‘spin up’ and ‘spin down’

phases (except that the order parameter is density, rather than magnetization). The ‘paramagnetic’

phase that occurs for T > Tc is analogous to the supercritical fluid. For T < Tc, coexistence between

the spin up and spin down phases can occur, as there are multiple allowed M values for h = 0 and

fixed T . This is realized by having large magnetic domains that are one or the other. As in the

liquid-gas case, we see a divergence in the response function ∂M/∂h as we approach the critical

point from above.

Example. More complicated order parameters. In an Ising antiferromagnet on a simple cubic

lattice, the order parameter would be the staggered magnetization∑
n

(−1)n〈sn〉

where n alternates even/odd between adjacent sites. In a nematic liquid crystal, the order parameter

is the orientation of the long molecules, which is a vector mod {±1}. In the liquid-solid phase

transition, which breaks translational symmetry, the order parameter is a Fourier component of the

change in density δρq.

There is no general way to construct an order parameter for a phase transition. Often the

experimental discovery of a phase transition comes first; one must then use physical insight to find

an order parameter for it.

1.3 Critical Behavior

The singular behavior near a critical point can be characterized by a set of critical exponents, which

describe the non-analyticity of various thermodynamic functions. We use the magnet example above

for concreteness, defining the reduced temperature t = (Tc − T )/Tc.

• Order parameter: the order parameter is an intensive thermodynamic variable that distinguishes

phases. In the case of the magnet, it is

m(T, h) =
1

V
lim
V→∞

M(T, h).

In the case of zero field, we have

m(T, h = 0) ∝

{
0 T > Tc

|t|β T < Tc
.

As we pass the critical temperature, a net magnetization suddenly appears.
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• We may also define a critical exponent based on the response to an external field,

m(T = Tc, h) ∝ h1/δ.

As we approach the critical point from above, the magnet becomes more and more sensitive to

external fields, as it is on a ‘tipping point’ between magnetization up and down.

• Response function: a related quantity is the response to an infinitesimal external field as a

function of temperature, i.e. the susceptibility χ. We typically find

χ±(T, h = 0) ∝ |t|−γ±

where γ > 0, so the susceptibility diverges. Often, symmetry forces γ+ = γ−.

• Heat capacity: the heat capacity is simply the thermal response function. It behaves as

C±(T, h = 0) ∝ |t|−α± .

In general, α can be positive (divergence) or negative (finite, possibly with a cusp). In some

cases, we can have α = 0.

Next, we show that the divergence of the susceptibility directly implies the existence of long-range

correlations.

• We begin with the (Gibbs) partition function in a magnetic field h, given by

Z(h) = tr exp(−βH0 + βhM)

where H0 is the internal energy of the magnet, and the hM term converts this to the Gibbs

free energy. The trace is a sum over microscopic degrees of freedom, classical or quantum.

• The equilibrium magnetization can be found by differentiating Z,

〈M〉 =
∂ logZ

∂(βh)
=

1

Z
tr (M exp(−βH0 + βhM))

The susceptibility is defined as

χ =
∂〈M〉
∂h

= β
(
〈M2〉 − 〈M〉2

)
where the second step follows by direct calculation. More generally, it works because logZ is a

cumulant generating function for the magnetization.

• The overall magnetization may be computed from the local magnetization as

M =

∫
drm(r).

Then we find that

χ = β

∫
drdr′ 〈m(r)m(r′)〉 − 〈m(r)〉〈m(r′)〉.
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• Applying translational symmetry, we may simplify this to

χ = β

∫
drdr′ 〈m(r− r′)m(0)〉 − 〈m〉2 = βV

∫
dr 〈m(r)m(0)〉 − 〈m〉2

where integrating over the CM coordinate gave a factor of volume.

• The integrand is simply the connected correlation function

〈m(r)m(0)〉c = 〈(m(r)− 〈m(r)〉)(m(0)− 〈m(0)〉)〉

which determines the correlation of fluctuations away from the equilibrium magnetization. Hence

the susceptibility measures the statistical coherence of the system. Typically, the correlation

decays exponentially with scale ξ, the correlation length.

• Since the largest possible value of the correlation function is bounded, the fact that χ → ∞
at the critical point implies that ξ →∞, specifically ξ±(T, h = 0) ∝ |t|−ν± , giving long ranged

correlations as in critical opalescence. This motivates the introduction of statistical fields.

Example. The Ising model in mean field theory. Defining N spins si = ±1 on a lattice,

E = −B
∑
i

si − J
∑
〈ij〉

sisj .

Defining the average magnetization m =
∑

i si/N , the effective free energy per spin is defined by

Z ∼
∫
dme−βNf(m)

and the saddle point approximation states that the equilibrium magnetization 〈m〉 is the magneti-

zation that minimizes f(m). It is difficult to calculate f(m). In mean field theory, we approximate

E(m) ≈ N
(
−Bm− 1

2
Jqm2

)
where q is the number of neighbors of each spin. Intuitively, this is what we would get if the spins

were distributed randomly, and also what we would get if they could all interact with each other.

In both cases, we’re ignoring the spatial structure of the problem, in particular how “clumps” of

flipped spins may form; instead we assume every spin sees only the mean field.

Assuming that mean field theory is applicable here, we have

e−βNf(m) ≈ Ω(m)e−βE(m), Ω(m) =

(
N

M

)
, M = N

m+ 1

2

where M is the number of spins up. Applying Stirling’s approximation,

f(m) ≈ −Bm− 1

2
Jqm2 − T

(
log 2− 1

2
(1 +m) log(1 +m)− 1

2
(1−m) log(1−m)

)
.

A little bit of algebra shows that f(m) is minimized when

m = tanh(βB + βJqm).

When B = 0, we have a continuous phase transition.
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Note. The first remarkable fact about critical exponents is that the critical exponents calculated

in our mean field Ising model, and with the van der Waals equation, are exactly the same! This

is not surprising because they have the same generic form when Taylor expanded to low order;

the Landau–Ginzburg Hamiltonian we define below exemplifies this form. The second remarkable

fact is that these results are wrong in d = 3, but the right answers are exactly the same! This is

universality, a deeper phenomenon we will explain with the RG.

Note. Why can we ignore quantum effects in everything we do below? We can do this when

the correlation length ξ is much greater than the de Broglie wavelength λ, and for a system with

characteristic speed v, λ = v~/kBT . Hence quantum effects are negligible at high temperatures or

at critical points. The only exception is critical points at zero temperature, which may correspond

to quantum phase transitions.
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2 Landau Theory

2.1 Landau–Ginzburg Hamiltonian

Near the critical point, the divergence of the correlation length implies that long-range excitations

become important; hence we may coarse grain and describe the system with a statistical field.

• For example, for magnetic systems, the relevant excitations are collective excitations of spins.

The fact we are coarse-graining translates into the requirement that m(x) has no Fourier

components near the UV cutoff Λ ∼ 1/a.

• We have defined m(x) as a map Rd → Rn, but this formalism may be used to describe a variety

of physical situations:

– The case n = 1 describes liquid-gas transitions, binary mixtures, and uniaxial magnets.

– The case n = 2 describes Bose–Einstein condensates, superfluidity, superconductivity, and

planar magnets. In the former cases, the free energy gives the Gross–Pitaevskii equation

of motion, and the order parameter is the ‘macroscopic wavefunction’.

– The case n = 3 describes classical magnets.

• Let Hmic be the microscopic Hamiltonian. Then it is possible to write the microscopic partition

function Z = tr exp(−βHmic) as

Z =

∫
Dm(x)W [m(x)]

where m(x) is a coarse-grained field and the measure Dm(x) includes a factor for integrating

out higher-frequency modes.

• This yields the coarse-grained Hamiltonian

βH[m(x)] = − logW [m(x)].

Computing the weighting factor W is analytically intractable. However, we may apply general

principles to narrow down the possible form of the coarse-grained Hamiltonian H.

• Locality and translational invariance imply that we may write

βH =

∫
dxΦ[m(x)].

• We take terms with at most a few derivatives. This is partly motivated by locality, because an

infinite number of derivatives allows nonlocality. Alternatively, we know that higher derivative

terms are suppressed in slowly varying field configurations, which are the ones we focus on.

This is really a primitive RG argument which we can justify formally later.

• We assert that Φ is analytic in m and its derivatives, and hence can be expanded in a Taylor

series. Note that while if we had nonanalytic behavior at the microscopic scale (e.g. for a

potential V ∼ |x| we have a Boltzmann weight e−|x|), coarse-graining washes out these features

in a way analogous to the central limit theorem.
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• Since there is rotational symmetry at the microscopic level, it must be preserved at the meso-

scopic level. Then we may only have rotationally invariant terms, e.g.

m2 = mimi, (∇m)2 = ∂αmi∂αmi, (∇2m)2 = (∂α∂αmi)(∂β∂βmi).

The original setup is also Z2 symmetric under m→ −m, so all terms should be even in m.

• Applying these principles gives the Landau–Ginzburg Hamiltonian, originally used to describe

superconductivity,

βH = βF0 +

∫
dx

(
t

2
m2 + um4 +

K

2
(∇m)2 + · · · − h ·m

)
.

Here, we have included an external field term h ·m term, and absorbed a factor of β into the

constants. The overall constant βF0 usually won’t matter; there are higher order terms in m

and h in the expansion, but we won’t need them to describe phase transitions.

• Stability implies that the probability should not diverge for infinitely large field configurations.

In the case of the Hamiltonian above, this requires u > 0. The probability should also not

diverge for oscillatory field configurations, giving K > 0.

• The variables t, u, and K are phenomenological parameters that we cannot compute directly.

Unlike the couplings in Hmic, they have nontrivial (but analytic) dependence on thermodynamic

variables, such as P and T , as a result of the coarse-graining procedure.

Note. Here we’ll outline the general plan of attack for the rest of these notes. Generally, a

thermodynamic system has fluctuations on all length scales ranging from the lattice spacing to the

system size. To get the exact answer, we must sum over all possible fluctuations at all length scales,

but this is almost always computationally intractable. To split the problem into pieces, we can

imagine first summing over fluctuations at the smallest scales, yielding a new effective Hamiltonian

for the remaining degrees of freedom; this defines an RG flow on the space of Hamiltonians. By

iterating this procedure, we can “integrate out” all degrees of freedom on microscopic scales, focusing

only on the macroscopic physics we can observe. For example, if we sum over all fluctuations, we

just end up with the free energy, which depends on only the mean magnetization.

In Landau–Ginzburg theory, we integrate out microscopic but not mesoscopic degrees of freedom,

simplifying the problem at the cost of making the coefficients in the Landau–Ginzburg Hamiltonian

phenomenological. In mean field theory, we ignore the mesoscopic degrees of freedom as well. Hence

mean field theory amounts to ignoring all RG flow on the way from mesoscopic to macroscopic scales.

(Since mean field theory is such a crude approximation, there are many ways to reach it; we saw

one in the previous section.) Later, we will attempt to account for the fluctuations perturbatively.

When this fails, we’ll turn to a full RG analysis.

2.2 Mean Field Theory

We can evaluate the partition function by focusing on configurations where the integrand e−βH is

maximized (the ‘saddle point approximation’). The crudest version of this is mean field theory.

• Since K > 0, fluctuations in the field are suppressed, so the greatest contribution comes from

constant field configurations. Then

Z ≈ e−βF0

∫
dm exp

(
−V

(
t

2
m2 + um4 + · · · − h ·m

))
.
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This simpler form is called the Landau free energy, as opposed to the more sophisticated Landau–

Ginzburg Hamiltonian. This is a very crude approximation; it essentially says that the effective

Hamiltonian is unchanged by integrating out all fluctuations. Thus mean field theory should

only work when our original Landau–Ginzburg Hamiltonian is RG stable.

• In the limit V →∞ the integral is dominated by the value of m that maximizes the integrand,

βF = − logZ ≈ βF0 + V min(Ψ(m)), Ψ(m) =
t

2
m2 + um4 + · · · − h ·m.

To minimize the final term, we must have m = mĥ. Carrying out the minimization, we have

tm+ 4um3 + · · · − h = 0.

• We note that while Ψ(m) is analytic, the free energy F may not be, because the minimization

procedure is not analytic. As usual, the source of the nonanalyticity is the thermodynamic

limit V →∞, which is what allowed us to only consider the minimum in the first place.

This crude approximation turns out to be sufficient to model some phase transitions.

• For t > 0, the cubic term is not necessary for stability and can be ignored. We have m ≈ h/t,
giving paramagnetic behavior, since m→ 0 as h→ 0. The susceptibility diverges as t→ 0.

• For t < 0, the quartic term is required to ensure stability. For small enough h, there are two

local minima, with the global minimum being aligned with h.

• In the limit h → 0, the magnetization still remains nonzero, indicating ferromagnetism. The

sign of m chosen depends on the system’s history, or small fluctuations.

• Given the above considerations, we see there is a line of phase transitions at h = 0 and t < 0.

• To match this model to our magnet, we require t(T ) to monotonically increase in temperature

and cross zero at T = Tc. The most generic choice that works is

t(T ) = a(T − Tc) +O((T − Tc)2).

Now we have just the same thing as the Taylor expansion of our mean field Ising result.

• For stability, we require K(T ) > 0 near the critical point, so generically

K(T ) = K +O(T − Tc), K > 0.

We could add more structure, e.g. by imposing symmetries, but this will be enough.

Note. Other choices are not generic. Suppose we expand

t(T ) =
∑
n

an(T − Tc)n.

Each of the coefficients an is generically a complicated function of temperature. Now, there is a

single arbitrary choice on the right-hand side, i.e. the critical temperature Tc, and it is chosen so

that there is indeed a critical point at Tc by setting a0 = 0. We would see the same behavior if the

first nonzero term was a3, but this would require tuning a0 = a1 = a2 = 0, which isn’t possible for

a generic function. It is possible for symmetries to force a3 to be the first nonzero term, but there

are no such symmetries here. Conversely, as long as we’re working with a generic system, every

term not forbidden by symmetries must be present.
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Note. We can apply similar reasoning to the restriction u > 0. We could still have stability if

H ∼ −m2 −m4 +m6.

However, this is ruled out by the requirement that we have a continuous phase transition as T → Tc.

To get continuity, we require the minimum to be at m = 0 at the critical point, but this can only

happen if the coefficients of m2 and m4 go to zero simultaneously, which is not generic. The above

Hamiltonian is instead a generic prototype for a discontinuous phase transition.

While Landau theory can provide some insight into discontinuous phase transitions, it doesn’t

work as well quantitatively because it’s based on a Taylor series in m, and m may jump to a large

value in a discontinuous phase transition.

We can now use our setup to compute critical exponents.

• Explicitly minimizing the free energy in the ferromagnetic phase, we find magnetization

m(h = 0) =

√
a

4u
(Tc − T )

near the critical point, giving a critical exponent of β = 1/2. We focus on the critical exponent

because it is universal, i.e. independent of the material properties, which would influence the

values of a and u. As expected, m vanishes near the critical point, so it will be justified to

expand to lowest nontrivial order in m below.

• Along the critical isotherm, the response is

m(t = 0) =

(
h

4u

)1/3

which gives the critical exponent δ = 3.

• Since we have h = tm+ 4um3, it is easier to calculate the inverse susceptibility,

χ−1 =
∂h

∂m

∣∣∣∣
h=0

= t+ 12um2 =

{
t t > 0

−2t t < 0.

We see that γ+ = γ− = 1, with the susceptibility diverging on both sides of the phase transition.

The ratio of amplitudes is also predicted to be universal, with a value of 2.

• The free energy for h = 0 is

βF = βF0 + VΨ(m) = βF0 + V

{
0 t > 0

−t2/16u t < 0
.

We may compute the heat capacity from the free energy as C = −T∂2F/∂T 2. Near the critical

point, we have ∂/∂T ≈ a∂/∂t, giving

C(h = 0) ≈ −Tca2 ∂
2

∂t2
(kTcβF ) = C0 − (V ka2T 2

c /8u)θ(t).

That is, we find a discontinuity in the heat capacity; the critical exponent is α = 0.
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Note. The Ehrenfest classification defines a phase transition as nth order if the nth derivative of

the free energy is discontinuous. First order phase transitions are thus characterized by jumps

in the order parameter, while second order phase transitions are characterized by jumps in the

susceptibilities/response functions.

However, in many cases, the susceptibilities diverges rather than jumps, as we saw above. In

the modern definition, we classify phase transitions as ‘discontinuous’ (corresponding to first order)

and ‘continuous’ (which includes everything else).

2.3 Symmetry Breaking

The ferromagnetic phase demonstrated above exhibits spontaneous continuous symmetry breaking

for h = 0 and n > 1. Long-range order is established, so that the state of the magnet no longer has

the full symmetry of the microscopic Hamiltonian. However, it remains true that a rotation leaves

the energy invariant. As a result, rotations that vary slowly in space can cost an arbitrarily low

amount of energy. These low-energy, ‘gapless’ excitations are called Goldstone modes.

Example. Superfluidity. In the superfluid phase, there is a macroscopic occupation of a single

quantum ground state, which can be described by a complex order parameter

ψ(x) = |ψ(x)|eiθ(x).

More precisely, ψ(x) is the expectation value of the field annihilation operator ψ̂(x). Now, since

the phase θ is not observable, the coarse-grained Hamiltonian cannot depend on it, giving

βH = βF0 +

∫
dx

(
K

2
|∇ψ|2 +

t

2
|ψ|2 + u|ψ|4 + · · ·

)
.

This is in fact equivalent to our Landau–Ginzburg Hamiltonian for n = 2. In the superfluid phase,

the magnitude of |ψ| is fixed to ψ, but the global phase is not. Excitations with varying phase then

have the Hamiltonian

βH = βH0 +
K

2

∫
dx (∇θ)2

where K = Kψ
2
, as expected from global phase rotation symmetry. In particular, taking a Fourier

transform, we find

βH = βH0 +
K

2

∑
q

q2|θ(q)|2

which gives a soft mode, since the energy goes to zero in the limit of long wavelengths. Note that

this Hamiltonian has no kinetic term, which means there are no dynamics. This is acceptable

because we are only concerned with the thermodynamics.

Note. The variable θ is only defined up to multiples of 2π, which makes evaluation of the partition

function difficult. While we can argue that this doesn’t matter for small fluctuations, there exist

excitations which have nontrivial phase winding which have thermodynamic effects. We will see

this explicitly for vortices, which cause the Kosterlitz–Thouless phase transition.

Note. Suppose the symmetry group of the free energy is G and the symmetry group of a single

ground state is H ⊂ G. Then the space of ground states is the coset space G/H, and the dimension

of the coset space is the number of Goldstone bosons; they generate translations in the coset space.
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In the case n = 1, there is no continuous symmetry linking the two ferromagnetic phases, so we

have instead broken a discrete symmetry. If the system has regions with different ferromagnetic

phases, they are linked by sharp domain walls.

Example. Domain walls for magnetism. For simplicity, we take d = 1. By varying the Landau–

Ginzburg Hamiltonian, we find that the energy-minimizing configuration satisfies

K
∂2m

∂x2
= tm+ 4um3.

The solution to this equation satisfying boundary conditions m(x→ ±∞) = ±m is

m(x) = m tanh
x− x0

w
, w =

√
2K

−t
.

The width w of the domain wall diverges as (Tc − T )−1/2 at the critical point. The free energy cost

of the domain wall is a constant, not dependent on the length L of the space; in general dimension

it is proportional to the domain wall area Ld−1.

Note. In the modern view, we say that two points in a phase diagram are the ‘same phase’ if they

can be connected by smoothly deforming the Hamiltonian without ever changing its symmetries,

and without crossing a phase transition.

For example, in the n = 1 Landau–Ginzburg model with zero external field, the phase diagram

is one-dimensional, as one can only vary T . The phases above and below Tc are different phases,

distinguished by the presence of the m→ −m symmetry. However, if we allowed an external field

from the outset, then the m→ −m symmetry wouldn’t exist. Accordingly, all generic points (t, h)

on the phase diagram can be connected, so they are the same phase. Similarly, liquids and gases

are the same phase, as they can be connected by going through a supercritical fluid.

In this new view, there is now a line of discontinuous phase transitions embedded within the

single phase. Intuitively, it comes from the merging of two continuous phase transitions. As we

pass through the line, we regain the m→ −m symmetry and immediately break it.

If we don’t require any symmetries at all, then all the phases we’ve talked about so far collapse

to a single phase, the “topologically trivial” phase! The only phase transitions that survive are

topological phase transitions, which we’ll see later.

Note. To analyze spontaneous symmetry breaking formally, we turn on a small symmetry-breaking

field h for a system of finite size N . Then we take the limit N →∞ followed by the limit h→ 0. If

the resulting order parameter depends on how we took the limit h→ 0, then we have spontaneous

symmetry breaking. The order of limits is essential; if we take h→ 0 first we always get a trivial

result. Rigorous mathematical results about spontaneous symmetry breaking are proven using this

framework.

All continuous phase transitions are associated with spontaneous symmetry breaking. However, the

converse is not true. Representation theory can help illuminate when the converse fails to hold.

• As two examples, the liquid-solid phase transition breaks translational symmetry, but in three

dimensions, it is a discontinuous phase transition. And the liquid-gas phase transition breaks

no symmetries and is discontinuous. Both of these are compatible with the statement above.
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• One prototype example is the Hamiltonian

H ∼ −m2 −m4 +m6

which we’ve discussed before; as the coefficient of m2 varies, we have a discontinuous but

symmetry breaking phase transition.

• Another prototype can come from cases where the Hamiltonian has a cubic term. For example,

in the liquid-solid transition, the total density is ρ0 + δρ. There is no symmetry between the

densities ρ0±δρ, so we can have a cubic term (δρ)3 in the Hamiltonian, which generically yields

a discontinuous phase transition.

• Generally we assign discontinuous phase transitions less physical meaning than continuous ones,

as they can happen “without any particular reason” when one minimum in a large free energy

landscape happens to dip below another.

• In general, suppose the order parameter transforms in a representation of a group G. We may

break this representation into irreps Ri. Now, each term in the Landau free energy must be

invariant under G, so the terms may only be G-invariant homogeneous polynomials in the

coefficients. Specifically, there can be nth order terms associated with the coefficients of the

irrep Ri exactly if 1 ⊂ (Ri)
⊗n where 1 is the trivial representation.

• As long as we aren’t dealing with the trivial representation, all linear terms are forbidden.

Usually a quadratic term is allowed, because we mostly use real representations, and 1 ⊂ Ri⊗R∗i .
Thus, the presence of symmetry-breaking discontinuous phase transitions often boils down to

the existence of irreps Ri so that 1 ⊂ R⊗3
i .

Example. Liquid crystals. The local orientation of a liquid crystal is described by a director

n ∼ −n. One way to get an order parameter invariant under this transformation is to use a

quadratic; the simplest option is

Qij = 〈ninj〉 −
1

3
δij

where the diagonal term is subtracted so that Qij = 0 in the disordered state. By rotational

invariance, the Landau–Ginzburg Hamiltonian must be invariant under Q → RQRT , and the

simplest terms that work have the form tr(Qn). The leading order terms are

F =
1

2
(∂iQjk)

2 + α2 trQ2 + α3 trQ3 + α4(trQ2)2 + . . .

where there is no linear term as expected since trQ = 0. The cubic term tells us the phase transition

is generically discontinuous. In terms of representation theory, the Z2 symmetry forces us to use

the 5 of SO(3), and any power of 5 contains the 1.
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3 Fluctuations

3.1 Scattering and Fluctuations

In the previous section, we have only considered mean field theory. However, there will generally

be fluctuations about the mean field result, which can be detected by scattering experiments.

• Suppose we send a probe of momentum k into a system in state |i〉 that is scattered into

momentum k + q, with the system in state |f〉. The scattering amplitude is

A(q) ∝ 〈k + q, f |U |k, i〉 ∝ σ(q)ρ(q)

where U is the scattering potential. Here A(q) picks up the Fourier component U(q), which can

be separated into a local form factor σ(q) describing scattering from each individual element

in the sample, and a global density ρ(q).

• For example, light scattering senses the atomic density, electron scattering measures the charge

density, and neutron scattering can be used to measure magnetization density.

• Since the fluctuations are dynamic, we typically only can see time-averaged configurations, so

the averaged scattering intensity is

S(q) ∝ 〈|A(q)|2〉 ∝ 〈|ρ(q)|2〉.

We see that we can pick up long-wavelength fluctuations by looking at nearly forward scattering,

or by sending in small k.

Given the above discussion, we now turn to computing 〈|ρ(q)|2〉 for the Landau–Ginzburg Hamilto-

nian, in which case the ‘density’ is the magnetization density.

• From the previous section, we know that the probability of a field configuration is

P (m(x)) ∝ exp

[
−
∫
dx

(
K

2
(∇m)2 +

t

2
m2 + um4

)]
.

• Let the mean field configuration be m(x) = mê1. Small fluctuations can be parametrized as

m(x) = (m+ φl(x))êa +
n∑

α=2

φt,αêα.

• Plugging into the Landau–Ginzburg Hamiltonian and expanding to quadratic order in the

fluctuations, we have

β∆H =
K

2

∫
dx (∇φl)2 +

φ2
l

ξ2
l

+ (∇φt)2 +
φ2
t

ξ2
t

where the characteristic lengths are

K

ξ2
l

= t+ 12um2 =

{
t t > 0

−2t t < 0
,

K

ξ2
t

= t+ 4um2 =

{
t t > 0

0 t < 0.

As expected, transverse and longitudinal fluctuations behave the same in the unordered phase,

while transverse fluctuations have no restoring force in the ordered phase since they are Gold-

stone modes.
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• Taking the Fourier transform, the probability reduces to

P (φ) ∝
∏
q

exp

[
−K

2
(q2 + ξ−2

l )|φl,q|2
]

exp

[
−K

2
(q2 + ξ−2

t )|φt,q|2
]

where we used the property φq = φ∗−q, since φ(x) is real. Therefore we see that fluctuations in

momentum space are uncorrelated Gaussians.

Note. We need to be a bit careful with counting degrees of freedom to arrive at the above conclusion.

For simplicity, we consider the one-dimensional case,

P (φ) ∼
∏
q

exp

[
f(q)

2
|φq|2

]
We know that there is one real degree of freedom for each x value, but there are formally two for

each q value; this is because of the constraint φq = φ∗−q. To see this explicitly, we can perform the

product for q and −q pairs, assuming f(q) = f(−q), to get

P (φ) ∼
∏
q>0

exp
[
f(q)

(
(Reφq)

2 + (Imφq)
2
)]

which has two degrees of freedom per q value, but only half as many q values. Now, the quantities

(Reφq)
2 and (Imφq)

2 are all independent Gaussians, so they have correlation functions

〈(Reφq)
2〉 = 〈(Imφq)

2〉 =
1

2f(q)

with zero cross-correlations. Then the original complex degrees of freedom have correlation

〈φqφ−q〉 =
1

f(q)

with zero cross-correlations; in particular, note that 〈φ2
q〉 = 0. The upshot is that we can either

integrate over all q treating the φq as real degrees of freedom, or integrate over only q > 0 (in higher

dimensions, q1 > 0) treating the φq as complex degrees of freedom.

• Applying the above result, we find that

〈φα,qφβ,q′〉 =
δα,βδq,−q′

K(q2 + ξ−2
α )

.

• The above calculation predicts that the scattering intensity has the Lorentzian form S(q) ∝
1/(q2 + ξ−2). This is indeed confirmed by neutron scattering experiments, which can pick out

the transverse and longitudinal parts by the spin polarization of the neutrons.

3.2 Position Space Fluctuations

To see how the fluctuations behave in position space, we Fourier transform again. In particular, we

care about the connected correlation function Gc, which is the correlation function of the fluctuations

of m about the mean value m,

Gcα,β(x,x′) = 〈φα(x)φβ(x′)〉 =
1

V

∑
q,q′

eiqx+iq′x′〈φα,qφβ,q′〉.
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• Plugging in our previous result, we find

Gcαβ(x,x′) = −
δα,β
K

Id(x− x′), Id(x) = −
∫
d̄q

eiqx

q2 + ξ−2
.

In one dimension, this is a simple contour integral. In three dimensions, it is the integral for

the Yukawa potential in field theory. In that case, the angular integration is simple since the

angular measure provides the required sin θ factor, and the radial integral can be performed by

contour integration, giving

−Id(r) = e−r/ξ ×

{
ξ/2 d = 1,

1/4πr d = 3.

However, we will be interested in general dimensions, where the angular integral is harder.

• A more general method is to note that

∇2Id(x) =

∫
d̄q

q2eiqx

q2 + ξ−2
= δd(x) +

Id(r)

ξ2

where r = |x|, by spherical symmetry, giving a differential equation for Id(r). For ξ →∞ the

equation is Poisson’s equation for a point charge at the origin, so we find the Coulomb potential,

V (q) ∼ 1

q2
, V (r) ∼ 1

rd−2
.

Note that this assumes the potential vanishes at infinity. We cannot do this in d ≤ 2, so in

d = 1 we should add a constant. Also note that the r0 in d = 2 should be interpreted as log r,

again with an arbitrary constant.

• In general, the differential equation is

d2Id
dr2

+
d− 1

r

dId
dr

=
Id
ξ2

+ δ(r).

The solution is a Bessel function, and for low and high x we have

Id(r) ∼

{
1/rd−2 r � ξ,

e−r/ξ/r(d−1)/2 r � ξ.

In the case r � ξ, the fluctuations don’t feel the value of ξ, so we just get back the Coulomb

potential. This is a power law, i.e. the system looks ‘effectively critical’ at scales smaller than

ξ. For x� ξ, we get exponential decay.

• This result is called the Ornstein–Zernicke correlation. We can derive it by using an ansatz

e−r/ξ/rp. Alternatively, note that

1

q2 + ξ−2
=

∫ ∞
0

dt e−t(q
2+ξ−2).

Plugging this into the original integral expression for Id(x), yields a Gaussian integral over q.

Performing it leaves the dt integral over e−S(t) where S(t) is a complicated function, and this

integral can be performed by saddle point in the regimes r � ξ and r � ξ.
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• From our above work, we see ξ can be interpreted as a correlation length. Focusing on the

longitudinal correlators, we define

ξ`,± = B±t
−ν±

above and below the critical point, in which case we find

B+

B−
=
√

2, ν± =
1

2
.

• We may also calculate bulk susceptibilities by integrating the correlation function, as demon-

strated earlier. Near the critical point, most of the contribution comes from r � ξ, giving

χl ∝
∫
dxGcl (x) ∼

∫ ξl

0

rd−1dr

rd−2
∝ ξ2

l

which recovers the critical exponents γ± = 1 and the amplitude ratio 2 found before.

• Experimentally, we find that the correlation actually decays as

G(r) ∼ 1

rd−2+η

where η is a new critical exponent that our basic theory predicts to be zero. Then we instead

have χl ∼ ξ2−η
l .

• The transverse fluctuations instead have long-range (power law) correlations for all T ≤ Tc, so

the transverse susceptibility integral is cut off by the size of the sample,

χl ∼
∫ L

0

dx

xd−2
∝ L2.

We now investigate the Goldstone modes more closely. For simplicity, we switch to the case of

superfluid helium, which only has the transverse fluctuations, parametrized by θ.

• As argued above, Id(x) ∝ 1/xd−2 in this case, and we can find the constant of proportionality

from Gauss’s theorem, giving

Id(x) =
x2−d

(2− d)Ωd
+ c0

where c0 is a constant of integration and Ωd is the area of a unit sphere in Rd, where for reference

Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2, Ω5 =
8

3
π2.

Note that Id(x) asymptotes to a constant for d > 2, but grows without bound for d ≤ 2.

• To eliminate the constant of integration, note that

〈[θ(x)− θ(0)]2〉 = 2〈θ2〉 − 2〈θ(x)θ(0)〉 ∼ x2−d + const

where the constant comes from both c0 and 〈θ2〉. The left-hand side is zero for x = 0, but we

also know that our field description breaks down for x ∼ a where a is on the order of the lattice

spacing, so it should reach zero for x ∼ a. We conclude that both 〈θ2〉 and c0 depend on the

lattice spacing, and combine to give

〈[θ(x)− θ(0)]2〉 ∝ x2−d − a2−d.
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• To see how this affects order, we take the correlation function of the order parameter,

〈ψ(x)ψ∗(0)〉 = ψ
2〈ei[θ(x)−θ(0)]〉 = ψ

2
exp

(
−1

2
〈[θ(x)− θ(0)]2〉

)
where we used the identity 〈exp(αθ)〉 = exp(α2〈θ2〉/2), valid for any collection of Gaussian

distributed variables.

• Now consider the limit x→∞. For d > 2, the correlation function asymptotes to a constant

that is slightly less than ψ
2
, so fluctuations diminish long-range order. For d ≤ 2, the correlation

function asymptotes to zero, showing that long-range order is destroyed!

• This exhibits the Mermin–Wagner theorem: there can be no spontaneous breaking of a contin-

uous symmetry in d ≤ dl, where dl = 2 is the lower critical dimension.

• The Mermin–Wagner theorem has a number of caveats and exceptions.

– Long-range interactions generally lower the critical dimension.

– The borderline dimension dl = 2 must be treated carefully. There is in fact a phase

transition for a 2D superfluid, though there is no long-range order.

– If a discrete symmetry is broken instead, there are no Goldstone bosons, and the lower

critical dimension turns out to be dl = 1. For example, the 2D Ising model has a phase

transition, while the 1D Ising model doesn’t.

Note. To see this in detail, note that in the 1D Ising model, the energy cost of a domain wall is

constant, but the entropy gain increases with the system size. Then in the thermodynamic limit,

at any finite temperature, domain walls must form, making the average magnetization zero.

3.3 Saddle Point Fluctuations

We may use a refinement to the saddle point approximation to find how fluctuations modify the

free energy, and other macroscopic properties.

• Expanding to quadratic order in the fluctuations, we have

Z ≈ exp

[
−V

(
t

2
m2 + um4

)]∏
i

∫
Dφi(x) exp

[
−K

2

∫
ddx (∇φi)2 +

φ2
i

ξ2
i

]
.

• Each of the Gaussian kernels is diagonalized by the Fourier transform, with the q component

having the eigenvalue K(q) = K(q2 + ξ−2). Therefore

log detK =
∑
q

logK(q) = V

∫
d̄q logK(q2 + ξ−2)

where the overall Gaussian integral is proportional to 1/
√

detK. To get the factors of 1/2 right,

we need to think of each degree of freedom φq as real, as discussed above.

• Switching to the free energy f = −(logZ)/V , each polarization contributes

∆fi =
1

2

∫
d̄q logK(q2 + ξ−2).
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• The integral above is divergent; it must be cutoff by the lattice spacing Λ ∼ 1/a. This yields a

singular contribution on the form a−d. To extract how the integral depends on ξ, note that it

can be made dimensionless by scaling q by ξ, picking up a Jacobian factor ξ−d. Therefore

∆fi ∼ a−d + ξ−d.

• Adding a constant to the free energy doesn’t matter, so we focus on the latter term. Near the

critical point, the singular contribution to the free energy due to the mean field goes as t2, while

the contribution from fluctuations goes as ξ−d ∝ td/2. Therefore, for d < 4, the fluctuation

contribution is dominant!

• We can repeat the logic for the heat capacity C ∝ −∂2f/∂t2, which gives

∆Ci ∼ a4−d + ξ4−d.

The first term modifies the discontinuity in the free energy by a (large) constant, while the

second modifies it by t(d−4)/2. The mean field theory analysis predicts a critical exponent α = 0,

giving a simple discontinuity. Then when d > 4, the mean field theory result is just shifted by

fluctuations, while when d < 4 the critical exponent is changed.

• We call du = 4 the upper critical dimension. For d > du, the critical exponents of mean field

theory are quantitatively correct. Below du, our above calculation doesn’t work, as it is simply

the first-order correction; the higher-order corrections would be even larger. For d = du we

must be more careful; we’ll see below the predictions of mean field theory are correct.

• Note that zero exponents should be interpreted as logarithmic divergences, i.e. a0 = log a and

ξ0 = log ξ. Generally logarithms appear whenever zero exponents do.

Note. Review of critical exponents. In MFT, β = 1/2, δ = 3, γ± = 1, α± = 0, ν± = 1/2, η = 0.

• Below the critical point, m(t) ∼ |t|β.

• Along the critical isotherm, m(t = 0, h) ∼ h1/δ. This is the only critical exponent involving

nonzero h.

• The zero field susceptibility is ∂m/∂h ∼ |t|−γ± .

• The singularity in the heat capacity is C±(t) ∼ |t|−α± .

• The correlation length diverges as ξ±(t) ∼ |t|−ν± .

• The (longitudinal) susceptibility and correlation length are related by χ ∼ ξ2−η. Equivalently,

at criticality, the correlation function decays as 1/xd−2+η.

To remember the signs, note that everything is defined so the critical exponents are usually positive.

3.4 ∗ Path Integral Methods

We can redo some of the calculations above using path integral methods and more explicit notation.
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• We define Fourier transforms by

φk =

∫
dx e−ikxφ(x)

where the real field φ(x) satisfies φ∗k = φ−k. The inverse Fourier transform is

φ(x) =
1

V

∑
k

eikxφk =

∫
d̄k eik·xφk.

• The path integral Dφ(x) translates to

Dφ(x) =
∏
k

∫
dφkdφ

∗
k

when φ(x) is a complex field, where we consider z and z∗ to be independent as usual. In the

case of a real field, half of the degrees of freedom on the right are redundant, since φ∗k = φ−k.

In this case the integrals can be done by removing the ki < 0 terms for some i. Alternatively,

if we naively consider each φk as a single real degree of freedom we get the same answer.

• The basic Gaussian integral we use is∫
dx e−x

2/2a =
√

2πa.

We are only expanding to quadratic order in the fields, so the free energy is

F [φ(x)] =
1

2

∫
dx (γ(∇φ)2 + µ2φ2), F [φk] =

1

2

∫
d̄k (γk2 + µ2)|φk|2.

Integrating using the path integral measure gives

Z =

∫
Dφ(x) e−βF [φ(x)] =

∏
k

√
2πT

γk2 + µ2

where we keep the temperature explicit. We have a square root since the field is real.

• The free energy density is

f = −T
V

logZ =
T

2

∫
d̄k log

2πT

γk2 + µ2
.

Next, we translate this to a heat capacity. Using thermodynamics, we have

C = −T ∂
2F

∂T 2

∣∣∣∣
V

while using statistical mechanics we have

〈E〉 = −∂ logZ

∂β
, C =

∂〈E〉
∂T

= β2 ∂
2

∂β2
logZ.

One can show these are equivalent, but since critical exponents always come from leading

singularities, all that either of these equations really say is C ∼ ∂2f/∂T 2. Factors of T don’t

matter, since they are regular, so derivatives ∂/∂β and ∂/∂T are equivalent. All derivatives

can be taken to act on f directly, as the most singular terms in ∂n(Tf) are of the form T∂nf .
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• Using these simplifications, throwing away constants and less singular pieces, and using the

known temperature-dependence of µ2 right above the critical point,

C ∼ ∂2f

∂T 2
∼ ∂2

∂T 2

∫
d̄k log(γk2 + (T − Tc)) ∼

∫
d̄k

(k2 + (T − Tc))2
∼ Λd−4 + (T − Tc)(d−4)/2

matching what we found earlier. If we had been more careful, we would have retained an NkB/2

term, from equipartition.

Previously, we found the correlation function by directly using the probability distribution for the

field. Here, we’ll use a methods that are more similar to those in quantum field theory. Along the

way, we will relate the correlation function to the Green’s function.

• In statistical mechanics, we can differentiate the log of the partition function Z =
∑
e−βE

with respect to β to get cumulants of the energy. This procedure essentially works because the

energy and inverse temperature appear together in the form −βE.

• Similarly, if we add an external field B(x), our free energy becomes

F [φ(x)] =

∫
dx

γ

2
(∇φ)2 +

µ2

2
φ2 +Bφ

and since Z ∼
∑
e−βF the quantities βB and φ are conjugate. Then, for example,

1

β2

δ2 logZ

δB(x)δB(y)
= 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 = 〈φ(x)φ(y)〉c

which is indeed the joint cumulant of φ(x) and φ(y). We will refer to joint cumulants as

connected correlation functions. In most cases we’ll evaluate both sides at B = 0.

• To perform quadratic path integrals with sources, note that for symmetric G,∫
dy exp

(
−1

2
yTG−1y + B · y

)
=
√

det 2πGeB
TGB/2.

To get this result, we first complete the square,

−1

2
yTG−1y + B · y = −1

2
(G−1y + B)TG(G−1y + B) +

1

2
BTGB

where the second term goes outside the integral. The Gaussian integral can then be performed

by shifting y and diagonalizing G.

• In momentum space, G is diagonal, with G(k) = 1/(γk2 + µ2), so

Z[B(x)] = Z[0] exp

(
β

2

∫
dk

|Bk|2

γk2 + µ2

)
= Z[0] exp

(
β

2

∫
dxdyB(x)G(x− y)B(y)

)
where we performed an inverse Fourier transform, and

G(x) =

∫
d̄k

e−ikx

γk2 + µ2
, 〈φ(x)φ(y)〉c ∝ G(y − x).

This recovers the result we found earlier.
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• Alternatively, we can stay entirely in position space, where we have

yTG−1y→
∫
dxdy φ(x)G−1(x,y)φ(y), G−1(x,y) = δ(x− y)(−γ∇2

y + µ2).

Then it is clear that G is a Green’s function for the quadratic free energy, a general result.

Intuitively, the correlation function measures how x and y fluctuate together, and the Green’s

function measures how a fluctuation at x affects y, so it is intuitive they are related.

• The same situation appears in quantum field theory, where the two-point correlation function

is called the propagator. However, the situation is more complicated because there are many

different Green’s functions and accordingly many different correlation functions. We focused

on the Feynman Green’s function, corresponding to the time-ordered correlator.

• These ambiguities do not appear in statistical field theory, which takes place in Euclidean space.

The fields in the correlator commute, so ordering doesn’t matter, and we can unambiguously

choose the Green’s function to be the one that goes to zero at infinity. This Euclidean Green’s

function is the Wick rotation of the Feynman Green’s function.

• The ambiguity in correlators also doesn’t appear in the path integral formulation of quantum

field theory, where the fields commute. This is because the path integral only computes the

time-ordered correlator; it is ‘secretly’ in Euclidean signature.

• Note that all higher connected correlation functions are trivial; this is because we are dealing

with a free theory, so no diagrams with more than two vertices can be connected.

• Finally, we can relate the correlation function to the susceptibility. We define

χ(x,y) =
∂〈φ(x)〉
∂B(y)

.

But comparing this to our expressions above gives χ(x, y) = 〈φ(x)φ(y)〉c, as shown earlier.

Note. The Ginzburg criterion. Consider approaching the critical point from below. To get a

measure for how important the fluctuations are, we compute the ratio

R =

∫ ξ
0 dx 〈φ(x)φ(0)〉c∫ ξ

0 dx 〈φ(0)〉2
∼ 1

m2
0ξ
d

∫ ξ

0
dr
rd−1

rd−2
∼ ξ2−d

m2
0

where we cut off the integrals at ξ since the correlation function decays rapidly outside. According

to mean field theory, m0 ∼ t1/2 and ξ ∼ t−1/2, giving R ∼ t(d−4)/2. Then as we’ve seen before, the

fluctuations dominate at the critical point for d < 4. Again, d = 4 is indeterminate, since we have

a logarithmic divergences.

Note that the overall constant (here, m2
0) can vary between different materials, so that it can be

easy to see fluctuation effects in one system and very hard in others. For example, the critical behav-

ior of some superconductors is very well described by mean field theory given typical experimental

resolution in t.

Note. The analogy with quantum field theory. In QFT, the partition function is

Z =

∫
Dφ eiS/~
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so a Wick rotation t → it takes a statistical field theory in d spatial dimensions to a QFT in d

spacetime dimensions. While the physical interpretations of the results are different, the correlation

functions take the same form. For example, a second order phase transition corresponds to a QFT

with massless particles, as both have power law correlators. The fact that spontaneous symmetry

breaking cannot occur in d = 1 translates to the absence of symmetry breaking in 0 + 1-dimensional

QFT (i.e. quantum mechanics) since we may superpose the vacua.
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4 The Scaling Hypothesis

We have seen how the leading singular behavior of thermodynamic quantities in the vicinity of the

critical point is described by a set of critical exponents, and how fluctuations can modify the values

of the critical exponents. In this section, we find relationships between the critical exponents that

hold despite the presence of fluctuations.

4.1 The Homogeneity Assumption

We return to the case of the Landau–Ginzburg Hamiltonian, which has a coexistence line for h = 0

and t < 0, and a critical point at t = h = 0.

• In the saddle point approximation, the free energy is

f(t, h) = min

(
t

2
m2 + um4 − hm

)
m

∝

{
t2/u h = 0, t < 0

h4/3/u1/3 h 6= 0, t = 0.

• It can be checked that for general h and t near the critical point satisfying t ≤ 0, the singular

behavior can be described by a homogeneous function in t and h,

f(t, h) = |t|2gf (h/|t|∆)

where ∆ is called the gap exponent and gf is analytic. To get the right limiting behaviors for

t→ 0 and h→ 0, we require

lim
x→0

gf (x) ∼ 1

u
, lim

x→∞
gf (x) ∼ x4/3

u1/3
.

Here, the ∼ means that we are only consider the leading term in both cases. Plugging in the

previous result, we find f ∼ |t|2−4∆/3 for t = 0. Since t must drop out, ∆ = 3/2.

• The homogeneity assumption is that, beyond the saddle point approximation, the singular part

of the free energy remains homogeneous, with

fsing(t, h) = |t|2−αgf (h/|t|∆)

where α and ∆ depend on the critical point. Note that there are separate functions gf for t ≤ 0

and t ≥ 0.

• Homogeneity is preserved under differentiation. To see this, note that our homogeneity assump-

tion simply says that fsing has terms of the form hi|t|j , where i − j/∆ is constant. This is

preserved under differentiation with respect to t or h, which just shift the constant.

• The preceding fact allows us to derive relationships between critical exponents. For example,

Csing ∼
∂2f

∂t2
∼ |t|−αgC(h/|t|∆).

Thus α is just the critical exponent α defined earlier.
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• In general, we could let the exponents α and ∆ depend on the sign of t, so that

C± ∼ |t|−α±g±(h/|t|∆±).

However, there should be no singularity at t = 0 for finite h, where the two functions C± match.

Hence α+ = α− and ∆+ = ∆−, though g+ and g− may be distinct.

• Similarly, the magnetization has the form

m(t, h) ∼ ∂f

∂h
∼ |t|2−α−∆gm(h/|t|∆).

By similar reasoning to before, we may extract the leading behavior of gm(x) for high and low

x. We thus find the relationships

β = 2− α−∆, δ = ∆/β.

• Similarly, the susceptibility is

χ(t, h) ∼ ∂m

∂h
∼ |t|2−α−2∆gχ(h/|t|∆)

and similar arguments show that

γ = 2∆− 2 + α.

We now step back and see what we’ve done. The homogeneity assumption has shown that:

• The singular parts of all critical quantities are homogeneous, with the same exponents above

and below the transition.

• All of these quantities are described by the same gap exponent ∆. The two exponents α and ∆

determine all critical exponents.

• The previous point implies that there are identities connecting the critical exponents. Using

our above results, we find

α+ 2β + γ = 2, δ − 1 =
γ

β

which are called Rushbrooke’s and Widom’s identities.

• The exponent identities are completely consistent with experiment, as well as with our mean

field approximation, even though the critical exponents differ widely between the two.

4.2 Correlation Lengths

So far, we haven’t considered the divergence of the correlation length at the critical point. This

can be related to our existing exponents by integrating the correlation function to yield a bulk

susceptibility. However, it is more natural to ‘start over’ with a homogeneity assumption for the

correlation length, from which we will recover our earlier results.

• We assume the correlation length ξ has the form

ξ(t, h) ∼ |t|−νg(h/|t|∆).

Furthermore, since the correlation length is the only length scale near the critical point, we

assume that it is solely responsible for singular contributions to thermodynamic quantities.
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• In particular, we may apply this assumption to the free energy F ∼ logZ. Since logZ is

extensive, it is proportional to Ld. Since it is dimensionless, it must have the form

logZ =

(
L

ξ

)d
gs +

(
L

a

)d
ga.

The first term contributes to the singular behavior of the free energy; it is due to the large-scale

fluctuations we investigated previously and is independent of a by assumption. The second term

is regular at the critical point; for example, it could be the essentially constant contribution

from phonons in our magnet example.

• Another way of thinking about the first term is that we can divide the sample into (L/ξ)d cells,

within each of which we have independent large-scale fluctuations.

• Therefore, the singular part of the free energy density is

fsing(t, h) ∼ logZ

Ld
∼ ξ−d ∼ |t|dνgf (h/|t|∆).

This recovers our earlier homogeneity assumption, with Josephson’s identity

2− α = dν.

This is called a hyperscaling relation, as it depends on the spatial dimension d.

• Experimentally, the hyperscaling relation works for d ≤ 3. For d > 4, we know that the results

from mean field theory are correct; however, plugging in α = 0 and ν = 1/2, we find d = 4.

Then the homogeneity assumption fails if mean field theory works.

• This is reasonable because the homogeneity assumption assumes that fluctuations are strong

(i.e. that they give the dominant singular contribution to the free energy). But in d > 4, the

dominant contribution instead comes from the mean field value, which gives t2 ∝ ξ−4 > ξ−d.

We now consider the critical exponent η associated with the decay of the correlation function.

• As defined earlier, the magnetization correlation function falls off at the critical point as

Gcm(x) ∼ 1

xd−2+η

where η = 0 according to mean field theory, for x � ξ. Similarly, we can define an exponent

for the decay of energy-energy correlations,

GcE(x) = 〈H(x)H(0)〉 ∼ 1

xd−2+η′
.

• By integrating over space, we may relate these correlation functions to bulk response functions

near criticality; here, they are magnetic susceptibility and heat capacity, respectively. Then

χ ∼
∫ ξ

a
dxGcm(x).

As discussed above, the integrand decays rapidly for x > ξ and is cut off for x < a, where the

field description breaks down. Here the upper bound determines the integral’s value, giving

γ = (2− η)ν, α = (2− η′)ν.

The former result is called Fisher’s identity.
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• We could have guessed that the critical correlation functions were power laws ahead of time,

because these are the only scale-invariant functions. At the critical point, we have perfect

scale invariance; near it, we have scale invariance up to the length scale ξ. This behavior is

characteristic of ‘fractal geometry’.

• Indeed, if we added the assumption of dilation symmetry when constructing the Landau–

Ginzburg probability, we could automatically be describing the critical point. However, it is

difficult in general to see how dilation symmetry constrains the effective Hamiltonian. The

exception is the case d = 2, where dilation symmetry implies conformal invariance.

The success of the scaling theory above supports the assumption that, close to the critical point,

the correlation length ξ is the only important length scale; all microscopic lengths a drop out. The

critical behavior is dominated by fluctuations that are self-similar up to the scale ξ.

4.3 Renormalization Group (Conceptual)

The idea of the renormalization group is to further coarse-grain our field. This generates a flow

through ‘theory space’ which will allow us to understand continuous phase transitions. We first

introduce the RG procedure conceptually. There are three components of each step.

• Coarse grain. Let a be the microscopic length scale that cuts off fluctuations of m(x). We

decrease the resolution to ba with b > 1 by coarse-graining

mi(x) =
1

(ab)d

∫
nearx

dx′mi(x
′)

where we integrate over a cell of volume (ab)d.

• Rescale. The new coarse-grained field has fluctuations cut off at ba instead of a. To restore the

original resolution, decrease all lengths scales, setting

xnew =
xold

b
.

• Renormalize. The variations of fluctuations in the rescaled magnetization profile will generally

be different from the original. This can be offset by scaling the field by a factor ζ.

• Combining the three steps above, the new magnetization field is

mnew(xnew) =
1

ζ(ab)d

∫
near bxnew

dx′m(x′).

The RG transformation thus maps the variables mold to mnew. Since we know the probability

distribution of mold, we can construct the distribution of mnew and hence the coarse-grained

Hamiltonian Hnew[mnew(x)]. The old and new partition functions are numerically equal.

• If we think of the set of all possible coarse-grained Hamiltonians as a point in an infinite-

dimensional ‘theory space’, then the RG transformation generates a flow through this theory

space. As we flow, all of the couplings change and the system size and correlation length

decrease. However, everything about the long-distance physics remains exactly the same.

We now heuristically apply this procedure to the Landau–Ginzburg Hamiltonian.
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• Since the critical point occurs when the parameters t and h are tuned to zero, we will assume

that we only have to look at the RG flow of t and h near this point.

• Since the transformation only involves changes at the shortest length scales, it cannot produce

singularities, so the renormalized parameters are analytic functions of the original ones.

• Near the critical point, we may expand in a Taylor series,

tb(t, h) = A(b)t+B(b)h+ . . . , hb(t, h) = C(b)t+D(b)h+ . . . .

We know there are no constant terms, because the critical point is a fixed point.

• Rotational symmetry means that the probability is invariant under m→ −m, h→ −h, t→ t.

This eliminates cross-terms between t and h, so

tb(t, h) = A(b)t+ . . . , hb(t, h) = D(b)h+ . . . .

• Since A(1) = 1 and A(b1)A(b2) ≈ A(b1b2), A(b) and similarly D(b) must be powerw,

t′ = tb = by1t+ . . . , h′ = hb = byhh+ . . . .

This holds for all points near the critical point. Since RG flow reduces the correlation length,

it must take us away from criticality, so yt and yh must be positive.

• By construction, we have Z = Z ′, so the free energy densities are related by

V f(t, h) = V ′f(t′, h′) → f(t, h) = b−df(bytt, byhh).

To recover the homogeneity assumption, we choose b = t−1/yt , giving

f(t, h) = td/ytf(1, h/tyh/yt).

Therefore 2− α = d/yt and ∆ = yh/yt. We also see that there may be separate functions for

positive and negative t, as the RG flow can’t change the sign of t.

• We also know that correlation lengths are reduced by a factor of b, so

ξ(t, h) = bξ(bytt, byhh) = t−1/ytξ(1, h/tyh/yt) ∼ t−ν

at h = 0. Then we conclude ν = 1/yt. Combining with the previous result recovers the

hyperscaling identity. (This is strange, as we know hyperscaling fails for d > 4. We will explain

why at the end of this section.)

• By differentiating the free energy, we can obtain other bulk quantities such as magnetization.

Alternatively, we can compute it directly using what we know about the RG flow,

m(t, h) = − 1

V

∂ logZ(t, h)

∂h
= − 1

bdV ′
∂ logZ ′(t′, h′)

b−yh∂h′
= byh−dm(bytt, byhh).

Then we find β = (yh − d)/yt, in agreement with our previous result.

• Generally, we see that everything scales with gap exponent ∆ = yh/yt. Moreover, let the extra

exponent in front be byX for a quantity X. Then if X and F are conjugate variables (i.e. they

appear in the Hamiltonian as
∫
dxFX) then yX = yF − d, where F ′ = byFF under RG. This

subsumes our above calculation as a special case.

We have thus recovered all of our scaling results from a conceptual RG analysis.
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4.4 Renormalization Group (Formal)

We now analyze the RG procedure more formally, justifying our earlier assumptions.

• We begin with the most general Hamiltonian allowed by symmetries. For example, given

rotational symmetry,

βH =

∫
dx

(
t

2
m2 + um4 + vm6 + · · ·+ K

2
(∇m)2 +

L

2
(∇2m)2 + · · ·

)
.

A system is thus specified by a point in an infinite-dimensional parameter space.

• Using the three steps described above, we construct the change of variables m(x)→m′(x′), then

construct the new probability distribution P ′[m′(x′)] and hence a new Hamiltonian H ′[m′(x′)].

• Since rotational symmetry is preserved, the rescaled Hamiltonian must also be described by a

point in the parameter space S, so we have a map S′ = Rb(S).

• Since RG flow scales the correlation length, fixed points of the RG flow must have either zero

correlation length (corresponding to independent fluctuations, which occur for zero or infinite

temperature) or infinite correlation length (corresponding to critical points).

• We may linearize about a fixed point S∗ so that, under an RG transformation, the displacement

from the fixed point becomes

δS′α = (RLb )αβδSβ, (RLb )αβ =
∂S′α
∂Sβ

∣∣∣∣
S∗
.

• Generically, each of the Rb will have a complete set of eigenvectors. We know that

RLb R
L
b′ = RLbb′ = RLb′R

L
b

so that the Rb commute with each other. Then we may simultaneously diagonalize them; by

the same argument as before, we conclude that the eigenvalues are

λ(b)i = byi

where the eigenvectors Oi correspond to operators. We call the yi the anomalous dimensions.

This differs from the usual usage; in the standard convention the anomalous dimensions are the

differences of the dimensions vs. those at the Gaussian fixed point.
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• Therefore, near the fixed point, we have

S∗ +
∑
i

giOi → S∗ +
∑
i

gib
yiOi.

If yi > 0, then gi increases under scaling, and we say Oi is a relevant operator. If yi < 0, then gi
decreases and Oi is irrelevant; it vanishes under RG flow and does not affect the long-distance

physics. Finally, if yi = 0, then Oi is marginal, and higher-order terms are needed to track its

behavior.

• The subspace spanned by the irrelevant operators is called the basin of attraction of the fixed

point S∗. The correlation length is infinite for all points in the basin, so they are all ‘critical

points’ for some system.

• Mathematically, RG flow is as general as phase space flow for an arbitrary dynamical system.

The basins of attraction are generally curved surfaces, not planes, and there may be many fixed

points. Exotic physical systems such as spin glasses can even have limit cycles. This physically

corresponds to a discrete scale invariance, and a pure imaginary critical exponent.

Now consider the Landau–Ginzburg Hamiltonian with no external field.

• When we adjust T , we go through a critical point when the coefficient of m2 goes through zero.

This is a line through the abstract parameter space S, which implies that there is a basin of

attraction of codimension one, and hence only one relevant operator, m2.

• If we perform RG flow before performing this analysis, then the line will be shifted; it will still

intersect the basin, but at a point closer to its fixed point.

• Different materials have different values for higher-order terms in the Landau–Ginzburg Hamilto-

nian, and generally will also go along different curves through S. But as long as we coarse-grain

beforehand, all of them will go through the fixed point! This explains universality.

• All points with t 6= 0 eventually flow to a low-temperature or high-temperature fixed point,

characterized by zero correlation length (independent spins).

• If an experiment shows that a critical point can be reached by tuning N parameters, we need

to find an RG fixed point with N relevant operators.

For example, the Landau–Ginzburg critical point is reached by tuning one parameter, T → Tc,

because m2 is relevant. On the other hand, if we include the possibility of external fields, we

must also count tuning the external field to zero.

• RG flow from a point near the fixed point will take irrelevant operators to zero. The leading

singularity in the correlation length is given by the relevant operator with the greatest anomalous

dimension; the other relevant operators each contribute a gap exponent.

• Universality is a blessing in the IR and a curse in the UV: it tells us that it is difficult to learn

anything about UV physics from IR physics.
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4.5 The Gaussian Model

As an explicit example of the renormalization group, we consider the Gaussian model, i.e. the free

field theory obtained by keeping quadratic terms in the Landau–Ginzburg Hamiltonian. We first

solve it directly, then apply RG ideas.

• The partition function is

Z =

∫
Dm(x) exp

(
−
∫
dx

t

2
m2 +

K

2
(∇m)2 +

L

2
(∇2m)2 + · · · − h ·m

)
.

This model is only well-defined for t > 0, so we only have one side of a phase transition.

• We can directly calculate Z by Fourier transform. We place the system in a box of volume V

with periodic boundary conditions, so the momentum values q are discretized in units of 2π/L

and confined to a Brillouin zone whose shape is determined by the underlying lattice.

• We take the Fourier transform convention

m(q) =

∫
dx eiqxm(x), m(x) =

∑
q

e−iqx

V
m(q) =

∫
d̄q e−iqxm(q).

We have to be careful with volume factors, as the volume changes under RG flow. In the

last equality, we’re using the standard transformation between a sum and an integral in the

continuum limit; the integration range is the Brillouin zone.

• Under this convention,∫
dxm(x)2 =

∑
q

m(q) ·m(−q)

V
=
∑
q

|m(q)|2

V
.

Higher order terms just pick up momentum factors, giving

βH =
∑
q

(
t+Kq2 + Lq4 + · · ·

2V

)
|m(q)|2 − h ·m(q = 0).

• Now we evaluate Z. The path integral measure D(m(x)) is proportional to the product of nN

individual differentials dmi(xj), where N is the number of lattice sites and n is the number of

components of m. Each of these modes picks up a Jacobian factor of 1/
√
V , so

Z =

∫ (∏
q

V −n/2 dm(q)

)
e−βH .

• Each momentum integral is a Gaussian, and for q 6= 0, the Jacobian factors cancel out. The

q = 0 integral is special because it picks up the h ·m shift, giving an extra factor of exp(V h2/2t).

The final result is

Z = exp
V h2

2t

∏
q

(
2π

t+Kq2 + Lq4 + · · ·

)n/2
.

We now see the scaling behavior that our result yields.



37 4. The Scaling Hypothesis

• The free energy density is then

f = − logZ

V
=
n

2

∫
BZ
d̄q log(t+Kq2 + Lq4 + · · · )− h2

2t
.

We see that we’ve correctly kept track of volume factors, since f is independent of V , making

the free energy extensive.

• We now must integrate over the Brillouin zone. The integrand has no singularities for large

q, so this region does not contribute to the singular behavior of f . Hence we may deform the

Brillouin zone to a hypersphere of radius Λ ∼ π/a, so

fsing(t, h) =
n

2
Kd

∫ Λ

0
dq qn−1 log(t+Kq2 + Lq4 + · · · )− h2

2t

where Kd = Ωd/(2π)d.

• To extract the leading singular behavior of the integral (in t), note that under rescaling q by a

factor of
√
t/K, we get(

t

K

)d/2 ∫ Λ
√
K/
√
t

0
dxxd−1 log(t+ tx2 + Lt2x4/K2 + · · · ).

Since the UV isn’t the important part, we can ignore the fact that the bounds on the integral

have changed, so all its t-dependence is in the integrand.

• The integrand expands as

log t+ log(1 + x2 + Ltx4/K2 + . . .) = log t+O(t)

so that its leading singular behavior in t is log t.

• Since log t is like a zeroth power, it doesn’t contribute to critical exponents. Ignoring it,

fsing(t, h) ∼
(
t

K

)d/2
− h2

2t
= t2−αgf (h/t∆)

where

α+ = 2− d/2, ∆ = 1/2 + d/4.

Note that this expression only holds for t > 0, as the model is unstable for t < 0. We have thus

recovered the scaling hypothesis, as expected.

• The resulting critical exponents match those of mean field theory when d = 4, but surprisingly

are incorrect for d > 4. We explain this anomaly below.

Next, we repeat the analysis using the renormalization group.

• To implement the coarse graining, we integrate out the modes with momentum between Λ/b

and Λ. Since these modes don’t mix with the modes we keep, this step is trivial, and simply

adds a nonsingular contribution δfb(t) to the free energy, which we ignore.
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• Next, we change variables to the primed variables,

x′ =
x

b
, q′ = bq, φ(x) = ζφ′(x′), φ(k) = zφ′(k′)

where the real space and momentum space renormalization factors ζ and z are different. Since

the RG step was trivial, this is the only step that changes the couplings.

• In momentum space, we have

t′ = z2b−dt, h′ = zh, K ′ = z2b−d−2K, L′ = z2b−d−4L, . . . .

We see t = h = 0 is a fixed point, as expected. To make the fluctuations scale-invariant, we

choose K ′ = K and hence z = b1+d/2, which makes higher-order gradients L, . . . irrelevant.

• We conclude that t and h scale as

t′ = b2t, h′ = b1+d/2h

giving critical exponents of yt = 2 and yh = 1 + d/2, respectively. Applying our earlier formulas

recovers the scaling exponents α and ∆ derived earlier. We see that there is an RG fixed point,

called the Gaussian fixed point, where K is the only nonzero coefficient. Near this fixed point

the critical exponents are those of mean field theory.

• Next, we consider higher-order terms. In general, we will treat their effect perturbatively;

working to zeroth order, the higher-order terms have no effect on the first step of RG. In real

space, the Gaussian fixed point is

βH∗ =
K

2

∫
ddx (∇m)2, K → K ′ = bd−2ζ2K

which sets ζ = b1−d/2. In general the real space and momentum space factors differ by a factor

of bd, because φ(k = 0) ∼
∫
ddxφ(x). When we talk about scaling dimensions without further

qualification, we usually mean real space.

• Now, an mn term will pick up a factor of bdζn, giving a scaling dimension

yn = n− d(n/2− 1).

The cases n = 1 and n = 2 recover yh and yt, as expected. The case n = 3 is ruled out by

spherical symmetry. However, n = 4 gives yu = 4− d, and hence is relevant for d < 4.

Thus for d < 4, the Gaussian fixed point does not describe the critical behavior, as it has more than

one relevant operator. In the next section, we will perform a more careful analysis which shows

that another fixed point, the Wilson–Fisher fixed point, characterizes the critical behavior.

4.6 ∗ Appendix

In this section we collect some extra notes on the material above.
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Note. Where does the temperature appear in RG flow? We have set β = 1, or equivalently absorbed

it into the coupling constants. Then RG flow can’t tell us anything about temperature; it only gives

us a flow in the coefficients of βH. Moreover, the temperature can’t be recovered from βH alone;

it is an additional layer of structure independent of our existing formalism.

Despite this, we sometimes loosely speak of RG flow changing the temperature. This is because,

for the Landau–Ginzburg Hamiltonian, the coefficient t(T ) of φ2 functions as a ‘thermometer’, with

known dependence on T near the critical point. Then when RG flow changes t, we can think of

it as effectively changing the temperature to T ′ so that t′(T ′) = t(T ). That is, our coarse-grained

system looks close to what our original system would have looked like at temperature T ′. It’s not

identical, but for the purposes of calculating critical exponents such as ν, we just need our heuristic

temperature to be related to the real one in a nonsingular way.

Note. How is the renormalization factor ζ chosen? RG flow connects points in theory space with

equivalent long-range dynamics. Trivially rescaling the field also defines a flow connecting equivalent

theories. The full RG flow consists of a combination of these two flows, and can look drastically

different depending on the choice of ζ.

In practice, the factor ζ is determined by demanding that the experimentally observed critical

point is an RG fixed point. While any other choice of ζ would also be valid, it would not necessarily

be useful. In the case of Landau–Ginzburg, we choose ζ to fix the coefficient of (∇m)2 to describe

the Gaussian fluctuations near the critical point.

Note. The Gaussian model gives the wrong results for d > 4 because we’ve neglected the um4 term

as irrelevant, but it has a strong, non-analytic effect on the expectation value of m. Consider the

scaling for t < 0 and h = 0 with u included. Then the scaling relation for m is

m(t, u) = b1−d/2m(b2t, ub4−d)

where ζ = b1−d/2 is the real-space renormalization factor ζ. Then choosing b2t = 1 gives

m(t, u) = t(d−2)/4m(−1, ut(d−4)/2)

and ignoring the u term yields β = (d − 2)/4, which is only correct in d = 4. If m(−1, u) were

analytic in u, this would be valid because Taylor expanding would yield subleading powers of t.

However, we instead have m ∝ 1/
√
u by mean field theory, so the leading singularity is

m(t, u) ∼ t(d−2)/4
(
ut(d−4)/2

)−1/2
= u−1/2t1/2

which gives β = 1/2 as desired. By accounting for the ‘dangerously irrelevant’ behavior of u, we

can recover all other mean field theory critical exponents. In the case d = 4, we don’t need to do

this because u is marginal.

• Our argument does not apply to t > 0 and h = 0, where m = 0. This is okay, because β is only

defined for t < 0.

• Consider t = 0 and nonzero h. Then the magnetization diverges as h1/δ. We can run a similar

scaling argument, fixing h = 1 and setting t = 0, to recover the mean field result δ = 3.

• We can integrate the magnetization to get the free energy, whose scaling is also affected,

modifying the critical exponent α.
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• Consider the zero-field susceptibility for t > 0, which diverges as tγ+ . The naive Gaussian model

result is correct here because for a small h, m ∼ h + terms analytic in u. Continuing around

the critical point using nonzero h gives γ+ = γ−.

• Generally, the operator um4 only affects the free energy, not the correlation functions, so η and

ν± remain correct. However, the link between the free energy and correlation functions breaks

down, so hyperscaling fails.

Note. The scaling arguments above can be reproduced by a sophisticated ‘dimensional analysis’.

• Near a fixed point, consider a perturbation of the form gO so that O is an eigenvector of the

RG flow, so under an RG step

g → ζ∆gg.

Here, g is a dimensionful coupling. Near the Gaussian fixed point ∆g will coincide with the

mass dimension of g, also called the engineering dimension. But in general, the two will differ.

• Motivated by engineering dimensional analysis, we define the scaling dimension of O as

∆O = d−∆g.

Again, this coincides with the mass dimension of O at the Gaussian fixed point; the operator

O is relevant if ∆O < d.

• As shown in the notes on Quantum Field Theory, correlators of O’s decay as

〈O(0)O(x)〉 ∼ 1

r2∆O
.

One might think that by regular dimensional analysis, this proves that ∆O must coincide with

the engineering dimension. This is false because the cutoff scale a is implicitly present; the

correlation function essentially depends on factors of a/r.

• Note that in general, the field φ(x) itself won’t be an RG eigenvector. Moreover, RG eigenvalues

don’t add under multiplication like dimensions do, i.e. generally ∆O1O2 = ∆O1 + ∆O2 is false.

However, both of these statements are approximately true at weak coupling, so we’ll ignore

these subtleties.

• Applying this to the field φ(x), we define

∆φ =
d− 2 + η

2
.

Since φ is not an RG eigenvalue, ∆φ really means the lowest ∆O for any O with a φ component,

as this operator dominates at long distances. At the Gaussian fixed point, η = 0.

• This logic helps us derive scaling relations. Since the free energy contains a Bφ term,

∆B = d−∆φ = d− 2 + η.

On the other hand, we have φ ∼ B1/δ, so

δ =
∆B

∆φ
=
d+ 2− η
d− 2 + η

.

https://knzhou.github.io/notes/qft.pdf
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• We also have φ ∼ tβ, where we know ξ ∼ t−ν and ∆ξ = −1 since it is a physical length. Then

∆t =
1

ν
, β = ν∆φ =

(d− 2 + η)ν

2
.

• Finally, the susceptibility is

χ =
∂φ

∂B
∼ t−γ , ∆φ −∆B = −γ

ν
, γ = ν(2− η).

We have introduced the intermediate quantities ∆B and ∆t, where the gap exponent ∆ defined

earlier is ∆ = ∆B/2∆t.

• The fourth and final critical exponent relation is the hyperscaling relation. The free energy

density f scales as

f ∼ ξ−d ∼ tdν , c ∼ tdν−2, α = 2− dν.

Note. The emergence of rotational symmetry. Consider a square lattice in d = 2 dimensions. We

have a dihedral symmetry group D4. The most relevant term that breaks SO(2) symmetry but not

D4 symmetry is φ(∂4
1 + ∂4

2)φ, but its scaling dimension near the Gaussian fixed point is ∆g = −2.

Hence the term is irrelevant; under coarse-graining, full rotational symmetry emerges.

Note. So far we’ve been assuming Z2 symmetry, φ → −φ. As we’ve seen, for a magnet we can

break this symmetry by turning on an external field, which provides a relevant operator; then to

reach the critical point we also need to tune the external field to zero. For the liquid/gas critical

point, there is no manifest Z2 symmetry. Correspondingly, we must tune two parameters, i.e. the

pressure and the temperature. Once we break Z2 symmetry we might worry about a φ3 term, which

would also be relevant, but it can be removed by a field redefinition.
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5 Perturbative Renormalization Group

5.1 Expectation Values

We begin by showing how perturbation theory works for statistical fields.

• Consider the Gaussian model,

βH0 =

∫
d̄q

t+Kq2 + Lq4 + · · ·
2

|m(q)|2.

One possible perturbation is the m4 interaction

U = u

∫
dxm(x)4 = u

∫
d̄q1 d̄q2 d̄q3mα(q1)mα(q2)mβ(q3)mβ(−q1 − q2 − q3).

• The unperturbed Hamiltonian has correlation function

〈mα(q)mβ(q′)〉0 =
δαβ/δ(q + q′)

t+Kq2 + Lq4 + · · ·
.

• More generally, an n-point correlation function can be expanded as〈∏
i

mi

〉
0

= sum over pairwise contractions

by Wick’s theorem. For example, the four-point correlation is the sum of three terms, each a

product of two two-point correlators.

• In the presence of an interaction U , we can calculate the expectation value of any operator O

in perturbation theory as

〈O〉 =

∫
DmOe−βH0−U∫
Dm e−βH0−U

=

∫
Dm e−βH0O(1− U + U2/2− · · · )∫
Dm e−βH0(1− U + U2/2− · · · )

=
〈O〉0 − 〈OU〉0 + 〈OU2〉0/2− · · ·

1− 〈U〉0 + 〈U2〉0/2− · · ·

=
(
〈O〉0 − 〈OU〉0 + 〈OU2〉0/2− · · ·

)(
1 + 〈U〉0 + 〈U〉20 −

1

2
〈U2〉0 + · · ·

)
where 〈·〉0 denotes an expectation value under the unperturbed Hamiltonian, and we inverted

the denominator by power series.

• We group the terms by powers of U , so that

〈O〉 =
∞∑
n=0

(−1)n

n!
〈OUn〉c0

where 〈·〉c is the connected average. We have already seen the case n = 1, the ‘connected

correlation function’. Such an expansion in terms of connected diagrams also appears for

correlation functions in quantum field theory.
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Example. Let O be the two-point correlation function 〈mα(q)mβ(q′)〉, under the um4 perturbation.

The first order shift is

−〈OU〉c0 = 〈O〉0〈U〉0 − 〈OU〉0.

Explicitly, we have

〈OU〉0 = u

∫
d̄q1 d̄q2 d̄q3 〈mα(q)mβ(q′)mi(q1)mi(q2)mj(q3)mj(−q1 − q2 − q3)〉0

and

〈O〉0〈U〉0 = u

∫
d̄q1 d̄q2 d̄q3 〈mα(q)mβ(q′)〉0 〈mi(q1)mi(q2)mj(q3)mj(−q1 − q2 − q3)〉0.

We may evaluate both of these expectation values using Wick’s theorem, summing over pairwise

contractions. The contractions in the former term that don’t link together the O and U fields are

canceled by the ones in the second. Then the only terms that count are the ones that connect the

O and U fields, justifying the ‘connected correlation function’ name. More generally, for 〈OUn〉c0,

the only terms that count are the ones that connect all n+ 1 operators together.

Now, in our current situation, we find two types of terms. We may contract mα and mβ to m’s

with the same index (4 ways), giving a contribution of

4u〈mα(q)mi(q1)〉0〈mβ(q′)mi(q2)〉0〈mj(q3)mj(−q1 − q2 − q3)〉0

The index structure is δαiδβiδjj = nδαβ. The momentum delta functions perform the q1 and q2

integrals, giving

4u
nδab/δ(q + q′)

(t+Kq2)2

∫
d̄q3

t+Kq2
3

.

Above, we have set all unperturbed coefficients except for t and K to zero, for brevity. We also

have 8 terms where mα and mβ are contracted to different indices. The structure is identical, but

with an overall factor of 8 instead of 4n. Therefore, the propagator is

〈mα(q)mβ(q′)〉 =
δαβ/δ(q + q′)

t+Kq2

[
1− 4u(n+ 2)

t+Kq2

∫
d̄k

t+Kk2

]
to first order in u.

Note. The first-order propagator above has many of the features of the unperturbed propagator.

More generally, we claim that the exact propagator must have the form

〈mα(q)mβ(q′)〉 = δαβ/δ(q + q′)S(q).

The delta function is imposed by momentum conservation, i.e. translational symmetry. The S(q)

factor only depends on the norm of q by spatial rotational symmetry. The δαβ is imposed by

rotational symmetry in the internal space, as this is the only rotationally invariant tensor.

Note. In the high temperature phase, we have S(q = 0) = χ by definition. Expanding to first order

in u, we find

χ−t(t) = t+ uI(t) +O(u2), I(t) = 4(n+ 2)

∫
d̄k

t+Kk2
.
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Therefore, for positive u, the critical point occurs at a lower temperature, as the um4 term provides

‘additional stability’. In particular, the critical temperature satisfies

tc = −uI(tc) +O(u2) = −uI(t = 0) +O(u2)

where we replaced I(tc) with I(0) since we’re working to first order in u. Now,

I(t = 0) ∝
∫
d̄k

k2
∝ Λd−2

d− 2

so we have a finite, O(u) shift to the critical temperature for d > 2. In d < 2, the integral is IR

divergent, as expected from the Mermin–Wagner theorem.

We may also extract the critical behavior. Using our previous expression, we find

χ−1(t)− χ−1(tc) ∼ (t− tc)
[
1− uA

∫
d̄k

k2(k2 + (t− tc)/K)

]
where we have absorbed several constants into A. For high momenta, the k4 term in the denom-

inator dominates, giving a Λd−4 term. However, the problem also contains the momentum scale√
(t− tc)/K, so generically∫

d̄k

k2(k2 + (t− tc)/K)
∼ Λd−4 +

(
K

t− tc

)(4−d)/2

.

For d < 4, the second term dominates, so the perturbation series breaks down; we see that the

critical behavior is modified by the quartic term. Physically, the reason is that the dimensionless

parameters we use to construct the perturbation series are ua4−d/K2 and uξ4−d/K2. In the case

d < 4, the latter diverges, so the perturbation series breaks down. This is just another manifestation

of the problems we run into below the upper critical dimension.

5.2 Perturbative RG

We can use perturbation theory to calculate the RG flow of the Landau–Ginzburg Hamiltonian.

We write the quartic term as U = u
∫
dxm4 and expand in u.

• To coarse-grain, we split the field into components

m(q) = m′(q) + σ(q)

where m′ has support for q < Λ/b, and σ has support for Λ/b < q < Λ.

• The partition function is then

Z =

∫
Dm′(q)Dσ(q) exp

[
−
∫ Λ

0
d̄q

(
t+Kq2

2

)
(|m′(q)|2 + |σ(q)|2)− U [m′(q),σ(q)]

]
.

To perform the coarse-graining, we integrate out σ. We see that the Gaussian terms for m′

and σ don’t interact, but the m4 term mixes them up, giving nontrivial behavior.

• More precisely, the integral we wish to do is an unnormalized expectation value,

I[m′] =

∫
Dσ(q) exp

[
−
∫ Λ

Λ/b
d̄q

(
t+Kq2

2

)
|σ(q)|2 − U [m′(q),σ(q)]

]
= Z0〈e−U [m′]〉0

where Z0 = 〈1〉0 and 〈·〉0 is averaging with respect to the Gaussian Hamiltonian for σ.
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• Taking the log, Z0 does not depend on m′ and has finite bounds of integration. Then it gives

a finite additive contribution to the free energy, which we ignore. Then the coarse-grained

Hamiltonian is

βH ′[m′] =

∫ Λ/b

0
d̄q

(
t+Kq2

2

)
|m′(q)|2 − log〈e−U [m′]〉0.

where we have

− log〈e−U 〉0 = 〈U〉0 −
1

2

(
〈U2〉0 − 〈U〉20

)
+ · · ·+ (−1)`+1

`!
(`th cumulant of U) + · · · .

Diagrammatically, the cumulants count only connected diagrams, as seen before.

We have thus set up the perturbative RG flow of the Landau–Ginzburg Hamiltonian. We first

compute the RG flow to first order. We draw uncontracted diagrams in the first column, then the

results of contractions in the second.

• At first order, the effective Hamiltonian picks up a term −〈U〉0. Explicitly,

〈U〉0 = u

∫
d̄q1 d̄q2 d̄q3 d̄q4 /δ(q1 + q2 + q3 + q4) 〈m(q1) ·m(q2)m(q3) ·m(q4)〉0 .

Each of the m factors is expanded as m = m′ + σ, giving 16 terms.

• Diagrammatically, we have a four-point vertex; applying Wick’s theorem contracts pairs of legs.

We now have two fields: the ‘external source’ m′, drawn as a straight line, and σ, drawn as a

curly line. The vertex also has a nontrivial vector structure (it is the product of two scalars

which are obtained by contracting vectors), which we draw with a dotted line.
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• There are six types of vertices, as shown above. Type [1] gives back U [m′], the expected

quartic term. Types [2] and [5] are odd in σ and hence average to zero; they have no nonzero

contractions. Type [6] has no dependence on m′ and hence just contributes an additive constant

to the free energy, which we ignore.

• We get nontrivial contributions from type [3] and type [4]. The resulting integrals are similar

to those of the previous section; as before, a closed σ loop gives a factor of n. Since both are

proportional to m2, the result is a renormalization of t,

t̃ = t+ 4u(n+ 2)

∫ Λ

Λ/b

d̄k

t+Kk2
≡ t+ uI(t).

However, K and u are unaffected.

• Explicitly, we are using the following Feynman rules for the nth order term.

– Draw all possible diagrams with n vertices. For each vertex, multiply by u.

– Contract pairs of σ lines in all possible ways, so that the diagram is connected.

– Assign momenta and vector indices to all lines. Contract the vector indices along all

continuous lines, not counting dashed lines. Conserve momentum at all vertices.

– For every contracted σ line with momentum k, write 1/(t+Kk2). For every closed loop,

multiply by n and integrate d̄k.

– Multiply by the number of ways to get the diagram. For example, a vertex with three σ

legs gets a factor of 4. We also multiply by the number of contractions. In quantum field

theory, this step would instead be ‘divide by the symmetry factor’, but we haven’t put the

appropriate 1/n! factors in the free energy here.

– Multiply by (−1)n+1/n! to get the contribution to βH ′[m′].

• We change variable to q′ = bq and renormalize the field by z, giving the recursion relations

t′ = b−dz2(t+ uI(t)), K ′ = b−d−2z2K, u′ = b−3dz4u.

As in the Gaussian model, there is a fixed point at t∗ = u∗ = 0, where we set

z = b1+d/2

to fix K ′ = K.

We now investigate the RG flow in the vicinity of the Gaussian fixed point.

• Near the Gaussian fixed point, we have the recursion relations

t′b = b2(t+ uI(t)), u′b = b4−du.

It is convenient to convert these to continuous flow equations. Letting b = e` ≈ 1 + ` and

expanding to first order in `, we have

dt

d`
= 2t+

AuΛd

t+KΛ2
,

du

d`
= (4− d)u.

To derive the first equation, we used the fact that the integral is over a very thin spherical shell,

and collected constants into A. These are differential equations for the RG flow in log Λ. The

right hand sides are called beta functions in quantum field theory.
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• Linearizing about the fixed point, we find

d

d`

(
δt

δu

)
=

(
2 AΛd−2/K

0 4− d

)(
δt

δu

)
.

The relevance of operators is determined by the eigenvalues of the matrix above; as in the

Gaussian model, they are 2 and 4− d. Nothing has changed from the Gaussian model, except

that one of the eigendirections is tilted; thus we haven’t learned anything new yet.

• Since the perturbation series is alternating, we expect that at second order, we will have

dt

d`
= 2t+

AuΛd

t+KΛ2
− C1u

2,
du

d`
= (4− d)u− C2u

2.

In this case, there is now an additional fixed point at u∗ = (4− d)/C2 for d < 4.

• Since we are treating u as a small parameter, this is only self-consistent if 4 − d = ε is also

small, yielding the ‘epsilon expansion’. Below, we will expand to lowest nontrivial order in ε,

which implies that we need to expand du/d` to O(u2), since u = O(ε), while we only need to

expand t to O(u). Hence the value of C1 doesn’t matter.

Note. Wick’s theorem. Let variables φa have Gaussian distribution p(φ) = Ae−φG
−1φ/2. We’ll use

notation for discrete variables here, though in the field theory case they are continuous. Note that

〈eBaφa〉 = A

∫
dφ e−φG

−1φ/2+Bφ = A

∫
dφ e−φG

−1φ/2eBGB/2 = eBGB/2

where we completed the square and shifted. Since the correlator is the Green’s function, which is

the inverse of the kinetic term, 〈φaφb〉 = Gab. Taylor expanding both sides in B, we have

1

(2n)!
Ba1 . . . Ba2n〈φa1 . . . φa2n〉 =

1

2n
1

n!
Ba1 . . . Ba2n〈φa1φa2〉 . . . 〈φa2n−1φa2n〉.

The symmetric tensor Ba1 . . . Ba2n symmetrizes the correlators (‘contractions’) on the right-hand

side. The number of distinct contractions is (2n− 1)(2n− 3) . . . (3)(1), which precisely cancels the

constants. Then

〈φa1 . . . φa2n〉 = 〈φa1φa2〉 . . . 〈φa2n−1φa2n〉+ other contractions

which correlators of an odd number of fields vanish, just as desired.

5.3 Wilson–Fisher Fixed Point

Next, we refine our perturbative calculation to second order.

• We now have two factors of U to deal with, so there many types of terms. Note that if one of

the vertices has zero σ legs, it cannot be connected, so it doesn’t contribute to the cumulant.

Diagrams with zero m legs just contribute a constant. We don’t include these diagrams in the

table above.

• Diagrams with an odd number of σ legs must contribute zero; they are eliminated by parity.
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• Diagrams with a vertex with three σ’s and one m′, with two of the σ’s directly joined together,

must be zero by momentum conservation.

• We can group together terms by the power of m they contribute to, given by the number of m

legs, giving terms proportional to m2, m4, and m6. The first two contribute to the second-order

RG evolution of t and u. The third (from the top-left diagram) contributes to a new term,

showing that the space of our current parameters is not closed under RG evolution. We generally

get all possible operators allowed by symmetries.

• Note that the top-left diagram is zero when q → 0 by momentum conservation. Since it is

analytic, its lowest order contribution is q2m6, not m6. Indeed, we get a whole family of new

sixth-order derivative terms.

• The diagrams in the last column contribute to m2, adding to C1, which we have argued we can

neglect.

• The diagrams in the last row contribute to m2, but also to q2m2, leading to a field renormaliza-

tion; this determines the critical exponent η. The field renormalization factor will be modified

by a factor of 1 + O(u2), which means dt/d` is modified at O(u2) and du/d` is modified at

O(u3). Then in both cases we can ignore the effect.

Now we focus on the contribution that counts.

• The terms in the middle of the table contribute to m4. In particular, we get the product of two

propagators, giving a loop integral∫
d̄k

(t+Kk2)(t+K(q1 + q2 − k)2)

where the qi are external momenta. Taylor expanding the integrand gives a renormalization of

u, as well as contributions to quartic gradient terms, such as m2∇2m2.
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• For simplicity, we’ll specialize to n = 1. Then the three types of diagram contributing to m2

collapse to one. Expanding to lowest order in the external momenta gives

∆u = −36u2

∫ Λ

Λ/b

d̄k

(t+Kk2)2
.

The prefactor is because there are
(

4
2

)
ways to choose two σ legs in each vertex, 2 ways to contract

the σ’s together to form a connected diagram, and a factor of −1/2 from the perturbation series.

• Therefore, the RG flow equations are

dt

d`
= 2t+

AuΛd

t+KΛ2
,

du

d`
= (4− d)u− Bu2Λd

(t+KΛ2)2
, A =

12Ωd−1

(2π)d
, B =

36Ωd−1

(2π)d
.

In particular, at d = 4, u is marginally irrelevant. That is, it does turn out to be irrelevant in the

IR, but it decays only logarithmically, in contrast to the power-law decay of t. Marginally irrel-

evant couplings are relatively common; marginally relevant couplings, which imply asymptotic

freedom, are rare.

To make further progress, we work in d = 4− ε.

• As argued earlier, we now have u = O(ε), and we expand dt/d` and du/d` to leading order in

ε. We can replace Λd with Λ4, etc., because these will give higher-order corrections. Then

dt

d`
= 2t+

3

2π2

Λ4

t+ Λ2
u,

du

d`
= εu− 9

2π2

Λ4

(t+ Λ2)2
u2

where we fixed K = 1 for simplicity and used Ω4 = 2π2.

• There is a second fixed point whose location is, to leading order in ε,

t∗ = −1

6
εΛ2, u∗ =

2π2

9
ε.

This is the Wilson–Fisher fixed point. Linearizing around the fixed point, we find

d

d`

(
δt

δu

)
=

(
2− ε/3 3Λ2/8π2

0 −ε

)(
δt

δu

)
again to leading order in ε.

• The eigenvalues at this fixed point are

∆t = 2− ε

3
, ∆u = −ε.

Only one is positive, so the Wilson–Fisher fixed point can describe the critical behavior. (In a

full analysis, we would have to show that all other operators are irrelevant.) Note that u itself

doesn’t have a well-defined scaling dimension; instead ∆u means the scaling dimension of the

most relevant operator that contains m4.

• Finally, to extract critical exponents, we note that ∆t is the scaling dimension of t, so

ξ ∼ t−ν , ν =
1

∆t
=

1

2
+

ε

12

again to first order in ε. Using the hyperscaling relation α = 2− dν gives α = ε/6.
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• It takes some more work to compute ∆φ, as this is related to the field renormalization we

neglected. We find that η = ε2/6, so it can be neglected at this order, giving ∆φ = (d− 2)/2 =

1− ε/2. Applying scaling results gives all the other critical exponents,

β =
1

2
− ε

6
, γ = 1 +

ε

6
, δ = 3 + ε.

Plugging in ε = 1 gives a fair approximation to the critical exponents in d = 3.

• For general n, we find

dt

d`
= 2t+

n+ 2

2π2

Λ4

t+ Λ2
u,

du

d`
= εu− n+ 8

2π2

Λ4

(t+ Λ2)2
u2

where we have 5 contributing diagrams; we found the factor of n+ 2 earlier when computing

the perturbed propagator.

• Linearizing about the fixed point, we find

∆t = 2− n+ 2

n+ 8
ε, ∆u = −ε

which gives the critical exponents

α =
4− n

2(n+ 8)
ε, β =

1

2
− 3

2(n+ 8)
ε, γ = 1 +

n+ 2

2(n+ 8)
ε, ν−1 = 2− n+ 2

n+ 8
ε, δ = 3 + ε

while the field renormalization gives

η =
n+ 2

2(n+ 8)
ε2.

Note. A summary of our results, for n = 1. The first two rows are experimental results; then we

list mean field theory (where α is determined from quadratic fluctuations), the critical exponents

from hyperscaling assuming η = 0 and ν = 1/2, and finally the epsilon expansion for ε = 1 to linear

order in ε.

α β γ δ η ν

d = 2 0 1/8 7/4 15 1/4 1

d = 3 0.1101 0.3264 1.2371 4.7898 0.0363 0.6300

naive MFT (4− d)/2 1/2 1 3 0 1/2

hyperscaling (4− d)/2 (d− 2)/4 1 (d+ 2)/(d− 2) 0 1/2

d = 4− 1 0.17 0.33 1.17 4 0 0.58
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6 Lattice Models

6.1 Introduction

Discrete lattice models are an alternative to statistical field theories which can often be more

computationally convenient, especially for series expansions or computer simulation and visualization.

By universality, we expect that switching to a lattice model will have no impact on the macroscopic

physics. We first introduce the Ising model.

• We place a “spin” σi = ±1 at every site of a lattice, which could represent spin up or spin

down, or one of two species in a binary mixture, or the presence of absence of a molecule in the

lattice gas model.

• We consider only short-range interactions between nearest neighbors 〈ij〉, giving the Hamiltonian

H =
∑
〈ij〉

B̂(σi, σj).

• Since σ2
i = 1, the most general decomposition of B is

B̂(σ, σ′) = −ĝ − ĥ

z
(σ + σ′)− Jσσ′.

Here, z is the coordination number (the number of neighbors per site), and we have constrained

the second term using the symmetry B(σ, σ′) = B(σ′, σ).

• For N spins, there are 2N microstates, and the partition function is

Z =
∑
σi

e−βH =
∑
σi

exp

K∑
〈ij〉

σiσj + h
∑
i

σi + g


where we have redefined some constants to absorb β.

• We see that g is just an overall constant, and h could represent a uniform external field. Zooming

out, we expect that the Ising model becomes the n = 1 Landau–Ginzburg Hamiltonian. For

h = 0, there is a phase transition as K (equivalently T ) is varied.

The Ising model has several generalizations.

• The O(n) model. Every lattice site is now occupied by an n-component unit vector Si. One

possible nearest-neighbor interaction is

H = −J
∑
〈ij〉

Si · Sj − ĥ ·
∑
i

Si.

More generally, the interaction term could be any function of Si · Sj .

• The O(n) model reduces to the Ising model, the XY model, and the classical Heisenberg model,

for n = 1, n = 2, and n = 3 respectively. Coarse-graining it gives the Landau–Ginzburg

Hamiltonian for general n, but note that this field does not have a unit length constraint,

because averaging unit vectors doesn’t necessarily yield a unit vector. If we want to include the

unit length constraint explicitly, we get a nonlinear σ model.
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• The Potts model. Each lattice site is occupied by a q-valued spin Si ∈ {1, . . . , q}, and the

interactions between the spins are described by

H = −J
∑
〈ij〉

δSi,Sj − ĥ
∑
i

δSi,1.

The field h now breaks an Sq permutation symmetry. The Ising model is the case q = 2, since

S2 = Z2. For higher q, very different behavior occurs; for instance the transitions for q > 3 in

d = 3 are discontinuous.

• As a physical example, consider the absorption of Krypton onto graphene. The Krypton atoms

are larger than the lattice spacing, so they forbid adjacent hexagons from being filled. This can

be represented using a Potts model.

There are several ways to analyze a lattice system.

• Exact solution. This is only possible for a few systems, such as the 1D and 2D Ising models.

• Perturbative (series) expansions. There are separate expansions for high T (perturbative

interactions) and low T (low-energy excitations), expanding about a disordered or ordered state.

Critical behavior can be extracted from the singularities of the series.

• Numerical simulation by Monte Carlo, such as the Metropolis algorithm. This is easier for

lattice systems than statistical fields.

• Real space RG. We perform coarse graining by averaging neighboring lattice sites; we will use

this method below. It is somewhat difficult when new interactions are generated by the RG, as

we don’t have a small parameter to expand in; we will introduce some approximations below,

but they are uncontrolled.

6.2 Ising Model in d = 1

The Ising model in d = 1 is simple to solve. First, we use transfer matrices.

• We note the partition function can be written as

Z =
∑
σi

exp

K∑
〈ij〉

σiσj + h
∑
i

σi

 =
∑
σi

N∏
j=1

Tσj ,σj+1 , Tij =

(
eK+h e−K

e−K eK−h

)
where we have assumed the spins are periodic, σN+1 = σN . Here T is called the transfer matrix,

and the partition function has the form

Z = trTN .

• The eigenvalues of the transfer matrix are

λ± = eK cosh(h)±
√
e2J sinh2(h) + e−2J .

The partition function is thus

Z = λN+ + λN− ≈ λN+
for large N . Given this we can easily compute the magnetization m(h) by differentiation.
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• The transfer matrix can also be used to compute averages of observables. For instance,

〈σj〉 =
1

Z

∑
σi

σje
−βH =

1

Z
tr(T j−1σzTN−j+1) =

1

Z
tr(TNσz)

where we used Tσj ,σj+1σj = (Tσz)σj−1σj . To get an explicit result, we must expand σz in the

eigenbasis of T . After some messy calculation, we find

lim
N→∞

〈σj〉 =
α2 − 1

α2 + 1
, α = e2K sinh(h) +

√
1 + e4J sinh2(h).

• One useful application of this result is that

lim
h→0

lim
N→∞

〈σj〉 = 0

for any nonzero temperature, which establishes that spontaneous symmetry breaking does not

happen in the 1D Ising model.

• We may also compute correlators, such as

〈σjσj+r〉 =
1

Z
tr(σzT rσzTN−r).

In particular, in the case of zero external field,

〈σjσj+r〉|h=0 =
λN−r+ λr− + λN−r− λr+

λN+ + λN−
≈
(
λ−
λ+

)r
= e−r/ξ, ξ =

1

log coth(βJ)
.

We now perform an exact RG analysis of the Ising model in d = 1.

• Our goal is to reduce the number of degrees of freedom by a factor b, while preserving the

partition function

Z =

N∑
σi

e−βH[σi] =

N/b∑
σ′
i′

e−βH
′[σ′

i′ ].

• There are many ways to construct the new σ′i′ . For b = 2, we could use the average

σ′i = (σ2i−1 + σ2i)/2.

However, this is inconvenient as σ′i now has three possible values instead of two. A simpler

choice is to just take one of the spins,

σ′i = σ2i−1.

This is called a ‘decimation’, as it just removes the even spins.

• There is no need to rescale the new spins by ζ, as they continue to take the values ±1.

• To implement the decimation, write the even spins as si. Then we just ‘integrate them out’

(i.e. sum over them in the partition function), for

Z =
N∑
σi

exp

(
N∑
i=1

Bσi,σi+1

)
=

N/2∑
σ′i

N/2∑
si

exp

N/2∑
i=1

B(σ′i, si) +B(si, σ
′
i+1)

 .
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• Performing the summation, we find the renormalized interaction B′ must satisfy

exp
(
B′(σ′i, σ

′
i+1)

)
=
∑
si=±1

exp
(
B(σ′i, si) +B(si, σ

′
i+1)

)
.

Another way to think about this is that, if we define the transfer matrix 〈σi|T |σi+1〉, the new

transfer function is T ′ = T 2.

• Defining

B(σ1, σ2) = g +
h

2
(σ1 + σ2) +Kσ1σ2, B′(σ′1, σ

′
2) = g′ +

h′

2
(σ′1 + σ′2) +K ′σ′1σ

′
2

we can straightforwardly find the RG recursion relations

g′ = 2g + δg(K,h), h′ = h+ δh(K,h), K ′ = K ′(K,h)

where δg and δh are somewhat complicated functions. Since g is just an additive constant, it

doesn’t affect probabilities and hence doesn’t appear in the RG recursion relations.

We now analyze the behavior of the RG flow.

• The h = 0 subspace is closed by symmetry. Fixing h = 0, we find

e2K′ =
e2K + e−2K

2
→ K ′ =

1

2
log cosh 2K.

We see there is a stable infinite temperature fixed point at K∗ = 0, which represents perfect

disorder/independent spins. There is also an unstable zero temperature fixed point at K∗ →∞,

describing the ordered phase. Since no finite value of K goes to this fixed point, the Ising model

doesn’t have a phase transition in d = 1, as expected.

• Adding a finite h back in, we see that the flow comes out of the K,h =∞, 0 fixed point, ending

at K = 0 and h finite. So any generic point ends up at K = 0 and some arbitrary h, describing

independent spins as before.

• Linearizing the recursion relations about the K →∞ fixed point yields

e−K
′

=
√

2e−K , h′ = 2h.

We can then use these to extract scaling behavior near this fixed point.
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• Using the fact that ξ′ = ξ/2 (since we decimate half the spins), we find

ξ(e−K , h) = e2Kgξ(he
2K)

by the usual method. However, the divergence of ξ as T → 0 is ambiguous, since it depends on

how we define T (K), so we can’t get the critical exponent ν.

• Using the hyperscaling assumption fsing ∼ ξ−1, we find

fsing = e−2Kgf (he2K).

The zero-field susceptibility behaves as

χ(K) ∼ ∂2f

∂h2

∣∣∣∣
h=0

∼ e2K

which is the same form as the behavior of the correlation length. Since we have already shown

χ ∼ ξ2−η, we conclude η = 1.

6.3 Ising Model in d = 2

In d > 1, the transfer matrix formalism is less useful but still has some benefit.

• For an N ×N square lattice with periodic boundary conditions, we let σi be a vector of the N

spins in column i. Then the partition function for zero external field can be written as

Z = trTN , 〈σk|T |σk+1〉 = exp

K N∑
j=1

σk,jσk+1,j +
1

2
(σk,jσk,j+1 + σk+1,jσk+1,j+1)

 .

The transfer matrices are 2N × 2N .

• As before, in the thermodynamic limit we have

f = lim
N→∞

F

N2
= − lim

N→∞

kBT

N
log λmax.

Hence the thermodynamic properties can be found by looking at only a 2N ×2N matrix, though

the partition function is a sum of 2N
2

terms. Still, this is analytically intractable.

In d > 1 the decimation procedure can’t be performed exactly, because new interactions will appear.

Hence we must use approximations in the RG.

Example. Suppose we separate a square lattice into two square sublattices, with b =
√

2.
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Since all four remaining spins shown above are symmetric, we will get new interactions between the

left and right spins, which are next-to-nearest neighbor interactions in the new sublattice! Moreover,

we get a four-point interaction between all four of the spins. Further RG steps only make the

problem more complex.

As an extended example, we consider the NvL cumulant approximation.

• We work in a triangular lattice divided into three-spin triangular cells.

The renormalized spin for the cell α is determined by the majority rule,

σ′α = sign(σ1
α + σ2

α + σ3
α).

The exact renormalized interactions are obtained from

e−βH
′[σ′α] =

∑
σiα

e−βH[σiα]

where we sum over spin configurations {σα} that map to the desired spin configuration {σ′α}
under the majority rule.

• We split the Hamiltonian as

βH = βH0 + U, −βH0 = K
∑
α,i

σiασ
i+1
α

where for simplicity we have set h = g = 0. The ‘free’ Hamiltonian H0 only contains intracell

interactions, which are trivial to deal with, and the ‘perturbation’ U contains interactions

between cells,

−U = K
∑
〈α,β〉

σiβσ
j
α + σkβσ

l
α.

The sum is over nearest neighbor triangular cells, and the indices i, j, k, and l depend on the

relative orientation of α and β.

• We now expand perturbatively in U . This is an uncontrolled expansion, since there is no sense

in which U is smaller compared to βH0.

• Expanding in a power series anyway, we have

e−βH
′[σ′α] =

∑
σiα

e−βH0[σiα]

(
1− U +

U2

2
− · · ·

)
.
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• Taking the logarithm, we conclude that

−βH ′[σ′α] = − logZ0[σ′α] + 〈U〉0 −
1

2

(
〈U2〉0 − 〈U〉20

)
+ . . . .

We get a series of cumulants, where the expectation values are taken with respect to βH0, with

the same restriction of fixed σ′α.

• For a fixed σ′α, there are 4 spin configurations per α that contribute on the right-hand side. For

example, the partition function is (
e3K + 3e−K

)N/3
.

Since this is independent of σ′α, it simply contributes an additive constant, which we ignore.

• We get nontrivial results from the first cumulant,

−〈U〉0 = 2K
∑
〈α,β〉

〈σiα〉0〈σ
j
β〉0.

Here, we’ve split the two-point correlation function since spins on different triangular cells are

independent under βH0. Since each spin is symmetric, the indices i and j are arbitrary.

• If the sum were not restricted, we would have 〈σiα〉0 = 0 always. However, we get a nonzero

answer here because we are conditioning on the value of the majority σ′α. Casework gives

〈σiα〉0 =
e3K + e−K

e3K + 3e−K
σ′α.

• Substituting back into the Hamiltonian, we get the nearest-neighbor interaction

−βH ′[σ′α] = 2K

(
e3K + e−K

e3K + 3e−K

)2 ∑
〈α,β〉

σ′ασ
′
β + const +O(U2).

If we had gone to higher-order terms, we would have more interactions.

We now analyze the RG flow.

• We have shown above that at lowest order,

K ′ = 2K

(
e3K + e−K

e3K + 3e−K

)2

.

• As before, K = 0 and K =∞ are both fixed points, but now both are stable! As a result, by

continuity, there must be an unstable fixed point in between, which numerically satisfies

K∗ ≈ 0.3356.

This is the location of the critical point. The known exact value is 0.2747.
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• By linearizing about the fixed point, we find that deviations are multiplied by 1.624 on each

iteration. Distances are shrunk by b =
√

3 each time, so the thermal eigenvalue is

yt ≈
log 1.624

log
√

3
≈ 0.883

while the exact value is yt = 1. Note that we don’t have the temperature ambiguity seen in

the 1D Ising model, as we’re now expanding about a point with finite K. We can then use this

result to find other critical exponents.

• Similarly, we can introduce a finite external field h as a second perturbation. By similar

arguments, we find

h′ = 3h

(
e3K + e−K

e3K + 3e−K

)
→ yh ≈ 1.37.

• In general we find reasonable agreement with the exact values, somewhat better than mean

field theory. We can get further improvement by going to the next order.

Next, we consider the Migdal-Kadanoff bond moving approximation.

• Consider performing b = 2 RG for the Ising model on a square lattice, as shown below.

The complications come from the bonds in the middle of the square. However, if we simply ignore

them, then the recursion relation for K is just the same as the 1D case, so the approximation is

not good; we have weakened the interactions too much. A better approximation is to imagine

‘moving’ the inside bonds to the outside, effectively doubling the bond strength K.

• The above gives the slightly modified recursion relation

K ′ =
1

2
log cosh 4K.

We find low-temperature and high-temperature stable fixed points, along with a third fixed

point at K∗ ≈ 0.305. About this fixed point, yt ≈ 0.747.

• Similarly, in dimension d, the approximation gives

K ′ =
1

2
log cosh 2× 2d−1K.

Generally, the results become quantitatively less accurate for higher d.

• The bond-moving approximation complements the mean-field approach, as it works best in

lower dimensions: it gets the case d = 1 correct exactly, and correctly identifies the lower critical

dimension dl = 2.

• More generally, in any one dimensional system, the transfer matrix is raised to the b power.

Then in d dimensions, the Migdal-Kadanoff approach consists of replacing K with bd−1K, then

raising the transfer matrix to the b power.
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Note. The Peierls argument can be used to extract qualitative information about lattice models;

it is a rough version of the series expansions we perform below.

Consider a 2D Ising model with N total spins with the boundary constrained to point up. The

system may contain domain walls of length L, across which the spin flips. The number m(L) of

such domain walls is bounded by

m(L) ≤ (4N)3L−1.

Each domain wall of length L may contribute at most L2/16 down spins, where equality is achieved

if the domain wall is square and is not inside another domain wall. Finally, the energy cost of a

domain wall is precisely 2LK, so the probability of a specific domain wall appearing is at most

e−2LK . Putting everything together, we have

〈N−〉 ≤ 4N
∑
L

L2

16
3L−1e−2LK =

N

12

∑
L

L2(3e−LK)L ≈ 108Ne−LK

in the low temperature limit. Hence in this limit 〈N−〉 � N , so there can indeed exist an ordered

phase. A similar argument in 1D, which we’ve seen above, instead shows that domain walls

proliferate because the energy cost of a domain wall doesn’t grow with L.

6.4 Series Expansions

Lattice models can also be studied by series expansions of the partition function Z. In this section,

we consider series expansions for the Ising model, −βH = K
∑
〈ij〉 σiσj in d dimensions and N sites,

where K = βJ > 0. First we consider the low-temperature limit of the Ising model.

• The ground states have all the spins facing the same direction, with a weight 2eNdK in the

partition function.

• Every bond that is broken comes with an energetic cost of 2K, and hence a probability cost of

α = e−2K relative to the ground states. We thus perform a series expansion in α.

– The first term comes from a single flipped spin, with cost α2d and multiplicity N .

– The next term comes from two adjacent flipped spins, with cost α4d−2 and multiplicity dN .

– The next term comes from two non-adjacent flipped spins, with cost α4d and multiplicity

N(N − 1− 2d)/2.

In general, the expansion has the form

Z = 2eNdK
∑

droplets

e−2K×boundary of droplet.

• We expect the free energy to be extensive since the forces are short-ranged, so that logZ only

has terms proportional to N . Therefore there must be some cancellation of the higher N terms

when we take the log.

• Intuitively, taking the log takes us from general diagrams to connected diagrams. A connected

diagram always comes with a factor of N , corresponding to where its center is, while diagrams

with m components generically have factors of Nm. The correspondence here isn’t exact

because there are some annoying factors coming from the fact that space is discrete (so we get

N(N − 1− 2d)/2 above instead of N2/2).
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• Differentiating, we can extract a series for the specific heat, C =
∑
α`u

` where u is our expansion

variable. Given the expected divergence of the heat capacity, we expect that the series looks

like

C ∼
(

1− u

uc

)−α
= 1 +

α

uc
u+

α(α+ 1)

2!u2
c

u2 + · · ·

near the divergence. Then we can extract uc and α from the ratio of subsequent terms,

a`
a`−1

= u−1
c

(
1 +

α− 1

`

)
.

• Formally, there’s no reason this is guaranteed to work, as we can always add analytic terms to

C without changing the divergence. However, it works well in practice.

• Another problem is that we expect a factor of the form (1− u/u∗)β from every singularity u∗
of the specific heat. While there are no more singularities on the real axis, there are some on

the complex plane in our expansion in u = α which cause the series to alternate in sign. To

remove this problem, we can change parameters so that the complex poles are pushed away; in

practice u = tanhK is used.

We can also construct an expansion in the limit of high temperature.

• In this limit, the spins are nearly independent, so we expand in powers of β. We have

Z = tr e−βH = tr

(
1− βH +

β2H2

2
− · · ·

)
.

Each of the terms of the series can be thought of as an expectation value, taken with respect

to a trivial Hamiltonian e−βH0 where H0 = 0, describing independent spins. Then

Z = Z0

(
1− β〈H〉0 +

β2

2
〈H2〉0 + · · ·

)
where the expectation values are taken with respect to H0.

• Taking the log gives us cumulants as usual,

logZ = logZ0 − β〈H〉0 +
β2

2
(〈H2〉0 − 〈H〉20)− · · · .

• For the Ising model, a more convenient method is to note that

eKσiσj =
eK + e−K

2
+
eK − e−K

2
σiσj = coshK(1 + tσiσj), t = tanhK.

Then the partition function can be written as

Z = (coshK)Nd
∑
{σi}

∑
〈ij〉

(1 + tσiσj).

This allows a systematic expansion in t. Geometrically, this is nicer because each ‘diagram’ can

be specified by a subset of the bonds, while in our original expansion (in β) the 〈H〉n terms

would include diagrams where each bond could be included up to n times.
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• A bond between sites i and j contributes a factor of σiσj , but since spins are independent,

generic contributions just average to zero. We can only get a nonzero result if every spin σi
appears raised to an even power. Diagrammatically, this happens if the bonds drawn form

collections of closed paths on the lattice.

• Performing the {σi} summation, we conclude

Z = 2N (coshK)Nd
∑

closed graphs

tbonds in graph.

Note that the low-temperature expansion is over vertices, while the high-temperature expansion

is over bonds.

Example. 1D Ising model with N sites on an open chain. There are no closed graphs, so

Z = 2N coshKN−1

which is the exact result. Similarly, we may calculate the correlation function

〈σmσn〉 =
(coshK)N−1

Z

∑
{σi}

∑
〈ij〉

(1 + tσiσj)σmσn.

Diagrammatically, the graphs that contribute are ‘closed graphs’ with endpoints on the ‘external

sources’ m and n. The single graph is a chain running from m to n, so

〈σmσn〉 = t|m−n| → ξ = − 1

log tanhK
.

This is in agreement with our previous RG results.

Example. 1D Ising model with N sites on a closed chain. There is now a single closed graph,

Z = (2 coshK)N (1 + tn) = 2n(coshN K + sinhN K).

Taking the log, we see that the free energy approaches that of the open chain in the thermodynamic

limit, as the contribution from the single closed graph is not extensive. By similar reasoning, the

correlation function is now

〈σmσn〉 =
t|m−n| + tN−|m−n|

1 + tN

which is appropriately symmetric between m and n.

6.5 Duality in the Ising Model

There is a hidden symmetry relating the low-temperature and high-temperature expansions for the

Ising model on the square lattice.

• Given a planar lattice, one can construct a ‘geometrical dual’ by constructing dual lattice points

at the center of each original plaquette, then drawing an edge between dual points for each

neighboring plaquette. This swaps vertices and edges.
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• Doing this for the Ising model gives an exact correspondence between islands and closed graphs!

One example is shown below.

The summations in the two series are identical, except that e−2K is replaced with tanhK.

• Taking the log, we conclude that

logZ

N
= 2K + g(e−2K) = log 2 + 2 log coshK + g(tanhK).

The arguments of g above are related by the duality condition

D(K) = −1

2
log tanhK.

One can show that D(D(K)) = K, so D exchanges pairs of low K and high K.

• Since g(K) = g(D(K))+analytic, if g(K) is singular atKc, it is also singular atD(Kc). However,

since we expect that the free energy is analytic everywhere except at the phase transition, the

critical point must be self-dual. Solving yields

Kc =
1

2
log(1 +

√
2) ≈ 0.441.

• Similarly, we can find duals for the Potts model and the XY model. Duality provides constraints

on the shape of phase boundaries, but generally no information on critical exponents.

• Not all planar lattices are self-dual: the dual of a triangular lattice is a hexagonal lattice. In

the case of self-duality, we can find the exact value of Kc.

Next, we turn to the 3D Ising model on a cubic lattice.

• The low-temperature expansion has the form

Z = 2e3NK
∑

droplets

e−2K×area of boundary

while the high-temperature expansion has the form

Z = 2N coshK3N
∑

closed graphs

tbonds in graph.

Droplets and closed graphs don’t correspond in 3D, so the 3D Ising model is not self-dual.
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• To construct the dual, we start with the low-temperature expansion. Since it depends on the

area of a boundary of a droplet, the high-temperature series of the dual model sums over closed

sets of plaquettes. Therefore the plaquettes correspond to the bonds of the dual model.

• The objects connecting the plaquettes together are the bonds of the original model; hence the

spins σ̃i = ±1 of the dual model sit on the bonds of the original model.

• Since we know the dual model’s partition function is

Z ∼
∑
{σ̃iP }

∏
P

(1 + tanh K̃σ̃1
P σ̃

2
P σ̃

3
P σ̃

4
P )

we can work backwards to find the Hamiltonian,

−βH = K̃
∑

plaquettesP

∏
σ̃iP .

• The dual model is called a Z2 lattice gauge theory, because it has a local symmetry: if we flip

all spins on edges connected to a single site, the energy is unchanged. Since it is dual to the

3D Ising model, it must have a phase transition.

Note. Elitzur’s theorem states that spontaneous symmetry breaking (SSB) is impossible in models

with a local symmetry. Specifically, it states that the expectation value of any local, non-gauge

invariant observable must vanish. In particular, the model above can’t have a magnetized phase.

To understand the theorem, consider the case of the 2D Ising model. To see SSB, we consider

adding a small symmetry-breaking field h/2, then taking the thermodynamic limit N →∞, then

finally taking h→ 0. One way to prevent SSB is to transition from the ground state to the state

with all spins flipped; this costs Nh energy, which becomes infinite in the thermodynamic limit, so

it is impossible. (SSB can still be prevented by local spin flips, as in the 1D Ising model; here we’re

just saying the global Z2 symmetry plays no role.)

However, in the case of the lattice gauge theory, we can flip any spin by performing a local gauge

transformation, which only costs energy 6h. This goes to zero in the appropriate limits, so SSB is

impossible.

Now we turn to Wilson loops and confinement.

• Given the above, the phase transition of the Z2 lattice gauge theory must have a nonlocal,

gauge-invariant order parameter. This turns out to be the Wilson loop,

CS =

〈∏
i∈S

σ̃i

〉

where S is a closed loop; it is gauge-invariant because gauge transformations flip spins in pairs.

We can think of CS as simply a complicated correlation function. We can then detect a phase

transition by seeing how CS depends on the size of S.

• In the high-temperature limit, we have

CS ∼
∑
{σ̃i}

∏
i∈S

σ̃i
∏
P

(1 + tanh K̃σ̃1
P σ̃

2
P σ̃

3
P σ̃

4
P ).
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The terms in the expansion are surfaces, and the terms that contribute are the surfaces with S

as boundary, weighted by their area. Therefore

CS ∼ (tanh K̃)area of S ∼ exp
(
−f(tanh K̃)× area of S

)
where we consider only the lowest-order term, i.e. the surface with minimal area.

• In the low-temperature limit, we expand over flipped bonds. The zeroth order term has CS = 1,

while there are PS first order terms (with weight e−8K̃) with CS = −1. Then

CS ∼ 1− 2PSe
−8K̃ ∼ exp

(
−2e−8K̃PS

)
where PS is the perimeter of S.

• We see that the high and low-temperature limits have qualitatively different decays for the

Wilson loop, depending on the area and perimeter respectively. Therefore they are separated

by a phase transition.

• Lattice gauge theory can serve as an analog of QED; we can add a ‘matter’ field by placing spins

on the sites. Adjacent sites are then connected by a gauge field spin. A gauge transformation

consists of flipping a site and all adjacent edges.

• Regarding one of the lattice directions as time, consider a Wilson loop with time t and distance

x. It corresponds to the statistical weight for creating two particles separated by distance x

and propagating them for time t, which is e−U(x)t.

• In the high-temperature phase, we have U(x)t ∼ |x|t, so U(x) ∼ x and the particles are confined

together. In the low-temperature phase, we instead find U(x) ∼ (|x| + t)/t, which goes to a

constant at large distances. Then the particles are asymptotically free.

6.6 Summing over Phantom Loops

In this section, we approximately sum the high-temperature series for the Ising model.

• The high temperature series for the Ising model on a d-dimensional hypercubic lattice is

Z = 2N coshdN K × S, S =
∑

closed graphs

t`

where ` is the total perimeter. A closed graph can be always decomposed into a sum of closed

loops, where each loop doesn’t intersect itself or any other loop.

• Now consider the quantity S′ so that

Ξ = logS′ =
∑

closed loops

t`.

That is, Ξ is the sum over connected contributions to S. Usually, we would have S′ = S.

However, S′ counts closed graphs containing loops that overlap each other, i.e. edges can be

counted multiple times. We will neglect these in our approximation.
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• We will further approximate by allowing edges to be counted multiple times in Ξ. Let

Ξ′ =
∑

closed random walks

t`

and approximate S ≈ eΞ′ . Here, ` is the length of the walk. The true S is a gas of self-avoiding

loops, while eΞ′ contains ‘phantom loops’ which pass through each other and themselves.

• Given a random walk, we can get about N identical random walks by translation (ignoring

boundary effects). Moreover, every random walk is counted ` times, since the starting point in

the walk is arbitrary. Then

Ξ′ = N
∑
`

t`

`
(number of closed walks of ` steps starting and ending at 0)

• Define the matrix

〈i|W (`)|j〉 = number of walks from j→ i in ` steps.

Then we have
Ξ′

N
=

1

2

∑
`

t`

`
〈0|W (`)|0〉.

The factor of 2 is because the same loop can be traversed in two directions.

• Next, consider the correlation function 〈σ(0)σ(r)〉. To compute this, we sum over all graphs

consisting of a closed graph and a path from 0 to r, and divide by the partition function (which

just counts closed graphs). However, in the phantom loop approximation, the path from 0 to r

doesn’t affect anything else; the partition function cancels, giving

〈σ(0)σ(r)〉 ≈
∑
`

t`〈r|W (`)|0〉.

Given this setup, we now investigate the properties of W (`) and the correlation function.

• Since the random walks are Markovian, they satisfy a simple recursion relation; in matrix form,

this is just the statement W (`) = T ` where T = W (1) is the transfer/adjacency matrix.

• Because of the translational symmetry of the lattice, T is diagonalized in Fourier space, with

T |q〉 = λq|q〉, λq = 2
∑
α

cos qα.

• The correlation function is thus

〈σ(0)σ(r)〉 ≈
∑
`

〈r|(tT )`|0〉 = 〈r|(1− tT )−1|0〉 =
∑
q

〈r|q〉 1

1− tλq
〈q|0〉.

Replacing the sum with an integral, we conclude

〈σ(0)σ(r)〉 ≈
∫
d̄dq

eiqr

1− 2t
∑

α cos qα
.
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• For small t (i.e. high temperatures), the correlation function is dominated by the shortest path,

〈σ(0)σ(r)〉 ∼ tr, giving an exponential decay. We can think of the path as a string connecting

the two points with a very high tension.

• As t increases, the ‘string tension’ decreases, and longer paths can contribute. Longer paths

have less weight, but there are more of them. In our approximation, the number of paths goes

roughly as (2d)`, while the weight goes as t`. Then there is a singularity at 2dtc = 1, where

arbitrarily long paths become important; this is the Ising ordering phase transition.

• Near the transition, the correlation function will be dominated by long paths, i.e. low momentum

components. We thus expand the denominator at low q,

1− 2t
∑
α

cos qα = (1− 2dt) + tq2 +O(q4) ≈ tc(ξ−2 + q2 +O(q4)), ξ =

(
1− 2dt

tc

)−1/2

.

The correlation function is the Fourier transform of 1/(q2 + ξ−2), exactly as we found through

the Landau–Ginzburg approach.

• The correlation length diverges as ξ ∼ (tc− t)−1/2, giving the Gaussian exponent ν = 1/2. Note

that here, t is not the reduced temperature parameter, it is tanhK. In particular, t increases

when the temperature decreases! However, this doesn’t matter for the critical exponent because

near the critical point, t and the reduced temperature are linearly related.

We can also use our machinery to investigate the free energy.

• The singular part of the free energy is

fsing. =
logS

N
≈ Ξ′

N
=

1

2

∑
`

〈0| t
`T `

`
|0〉 = −1

2
〈0| log(1− tT )|0〉.

Switching to Fourier space as above, we conclude

fsing. ≈ −
1

2

∫
d̄q log

(
1− 2t

∑
α

cos qα

)
.

• Near the critical point, the argument of the logarithm is proportional to q2 + ξ−2. Then by the

same reasoning as for the Gaussian model,

fsing. ∝ ξ−d ∝ (tc − t)d/2.

All further critical exponents come out exactly the same.

• Like the Gaussian model, the phantom loop approximation is unstable below the critical point.

For t > tc, loops of greater length are favored more, and it becomes favorable for loops to

retrace their steps over and over. In the true Ising model, this instability is stabilized by the

fact that loops can’t self-intersect.

• The Gaussian model and the phantom loop approximation contain essentially the same physics;

their difference is analogous to the difference between wavefunction evolution and the path

integral.
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• The phantom loop approximation can also explain why there is no phase transition in 1D. We

can think of each paths as carrying information with fidelity t`. In this case of the 1D Ising

model, this means all correlation functions decay exponentially.

• We can also rederive the critical exponent ν heuristically. Paths shorter than the characteristic

path length ` = −1/ log(2dt) ∼ (tc − t)−1 have good information transfer, and since the paths

are random walks, their diameter goes as `
1/2

. Then the sizes of correlated regions diverge as

(tc − t)−1/2, exactly the divergence of the correlation length we saw before.

• The Gaussian model gives incorrect critical exponents for d < 4. To see why, note that random

walks have Hausdorff dimension 2. Then two random walks will generically intersect if d < 2+2.

As a result, we must account for intersections, which correspond to accounting for the um4

term in the Gaussian model. For example, forbidding self-interactions swells the size of random

walks, so ν > 1/2 for d < 4.

6.7 Monte Carlo

In this section, we take a detour to describe how lattice models are simulated.

• At heart, lattice models like the Ising model don’t have time dependence. The Hamiltonian is

not the generator of time translation as in Hamiltonian mechanics; all it does is assign energies

to configurations. (One can change this by specifying a Poisson bracket/commutator structure,

e.g. the standard angular momentum relations for the O(n) model, but this is an additional

layer of structure.)

• In thermal equilibrium, these configuration energies correspond to probabilities, but the model

says nothing about how equilibrium is physically approached, or how the system evolves between

states over time. However, most of the quantities we are concerned about, such as critical

exponents, are independent of such details.

• Thus, when simulating the system, we are free to substitute any dynamics we want, no matter

how realistic, as long as the resulting probability distribution is correct. We can think of a

simulation as simply a way to sample from the canonical ensemble.

• One simple example of such an algorithm for the Ising model is as follows.

1. At each step, pick a random spin i.

2. Compute the energies E± for mi = ±1, holding all other spins fixed.

3. Assign i to be spin up or down, with probability p± = e−βE±/(e−βE+ + e−βE−).

Below, we will develop a theory that explains why this algorithm works correctly.

All of the algorithms we will consider will be Markov chains.

• A Markov chain is a stochastic process which, at each time step, randomly evolves the state

of the system in a way that only depends on the current state. Thus, a Markov chain can be

represented by a matrix whose elements Pβα represent the probability of a transition α→ β.
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• If the probabilities of occupancy of the states are ρα, then after a timestep,

ρ′β =
∑
α

Pβαρα.

For the new probabilities to make sense, we require

0 ≤ Pβα ≤ 1,
∑
β

Pβα = 1.

These enforce positivity and normalization of probability, respectively.

• Note that P is generally not symmetric, so we cannot just apply, e.g. the spectral theorem. For

each distinct eigenvalue λ (defined as the diagonal elements in Jordan normal form), there is

at least one corresponding right eigenvector and left eigenvector. However, these eigenvectors

generally will not coincide, nor will there be a complete basis of eigenvectors.

• Note that normalization of probability tells us there is a left eigenvector with eigenvalue 1,

namely (1, 1, . . . , 1). Thus, there exists at least one right eigenvector with eigenvalue 1.

• In addition, any right eigenvector ρ with eigenvalue λ 6= 1 must have components that sum to

zero. To see this, note that

λ
∑
β

ρβ =
∑
α,β

Pβαρα =
∑
α

ρα

where we again used normalization of probability.

• We would like to ensure that our simulation reaches a unique stationary probability distribution,

but this requires imposing more conditions. For example, the Markov chain might have totally

disconnected components. A more subtle issue is that it may have deterministic cycles, like

α→ β → γ → α, through which probability continually shuffles.

• To prevent these issues, we restrict to ergodic Markov chains, defined as Markov chains which

do not have cycles, and which are irreducible, meaning that one can get from any state to any

other in a finite sequence of moves. This definition is suited for what we will need below, but

other definitions are used in physics and mathematics.

•

•

Note. Monte Carlo methods are used in many other fields. A more general sense of “Monte Carlo”

is simply that of sampling from a given probability distribution. These distributions in general

don’t have the nice structure above, so other ideas are necessary.

It is easy and fast to sample from a uniform distribution, using a standard pseudorandom number

generator. This leads to a trivial way to sample from an arbitrary one-dimensional distribution if

its inverse cdf is known: we simply sample the percentile rank (in [0, 1]) and apply the inverse cdf

function. However, evaluating the cdf is often intractable analytically – and if we could do it easily

numerically, we probably wouldn’t need to be doing Monte Carlo in the first place. Furthermore,

it’s not clear how this extends to higher-dimensional distributions.

A better, but still simple idea is von Neumann’s accept-reject method. Suppose that the

distribution is bounded between xmin and xmax, and the probability density has a maximal value
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fmax. Then we draw a number x uniformly in [xmin, xmax], then accept it with probability f(x)/fmax.

Intuitively, this works because we can think of drawing the graph of the distribution on a piece

of paper, and throwing darts at that piece of paper. It also clearly works for higher-dimensional

distributions. However, it can be inefficient if there are too many rejections, which occurs for sharply

peaked functions. The method can be refined by drawing from any distribution which bounds the

desired distribution more closely.

Note. In general, Monte Carlo methods are better when dealing with high-dimensional distributions.

If N describes the total computation time, the error of Monte Carlo methods falls as 1/
√
N . A

one-dimensional integral can be computed with the trapezoidal rule with error improving as 1/N2,

but a d-dimensional integral has error improving as 1/N2/d, which is less efficient than Monte Carlo

for high d. For lattice models we are always working with d large, in fact thermodynamically large.

Monte Carlo is also very useful in particle physics, where it is used to simulate particle collisions

and their subsequent detection; these are physical processes involving a large number of random

choices.
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7 Continuous Spins

7.1 The Nonlinear σ Model

Next, we consider low-temperature expansions for continuous spins. Since the low-energy excitations

are Goldstone modes, rather than droplets, the most useful low-temperature description is a field

theory of these Goldstone modes. We already know that these modes destroy long-range order in

d ≤ 2. Then for d just above 2, the critical temperature is low, so a low-temperature expansion can

probe critical phenomena.

• We consider n-component unit spins s(i) on a lattice, with

−βH = K
∑
〈ij〉

s(i) · s(j) = K
∑
〈ij〉

(
1− (s(i)− s(j))2

2

)
.

• At low temperatures, the fluctuations between nearby spins are small, so we may replace the

difference with a gradient,

−βH = −K
2

∫
ddx (∇s(x))2 + const.

As usual, this implicitly imposes a cutoff Λ ∼ π/a on the field s(x).

• The integration measure Ds(x) for the partition function is constrained to spins with unit norm.

To remove this constraint, suppose the ground state is s(x) = (0, . . . , 1) and let

s(x) = (π(x), σ(x))

where π is an n− 1 component vector representing the transverse Goldstone modes. Then∫
dπdσ δ(π2 + σ2 − 1) =

∫
dπdσ δ

[
(σ −

√
1− π2)(σ +

√
1− π2)

]
=

∫
dπ

2
√

1− π2
.

We have thrown out the solution with negative σ, since we’re only considering low-energy

excitations. For the same reason, we can formally extend the integration over π to (−∞,∞).

• Dropping the factor of 2, we see that every lattice site contributes a factor of 1/
√

1− π2 to the

measure. Thus the Hamiltonian density is modified to

βH =
K

2
(∇π)2 +

K

2
(∇
√

1− π2)2 +
ρ

2
log(1− π2)

where ρ = N/V = 1/ad is the density of lattice points.

• We see that by integrating out the σ, we get complicated nonlinear terms for the pions, causing

interactions between Goldstone modes; hence the term ‘nonlinear σ model’.

• To handle the computations, we expand to lowest nontrivial order. We expect 〈π2〉 ∼ 1/K from

the zeroth order term, so the next terms are O(Kπ4) or O(π2), giving

βH0 =
K

2
(∇π)2, U1 =

K

2
(π · ∇π)2 − ρ

2
π2.

This is a low-temperature expansion because K ∼ 1/T , so we are expanding in powers of T .
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Next, we perform a first-order renormalization group analysis.

• In Fourier space, we have

βH0 =
K

2

∫
d̄q q2|π(q)|2

and

U1 = −Kint

2

∫
d̄q1 d̄q2 d̄q3 πα(q1)πα(q2)πβ(q3)πβ(−q1 − q2 − q3)(q1 · q3)− ρ

2

∫
d̄q |π(q)|2

where we renamed the K in U1 to Kint for later convenience.

• As usual, we split the modes into π< and π>, corresponding to momenta above and below Λ/b.

As shown earlier, the renormalized Hamiltonian picks up a term 〈U1[π]〉>0 where the expectation

value is taken with respect to βH0 and integrates over the π> modes.

• The two perturbation terms can be represented as follows.

Here, the notches represent momentum factors, due to the q1 · q3 factor above. We perform

casework on each external leg, showing it as a wavy line if its momentum is above Λ/b.

• The ρ interaction contributes three types of diagrams, with zero, one, and two π> external legs.

The first simply reproduces the ρ term for the π< fields, the second is zero by symmetry, and

the third contributes additively to the free energy, so we ignore it.

• The Kint interaction is more interesting, with 16 diagrams. Again, nontrivial effects can only

come from graphs with two π> and two π< external legs, shown below.

The first two diagrams are zero by symmetry, as we have one π> external leg with a momentum

factor in each case. The other two renormalize ρ and K respectively.

• Performing the calculation, we find

K̃ = K

(
1 +

Id(b)

K

)
, Id(b) =

∫ Λ

Λ/b

d̄k

k2
=
KdΛ

d−2(1− b2−d)
d− 2

where we used K = Kint. The renormalization of ρ isn’t as interesting, as it merely tracks the

density of points. We may also ignore the renormalization of Kint, because it must always be

equal to K by rotational symmetry.

• Finally, rescaling and renormalizing, we have

K ′ = bd−2ζ2K̃

where we have divided the spin values by ζ, which is specified by demanding the renormalized

spins also have unit norm.
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• After some simplification, we find that the temperature T = K−1 scales as

dT

d`
= −(d− 2)T + (n− 2)KdΛ

d−2T 2

where b = 1 + `. For d > 2, the low-temperature fixed point is stable, yielding an ordered phase.

For d < 2 there is no ordered phase, as expected by the Mermin–Wagner theorem.

• For d = 2, the situation is more subtle. For n > 2 there is no ordered phase and for n < 2 there

is an ordered phase (e.g. 2D Ising). However, for n = 2, we have dT/d` = 0, which is quite

special; one can also show this remains true to all orders.

7.2 ∗ The Nonlinear σ Model, Redux

Before continuing, we recap the physics of SSB in the O(n) model in dimension d.

• If we ignore thermal fluctuations entirely, then for any d and n we find spontaneous symmetry

breaking below the critical temperature, and for n > 1 this means there are Goldstone modes,

which we parametrize by θ.

• The Goldstone modes only appear in the free energy through derivative terms, such as (∇θ)2,

implying the existence of long-range correlations everywhere below the critical point. Moreover,

Goldstone modes are soft/gapless, i.e. their free energy vanishes in the limit k → 0 with fixed

amplitude. In relativistic quantum field theory, that means they are massless.

• Now we consider the effect of thermal fluctuations. For d = n = 1 and d = 2, n ≥ 2, thermal

fluctuations set 〈φ〉 = 0. More precisely, the correlator 〈(θ(x)− θ(0))2〉 grows without bound

for high x, as we computed earlier. This means that if we set φ to some value φ0 as a boundary

condition, its value far from that boundary will be essentially independent of φ0.

• The absence of gapless modes for d = 1 can be understood using the analogy with quantum

mechanics. The nonlinear sigma model translates to a quantum particle on a sphere, whose

energy levels are gapped. Since the spectrum is the same in both cases, there are no gapless

modes in the original statistical field theory.

• For d > 2, where Goldstone modes exist, the spherical symmetry strongly constrains the

coefficients in the free energy. In particular, for T < Tc the Goldstone modes automatically

have η = 0, though η is generally nonzero at T = Tc.

• We know that whenever SSB occurs, we have gapless modes. In general, we’ve seen that there

are not gapless modes whenever SSB doesn’t occur. The surprising part is that for d = n = 2,

we still have a phase transition and gapless modes!

To understand this better, it’s useful to focus on only the Goldstone modes.

• Regardless of the presence of SSB, at low temperatures, 〈|φ|〉 is approximately equal to its

mean-field value, because longitudinal excitations are gapped, so well below Tc it must be

nonzero. In particular, for very low temperatures we should be able to set 〈|φ|〉 exactly to its

mean field value and only consider the Goldstone modes. Here we’ve just using ‘Goldstone

mode’ to refer to the transverse modes, which may or may not be gapped.
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• The resulting theory is a nonlinear sigma model, i.e. a theory where the fields are coordinates on

a manifold. The φ2 term and φ4 interaction just become constants and don’t matter. Instead,

the nontrivial physics comes entirely from the kinetic term!

• For n = 2, which we call the XY model, there is just a single Goldstone mode. But for n = 3

the field is parametrized by spherical coordinates (θ, φ), giving a lowest-order gradient term

(∇φ)2 → (∇θ)2 + sin2 θ(∇φ)2

and the second term is an interaction between θ and φ. In general, the kinetic term for a

nonlinear sigma model can be read off from the metric. In this case, the fields live on a sphere,

and the strength of the interactions is determined by the curvature of the sphere.

• It would seem that the Goldstone modes are clearly gapless, no matter what the values of d and

n are, but this is too naive: the gaplessness of a mode can only be read off the free energy if

the coupling is weak. We will find that under RG flow, the coupling gets stronger and stronger

in d ≤ 2. The exception will be d = n = 2, where the coupling stays the same.

With this background in mind, we reintroduce the nonlinear sigma model.

• We work at T < Tc, ignore the longitudinal mode and rescale the field to have unit norm,

F [n] =

∫
dx

1

2e2
∇n · ∇n, e2 = 〈|φ|〉−2.

Here we’ve redefined K = 1/e2, and the partition function is

Z =

∫
Dn δ(n(x)2 − 1)e−F [n].

While the theory looks like a free theory, interactions occur due to the constraint. Note that

the field is not canonically normalized; the theory is described by the single parameter e, and

it’s useful for us to put it in the coefficient of the kinetic term.

• For e2 � 1, the original φ fields live on a large sphere, so the curvature is small and the

Goldstone modes interact weakly. For e2 � 1, the Goldstone modes are instead strongly

coupled and |φ| is small. Since we are ignoring the longitudinal mode, our model is only a good

description of the physics for e2 small, so we will expand perturbatively in e2. Another piece

of intuition is that F is really βF , so e2 ∼ T . Then the weak coupling limit is also the low

temperature limit.

• In the previous section, we separated out a single direction,

n(x) = (π(x), σ(x))

and then integrated out the σ and expanded in a Taylor series. However, this completely

destroys the underlying spherical symmetry.

• Instead, we use the background field method. A general field configuration can be written as

na(x) = ña(x)(1− χ(x)2)1/2 +

N−1∑
α=1

χα(x)eaα(x)
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where ña(x) is a ‘background field’ and the eaα(x) are frame fields satisfying

ñ · ñ = 1, ñ · eα = 0, eα · eβ = δαβ.

Both the background field and frame field vary slowly in space. The functions χα(x) parametrize

the short-wavelength fluctuations, like our usually ‘fast/slow’ decomposition but in real space.

• Next, we expand the free energy perturbatively in χ. This is because χ2 ∼ e2, as can be checked

by scaling back to the φ fields or by evaluating the integral by saddle. First,

∇na = ∇ña
√

1− χ2 + ña∇
√

1− χ2 +∇(χαe
a
α)

= ∇ña(1− χ2/2)− ñaχα∇χα +∇(χαe
a
α) +O(χ2).

where the ∇ carries an implicit vector index.

• Therefore, the gradient term is

(∇na)2 = (∇ña)2(1− χ2) + (∇χα)2 + χαχβ∇eaα∇eaβ + 2∇ña∇(χαe
a
α) +O(χ3).

Here the vector indices between the gradients are implicitly contracted, and we used ña∇ña = 0

to remove a cross-term.

With this setup, we perform the RG transformation by integrating out the χ.

• The partition function is

Z =

∫
Dñ δ(ñ2 − 1)e−F0[ñ]〈e−FI [ñ,χ]〉0, F0[ñ] =

1

2e2

∫
dx (∇ñ)2

where the expectation value is taken over the χ in the Gaussian ensemble, and

FI [ñ, χ] =
1

2e2

∫
dx
(
−χ2(∇ña)2 + χαχβ∇eaα∇eaβ + 2∇ña∇(χαe

a
α)
)
.

• As usual, we expand the exponential (where the expansion variable is χ), for

〈e−FI 〉0 = 1− 〈FI〉0 +
1

2
〈F 2

I 〉0 + . . . .

We are only interested in the renormalization of the coupling e, so the first term suffices. Higher

order terms generate more and more additional terms in the free energy, but they all turn out

to be irrelevant. One might think that the 〈F 2
I 〉0 term renormalizes the gradient term at O(χ2)

due to the linear term in FI , but this turns out to not occur.

• At lowest order, applying Wick’s theorem, the linear term does not contribute and

〈FI〉0 =
1

2e2

∫
dx (−δαβ(∇ña)2 +∇eaα∇eaβ)〈χα(x)χβ(x)〉0.

We now choose χ to contain the Fourier modes above Λ/ζ, so that

〈χα(x)χβ(x)〉0 = e2δαβId, Id =

∫ Λ

Λ/ζ

d̄q

q2
=

Ωd−1

(2π)d
Λd−2 ×


ζ − 1 d = 1

log ζ d = 2

1− ζ2−d d ≥ 3

by our earlier work. Here the factor of e2 is because the kinetic term for χ comes with a factor

of 1/e2. Then all powers of χ come with powers of e, justifying the expansion in χ.
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• The term ∇eaα∇eaβ also contributes to the gradient. To see this, use the completeness relation

ñañb + eaαe
b
α = δab

and ñaeaα = 0, which implies ña∇eaα = −(∇ña)eaα, for

∇eaα∇eaα = ∇eaα∇ebα(ñañb + eaβe
b
β)

= eaαe
b
α(∇ña)(∇ñb) + (eaβ∇eaα)(ebβ∇ebα)

= ∇ña∇ña + (eaβ∇eaα)(ebβ∇ebα)

where the first term is the gradient, and the second term is a new, irrelevant ‘torsion’ term.

• Finally, applying δαβδ
αβ = N − 1, we conclude

〈FI〉0 = (2−N)Id

∫
dx

1

2
(∇ña)2.

At the linear order we’re working, 〈e−FI 〉0 = e−〈FI〉0 , so we have

1

e′2
=

1

e2
0

+ (2−N)Id.

• We don’t have to rescale the fields, since we aren’t maintaining canonical normalization; we

only need to scale the lengths by 1/ζ. Since [e2] = 2− d we conclude

1

e2(ζ)
= ζd−2

(
1

e2
0

+ (2−N)Id

)
.

Note there is no running for N = 2, because in this case there is a single free Goldstone mode.

Next, we step back and look at our result.

• For d < 2, the coupling is relevant. That is, it gets stronger in the IR, so in the IR limit our

perturbative expansion breaks down and we cannot determine whether the theory has gapless

modes. By our earlier argument, we know there aren’t.

• Defining ξ = es, the beta function for d = 2 is

β(e) =
de

ds
= (N − 2)

e3

4π
.

In this case, the coupling e2 is marginally relevant, in contrast to the marginally irrelevant

coupling u at the Gaussian fixed point for d = 4. Then the coupling is weak in the UV limit, so

we say the theory is asymptotically free. In general, an asymptotically free theory is one which

has no irrelevant operators at all, only relevant and marginally relevant ones. They are special

and rare; Yang-Mills is an important example.

• In the case d = N = 2, the coupling does not run, and one can show that it does not run to all

orders. Then there do exist gapless modes, and hence a phase transition does occur, but it is

not a symmetry breaking transition.
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• Finally, we can expand in d = 2 + ε, where

de

ds
= −εe

2
+ (N − 2)

e3

4π
Λε.

This has a perturbative fixed point,

e2
? =

2πε

N − 2
Λ−ε.

However, the fixed point is unstable, so it is a UV fixed point rather than an IR fixed point.

• To understand this, note that if we start from the Wilson–Fisher fixed point and ‘lower the

temperature’, we flow away from it to the zero-temperature fixed point, i.e. the ordered phase.

In our sigma model, we’ve started in this ordered phase; by running our RG flow in reverse we

can get back to the Wilson–Fisher fixed point!

• We can use the d = 2 + ε expansion to find the critical exponents at the Wilson–Fisher fixed

point. Identifying e2 = t, we have

dt

ds
= −εt+ (N − 2)

t2

2π
Λε

and linearizing about the fixed point gives ∆t = ε, which implies ν = 1/ε. This isn’t very

accurate in d = 3, but we can match this with the d = 4− ε expansion to get better results.

We can show that gapless modes do not exist for d = 2 and large N with the large N expansion.

• We rewrite the partition function in the unconstrained form

Z =

∫
DnDσ exp

(
− 1

2e2
0

∫
dx∇n · ∇n− i

2e2
0

∫
dxσ(n · n− 1)

)
.

The σ field is a Lagrange multiplier; integrating it out recovers the unit length constraint.

• However, since the free energy is quadratic in n, we can instead integrate out n, giving

Z =

∫
Dσ detN/2(−∇2 + iσ(x)) exp

(
i

2e2
0

∫
dxσ

)
.

Using detA = exp tr logA, we can write this as part of the free energy density,

Z =

∫
Dσ exp

(
−N

2
tr log(−∇2 + iσ) +

i

2e2
0

∫
dxσ

)
.

Note that there is an implicit UV cutoff on the functional traces and logs.

• Since N is large, we can apply saddle point integration. However, we really need both terms to

be large, so we send N →∞ and e2
0 → 0, keeping e2

0N fixed. Applying the identity

δ tr logX = trX−1δX

the saddle point for σ satisfies

G(x,x) =
1

e2
0N

where G(x,x′) is the Green’s function for (−∇2 + iσ(x)).
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• We guess a constant solution, of the form σ(x) = −iµ2. Then in Fourier space,∫ Λ d̄k

k2 + µ2
=

1

e2
0N

.

Integrating to solve for µ, in d = 2 we have

1

4π
log

(
Λ2 + µ2

µ2

)
=

1

e2
0N

.

Assuming we started with a weakly coupled UV theory, e2
0N � 1, then we can self-consistently

assume µ� Λ to find

µ ≈ Λe−2π/e20N .

• Now, the saddle point equations for σ tell us which configurations of σ count, when we integrate

it out in the full path integral. Since a constant is a solution, integrating out the σ gives a

quadratic term for n, so the Goldstone bosons are no longer gapless for large N .

• One can show there are no gapless modes for all N ≥ 3 and hence no phase transition. The

effect is nonperturbative, since the Taylor expansion of µ in e2
0 is identically zero.

• In the context of quantum field theory, the appearance of the dimensionful scale µ from a theory

with only dimensionless couplings e2
0 is called dimensional transmutation. In the Wilsonian

picture, it is obvious that this scale really comes from the UV cutoff Λ.

• In the case d > 2, the same manipulations give

1

e2
0N

=

∫ Λ d̄k

k2 + µ2
∼

{
Λd−2 − µ2Λd−4 d ≥ 4,

Λd−2 − µd−2 2 < d < 4

where we took the two leading terms in the integral, i.e. by expanding in a series in µ/Λ. Then

for sufficiently weak coupling, e2
0N . Λ2−d, there is no solution for µ, indicating that a phase

transition does occur, giving gapless Goldstone modes.

• Finally, we can extract another critical exponent from this result. We have T − Tc ∼ e2 − e2
?,

where e? is the critical coupling where e2
?N ∼ Λ2−d, and ξ ∼ 1/µ. Then

T − Tc ∼

{
ξ−2 d ≥ 4,

ξ2−d 2 < d < 4,
ν =

{
1/2 d ≥ 4,

1/(d− 2) 2 < d < 4

where the former result agrees with mean field theory, and the latter agrees with the d = 2 + ε

expansion and with the d = 4− ε expansion at large N .

Note. In a quantum field theory, gapless modes must appear for a phase transition to occur. This

is because phase transitions separate distinct vacua, but if there were a gap, it would be possible

to adiabatically transition from one to the other. The same statement holds in the statistical field

theory, as gapless modes are gapless on both sides of the correspondence.
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7.3 The XY Model

In the previous section, we have shown that the n = d = 2 continuous spin model, called the XY

model, has a strange behavior under RG. Numerical evidence suggests that there is a divergence of

the susceptibility at finite temperature, indicating a phase transition. However, as Mermin–Wagner

still applies, there can be no local order parameter.

• As for the lattice gauge theory, we are motivated to look at correlation functions, in particular

the decay of 〈s0 · sr〉. We have

〈s0 · sr〉 =
1

Z

N∏
i=1

(∫ 2π

0

dθi
2π

)
cos(θ0 − θr)eK

∑
〈ij〉 cos(θi−θj)

and at high temperatures we can expand to lowest order in K,

〈s0 · sr〉 =
1

Z

N∏
i=1

(∫ 2π

0

dθi
2π

)
cos(θ0 − θr)

∏
〈ij〉

[
1 +K cos(θi − θj) +O(K2)

]
.

Again, the diagrams that contribute are closed graphs with endpoints at 0 and r, as all other

diagrams contain a factor of
∫ 2π

0 cos(θ) dθ = 0. Since we are expanding to lowest order in K,

only the shortest paths from 0 to r matter.

• Note that every internal point gives a factor of 1/2, as∫ 2π

0

dθ2

2π
cos(θ1 − θ2) cos(θ2 − θ3) =

1

2
cos(θ1 − θ3).

Therefore we have

〈s0 · sr〉 ≈
(
K

2

)r
= e−r/ξ, ξ =

1

log(2/K)
.

In general there may be multiple shortest length paths, but there are at most exponentially

many, so the decay of the correlation function is still exponential.

• At low temperatures, the Hamiltonian is approximately H = K(∇θ)2/2 and the fluctuations

are Gaussian. Then we can use the same reasoning as earlier; using the identity

〈s0 · sr〉 = 〈Re ei(θ0−θr)〉 = Re exp

[
−1

2
〈(θ0 − θr)2〉

]
and the fact that fluctuations in two dimensions grow as

1

2
〈(θ0 − θr)2〉 =

1

2πK
log(r/a)

we conclude that

〈s0 · sr〉 ≈
(a
r

)1/2πK
.

Then at low temperatures, we have ‘quasi long-range order’, as correlations decay slowly.

• Since θ is dimensionless, we have an anomalous dimension

〈s0 · sr〉 ∝
1

rη
, η =

1

2πK
=
e2

2π
.



79 7. Continuous Spins

• Since the decay of correlations is exponential at higher temperatures and algebraic at low

temperatures, we expect there is a phase transition in between. However, this is a cheat, because

the low temperature expansion never used the fact that n = 2! The decay of correlations is

always algebraic at zero temperature, but for n > 2, the zero-temperature fixed point is unstable,

so we don’t get algebraic decay at finite temperature.

• The case n = 2 is more interesting. Since dT/d` = 0 at all orders, we have an RG fixed point

for every temperature. At every one of these points, the decay of correlations is algebraic.

• Kosterlitz and Thouless showed that these fixed points switch from stable to unstable at a

critical temperature Tc, corresponding to the XY model’s expected phase transition. Above Tc,

we RG flow to the high-temperature fixed point, which has exponential decay.

As we’ll show below, the instability is due to the proliferation of topological defects.

• The XY model supports topological defects (π1(S1) = Z) indexed by the topological charge

n =
1

2π

∫
(∇θ) · ds.

Note that this expression only makes sense for a coarse-grained field. Our gradient expansion for

the nonlinear σ model can’t detect these defects, because they only look at small deformations

about the ground state.

• For a symmetric vortex of charge n, obeying the equation of motion ∇2θ = 0, we have

∇θ = n(−y/r2, x/r2, 0) = −n
r

(r̂× ẑ) = −n∇× (ẑ log r).

Note that while the ∇θ configurations of vortices are intuitive, simply pointing along ±θ̂ for

charge ±1, the θ configurations are not. The θ configurations of the +1 vortices point radially

or clockwise or counterclockwise, while the −1 vortices point along hyperbolas.

• In the context of superfluids, v = ∇θ is the velocity of the superfluid, so the vortices are literally

fluid vortices with clockwise or counterclockwise flow. The equation of motion is ∇ · v = 0, so

the flow is incompressible.

• The approximation above breaks down at some length scale a, which we call the vortex core

size, so the total energy is

βEn = βE0
n +

K

2

∫ ∞
a

dx (∇θ)2 = −βE0
n − πKn2 log(L/a)

where E0
n is the energy contribution from the core region.

• The total energy diverges with system size, but this doesn’t mean vortex formation is impossible,

because the number of vortex configurations also diverges with system size. In particular, the

partition function for one vortex is

Z1 ∼
(
L

a

)2

e−βEn ∼
(
L

a

)2−πKn2

.

Therefore, for K < 2/π, the spontaneous formation of vortices with unit charge is favored; past

this point, our expression Z1 isn’t useful as there will generally be many vortices.
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• If vortices didn’t interact, this would be the end of the analysis. However, vortex configurations

can substantially lower their energy by interaction; for example, a dipole of charges ±1 with

separation d has gradient

∇θ ≈ d · ∇
(
r̂× ẑ

r

)
at large distances, giving a finite energy. Therefore, dipoles generally appear at any finite

temperature. The XY phase transition is due to dipoles unbinding into a ‘plasma’ of vortices.

• As in lattice gauge theory, this transition can be understood in terms of nonlocal quantities.

Let Q(`) be the topological charge in a square of side `. Then in the low-temperature phase,

〈Q(`)2〉 ∝ `

due to dipoles straddling the perimeter, while in the high-temperature phase

〈Q(`)2〉 ∝ `2

since all the charges in the loop are independent.

To make further progress, we have to understand the interaction of vortices.

• Naively, since v = ∇θ we must have ∇ × v = 0, so closed loop integrals of v must always

be zero; the fact that vortices exist implies that there must be singularities in θ, and hence

singularities in v. Concretely, for vortices of charge ni at locations xi, we require

∇× v = 2πẑ
∑
i

niδ
2(x− xi).

Therefore we can separate v into a singular and nonsingular part,

v = v0 + v1, v0 = ∇φ

where φ is nonsingular.

• For convenience, we define ∇× v1 = ẑ∇2ψ, which yields

ψ(x) =
∑
i

ni log(|x− xi|).

Here, ψ is analogous to the potential due to point charges in two dimensions. (To use three-

dimensional vector operations, we have implicitly extended v so that v(x, z) = v(x, 0).) Note

that there is an ambiguity in the definition of ψ, but it can be absorbed into that of φ.

• Using the curl of curl identity, we can solve for v1, giving

v = ∇φ−∇× (ẑψ).

To understand the second term, note that ∇ × (ẑψ) is just ∇ψ rotated by π/2. This lets us

convert between electric charge intuition (∇ψ), where field flows in/out and fluid flow intuition

(∇× (ẑψ)), where fluid flows around.
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• The energy of a configuration decomposes into three terms,

βH =
K

2

∫
d2x

[
(∇φ)2 − 2∇φ · ∇ × (ẑψ) + (∇× ẑψ)2

]
.

The first term is just the energy of topologically trivial spin waves. The second vanishes by

integration by parts. The third term is equal to

(∇× ẑψ)2 = (∇ψ)2 ∼ −ψ∇2ψ

where we integrated by parts in the last step. Since ψ is analogous to potential, this term is

analogous to the E2 field energy and causes an interaction between charges.

• Plugging in the explicit forms of ψ and ∇2ψ, the interaction is

βH1 = −2π2K
∑
i,j

ninjC(xi − xj), C(x) = log(|x|)/2π.

The energy diverges for i = j because our approximation breaks down; in that case we just

recover the core energy E0, so we really have

βH1 =
∑
i

βE0
ni − 4π2K

∑
i<j

ninjC(xi − xj).

• At low temperature, we can factor the partition function as

Z = ZswZvortex

where the terms represent spin waves and vortices. Since the spin wave contribution is nonsin-

gular, the phase transition must be due to vortex unbinding.

• When integrating by parts, we dropped surface terms that contribute (
∑

i ni)(logL) to the

energy, like the divergent energy of a single vortex. Therefore at low temperature we only

consider charge-neutral configurations, containing vortices of charge ±1, as these have the

lowest energy. Then

Zvortex =
∞∑
N=0

yN0

∫ N∏
i=1

dxi exp

4π2K
∑
i<j

ninjC(xi − xj)


where y0 = exp(−βE0

±1) is the fugacity of vortices, ni = ±1, and we sum over charge-neutral

configurations where the vortices are separated by at least a distance a.

7.4 The Coulomb Gas

As shown earlier, the phase transition of the XY model is due to the unbinding of vortex pairs,

and has a direct analogue to the Coulomb gas. At low temperatures, charges appear only in

tightly-bound dipole pairs. At high temperatures, the charges dissociate to form a plasma.

• In the Coulomb gas, the phase transition is an insulator to metal transition. The bare Coulomb

interaction between two external charges is C(x). In the low-temperature phase, the internal

charges act as a dielectric, reducing the interaction to C(x)/ε. In the high-temperature phase,

the internal charges screen the external ones, so C(x) decays exponentially.
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• We can compute the effective interaction V (x) perturbatively in y0, so the lowest-order term

contains one internal dipole. Equivalently, we can calculate the dielectric constant ε.

• Suppose the Coulomb gas forms a square of side length L. If we put in an electric field E, the

internal field E′ satisfies

(E − E′)L = qin

by Gauss’s law, where qin is due to dipoles straddling the edge of the Gaussian surface.

• Integrating over possible dipole lengths and orientations,

qin =

∫ ∞
a

r dr

a2

∫ 2π

0
dθ
Lr cos θ

a2
(2π) eKE

′(2πr) cos θy2
0.

The factor Lr cos θ describes the possible positions of a dipole straddling the edge. The lengths

are divided by a, because as justified earlier, we can only specify the dipole’s position up to

this resolution. The 2π factor is the charge, and the exponential factor is the Boltzmann weight

describing dipole alignment, where 2πr is the dipole moment.

• Expanding the exponential to first order and performing the integrals shows

Keff = K − 4π3K2y2
0a

2πK−4

∫ ∞
a

dr r3−2πK +O(y4
0), ε =

K

Keff
.

Since y0 is small, this is a valid perturbative expansion as long as the integral converges, which

occurs for K > Kc = 2/π. Below this critical coupling, each term diverges; the situation is

analogous to computing fluctuations in Landau–Ginzburg theory for d < 4.

• Now we perform RG. The microscopic cutoff is the core size a, which affects the parameters K

and y0. When we change a to ba, we demand that the partition function

Z1 = y0(a)

(
L

a

)2−πK

remain the same, as well as the coupling Keff. Working to lowest order in y0 gives

dK−1

d`
= 4π3a4y2

0 +O(y4
0),

dy0

d`
= (2− πK)y0 +O(y3

0).

By construction, Keff is the value of the coupling K once we have RG flowed to y0 = 0. Then

the true XY model with coupling K is equivalent to an XY model with no topological defects

and coupling Keff.

• We have a line of fixed points for y0 = 0, which are stable for Keff > 2/π. These represent the

insulating phase. For smaller couplings, the fixed points are unstable and we are pushed to the

K → 0, y0 →∞ fixed point, representing the conducting phase.

• To understand the critical behavior, we expand near the critical point, defining

x = K−1 − π/2, y = y0a
2

which gives, to lowest order,
dx

d`
= 4π3y2,

dy

d`
=

4xy

π
.

We will derive these equations by another route below.



83 7. Continuous Spins

7.5 ∗ The Sine-Gordan Model

We can also compute the RG flow of the Coulomb gas by mapping it to the Sine-Gordan model.

• The Sine-Gordan model has

F =

∫
dx

1

2
(∇φ)2 − λ cos(βφ)

where φ is a real scalar field and we work in d = 2. The model is interesting because it contains

solitons, and it is named after Klein-Gordan theory.

• We claim the Sine-Gordan model is equivalent to the Coulomb gas. To see this, consider

discretizing space into lattice points Xα separated by a, and write a Coulomb gas configuration

as an assignment Vα ∈ {−1, 0, 1} reflecting the presence of absence of an (anti)-vortex. Then

Zvortex ∼
∑
{Vα}

exp

 π

e2

∑
α 6=β

VαVβ log

(
|Xα −Xβ|

a

)
−
∑
α

V 2
αFcore

 .

We restrict to neutral configurations, so
∑

α Vα = 0.

• Next, we use the fact that the logarithm is the Green’s function for the two-dimensional

Laplacian, so by our path integral computations,∫
Dφ exp

(
−
∫
dx

1

2
(∇φ)2 + f(x)φ(x)

)
∼ exp

(
− 1

4π

∫
dxdy f(x) log |x− y|f(y)

)
where we omit a constant normalization factor. Then the partition function becomes

Zvortex ∼
∑
{Vα}

∫
Dφ exp

(
−
∫
dx

1

2
(∇φ)2 +

∑
α

2πi

e
Vαφ(Xα)− V 2

αFcore

)
.

That is, the vortices couple to the field φ, but with an imaginary energy.

• Finally, performing the sum over {Vα}, the interaction factors become∏
α

(
1 + 2e−Fcore cos(2πφα/e)

)
∼ exp

(
2

a2
e−Fcore

∫
dx cos

(
2πφ

e

))
so that we arrive at the Sine-Gordan model with correspondences

λ =
2e−Fcore

a2
, β =

2π

e
.

The cutoff a is to be interpreted as the cutoff scale.

Now we proceed to compute the RG flow at first order.

• As usual, we split the field into high and low Fourier components φk = φ−k + φ+
k above and

below Λ/ζ, and integrating out the high momentum modes gives the effective free energy

F ′[φ−] = F0[φ−]− log〈e−FI [φ−+φ+]〉+, F0[φ] =

∫
dx

1

2
(∇φ)2, FI [φ] = −λ0

∫
dx cos(β0φ)

where the expectation value is taken in the free ensemble for the fast modes. We have added

subscripts to the coupling constants λ and β since they are the values before renormalization.
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• The parameter β0 is not necessarily small, so we can’t expand the cosine in a series. Hence

diagrammatics don’t make sense since have an infinite number of vertices. Instead, we expand

in the small parameter λ0, reflecting the fact that a single vortex has a high energy cost.

• Since λ0 is small, we expand the exponential to lowest order,

log〈e−FI [φ−+φ+]〉+ ≈ λ0

∫
dx 〈cos(β(φ− + φ+))〉+ =

λ0

2

∫
dx

∑
σ=±1

eiβσφ
−〈eiβσφ+〉+.

Now we need to evaluate the expectation value of an exponential in a Gaussian ensemble, which

is done precisely by the Wick identity,

〈eiβσφ+(x)〉+ = e−(β2
0/2)〈φ+(x)φ+(x)〉+ .

The propagator can be evaluated explicitly as

〈φ+(0)φ+(0)〉+ =

∫ Λ

Λ/ζ

d̄k

k2
=

log ζ

2π
.

• Combining our results and performing the sum over σ, we find a renormalization of λ,

λ′ = λ0ζ
−β2/4π.

We perform the usual rescaling x→ x/ζ. No rescaling of the field is necessary, and we find

λ(ζ) = λ0e
2−β2/4π.

• For β2 > 8π the RG flow reduces λ, so the coupling is irrelevant and we flow to a free field

theory. For β2 < 8π, the RG flow increases λ. In the limit of high λ, fluctuations of the field

are suppressed, so we can expand the cosine to get a mass term λ0β
2φ2/2 and hence a finite

correlation length. Then we predict a phase transition at β2 = 8π.

• This is equivalent to e2 = π/2, which is remarkably exactly the same value we found by heuristic

arguments earlier. At this phase transition, we have the universal result η = 1/4.

Next, we give the results at second order.

• At second order, we generate the term cos(2β0φ), reflecting the presence of two vortices at a

lattice point, along with a renormalization of the kinetic term.

• Ignoring the new term, the RG flow equations are

dλ

ds
=
(

2− π

e2

)
λ,

de2

ds
= 8π2Cλ2e2

where C is a numerical constant we will not compute. Since the interaction energy of vortices

is proportional to 1/e2, RG flow weakens the interaction, physically because of screening by

vortex-antivortex pairs.
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• The structure of the RG flow is shown below.

If λ starts very low, then our first-order results apply: we end up in the low temperature phase

if e2 < π/2. For finite λ, we require a slightly lower value of e2.

• We can ‘zoom in’ around the phase transition, defining

x = e2 − π

2
, y =

√
8π2Cλ,

dx

ds
= y2,

dy

ds
≈ 4

π
xy.

The RG flows are hyperbola, with x2 − πy2 = J conserved and the phase transition at J = 0.

• As we vary the temperature for a fixed system, both e2 and λ are changed. Therefore we can

think of J as a function of T , with leading behavior

J(T ) ∼ Tc − T.

This allows us to infer some temperature dependence.

• Suppose we start with small J < 0. Then we find

s =
π√
|J |

(
tan−1

(
x√
|J |

)
− tan−1

(
x0√
|J |

))
.

When x ∼ 1, we have y ∼ 1, so vortices are common, so the correlation length is ξ ∼ a. Working

backwards, and dropping coefficients, that means

ξ ∼ aes ∼ exp

(
1√
|J |

)
∼ exp

(
1√

T − Tc

)
which is an extremely strong divergence, faster than any power.

• Applying hyperscaling, F ∼ (L/ξ)2 so that

F ∼ 1

ξ2
∼ exp

(
− 1√

T − Tc

)
.

This is an extremely weak singularity, weaker than any power. In terms of Ehrenfest’s classifi-

cation, the Kosterlitz–Thouless transition is of infinite order.

• Just below the transition, the quantity 1/e2 flows to 2/π, while just above it, it flows to zero.

Then we predict a discontinuity of 2/π in 1/e2 at the transition, a universal result, with a

subleading square root singularity in T . This has been confirmed in superfluid helium.
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The Kosterlitz–Thouless transition can also be used to understand melting.

• Solids spontaneously break translational symmetry, which is regained when the solid melts.

However, by the Mermin–Wagner theorem, translational symmetry can’t be broken in the first

place in d ≤ 2, which means we should not see a sharp melting phase transition. Despite this,

it is observed in d = 2.

• More quantitatively, fixing a crystal lattice and writing the distortion field as u(x), we have

〈ui(q)uj(q
′)〉 ∼

/δ(q + q′)

q2
Tij

for some tensor Tij which depends on the crystal lattice, so

〈(u(x)− u(0))2〉 ∼
∫
d̄q

2− 2 cos(q · x)

q2
.

This integral diverges for large x for d ≤ 2. The order parameter can be taken to be eiG·u(x)

for any G in the reciprocal lattice, and its correlators decay algebraically for d = 2.

• We may also define an order parameter for orientational order,

Ψ(x) = einθ(x), θ(x) = −1

2
ẑ · ∇ × u(x)

where n = 6 for a triangular lattice and n = 4 for a square lattice.

• Unlike translational order, there is long-range orientational order. This is rather subtle; it

doesn’t contradict the Mermin–Wagner theorem because soft phonons mediate a long-range

interaction between orientations at different lattice points. A related subtlety is that solids

don’t have any low-energy excitations corresponding to orientational deformations, since at

long distances these “tear up the lattice”.

• In the KTHNY theory, a two-dimensional solid is disordered by topological defects called

dislocations, which result from extra or missing half lattice planes; they are associated with

π1(T 2). There is a Kosterlitz–Thouless-style phase transition where the dislocations unbind,

above which the orientational order decays algebraically.

• This “hexatic” phase is not a liquid. Instead, there is a further phase transition involving the

unbinding of a new set of topological defects called disinclinations, which are very similar to

the vortices in the XY model.
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