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3 1. Introduction

1 Introduction

1.1 Random Variables

We begin by establishing notation and context.

• Our data is a vector of random variables, X = (X1, . . . , Xn), which are often independent and

identically distributed.

• The data are drawn picked from a family of distributions (e.g. normal distributions with some

µ and σ) where typically the parameters θ are unknown. The goal of parameter estimation is

to estimate these parameters.

• Often the parameters θ occupy a subset of a vector space. We will only cover “parametric”

statistics, where this space is finite-dimensional. “Nonparametric” statistics is significantly

more complicated.

• In the frequentist picture, we do not specify a distribution of θ. Instead, we should think of θ

as fixed but unknown, with all randomness coming from the random variables X.

• In general, we write parameters separated from variables; for example, the pdf of a general

normal distribution would be written f(x|µ, σ2). The pdf of a random variable X is written

fX(x). When there is no possibility of confusion, we will just write f(x) or g(x), and so on.

• A statistic T (X) is any function of the data, and is hence also a random variable. Sometimes

the distribution of a statistic is called a sampling distribution.

• Specific values are indicated by lowercase. For example, we can have a specific value t(x) where

x = (x1, . . . , xn). (This distinction is rarely made in practice in physics, where both the random

variables and their values would have the same letter.)

• An estimator is a statistic we use to estimate a parameter θ. It is unbiased if

E(T ) = θ

where the expectation is taken over possible values of X given fixed θ. Estimators may also be

written as the corresponding parameter with a hat, e.g. θ̂.

Note. Generally, unbiased estimators need not exist. For example, consider a coin flip with

probability p. Then for any estimator,

E θ̂ = (1− p)θ̂(0) + pθ̂(1).

This means we can only estimate linear functions of p without bias. More generally, unbiased

estimators can be extremely poor, with arbitrarily high spread; a lack of bias is a good property,

but far from the only important thing. There is often a tradeoff between the bias of an estimator

and its variance.

Now we review some useful facts about distributions.
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• It is often useful to combine random variables by addition or multiplication. Let X and Y have

pdfs g(x) and h(y). Then the pdf of Z = X + Y is

f(z) =

∫ ∞

−∞
g(z − y)h(y) dy

which is the Fourier convolution of g and h. The pdf of Z = XY is

f(z) =

∫ ∞

−∞
g(z/y)h(y)

dy

|y|

which is the Mellin convolution of g and h. In practice these integrals are hard to perform;

instead one can perform a Fourier or Mellin transform, which converts these convolutions to

multiplication.

• When performing a change of variables from n random variables X to n other independent

random variables A, the joint pdf is multiplied by the Jacobian,

g(a1, . . . , an) = f(x1, . . . , xn) |det J |, Jij =
∂xi
∂aj

• We will write the expected value of a random variable X as

E(X) = µX

again suppressing the subscript when there is no chance of confusion. The algebraic moments

are E(Xn), while the central moments are

E((X − µ)n) = µX,n.

The variance is the second central moment, and is written σ2
X .

• The covariance matrix for a set of random variables X is denoted V , where

Vij = E((Xi − µi)(Xj − µj)) = E(XiXj)− µiµj

using the notation µi = µXi . The diagonal elements of the covariance matrix are just the

variances. The correlation coefficients are defined as

ρij =
Vij

σiσj
∈ [−1, 1].

If the random variables are independent, the off-diagonal elements of the covariance matrix

vanish, though the converse is not true.

• In physics, one often uses a heuristic procedure known as “error propagation” (where “error”

just means what we call standard deviation). The point of error propagation is that if one

only knows the means and covariance matrix of a set of random variables X, it is possible to

approximate the means and covariance of functions Y(X) of those random variables. This

approximation is good as long as the low-order Taylor expansion of Y in X is good.



5 1. Introduction

• Specifically, by evaluating Y(X) up to first order, we have

E(Y) = y(µX) + second order in (X− µX).

Similarly, the covariance matrix U of the new variables is

Ukℓ =
∑
ij

(
∂yk
∂xi

∂yℓ
∂xj

)
x=µX

Vij + second order in (X− µX).

Note that if we define the matrix of partial derivatives Aij = ∂yi/∂xj , then

U = AV AT .

• For example, if Y = X1 +X2, then

σ2
Y = σ2

1 + σ2
2 + 2V12

while if Y = X1X2, then
σ2
Y

y2
=

σ2
1

µ2
1

+
σ2
2

µ2
2

+
2V12

µ1µ2
.

If X1 and X2 are independent, this is just the usual addition in quadrature of absolute and

relative error, respectively. Note that the first result is exact, while the second relies on the

higher-order corrections to the Taylor series being small.

• Sometimes, it is useful to diagonalize the covariance matrix using a linear transformation,

Y = AX.

The new covariance matrix is U = AV AT and V is symmetric, so this can be achieved for

some orthogonal matrix A. This is called principal component analysis. The resulting principal

components can be less intuitive than the original variables; for instance, if elements of X

represent qualitatively different things (e.g. gender and age) then combining them requires an

arbitrary choice of relative normalization, which affects the principal components.

1.2 Examples of Distributions

We now review some important distributions.

• The most important case is when X is standard normal, X ∼ N(0, 1), which has

f(x) = φ(x) =
e−x2/2

√
2π

.

The cdf of X is called Φ. More generally, for X ∼ N(µ, σ2) we have

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

Even more generally, X is multivariate normal, X ∼ N(µ, V ), if

f(x) =
1√

| det(2πV )|
exp

(
−1

2
(x− µ)TV −1(x− µ)

)
.
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• We now consider some discrete distributions. We say X is binomial with parameters (N, p) if

f(n) =

(
N

n

)
pn(1− p)N−n, E(X) = Np, varX = Np(1− p).

This represents, for example, the number of successes in N independent trials with probability of

success p. Note that we are using the same notation for probabilities and probability densities.

• The multinomial distribution generalizes the binomial distribution to more than two outcomes.

Let the outcomes have probabilities pi, where i ∈ {1, . . . ,m}. Then

f(n1, . . . , nm) =
N !

n1! · · ·nm!
pn1
1 . . . pnm

m .

The expected values are clearly µi = Npi. To compute the covariance matrix, it is useful to

group the outcomes into “outcome i, outcome j, and anything else”, so we never have to deal

with more than three options, and note that the N trials are independent. This gives

Vij = N(δijpi − pipj).

The multinomial distribution could represent, e.g. the occupancies of bins in a histogram with

a fixed total count. The fluctuations of the bins are anticorrelated, because having more counts

in one bin leaves fewer for the other bins.

• We say X is Poisson with parameter λ if

f(n) =
λn

n!
e−λ, E(X) = varX = λ.

One can show that this is the limit of a binomial distribution as N → ∞ and p → 0, fixing

Np = λ, and hence can be thought of as the counts due to a memoryless process occurring in

continuous time. This is a simple example of how the limit N → ∞ alone doesn’t guarantee a

normal distribution, instead one needs enough variance to “smear out” the distribution, λ → ∞.

• We say X is geometric with parameter p if

f(n) = p(1− p)n−1, n = 1, 2, . . . .

One example is the number of independent flips needed to get a head on a coin with heads

probability p.

• The continuous analogue of the geometric distribution is the exponential. If X ∼ E(λ), then

f(x) = λe−λx, x > 0, E(X) =
1

λ
, varX =

1

λ2
.

• The gamma distribution is the sum of n independent exponentials. If X ∼ gamma(n, λ), then

f(x) =
λnxn−1e−λx

(n− 1)!
, x > 0, E(X) =

n

λ
, varX =

n

λ2
.

The sum of gamma distributed variables is also gamma distributed, and of course in the limit

n → ∞, it approaches a normal distribution. One example of a gamma distributed quantity is

the time until the nth event in a memoryless process. It can also be used as a generic pdf for a

quantity known to be positive.
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• If Y ∼ N(µ, σ2), then X = eY is log-normal distributed,

p(x) =
1√
2πσ2

1

x
exp

(
−(log x− µ)2

2σ2

)
.

It is the result of multiplying many independent random variables, and

E(X) = eµ+σ2/2, varX = e2µ+σ2
(eσ

2 − 1).

• For completeness, X is uniformly distributed on [α, β], X ∼ U(α, β), if

f(x) =
1

β − α
1(x ∈ [α, β]), E(X) =

α+ β

2
, varX =

(β − α)2

12
.

An important example is that the cdf of any random variable, treated as a function of that

random variable, is uniform on [0, 1].

• We say X ∼ beta(a, b) if

f(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1, B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
.

By some exhausting use of gamma function identities, we have

E(X) =
a

a+ b
, var(X) =

ab

(a+ b+ 1)(a+ b)2
.

For example, the ath smallest of b numbers independently sampled from U(0, 1) is distributed

this way. The beta distribution can also be used as a generic pdf for a quantity known to be

bounded in a finite interval.

• We say X is χ2-distributed with n degrees of freedom, X ∼ χn, if

f(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2, x > 0, E(X) = n, varX = 2n.

It is the distribution of the sum of the squares of n independent standard normal random

variables, and it will be useful for “goodness of fit” tests. For a general multivariate normal

distribution, the quantity (X − µ)TV −1(X − µ) is χ2-distributed. (The square root of this

quantity is “chi distributed”.) The exponential and χ2 distributions are special cases of the

gamma distribution.

• The Cauchy/Breit–Wigner/Lorentz distribution is

f(x) =
1

π

Γ/2

Γ2/4 + (x− x0)2

where x0 represents the location of the peak, and Γ represents the full width at half maximum.

Physically, X could be the energy of a decaying particle, in which case Γ is its decay rate.

• It is important to note that the Cauchy distribution has a heavy tail, so that its expected

value does not exist; in fact, none of its moments exist. Distributions such as these, which are

regarded as pathological in mathematics, are quite common and useful in physics. Of course,

the real energy distribution sampled by a particle decay does have moments, since it is bounded;

however, the Cauchy distribution is a very useful approximation. Another example of such a

distribution is the Landau distribution, which represents the probability distribution of the

energy loss of a charged particle when traversing a layer of matter.
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Note. It can be surprising to have the expected value of a random variable not exist. After all,

can’t one always measure the expected value by just sampling it many times and taking the average?

Actually, if the expected value doesn’t exist, this procedure doesn’t work! The average will never

“settle down” as the number of trials go up, since large deviations will occur often enough to swing

the whole average.

Note. Stable distributions are those which are closed under taking linear combinations of inde-

pendent random variables with that distribution. The normal distribution is the classic one, but

there is an entire family of stable distributions, called the Levy alpha-stable distributions, which

are distinguished by heavier tails.

One can also consider the asymptotic distribution of statistics besides the sum. For example, we

mentioned above that for most common distributions, the asymptotic distribution of the product

is the log-normal distribution. One can also consider the highest value. Up to normalization,

the Fisher–Tippett/extreme value theorem states that there are only three possible asymptotic

distributions: the Gumbel distribution, the Frechet distribution, and the Weibull distribution.

Example. Computing a conditional distribution. Let X ∼ Pois(λ) and R ∼ Pois(µ) independently,

and let Y = X +R. Then

fX|Y (x|y) =
λxe−λ

x!

µy−xe−µ

(y − x)!

/ ∑
x′+r′=y

λx′
e−λ

x′!

µr′e−µ

r′!
=

(
y

x

)
λxµy−x

/ ∑
x′+r′=y

(
y

x′

)
λx′

µr′

where we canceled the normalizing factors and multiplied by y!/y!. The denominator is (µ+ λ)y by

the binomial theorem. Simplifying,

fX|Y (x|y) =
(
y

x

)(
λ

λ+ µ

)x( µ

λ+ µ

)y−x

.

That is, the distribution is binomial, with total y and p = λ/(λ+ µ). This makes sense, since we

can think of X and R as counts of memoryless processes occurring independently during a fixed

time interval, and p is just the chance that a particular count belonged to X.

Example. Another complex example. Let X1 ∼ gamma(n1, λ) and X2 ∼ gamma(n2, λ), indepen-

dently. Their joint distribution is

fX(x) =
λn1+n2xn1−1

1 xn2−1
2

(n1 − 1)!(n2 − 1)!
e−λx1e−λx2 .

Consider the distribution of Y = X1/(X1+X2). Using a routine double integral change of variables,

f(y) =

∫ ∞

0
dx1

x1
y2

fX(x1, x2)

∣∣∣∣
x2=x1/y−x1

and it turns out that Y ∼ beta(n1, n2). This is compatible with our earlier intuitive descriptions

of the beta and gamma distributions. We can think of X1 as the time to wait for n1 counts of a

memoryless process, and X1 +X2 as the time to wait for n1 + n2 counts. For each possible value

of the total time, we can think of Y as the result of picking n1 + n2 random points in that time

interval and taking the nth
1 smallest. And since this holds for every possible value of the total time,

Y is beta distributed.
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A reference chart of common distributions and relations between them is below.

1.3 Characteristic Functions

(todo)
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2 Parameter Estimation

2.1 Maximum Likelihood

Suppose X has distribution f(x|θ). Then the likelihood of θ given the observed value x is

lik(θ) = p(x|θ).

For multiple independent observations,

lik(θ) =
∏
i

f(xi|θ)

and so we often instead consider the log likelihood, which adds. The maximum likelihood estimator

(MLE) θ̂(x) is the one that maximizes the likelihood.

Example. Suppose candies come in k equally frequent colors. We examine three candies and find

that they are red, green, and red. Then the likelihood is

lik(k) = p(x|k) = k − 1

k

1

k
.

The value of k that maximizes this is k̂ = 2.

Example. Suppose X ∼ B(n, p), where n is known and p is to be estimated. Then

log p(x|n, p) = log

(
n

x

)
px(1− p)n−x ∼ x log p+ (n− x) log(1− p).

This is maximized for p̂ = X/n. Since E(X/n) = p, the MLE is unbiased.

Example. Consider X1, . . . , Xn geometric with parameter p to be estimated. Then

log f(x|p) = log
∏
i

(1− p)xi−1p =

(∑
i

xi − n

)
log(1− p) + n log p.

Maximizing this yields p̂ = X
−1

. This is a biased estimate.

Example. Consider X1, . . . , Xn exponential with parameter λ to be estimated. Then

log f(x|λ) =
∑
i

(log λ− λxi) = n(log λ− λx).

By similar logic to the previous example the MLE is λ̂ = x−1, which is biased,

E[λ̂] =
n

n− 1
λ.

We can also parametrize the exponential by the lifetime τ ,

f(x|τ) = 1

τ
e−x/τ

in which case the MLE of τ is τ̂ = x, which is unbiased. The lesson is that generally the MLE

is not unbiased, and that even if the MLE is unbiased, it generally won’t stay that way under a

reparametrization. To show this more generally, if θ̂ is an unbiased MLE for θ, the MLE estimate

of f(θ) is f(θ̂). This is only unbiased if E[f(θ)] = f(E[θ]), which is not generally true. On the other

hand, the bias of most “reasonable” estimators goes to zero as n → ∞.
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Next, we introduce sufficient statistics, which contain all the inference information in the data.

• The statistic T (X) is sufficient for θ if, for each t, the conditional distribution of X does not

depend on θ. Therefore, knowing anything besides T is of no help for estimating θ.

• To rephrase this, note that we can always write

f(x|θ) = Pθ(X = x) = Pθ(T (X) = t)Pθ(X = x|T (X) = t).

The statement that T is sufficient means that the second factor doesn’t depend on θ, so

f(x|θ) = g(T (x), θ)h(x).

This is called the factorization criterion.

• Any invertible function of a sufficient statistic is also sufficient, so they are not unique.

• The maximum likelihood estimator maximizes g(T (x), θ)h(x). Since h(x) is fixed, the MLE is

a function of the sufficient statistic.

• As a trivial example, the full data set x itself is a sufficient statistic. More generally, the

likelihood will have terms combining x and θ, and our goal is to rearrange these terms to

contain only a few functions of x.

• A sufficient statistic is minimal if any sufficient statistic is a function of it. Minimal sufficient

statistics give the greatest possible data reduction without losing parameter information.

• One can show that T is minimal if and only if

f(x|θ)/f(y|θ) is independent of θ iff T (x) = T (y).

That is, when T is minimal, if x and y are indistinguishable from the point of view of parameter

estimation, then their statistics should be the same. (The converse is just the criterion to be a

sufficient statistic in the first place.)

Example. Suppose X1, . . . , Xn ∼ Pois(λ), with λ to be estimated. Then

f(x|λ) =
∏
i

λxie−λ

xi!
=

λ
∑

i xie−nλ∏
xi!

.

We thus recognize the sample mean T (x) =
∑

i xi as a sufficient statistic for λ; the factors are the

numerator and the denominator. The MLE is t/n, and this estimate is unbiased.

Example. Now suppose X1, . . . , Xn ∼ N(µ, σ2) with θ = (µ, σ2) to be estimated. Then

f(x|µ, σ2) =
e−

∑
i(xi−µ)2/2σ2

(2πσ2)n/2
.

The sum in the exponential can be rearranged as∑
i

(xi − µ)2 =
∑
i

(xi − x)2 + n(x− µ)2.
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We have thus written the right-hand side in terms of the sample statistics

X =
1

n

∑
i

Xi, SXX =
∑
i

(Xi −X)2

where X is the sample mean, and SXX is proportional to the sample variance. These are a set of

sufficient statistics, where the factor h(x) = 1. It’s fairly clear that

X ∼ N(µ, σ2/n), n(X − µ)2 ∼ σ2χ2
1

but the distribution of SXX is a bit more subtle, as we’ll discuss below.

Example. Let X1, . . . , Xn ∼ U(0, θ) with θ to be estimated. Then

f(x|θ) = 1(maxxi ≤ θ)

θn

so that a sufficient statistic for θ is maxxi. This is also the MLE. However, using the usual trick

that the cdf of uniform random variables is a power,

Emaxxi =
n

n+ 1
θ

so the MLE is biased. However, E θ̂ → θ as n → ∞, so we say θ̂ is asymptotically unbiased. One

can show that under some mild assumptions, the MLE is always asymptotically unbiased, which

helps justify its use.

2.2 Rao–Blackwell Theorem

We can quantify the quality of an estimator with the mean squared error,

MSE = E[(θ̂ − θ)2].

Note that if θ̂ is unbiased, this is just the variance of θ̂.

Example. Consider X1, . . . , Xn ∼ B(1, p) with p to be estimated. Then the MLE is p̂ = X, and

this estimate is unbiased. The MSE is

var(p̂) =
np(1− p)

n2
=

p(1− p)

n
.

By contrast, if we instead took p̂ = X1, we would still have an unbiased estimate, but the MSE

would be higher by a factor of n.

Example. Let X1, . . . , Xn ∼ N(µ, σ2) with θ = (µ, σ2) to be estimated. The log likelihood is

log(f |µ, σ2) = log
∏
i

e−(xi−µ)2/2σ2

√
2πσ2

∼ −n log σ −
∑

i(xi − µ)2

2σ2
.

Setting the derivatives to zero, the MLEs are

µ̂ = X, σ̂2 =
SXX

n
.
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As expected, these are functions of the sufficient statistics found in the previous section. However,

σ̂2 is biased, as

SXX =
∑
i

(Xi −X)2 =
∑
i

(Xi − µ+ µ−X)2 =
∑
i

(Xi − µ)2 − n(µ−X)2

so upon taking the expectation value of both sides,

E[σ̂2] =
n− 1

n
σ2.

Intuitively, this is just the parallel axis theorem. The point is that the spread of a sample of points

will be smaller relative to its own center than to the true distribution center. As expected, though,

the MLE is asymptotically unbiased.

Note. Perhaps unintuitively, the estimator SXX/(n + 1) has smaller MSE than either the MLE

SXX/n or the unbiased estimator SXX/(n− 1), which is also called the standard error. Intuitively,

this is because σ is squared, so we prefer a lower estimate because overestimates are penalized more.

In general, MSEs will vary under reparametrizations, so the minimum MSE estimator need not be

unbiased or a MLE generically.

Note. By similar logic, one can show that

V̂XY =
n

n− 1
(XY −XY )

is an unbiased estimator for the covariance matrix of a pair of random variables. One can then normal-

ize by the standard errors to get an estimator for the correlation coefficient, R̂ = V̂XY /
√
SXXSY Y .

Theorem (Rao–Blackwell). Let θ̂ be an estimator of θ with finite MSE. Suppose that T is sufficient

for θ and let θ∗ = E(θ̂|T ). Then for all θ,

E[(θ∗ − θ)2] ≤ E[(θ̂ − θ)2].

Equality is achieved when θ̂ is a function of T .

Proof. We have

E[(θ∗ − θ)2] = ET

[
EX [(θ̂ − θ)|T ]2

]
≤ ET

[
EX [(θ̂ − θ)2|T ]

]
= E[(θ̂ − θ)2].

In the inequality, we used the fact

var(W ) = E(W 2)− (EW )2 ≥ 0

for the random variable W = (θ̂ − θ|T ). Equality occurs when var(W ) = 0, i.e. when θ̂ − θ is

uniquely determined by T , so that θ̂ is a function of T .

Note. The intuition behind the Rao–Blackwell theorem is that all the information is already

contained in the sufficient statistic, so that whenever θ̂ varies for fixed T , we are simply picking up

extra noise which adds to the MSE. This reiterates that our statistics should be functions of the

sufficient statistic. Conversely, the averaging procedure used to define θ∗ can often produce a good

estimator starting from a very naive one. Also note that if θ̂ is unbiased, then θ∗ is also unbiased.
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Example. Let X1, . . . Xn ∼ Pois(λ) with λ to be estimated. We know that t =
∑

i xi is a sufficient

statistic. Now start with the unbiased estimator λ̃ = X1. Then ‘Rao–Blackwellization’ gives

λ∗ = E

[
X1

∣∣∣∣∑
i

Xi = t

]
=

1

n
E

[∑
i

Xi

∣∣∣∣∑
i

Xi = t

]
=

t

n
.

This recovers our MLE estimator.

Example. Suppose we instead want to estimate θ = e−λ = P(Xi = 0). A simple unbiased estimator

is θ̂ = 1(X1 = 0). Then

θ∗ = E

[
1(X1 = 0)

∣∣∣∣∑
i

Xi = t

]
= P

[
X1 = 0

∣∣∣∣∑
i

Xi = t

]
=

(
n− 1

n

)t

.

This is a much better estimator, better than any decent estimator we might have guessed.

Example. Let X1, . . . , Xn ∼ U(0, θ) with θ to be estimated. Starting with the unbiased estimator

θ̃ = 2X1 and the sufficient statistic t = maxi xi,

θ∗ = E
[
2X1|max

i
Xi = t

]
= 2

(
t

n
+

n− 1

n
(t/2)

)
=

n+ 1

n
t.

This is an unbiased estimate; the MLE estimate θ̂ = t is biased.

Definition. We say θ̃ is consistent if P(|θ̃ − θ| > ϵ) → 0 as n → ∞.

Theorem. The Cramer–Rao bound states that

var(θ̃) ≥ (1 + ∂b/∂θ)2

nI(θ)

where b = E[θ̃]− θ is the bias, and

I(θ) = E
[
−∂2 log f(x|θ)

∂θ2

]
is the Fisher information for each observation. An estimator is efficient if it saturates this bound.

Definition. We say an estimator θ̃ is asymptotically efficient if

lim
n→∞

var(θ̃)

1/nI(θ)
= 1.

The MLE is both consistent and asymptotically efficient.

Example. The sample average X is an unbiased estimator of E[Xi], assuming this quantity exists

at all. The weak law of large numbers states that this estimator is also consistent, if the Xi have

finite variance. Hence it does not apply to the Cauchy distribution. In fact, in this case averaging

doesn’t do anything at all: the sample average X has exactly the same distribution as Xi, for any

number of samples!

Example. Suppose you have been waiting for a time t for your friend to show up, and you think

their arrival time is exponentially distributed with parameter λ. Given that they haven’t shown up

yet, the MLE estimate is λ̂ = 0, so we expect them to never show up.

This example exposes a weakness of point estimates; a confidence interval would be better. It

also shows that parameter estimation is not sufficient for making decisions; a complete calculation

should account for the costs of waiting and leaving early.
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2.3 Confidence Intervals

We now switch from point estimation to interval estimation.

Definition. Let a(X) ≤ b(X) be two statistics. The interval [a(X), b(X)] is called a 100γ%

confidence interval for θ if

P (a(X) ≤ θ ≤ b(X)) = γ

where γ is independent of θ. We say that [a(X), b(X)] has 100γ% coverage. In particle physics, the

coverage is also called the “confidence level” CL.

Note. As in point estimation, we regard θ as fixed but unknown, so the probability in the definition

above is taken over possible data X, not over possible θ. However, the equality must be true for all

θ. Also, note that γ is not the probability that a specific confidence interval [a(x), b(x)] contains θ.

Every specific confidence interval either does or does not contain θ. Furthermore, as for estimation,

there are multiple criteria for defining confidence intervals; as we’ll see, some reasonable intervals

don’t have well-defined coverage at all.

Example. We can construct a 95% confidence interval by returning (−∞,∞) with 95% probability,

and the empty interval with 5% probability. However, once we see the specific interval we get, we

know for sure whether or not it contains θ.

Example. Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known and µ to be estimated. We know that

√
n(X − µ)/σ ∼ N(0, 1).

Therefore, if P(ξ ≤ N(0, 1) ≤ η) = γ, then

P(ξ ≤
√
n(X − µ)/σ ≤ η) = P(X − ησ/

√
n ≤ µ ≤ X − ξσ/

√
n) = γ.

This is not sufficient to determine the confidence interval; we need an additional principle that tells

us which values are “more extreme” and hence should be excluded from the interval. For example, if

higher values are more extreme, then we set the lower bound to −∞, yielding a one-sided confidence

interval. These issues get more subtle for multi-dimensional “confidence regions”.

In this case, we’ll choose to construct a confidence intervals as narrow as possible, in this

parametrization. This implies a symmetric confidence interval, η = −ξ, giving

Φ(η) = 1− γ/2.

For example, for a 95% confidence interval, ξ = 1.96, and for 99%, ξ = 2.58. More realistically, we

wouldn’t know σ2, so we would have to estimate it using the sample variance. It turns out that

√
n(X − µ)√

SXX/(n− 1)
∼ tn−1

where tn−1 is the “Student’s t-distribution on n− 1 degrees of freedom”. Then confidence intervals

can be constructed using tables of tn−1 values. We’ll give examples of this when we cover the t-test.

Example. Opinion polls. Suppose we want to estimate some proportion of people p. We interview

n people and get a sample mean p̂. For high n, it is a good approximation that

p̂ ∼ N(p, p(1− p)/n).
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Suppose we want the poll to have a 100η% error margin. This means we want

P(p̂− η ≤ p ≤ p̂+ η) ≥ 95%.

Using the approximate distribution for p̂, this probability is equal to

Φ(η
√
n/p(1− p))− Φ(−η

√
n/p(1− p)) ≥ Φ(η

√
4n)− Φ(−η

√
4n).

Then we require η
√
4n ≥ 1.96. For a typical 3% error margin, n ≥ 1068. Typical opinion polls use

n ≈ 1100. Alternatively we can simply replace p with p̂, which is a fairly good approximation.

Note. The easy way to construct a confidence interval is to find some simple function f(X, θ)

whose distribution doesn’t depend on θ. In the first example, this function was
√
n(X − µ)/σ. We

can then bound P(ξ ≤ f(X, θ) ≤ η), and hopefully rearrange the inequality to the desired form

a(X) ≤ g(θ) ≤ b(X).

This can’t be done for the opinion poll case, where we had to either determine the interval by

looking at all possible p, or naively set p̂ = p. Generally, the easy method works whenever the

parameters are “location” or “scale” parameters. The parameter p in the opinion poll controls both

simultaneously.

Example. A confidence interval with a scale parameter. Let X1, . . . , Xn ∼ E(θ). Then T (X) =∑
iXi is sufficient for θ, and

T ∼ gamma(n, θ).

It is useful to consider the statistic

S = 2θT, S ∼ gamma(n, 1/2) = χ2
2n.

where the right-hand side is the χ2 distribution with 2n degrees of freedom. The cdf of this

distribution is conventionally written F2n. By looking up its values, we can construct confidence

intervals for θ.

Note. As we’ve seen, SXX/(n− 1) is an unbiased estimator of σ2. We now infer the distribution of

SXX . Since SXX is unaffected by a shift, let’s shift µ to zero without loss of generality. Each element

of the vector X has distribution N(0, σ2), and the elements are independent, so X is distributed as

a multivariate normal with diagonal covariance matrix σ2I.

For an orthogonal matrix A, the vector Y = AX has the same diagonal covariance matrix. We

can use this to separate out the sample mean and sample variance. We choose A so that its first

row has elements 1/
√
n, so that Y1 =

√
nX, and Y1 is independent of the other elements of Y. But

we also have ∑
i ̸=1

Y 2
i =

∑
i

Y 2
i − Y 2

1 =
∑
i

X2
i − nX

2
= SXX

from an earlier example. Therefore, SXX is independent of X, and

SXX ∼ σ2χ2
n−1

which should be compared to ∑
i

(Xi − µ)2 ∼ σ2χ2
n.

The intuition is just that one of the “directions” is taken up by X, so there is one fewer degree of

freedom. We can then use the distribution of SXX to construct confidence intervals for σ2.
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2.4 Bayesian Estimation

Bayesian estimation is a totally different approach to parameter estimation.

• We think of the parameter as a random variable, with a prior distribution p(θ). In reality,

it might not make sense to think of θ as varying, so we instead interpret this distribution as

representing our beliefs in what θ is. This is a valid interpretation of probability because it

satisfies the same axioms as the frequentist interpretation of probability as a long-term average

in repeated experiments.

• Given data xi, we update the distribution to a posterior distribution p(θ|xi) by Bayes’ rule,

p(θ|xi) =
f(xi|θ)p(θ)∫
f(xi|ϕ)p(ϕ)dϕ

.

Of course, Bayes’ rule is just a simple mathematical fact that is also true for frequentist

probabilities; it just happens to be much more important in Bayesian statistics.

• The denominator is just the probability of observing the data xi in the first place, assuming

the prior distribution. Since it is just a normalizing constant, we typically write

p(θ|xi) ∝ p(θ)f(xi|θ)

with manual normalization of the posterior. Thus, the prior is updated by multiplication by

the likelihood.

• In our notation, the conditional distribution is written as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

To avoid singularities, we define it to be zero when fY (y) is zero. However, in practice this

shouldn’t happen because the prior distribution should have support over all possibilities.

• Estimation in Bayesian statistics is done with loss functions.

– To give a point estimator, we return θ̂ which minimizes the expected loss E[L(θ, θ̂)].
– If we use quadratic error loss L(θ, a) = (a− θ)2, the result is the posterior mean.

– If we use absolute error loss L(θ, a) = |a− θ|, the result is the posterior median.

– In the case of delta-function error loss and a uniform prior, we get the MLE.

• It’s worth elaborating on the previous point. In any parametrization, the MLE matches with

the Bayesian result for delta-function error loss and a uniform prior in that parametrization. If

we change the parametrization and transform the prior appropriately, then they will no longer

coincide. This can be used to argue that either the MLE or the Bayesian result is pathological,

though which one depends on taste.

• Confidence intervals can be constructed easily in Bayesian statistics: to form a 100(1 − α)%

Bayesian confidence interval, we just give an interval that covers 100(1− α)% of the posterior

probability. However, such confidence intervals do not necessarily satisfy the frequentist defini-

tion of a confidence interval, i.e. they do not have the so-called “coverage” property. As such,

they are alternatively called “credible intervals”.
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• This illustrates an important point in the foundations of statistics: unlike many other fields, the

final results that one reports depend on the foundations! As we go on, we’ll see some examples

where the difference can be large.

Example. A biased coin is tossed n times, giving t heads. Suppose the prior distribution on the

heads probability is uniform, p(θ) ∼ U(0, 1). Then

p(θ|xi) ∝ θt(1− θ)n−t

so the posterior is beta distributed.

Example. Let X1, . . . , Xn ∼ E(λ) with prior λ ∼ E(µ). Then

p(λ|xi) ∝ µe−λµ
∏
i

λe−λxi ∝ λne−λ(µ+
∑

i xi)

which is gamma(n+ 1, µ+
∑

i xi).

The most common objection to Bayesian statistics is the prior dependence of the predictions.

• There are several ways to reply to this objection. First, it’s worth noting that frequentist

results are also implicitly prior dependent, in the sense of depending upon beliefs. For instance,

many statistical tests we will consider below depend on beliefs about, e.g. the independence and

distribution of the data. Moreover, many frequentist procedures are equivalent to Bayesian ones

under a flat prior in an arbitrary parametrization (“Laplace’s principle of insufficient reason”),

which isn’t any better justified.

• Another reply is that, in the limit of a large amount of data, the likelihood function will become

very sharply peaked. So as long as the initial prior was not very unreasonable (e.g. sharply

peaked about a wrong value), then the effect of the prior should “wash out”.

• This idea leads us to the idea of “objective” Bayesian statistics. The idea is that if we have

no preexisting opinions, the prior should be “maximally uninformative”. This vague notion

becomes well-defined if we fix what kind of measurements we can make. A prior is maximally

uninformative for those measurements if it is expected to change as much as possible upon

making a measurement. (For example, a delta function prior would never change at all, so it

is informative.) Another way of phrasing this is that the set of measurements one can perform

gives a preferred parametrization, upon which we can take the uniform prior.

• This particular idea leads to the Jeffreys prior,

p(θ) ∝
√

det I(θ)

where I(θ) is the Fisher information.

• The Jeffreys prior is known to have pathologies in higher dimensions. A common alternative in

this case is the “reference prior” of Bernardo and Berger, which is constructed along the idea

of having the posterior be as dominated by the likelihood as possible.

• Note that all “objective” priors need some external input, because parametrization is arbitrary.

It would be more accurate to call them “priors selected by formal rules”.
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• There is also an opposing “subjective” school of Bayesian statistics. Philosophically, the prior

should represent a degree of belief, and real beliefs shouldn’t be set by what measurement

apparatuses happen to be available. Instead one should infer a prior using “expert elicitation”,

which involves cornering an expert and demanding their best guess.

• These two schools of thought can conflict in particle physics. For example, a more “objective”

prior for the mass m of a new particle might be uniform in m, while often theory subjectively

favors a distribution uniform in logm. In general, one should try to run the analysis with

multiple reasonable priors to see how sensitive the results are to them.

• In some cases the Bayesian and frequentist ideas of probability overlap, in which case they

coincide. For example, in an image classification task where half the pictures are dogs, p(dog) =

1/2 is meaningful in both pictures.

• In general, it is difficult to construct priors with many parameters. For example, with a prior

that is reasonably uniform, almost all the probability density gets pushed to the edge of the

space, by the “curse of dimensionality”. This is a deep issue, which also affects other fields,

such as machine learning.

Example. Consider a coin that is heads with probability θ ∈ [0, 1]. The only measurement we can

perform is to flip the coin and see whether it is heads or tails. Then the Fisher information is

I(θ) = E

[(
d

dθ
log p(x|θ)

)2
]
=

θ

θ2
+

1− θ

(1− θ)2
=

1

θ(1− θ)

so the Jeffreys prior is

p(θ) =
1√

θ(1− θ)
.

We could also flip the coin multiple times and count the heads, but this just multiplies the Fisher

information by a constant, so it doesn’t change the answer.



20 3. Hypothesis Testing

3 Hypothesis Testing

A statistical hypothesis is an assertion about the distribution of random variables, and a test of a

statistical hypothesis is a rule that decides whether to reject that assertion.

3.1 Definitions

We will use the Neyman–Pearson framework.

• We take data x = (x1, . . . , xn) drawn from a density f . (Note that f is the joint density for x,

i.e. we are not assuming that the xi are iid, though we often will in practice.) We work with

two hypotheses about f , the null hypothesis H0 and the alternative hypothesis H1.

• Our test will reject either the null hypothesis or the alternative hypothesis. The null hypothesis

is meant to be a conservative default.

• Often, it is assumed that f belongs to a specific parametric family θ ∈ Θ. Then the hypothesis

are of the form

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1

where Θ0 and Θ1 are disjoint, but need not contain the whole space Θ. We say the hypothesis

are simple if the Θi contain a single value θi. Otherwise, they are composite.

• Another type of hypothesis is

H0 : f = f0, H1 : f ̸= f0

where f0 is a specified density; this is a goodness-of-fit test. A third alternative is that we may

test H0 : f = f0 against H1 : f = f1.

• A test is defined by a critical region C, so that

if x ∈ C,H0 is rejected, if x ∈ C,H0 is accepted/not rejected.

In particle physics, the boundary of C is called the “cut”, or decision boundary.

• When H0 is rejected when it is true, we make a type I error; when H0 is accepted when it is

false, we make a type II error. We generally consider type I errors to be more serious, as H0 is

chosen to be conservative.

• As a result, we often characterize tests by their (maximum) probability of type I error. Define

α = sup
θ∈Θ0

P(X ∈ C|θ).

We call α the size, or significance level of the test. For a simple null hypothesis, this is simply the

probability of type I error. Typically, once α is fixed, we define C to minimize the probability

of type II error, which is quantified by the “power” of the test.

• We also call C the rejection region and C the acceptance region. That is, we focus on how we

view the null hypothesis H0. We usually do not say we accept H1, because there is a great deal

of arbitrariness in H1, though this depends on the context.
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Note. The way hypotheses are chosen varies significantly between different fields and even within

a field. In many cases, H0 is qualitatively different from H1 and definitely conservative: it could be

the hypothesis that no new particle is present, or that a drug or psychological intervention has no

effect on a disorder. But note that the former case is quite different, because it is very difficult to

make H1 the complement of H0, as a new particle can manifest in many different ways.

Within particle physics, there are many layers of hypothesis testing. For example, one could apply

hypothesis testing to the problem of distinguishing anomalous events, where H0 is the Standard

Model (SM) expectation for each event; such tests must thus be run millions of times per second.

And even within one event, one needs a test to distinguish, e.g. different charged particles that fly

through a part of a detector. For example, H0 could represent a pion, H1 an electron, and so on.

This is quite different from the other cases because for each particle or event, exactly one of the

hypotheses is true (up to some mild idealizations). Depending on the situation, the null hypothesis

might be a boring background, in which case we think of the alternative hypothesis as representing

“signal”, or neither might be “more conservative” than the other. And since this is a repeatable

process, there is a well-defined notion of “the probability for Hi to be true” even for a frequentist. If

we think of the H1 as representing signal events and H0 as background, the goal of maximizing the

power for fixed test size translates into maximizing the signal purity for fixed background rejection.

The point here is that there is some overlap between classification and hypothesis testing.

Note. Philosophical differences in hypothesis testing. Within frequentist statistics, there are

the Fisher and Neyman–Pearson frameworks. In the Fisher framework, one does not specify an

alternative hypothesis at all; one only computes p-values, which require only a null hypothesis. Thus

the emphasis is on type I error. As the p-value is lowered, the evidence against the null hypothesis

continuously increases. In the Neyman–Pearson framework, one thinks of an alternative hypothesis,

and designs the test so that, for a fixed type I error, there is a minimum possibility of type II error.

This leads to tests where one decides to reject or fail to reject the null hypothesis depending on

whether the p-value is below some threshold.

These two frameworks optimize for different things. To oversimplify a bit, the Fisher framework

is suited for exploration, while the Neyman–Pearson framework is suited for decision making. The

sharp p-value threshold in Neyman–Pearson seems artificial for exploratory studies, but it is necessary

for, e.g. classifying individual particles as they fly by. The concrete choice of H1 in the Neyman–

Pearson framework allows for more powerful tests tailored to H1, while the Fisher framework is more

agnostic (in particle physics language, “model-independent”). However, it is worth emphasizing

that no test can be truly model-independent. The definition of a p-value involving results “at least

as extreme” as those observed depends on what one expects can happen.

The same philosophical divides also occur in the Bayesian framework, which we’ll describe in

more detail later. One can treat the Bayesian framework as an instrument for exploration, where

one merely accumulates evidence and updates probabilities accordingly. We have

p(H0|x)
p(H1|x)

=
p(x|H0)

p(x|H1)

p(H0)

p(H1)

where the likelihood ratio above is called the Bayes factor B. Jeffreys’ scale describes the strength

of Bayesian evidence,

B > 150 : very strong, B > 20 : strong, B > 3 : substantial, 3 > B > 1 : barely worth mentioning.

On the other hand, one can also take the Bayesian framework as the foundation for a decision

theory, which just means any mathematical framework for making decisions. A typical framework for
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decision theory involves maximizing some expected utility, where the expectation value is calculated

with respect to the Bayesian probabilities. One can then use this theory to decide whether to accept

or reject hypotheses.

3.2 Likelihood Ratio Tests

Many tests are based on likelihood ratios.

• The likelihood of a hypothesis H : θ ∈ Θ is

Lx(H) = sup
θ∈Θ

fX(x|θ)

which reduces to the usual likelihood in the case of a simple hypothesis.

• The likelihood ratio of two hypotheses is

Lx(H0, H1) = Lx(H1)/Lx(H0).

Note that if T (x) is sufficient for θ, then the likelihood ratio is simply a function of T .

• A likelihood ratio test is one with a critical region of the form

C = {x : Lx(H0, H1) > k}

where k is determined by the size α.

Lemma (Neyman–Pearson). For simple hypotheses, likelihood ratio tests are optimal, in the sense

that they minimize type II error for a given maximum type I error.

Proof. For simple hypotheses, minimizing the type II error for fixed test size is equivalent to saying

maximize

∫
C
f(x|θ1) dx such that

∫
C
f(x|θ0) dx = α

where we defined fi(x) = f(x|θi) for brevity. Stated this way, it is clear that a likelihood ratio test

is optimal, because it just takes the region that gives the most of the former integrand per unit of

the latter integrand.

Let’s show this more formally. Consider any test with size α with critical region D. The likelihood

ratio test is C = {x : f1(x)/f0(x) > k} where k is determined by the size α. Now note that

0 ≤ (ϕC(x)− ϕD(x))(f1(x)− kf0(x))

since the product terms always have the same sign. Integrating, we get four terms,

0 ≤ P(X ∈ C|H1)− P (X ∈ D|H1)− k [P(X ∈ C|H0)− P(X ∈ D|H0)] .

The last two terms cancel, as they are simply the size α, giving the result.

Most of the time, we’ll be working with non-simple hypotheses, so the Neyman–Pearson lemma

does not apply. But the intuition it gives will lead us to favor likelihood ratio tests in general.
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Example. The one-tailed z-test. Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known. We test

H0 : µ = µ0, H1 : µ = µ1, µ1 > µ0.

The likelihood ratio is

f(x|µ1, σ
2)

f(x|µ0, σ2)
= exp

[∑
i

((xi − µ0)
2 − (xi − µ1)

2)/2σ2

]
= exp

[
n(2x(µ1 − µ0) + (µ2

0 − µ2
1))/2σ

2
]
.

The likelihood ratio is a monotone function of the sufficient statistic x, so the test is simply

reject H0 if x > c, P(X > c|H0) = α.

More explicitly, we can compute the statistic

Z =
√
n(X − µ0)/σ ∼ N(0, 1)

so the test is

reject H0 if z > zα, zα = Φ−1(1− α).

For example, for α = 0.05, we take zα = 1.645. Notice that since the test is defined by its size, it

only depends on µ0. That’s why, at this stage, it makes no sense to talk about accepting or rejecting

µ1. The only dependence on µ1 was that it was above µ0, e.g. we would have gotten the same result

with the composite hypothesis H1 : µ > µ0. In an extreme case, the alternative hypothesis could

have been µ1 = 1010
100

, and it certainly wouldn’t have made sense to accept that.

We can also two-tailed tests; these could arise from a composite hypothesis H1 : µ ̸= µ0. In this

case, the test changes to

reject H0 if |z| > zα/2.

We will see this more explicitly below.

Example. Suppose we want to test if a coin is fair. Let p be the probability of heads, and we test

H0 : p = 0.5 against H1 : p > 0.5. For n ≫ 1 flips, the distribution of the number of heads is

X ∼ B(n, p) ≈ N(np, np(1− p)).

Under H0, the distribution is N(0.5n, 0.25n). We can thus construct a size α test by just using the

criterion from the z-test, i.e. that z > zα. However, this is not the same thing as the z-test, because

in the z-test the alternative hypothesis is a normal with the same variance as the null hypothesis.

In fact, this test is not a likelihood ratio test either. This is another example of how the way we

construct tests can be independent of the alternative hypothesis.

3.3 Properties of Tests

We now define a few more useful quantities.

• For a likelihood ratio test, the p-value of an observation is

p∗ = sup
θ∈Θ0

Pθ(LX(H0, H1) ≥ Lx(H0, H1)).

For simple hypotheses, assuming thatH0 holds, the p-value is the probability of seeing something

at least as extreme as x against the null hypothesis.
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• Recall that the rejection region C for a likelihood ratio test is the region with total probability

α under H0 that maximizes the likelihood ratio, while p∗ counts the amount of probability

weight with higher likelihood ratio. Then H0 is rejected exactly when p∗ ≤ α.

• Since p∗ is more informative than the binary accept/reject, we often report p∗ without specifying

α. The p-value is also called the significance level of the data x.

• More generally, we can define tests where C is defined by the value of some statistic T . Then

the p-value is defined as the chance under H0 of seeing a value of T “at least as extreme”. Of

course, this is a subjective notion that is vulnerable to p-hacking, as we discuss further below.

• The power of a test is defined as

B(θ) = P(X ∈ C|θ).

Note that α = supθ∈Θ0
B(θ), while for θ ∈ Θ1, 1 − B(θ) = P(X ∈ C|θ) = P(type II error|θ).

That is, we would like the power to be low over Θ0 and high over Θ1. When we talk about find

an “optimal” or “most powerful” test, we mean maximizing the power over Θ1.

• Given Θ0 and Θ1, a uniformly most powerful (UMP) test of size α is one with size α and the

maximum possible power for all θ ∈ Θ1. UMP tests do not necessarily exist, but likelihood

ratio tests are often UMP.

• Tests are closely related to confidence intervals. For example, in a test of size α for H0 : θ = θ0,

the region C is a 100(1 − α)% confidence interval for θ0. In other words, if the confidence

interval includes θ0, then there’s a related test in which H0 is not rejected.

Note. As always, there are philosophical differences on how to use p-values. If one’s goal is to use

a statistical test to yield a binary accept/reject, then p-values are a distraction. (For example, they

allow one to “bargain” if the p-value is close to the threshold.) But if one’s goal is to weigh evidence

in a more exploratory manner, p-values are useful. For example, in the Bayesian approach, the

p-value is related to how we should update our prior probability for the null hypothesis.

Example. Recall the one-tailed z-test. By the Neyman–Pearson lemma, it is optimal for any

H1 : µ = µ1 with µ1 > µ0. The test does not depend on the value of µ1, so it is an UMP test for

H1 : µ > µ0.

Note. There is typically no UMP test for two-tailed hypotheses: a two-tailed test has decent power

on both sides, but will get beaten in power on one side by each of the one-tailed tests. In fact,

zooming out, we should not expect UMP tests to exist for anything but the most restricted of

hypotheses. For example, in particle physics, alternative hypotheses might include supersymmetry,

a Z ′ boson, and so on. The most powerful tests for each of these options are necessarily tailored

towards that option. Just as this two-tailed example shows, the more “model independent” a test

is, the more power it typically sacrifices for each specific option.

Example. Let X1, . . . , Xn ∼ N(µ, σ2) where µ is known, and we wish to test H0 : σ
2 ≤ 1 against

H1 : σ2 > 1. It’s easier to first consider some alternative, simple hypotheses, H ′
0 : σ = σ0 and

H ′
1 : σ = σ1 > σ0. The likelihood ratio is

f(x|µ, σ2
1)

f(x|µ, σ2
0)

= (σ0/σ1)
n exp

[(
1

2σ2
0

− 1

2σ2
1

)∑
i

(xi − µ)2

]
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which, as expected, only depends on T =
∑

i(xi − µ)2. The likelihood is monotonic in T , so the

optimal test involves an upper cutoff on T .

Now replace H ′
0 with H0. In this case, the size α of the test is set by the case σ0 = 1, for which∑

i

(xi − µ)2 ∼ χ2
n

which means the optimal test of H0 against H ′
1 is

reject H0 if t > F (n)
α

where F
(n)
α is the upper α point of χ2

n. Since this doesn’t depend on σ1 beyond the fact that σ1 > σ0,

it is also the UMP test of H0 against H1.

Note. As a final warning, note that p-values can depend on the experimental procedures, even if

the data is identical, because they may vary the sample space. For example, suppose that we test if

a coin is biased with p > 1/2, H0 : p = 1/2. The coin is flipped five times, giving H, H, H, H, T .

If the experimental procedure was to flip the coin five times and count the number of heads,

then clearly the best test is to reject H0 if the number of heads H is large. Then

p∗ = P(H ≥ 4) = 0.1875.

Alternatively, if the procedure was to flip the coin until a tail is seen, then the best test is to reject

H0 if the number of tosses N is large. Then we get the very different p-value,

p∗ = P(N ≥ 5) = 0.0625.

In both cases the null hypothesis is the same, but we need to know how the data was collected to

evaluate the p-value. This is a serious issue in experiments which naturally go on continuously in

time: one must have a concrete stopping rule, and use it when computing the p-value, or else the

results will be biased.

The conceptual reason for the difference is that the two different experiments have different

notions of data being “at least as extreme” as that observed. This was famously criticized by

Jeffreys, who stated:

[The use of the p-value implies that] a hypothesis that may be true may be rejected

because it has not predicted observable results that have not occurred.

A benefit of Bayesian hypothesis testing is that it avoids this issue: as long as we know we have all

the data that was collected, and know that it was collected properly, we just update our odds by

its likelihood ratio. That is, the Bayesian approach obeys the “likelihood principle”, that the only

thing that matters is the likelihood of the data. (No matter what the stopping rule is, the expected

proportion of heads for a fair coin is exactly 1/2, by the linearity of expectation.) Note that one

needs to have all the data to do this properly; it would be thrown off by publication bias.

3.4 Generalized Likelihood Tests

With the background now in place, we introduce a slew of practical tests. In these tests, the null

hypothesis is a subset of the alternative hypothesis; in other words, the purpose of the test is solely

to see if we can reject the null hypothesis, without any specific alternative in mind. Explicitly,

H0 : θ ∈ Θ0, H1 : θ ∈ Θ, Θ0 ⊂ Θ.
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Working in the parametric framework, suppose that Θ0 is a submanifold of Θ, with dimension lower

by p. Then we have the following theorem.

Theorem (Wilks). If Θ0 ⊂ Θ satisfies certain conditions, and has dimension lower by p, then as

n → ∞ with iid data X = (X1, . . . , Xn), then

2 logLX(H0, H1) ∼ χ2
p

if H0 is true. If H0 is not true, the left-hand side tends to be larger. We can reject H0 if 2 logLx > c,

where α = P(χ2
p > c) to give a test of size approximately α.

Example. The two-tailed z-test again. Let X1, . . . Xn ∼ N(µ, σ2) be independent, where σ2 is

known, and

H0 : µ = µ0, H1 : µ unconstrained.

The likelihood is maximized over H1 when µ is equal to the sample mean, so

Lx(H0, H1) =
supµ f(x|µ, σ2)

f(x|µ0, σ2)
=

exp(−
∑

i(xi − x)2/2σ2)

exp(−
∑

i(xi − µ0)2/2σ2)
= exp(n(x− µ0)

2/2σ2).

In other words, we reject the null hypothesis if the sample mean X ∼ N(µ0, σ
2/n) is far from µ0,

which makes sense. The point of this example is that in this case, the theorem above holds exactly.

Note that we can write

logLx(H0, H1) =
1

2

(√
n(x− µ0)

σ

)2

=
Z2

2

where Z ∼ N(0, 1) is standard normal. Then 2 logLX(H0, H1) = Z2 ∼ χ2
1.

Example. Let X1, . . . Xn ∼ N(µ, σ2) be independent again, but now suppose µ is known, and

H0 : σ
2 = σ2

0, H1 : σ
2 unconstrained.

The likelihood is maximized over H1 when

σ2 = σ2
opt =

1

n

∑
i

(xi − µ)2

which gives the likelihood ratio

Lx(H0, H1) =
supσ2 f(x|µ, σ2)

f(x|µ, σ2
0)

=
(2πσ2

opt)
−n/2 exp(−n/2)

(2πσ2
0)

−n/2 exp(−
∑

i(xi − µ)2/2σ2
0)
.

This can be written simply in terms of the test statistic t = σ2
opt/σ

2
0, which gives

2 logLx(H0, H1) = n(t− 1− log t).

This is another case where the theorem above is exact, because T ∼ χ2
n by the definition of the χ2

distribution.

We should reject H0 when t is far from 1. There is not a clearly best choice of the critical region,

because the alternative hypothesis is not simple. However, a sensible prescription is to define the

critical region symmetrically on the distribution of T . That is,

reject H0 if t > F
(n)
α/2 or t < F

(n)
1−α/2.

Note that this is just the two-tailed version of a test in the previous section.
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Note. The above test is called a χ2-test because the test statistic is χ2-distributed. In other words,

to perform the test in practice, one would go to a table of χ2 inverse cdf values. However, sometimes

people say misleadingly that “χ2-tests are only for categorical data”. There is no deep meaning

to this statement; people only say it because the most common tests for continuous data involve

comparing means, where χ2 distributions are not involved.

Example. The two-sample two-tailed z-test. Consider the independent data points

X1, . . . , Xm ∼ N(µ1, σ
2), Y1, . . . , Yn ∼ N(µ2, σ

2)

where σ2 is known, and

H0 : µ1 = µ2, H1 : µi unconstrained.

The likelihood must be maximized for both H0 and H1, and in both cases results in setting the

means to the relevant sample means. If w is the mean of the combined samples,

Lx(H0, H1) =
supµ1,µ2

f(x|µ1, σ
2)f(y|µ2, σ

2)

supµ f(x|µ, σ2)f(y|µ, σ2)
=

f(x|x, σ2)f(y|y, σ2)

f(x|w, σ2)f(y|w, σ2)

Simplifying this expression leads to

2 logLx(H0, H1) =
mn

m+ n

(x− y)2

σ2
.

We should reject H0 when |x− y| is large. On the other hand,

Z =

(
1

m
+

1

n

)−1/2 X − Y

σ
∼ N(0, 1)

which tells us the right-hand side above is distributed as χ2
1, so the theorem is again exact. Again,

it is ambiguous how to define the critical region, but a sensible choice is to reject H0 if |z| > zα/2.

Example. “The” χ2-test. Consider n iid trials, each with k possible outcomes. The data is a

histogram of outcomes (x1, . . . , xk) where
∑

i xi = n. Let pi be the probability of outcome i. Then

we can test

H0 : pi = pi(θ) for θ ∈ Θ0, H1 : pi unconstrained.

This is called a goodness-of-fit test, since H0 specifies the whole distribution, while under the

assumption that the trials are iid, H1 is completely general. In any case, as long as the trials are

iid, the outcomes follow a multinomial distribution,

P(x|p) = n!

x1! · · ·xk!
px1
1 . . . pxk

k

so the log likelihood is

log f(x|p) = const +
∑
i

xi log pi.

For the alternative hypothesis, this must be maximized under the constraint
∑

i pi = 1, and using

Lagrange multipliers straightforwardly yields p̂i = xi/n, which is intuitive. For the null hypothesis,

this is maximized over Θ0.
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Let θ̂ be the MLE of θ under H0. Then

2 logLx(H0, H1) = 2
∑
i

log(p̂i/pi(θ̂))

This can be recast in a more simply computable form. Define

oi = xi, ei = npi(θ̂), δi = oi − ei

where oi represents the outcomes, and ei the expected outcomes under H0. Then

2 logLx(H0, H1) = 2
∑
i

oi log(oi/ei) = 2
∑
i

(δi + ei) log(1 + δi/ei).

Assuming the deviations are small, δi/ei ≪ 1, we can expand the logarithm to first order, giving

2 logLx(H0, H1) ≈ 2
∑
i

(δi + ei)(δi/ei) =
∑
i

δ2i
ei

=
∑
i

(oi − ei)
2

ei
=

(∑
i

o2i
ei

)
− n.

This is the Pearson χ2 statistic, in several forms. Of course, if the deviations were not small this

approximation wouldn’t work, but if n is large and the deviations are not small, it’s clear that H0

should be rejected, without running a test at all. A rule of thumb is that the null hypothesis will

be rejected if the χ2 statistic is significantly greater than the number of degrees of freedom.

Now we can see our above theorem at work. For a large sample size, the deviations can be

approximated as continuous, and δi/ei becomes normally distributed, so the χ2 statistic indeed

follows a χ2 distribution. For H1, there are k − 1 parameters to choose, since the probabilities sum

to one. For H0, suppose there are p parameters to choose. Then if H0 is true,

2 logLx(H0, H1) ∼ χ2
k−p−1

We will give some more specific examples below.

Note. The advantage of “the” χ2-test is that it is easy to use. However, for smaller sample

sizes the approximations made above are less accurate. In these cases one should use the more

general “multinomial test”, working directly with the unapproximated likelihood ratio and its more

complicated distribution. Also, in some applications the trials are not independent, but are rather

drawn from a fixed population without replacement. If the population is not much larger than the

sample size, then one should use the hypergeometric test.

Example. The χ2-test of homogeneity. Consider a rectangular array Xij with m rows and n

columns. Define the row, column, and overall sums by

Xi· =
∑
j

Xij , X·j =
∑
i

Xij , X·· =
∑
ij

Xij .

Suppose that each row i is described with a multinomial distribution, where entry j has probability

pij , and the row sum Xi· is fixed. Then one can take

H0 : pij = pj for all i, H1 : pij unconstrained.

For example, rows may indicate outcomes for patients, with or without a certain intervention, in

which case the null hypothesis is that the intervention has no effect.
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We must now pick probabilities p̂j and p̂ij that maximize the likelihoods for H0 and H1, where

we each hypothesis we have likelihood

log f(x) = const +
∑
ij

xij log pij .

Using Lagrange multipliers again, one can show that this is achieved when the probabilities match

the empirically observed ones,

p̂j =
x·j
x··

, p̂ij =
xij
xi·

.

Plugging these in, we have

2 logLx(H0, H1) = 2
∑
ij

xij log(xijx··/xi·x·j).

Defining the observed and expected counts

oij = xij , eij = p̂jxi·

and using the same approximations as in the previous example, we find

2 logLx(H0, H1) =
∑
ij

(oij − eij)
2

eij

so the test statistic has the same basic form. The hypothesis H0 has n − 1 parameters while H1

has m(n− 1) parameters, so there are (m− 1)(n− 1) degrees of freedom.

Example. Consider the same setup as above, but the row sums are not fixed; instead the overall

sum is fixed, and all of the elements of the array are part of one common multinomial distribution.

We take the hypotheses

H0 : pij = piqj , H1 : pij unconstrained

where the pi and qj are row and column probability distributions. In this case, the rows and

columns can represent two independent variables, measured in a fixed number of trials, and the null

hypothesis is that these variables are independent.

The same approach as above gives

p̂i =
xi·
x··

, q̂j =
x·j
x··

, p̂ij =
xij
x··

.

Upon defining oij = xij and eij = p̂iq̂jx·· and applying the same approximations, the test statistic

has the same form as above. The hypothesis H0 has m+ n− 2 parameters while H1 has mn− 1,

so there are (m− 1)(n− 1) degrees of freedom. Notice that this is exactly the same result as the

previous test: ultimately the only difference is whether we fix the row sums or only the overall sum,

and it turns out that it doesn’t matter.

Note. Frequentist tests can lead to unintuitive results. For example, consider an experiment that

tests for a relationship between sex and eye color, with the following results.

blue brown

male 20 10

female 10 20
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One statistician may hold the null hypothesis H0 that sex and eye color are independent; applying

a test above we find that H0 is rejected at the 1% level. Another statistician may hold the null

hypothesis H ′
0 that all combinations of sex and eye color have 25% probability; applying a test

above we find H ′
0 is not rejected even at the 5% level. Thus we should disbelieve H0 and believe

H ′
0, even though H ′

0 logically implies H0!

This result makes sense if one invokes some Bayesian ideas about how hypotheses are evaluated.

From this perspective, H0 is a set of hypotheses (parametrized by the overall fraction of males, and

fraction of blue eyed people), and H ′
0 is a subset of H0 (the case where these fractions are both

1/2). We begin with some overall prior p(H0), which itself includes a prior distribution over the

fractions. The effect of the data is to strongly penalize H0 as a whole. However, the part of H0

that gets penalized the least is H ′
0. In other words, after seeing the data, we will of course still have

p(H0) ≥ p(H ′
0), but p(H

′
0)/p(H0) has increased.

We can also explain the result in another way. The test statistics in the two cases are identical;

the only difference is the number of degrees of freedom. The hypothesis H0 uses more degrees of

freedom to explain the data, but they don’t help at all. Holding predictivity equal, we should prefer

simpler theories, so it makes sense to reject H0 but not H ′
0.

This highlights another issue with hypothesis testing: if somebody were planning on testing H ′
0

and saw that it wasn’t significant upon seeing the data, they could make their result significant

by changing their null hypothesis to H0. In this way, a “significant” p-value can be found out of

essentially any data. In fact, this can happen innocently, without any active “p-hacking” or “fishing

expedition” on the part of the researcher, if the statistical test chosen is conditional on the data.

For some cautionary examples, see The Statistical Crisis in Science.

3.5 The t and F Tests

In this section, we introduce some more practical tests.

• If X ∼ N(0, 1) and Y ∼ χ2
n independently of X, then

Z =
X

(Y/n)1/2
∼ tn, E(Z) = 0, varZ =

n

n− 2

where tn is the Student’s t-distribution on n degrees of freedom. Its pdf is

f(t) =
Γ((n+ 1)/2)√
nπ Γ(n/2)

(
1 +

t2

n

)−(n+1)/2

.

In the limit n → ∞ the t-distribution approaches N(0, 1), but for finite n it has heavier tails.

• As mentioned earlier, this distribution is useful when we have normally distributed data with

unknown variance, which is estimated from the sample variance, because

T =

√
n(X − µ)√

SXX/(n− 1)
∼ tn−1

where SXX/(n − 1) is the unbiased estimator of the variance. The point here is that the

distribution of T does not depend on σ2 which may be unknown.

http://www.stat.columbia.edu/~gelman/research/published/ForkingPaths.pdf
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• Therefore, given independent X1, . . . , Xn ∼ N(µ, σ2) and σ2 unknown, we can construct a

100(1− α)% confidence interval for µ by defining T as above, and taking

−t
(n−1)
α/2 ≤ t ≤ t

(n−1)
α/2

where t
(n−1)
α/2 is the upper α/2 point of tn−1.

• Note that for low n, the t-distribution is pathological; for example, for n = 1 it reduces to the

Cauchy distribution, and for n ≤ 2 its variance does not exist.

Example. The one sample t-test for testing a given mean. Starting from the same assumptions as

above, we test

H0 : µ = µ0, H1 : µ unconstrained

where σ2 is unknown. It is a “nuisance parameter” which must be accounted for, but which is not

directly relevant. The likelihood ratio is

Lx(H0, H1) =
maxµ,σ2 f(x|µ, σ2)

maxσ2 f(x|µ0, σ2)
.

We have found in a previous example that the likelihood in the denominator is maximized when

σ2 =
1

n

∑
i

(xi − µ)2.

Meanwhile the likelihood in the numerator is maximized when

µ = x, σ2 =
1

n

∑
i

(xi − x)2 =
sxx
n

.

By plugging these in and simplifying the likelihood ratio, we arrive at

Lx(H0, H1) =

(
1 +

n(x− µ0)
2∑

i(xi − x)2

)n/2

.

In other words, the likelihood ratio depends only on the statistic T as defined above, where under

H0 we have T ∼ tn−1. Thus, the size α test constructed by rejecting H0 if |t| > t
(n−1)
α/2 is also a

generalized likelihood ratio test.

Example. The two sample t-test for testing equality of means. Consider two independent samples

of independent variables, where X1, . . . , Xm ∼ N(µ1, σ
2) and Y1, . . . , Yn ∼ N(µ2, σ

2). We test the

hypotheses

H0 : µ1 = µ2, H1 : µi unconstrained

where σ2 is unknown, but assumed to be common between the samples. A similar argument to above

shows that the likelihood ratio only depends on the quantity (x−y)/(sxx+syy), which motivates us

to look at its distribution under H0. This is a case where the framework of the likelihood ratio pays

off, since it’s not intuitively obvious what combination of sxx and syy should go in the denominator.

Under H0, we have

(X − Y )

(
1

m
+

1

n

)−1/2 1

σ
∼ N(0, 1),

SXX + SY Y

σ2
∼ χ2

m+n−2.
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Therefore, by the definition of the Student’s t-distribution,

T =
X − Y√

(1/m+ 1/n)(SXX + SY Y )/(m+ n− 2)
∼ tm+n−2.

Thus, we can construct a size α test by rejecting H0 if |t| > t(m+n−2)α/2.

Note. Choosing a test can be subtle. For example, consider an intervention meant to reduce

resting heart rate. One can either use the two-sample t-test for the heart rates of the participants

before and after, or apply the one-sample t-test to the set of changes in heart rates, where the null

hypothesis is µ = 0. The latter is called a paired samples t-test and is a much better choice here.

First, there’s no reason to believe that the initial and final pulse rates are even close to normally

distributed; the differences stand a better chance. Second, the two-sample test will be much less

powerful, because it doesn’t know about the pairing, and so is thrown off by the wide spread of

initial pulse rates. On the other hand, the paired samples t-test only makes sense if the “before”

and “after” quantities can be usefully compared; for example, it would be useless when considering

the result of an intervention on an acute disease.

Example. Testing a given variance with unknown mean. Let X1, . . . , Xn ∼ N(µ, σ2) with µ

unknown and

H0 : σ
2 = σ2

0, H1 : σ
2 unconstrained.

In other words, we have reversed which parameter is the nuisance parameter. Using earlier results,

Lx(H0, H1) =
maxµ,σ2 f(x|µ, σ2)

maxµ f(x|µ, σ2
0)

∝ (sxx)
−n/2esxx/2σ

2
0 .

This only depends on sxx, which motivates us to consider the test statistic T = SXX/σ2
0, where H0

will be rejected if it is far from 1. Under H0, T ∼ χ2
n−1, so one possible test of size α is

reject H0 if T ̸∈ [F−1
n−1(α/2), F

−1
n−1(1− α/2)].

Note. Nuisance parameters are another case where frequentist and Bayesian approaches differ.

In our simple examples above, we have constructed test statistics which are independent of the

nuisance parameter. (finish)

Next, we introduce the F -test and analysis of variance.

• Let X ∼ χ2
m and Y ∼ χ2

n be independent. Then

Z =
X/m

Y/n
∼ Fm,n

has the F -distribution on m and n degrees of freedom. The probability distribution is

f(x) =
1

B(m/2, n/2)

(m
n

)m/2
x

m
2
−1
(
1 +

m

n
x
)−m+n

2
.

• If T ∼ Fm,n then 1/T ∼ Fn,m. Statistical tables usually only give upper percentage points for

the F -distribution, but we can find P(T < x) since it is equal to P(1/T > 1/x), which is listed

elsewhere in the table.
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• If X ∼ tn, then X2 ∼ F1,n.

Example. The two-sample comparison of variances, also known as “the” F -test. Consider two

independent samples of independent variables, where X1, . . . , Xm ∼ N(µ1, σ
2
1) and Y1, . . . , Yn ∼

N(µ2, σ
2
2) where

H0 : σ
2
1 = σ2

2, H1 : σ
2
1 > σ2

2

where the µi are unknown nuisance parameters. Using either the likelihood ratio or common sense,

we consider the statistic

F =
σ̂2
1

σ̂2
2 =

SXX/(m− 1)

SY Y /(n− 1)
∼

σ2
1χ

2
m−1/(m− 1)

σ2
2χ

2
n−1/(n− 1)

=
σ2
1

σ2
2

Fm−1,n−1.

Therefore, under H0 we have F ∼ Fm−1,n−1. Since the alternative hypothesis is one-tailed, we get

the greatest power if we reject H0 if f > F
(m−1,n−1)
α .
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4 Applications in Particle Physics

4.1 Classification

In this section, we discuss how statistics is actually used in particle physics, departing from the

clean mathematical formalism above. We will be a little sloppier with notation, e.g. not always

distinguishing a random variable and its value. First, we consider the relatively straightforward

case of classification.

• Above, we have discussed the likelihood ratio as a test statistic. However, in a particle physics

experiment where one needs to classify particles and events, this is not very useful because the

data x in each event is extremely high-dimensional. (Elements of x might include the number

of muons, the pT of the hardest jet, the missing energy, and so on.) Furthermore, the likelihoods

cannot be computed from first principles, and instead require Monte Carlo simulation.

• Therefore, it is practical to assume that the test statistic T (x) has a simple prescribed form,

then optimize it given that form. One simple option is a linear function,

t(x) = aTx.

The goal is to choose a to maximize the separation between g(t|H0) and g(t|H1), where we are

restricting to simple hypotheses. Of course, there is not a unique definition of “separation”, so

the result will depend on the definition.

• Under each hypothesis, the data x have the mean values and covariance matrix

µk =

∫
xf(x|Hk) dx, Vk =

∫
(x− µk)(x− µk)

T f(x|Hk) dx.

Thus, each hypothesis gives a mean and variance for the test statistic,

τk = aTµk, Σ2
k = aTVka.

• We choose to define the separation by

J(a) =
(τ0 − τ1)

2

Σ2
0 +Σ2

1

on the grounds that it behaves reasonably under shifts and overall scaling. Some routine

calculation shows that this is maximized for

a ∝ (V0 + V1)
−1(µ0 − µ1).

The resulting test statistic is called Fisher’s linear discriminant function.

• In order to use this classifier, the quantities Vk and µk must still be found by Monte Carlo

simulations, but there are much fewer relevant quantities. Specifically, if x is n-dimensional,

we need to compute O(n2) quantities.

• For comparison, the full likelihood ratio is a function on n-dimensional space, so it is techni-

cally infinite-dimensional. Of course, we always perform binning to render everything finite-

dimensional. Suppose that every dimension gets m bins; then a likelihood ratio test would

require computing O(mn) quantities, which is far greater than O(n2). This is worsened by the

fact that we generally want bins as fine as possible, since coarse bins throw away information.
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We now motivate some more complex test statistics.

• Suppose that the hypotheses H0 and H1 are both multivariate normal distributions with the

same covariance matrix V , so that a ∝ V −1(µ0 − µ1).

• In this case, the likelihood ratio is

r ≡ Lx(H0, H1) = exp

(
−1

2
(x− µ0)

TV −1(x− µ0) +
1

2
(x− µ1)

TV −1(x− µ1)

)
∝ et(x).

In other words, a test based on Fisher’s linear discriminant is a likelihood ratio test, which is

another one of its nice properties.

• Now, let π0 and π1 be the probabilities that H0 and H1 are true. (This is usually not allowed

in hypothesis testing, but makes sense for classification tasks.) Then by Bayes’ theorem,

p(H0|x) =
1

1 + π1/π0r
=

1

1 + e−t(x)
≡ s(t)

as long as we add a suitable constant to t. In other words, the probability is a sigmoid function

in the test statistic.

• If we fed the result of this classifier into another classifier, which satisfied the same assumptions,

then the net result of these classifiers would be an alternating composition of sigmoids and

linear functions. This motivates the choice of using more general test statistics in terms of such

functions, since we will “effectively” get them anyway upon composition.

• Specifically, we could define a test statistic of the form

t(x) = s

(
a0 +

∑
i

aihi(x)

)
, hi(x) = s

(
wi0 +

∑
i

wijxj

)
.

This is a simple feed-forward neural network. We think of the hi as “neurons”, connected to

the inputs xi with “weights” wij . They are then connected to the output by the weights ai.

Cutting on the value of t can now give a nonlinear boundary for C in parameter space.

Note. In the past ten years, there has been great interest in using “jet substructure” to identify the

particles produced in a collision. The classic example is a top quark, which almost always decays

to a b-quark and a W boson. The W boson usually decays of pairs of quarks, so that three jets are

produced. However, at the high energies of the LHC, the top quark is produced with relativistic

energy, causing the jets to be collimated into a single “fat” jet, with a three-pronged substructure.

In the early 2010s, various physics-motivated approaches were invented to identify top jets. For

example, one can tag the b-jet, since it has a characteristic displaced vertex, and demand the other

two jets have an invariant mass near mW . Alternatively, one can run a clustering algorithm to see

whether three subcomponents exist in the jet, as quantified by a variable called the N -subjettiness.

These are human-engineered “high-level” features, but in the late 2010s, physicists began throwing

deep neural networks at the problem, feeding them “low-level” features like the four-momenta of

all the hadrons in the jet. They are trained using simulated data from Monte Carlo programs,

such as Pythia, and typically have about a million parameters. A vast number of neural network

architectures have been tried, with the state of the art outperforming the high-level features by

roughly a factor of 3 in background rejection for order-one signal efficiencies.

https://arxiv.org/abs/1902.09914
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4.2 Signal and Exclusion

We now discuss the basics of evaluating the significance of a signal.

• Suppose that one is counting events of a particular type. This can be modeled as a Poisson

process, with contributions from both signal and background. Suppose there are nobs observed

events, and the background has a known mean νb. The null hypothesis is that the signal has

zero mean, νs = 0.

• The p-value is then the probability of seeing at least this many events,

p = P(n ≥ nobs) =

∞∑
n=nobs

νnb
n!

e−νbn.

For example, if νb = 0.5 and nobs = 5, then p = 1.7× 10−4.

• Note that the total number of counts is Poisson distributed. Thus, if we used the naive rules of

error analysis, we might write

νb + νs = nobs ±
√
nobs

which in the case nobs = 5 would only be “two sigma” away from the background rate. However,

this is severely misleading. When we talk about a result being “nσ”, we only mean that its

p-value is lower than the threshold 1− Φ(n),

1σ : p ≤ 0.16, 2σ : p ≤ 0.023, 3σ : p ≤ 0.0013, 4σ : p ≤ 0.000032, 5σ : p ≤ 0.00000029

even if the normal distribution is completely irrelevant. We take 5σ to denote discovery, and 3σ

and above to denote a “hint”. The range nobs ±
√
nobs above does make sense, but it’s relevant

for bounding νs once we know it is nonzero, not for establishing that it is nonzero.

• It’s important not to take extremely small p-values too seriously. In the Bayesian perspective,

one’s belief in a signal should increase as the p-value decreases, but it should eventually saturate,

because of the possibility of systematic errors, which are not treated by anything in these notes.

• Another issue is that of the “look elsewhere effect”. In practice, most searches will involve

looking for a bump on a histogram. This is a job for the χ2-test, where the null hypothesis is

the SM expectation. However, if the histogram has 103 bins, then we expect a 3σ deviation

in some bin even if there is no signal, just by random chance. Instead, the p-value should

be computed “globally”, by finding the probability for seeing fluctuations as severe as those

observed anywhere across the histogram. One could also argue that an additional correction is

necessary if one looks at many histograms, but this is harder to make precise. The standard

methodology for correction for the look elsewhere effect is given in the article Trial Factors for

the Look Elsewhere Effect in High Energy Physics.

• Incidentally, the look elsewhere effect is precisely the reason that 5σ is used as a discovery

standard today. In the 1960s, several claimed discoveries did not pan out, despite low p-values

by the standards of other sciences. The 5σ criterion was proposed as a crude way to compensate

for the uncorrected look elsewhere effect. It has been argued that the 5σ criterion be allowed

to vary between experiments, accounting for the degree of surprise of the result, the amount of

uncompensated look elsewhere effect, the risk of systematics, and so on.

https://arxiv.org/abs/1005.1891
https://arxiv.org/abs/1005.1891
https://arxiv.org/abs/1310.1284
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• Histogram bins should in theory be as narrow as possible, to reduce the amount of information

that is thrown out. However, if they are too narrow, the fluctuations become large and the

plot becomes impossible to read. A general rule of thumb is to bin finely enough so that any

expected peaks will be resolved by several bins. If the global correction is applied properly,

binning more finely shouldn’t have much effect on the p-value. In the case of very small data

samples, it’s better to not bin at all, and use goodness of fit tests designed for continuous

variables, such as Kolmogorov–Smirnov or Smirnov–Cramer–von Mises.

• The bin counts in a one-dimensional histogram follow a multinomial distribution regardless

of how the underlying continuous variable is distributed; we say the test is distribution-free.

However, in general the situation is more complicated, and the p-value can’t be computed

analytically or with standard lookup tables. Instead, a common procedure is to use Monte

Carlo to infer the distribution of the test statistic.

We now briefly discuss how parameter exclusion is done.

• Parameter exclusion refers to rejecting some subset of the alternative hypothesis H1. This isn’t

covered as much in traditional statistics courses, because the focus there is on excluding null

hypotheses. However, in particle physics the null hypothesis (the Standard Model) works an

overwhelming majority of the time, so it would be impractical to only publish results that reject

it. Publishing exclusions is also very useful to keep track of what we have ruled out.

• For concreteness, suppose we reduce a statistical analysis down to a single test statistic T , and

suppose that deviations from the null hypothesis can only increase the value t. (This could

apply, e.g. to counts in a histogram.) The test statistic has distributions f(t|H0) and f(t|H1)

under each hypothesis, and we define

p0 = P(T ≥ t|H0), p1 = P(T ≤ t|H1).

We decide whether the data indicates a discovery by looking at p0, as described above.

• We can define exclusion by looking at p1, and a conventional choice is to set p∗1 = 0.05. This

is much less stringent than the cutoff for discovery because false alarms have greater costs.

Alternatively, it is because the SM is an excellent null hypothesis with a very high prior, while

individual BSM theories have low prior probabilities due to their great number.

• However, this can raise the possibility of spurious exclusion. For example, suppose an experiment

has no sensitivity toH1 at all, i.e. the distributions f(t|H0) and f(t|H1) are the same. Then with

some low probability, such an experiment may exclude H1, though it seems unreasonable that

any exclusions could be set at all. One ad hoc fix is to exclude when p1/(1− p0) < 0.05. Note

that if H0 and H1 are point hypotheses, this is just the Bayesian update factor for p(H1)/p(H0).

• In general we deal with a family of alternative hypotheses, parametrized by new couplings. The

procedure above thus allows us to exclude a range of these couplings.

Note. In Bayesian hypothesis testing, one could report the Bayesian update factor for p(H0)/p(H1).

However, this runs into issues such as Lindley’s paradox. Suppose we are testing whether a coin is

fair. A reasonable Bayesian prior on the probability of heads ph might be

p(ph) =
1

2
δ

(
ph −

1

2

)
+

1

2
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representing a 50/50 chance of a fair coin, and a rigged coin with uniform probability. This is a toy

model for new physics searches, where the fair coin corresponds to the SM (a simple null hypothesis)

and the biased coin corresponds to new physics (a composite alternative hypothesis).

Now suppose the coin is flipped 105 times, registering (105/2) +
√
105 heads. Under frequentist

hypothesis testing, H0 : ph = 1/2 is rejected at the 2σ level. But after performing the Bayesian

update, the probability for the coin to be fair becomes much higher! The reason is that the

frequentist method tests H0 in itself, while the Bayesian method is effectively comparing it against

a particular alternative, i.e. a uniform distribution on ph, and most values of ph ∈ [0, 1] are strongly

disfavored by the data.

Therefore, there is no logical paradox in Lindley’s paradox, but it does highlight an important

difference between the two methods. The Bayesian method gives a penalty to H1 for having a broad

prior, most of which is incompatible with the data. From a model builder’s perspective I think this

is right: it’s just the fine tuning penalty in a different form. In other words, the Bayesian method

accurately tracks how theorists think about evidence. More discussion of the Bayesian approach to

theory evaluation and its relation to naturalness is given in my dissertation.

The issue that Lindley’s paradox reveals is essentially a more subtle aspect of prior dependence.

For simple hypotheses, the prior dependence isn’t too important because one can just publish

Bayesian update factors. For composite hypotheses, the detailed prior distribution can significantly

affect the effect of the evidence on the overall probabilities for the hypotheses – and many realistic

hypotheses are not just composite as in Lindley’s paradox, but multi-dimensional. In these cases,

evidence cannot be summarized in a single number, making the Bayesian method impractical for

reporting experimental results; this is why experimentalists generally prefer p-values. But one could

just as well argue that Lindley’s paradox shows that p-values give incomplete information.

Luckily, these caveats don’t apply to exclusion, which is less confusing. When excluding parameter

space in the Bayesian picture, we don’t have to compare point hypotheses to composite hypotheses.

A point in parameter space can just be counted as excluded at 2σ if its probability density goes

down by at least 95%.

Many existing resolutions of Lindley’s paradox do not work in particle physics. For example,

one could criticize putting a finite prior weight on a point, because in the softer sciences effectively

every intervention can have some (small) effect. But in particle physics, the point represents the

SM, which really could be true to a precision much greater than that of our experiments. More

precisely, Lindley’s paradox can occur if H0 is much narrower than the experimental resolution,

which in turn is much narrower than H1, and this is often the case in particle physics. Another

proposed resolution from the softer sciences is to start with p(H0) ≪ 1/2, because “the point of

an experiment is to rule out H0”. But it would be odd to treat the venerable SM in this way; if

anything, in most searches we should take p(H1) ≪ 1/2. Yet another approach is to declare that

any effect small enough to be susceptible to Lindley’s paradox is practically irrelevant. However, in

particle physics any deviation from the SM is incredibly important. Finally, one could remove the

arbitrariness in the Bayesian approach by fixing an objective prior such as Jeffreys’ prior; however, it

seems absurd to have our beliefs about the fundamental laws of nature decided by our measurement

apparatus. Indeed, in particle physics the situation is the reverse: we must use our beliefs about

these laws to decide which apparatuses to build! For a comprehensive review of arguments like

these, see the article The Jeffreys–Lindley Paradox and Discovery Criteria in High Energy Physics.

Lindley’s paradox reveals another issue. Suppose we were considering a parameter which was

not bounded, like the probability of heads was. The resulting Bayesian update factor is zero if H1 is

given a uniform prior on an infinite interval, while introducing a cutoff makes the Bayesian update

https://knzhou.github.io/writing/Relaxation.pdf
https://arxiv.org/abs/1310.3791
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factor explicitly cutoff-dependent. Such problems occur whenever the hypotheses H0 and H1 are

defined on unbounded parameter spaces of differing dimension. Since the cutoff choice essentially

determines the final reported result, one must think carefully about it.

4.3 Confidence Intervals

A separate issue is the practical construction of confidence intervals.

• Previously, we have described the frequentist definition for a confidence interval. However, in

practice this definition is difficult to use beyond the simplest problems. Instead, we introduce

some alternative procedures for constructing such intervals, which approximate the frequentist

definition in certain limits.

• If we are using the MLE θ̂ to report the central value, then it is useful to report its variance

(or equivalently standard deviation). This is reasonable, because it turns out that in the limit

of many samples, the MLE has a Gaussian distribution, and furthermore the bias of the MLE

usually goes to zero. In this case, the interval [θ̂ − σθ̂, θ̂ + σθ̂] is a 68.3% confidence interval

in the frequentist sense, in addition to indicating the typical spread of results θ̂ in repeated

experiments.

• There is a clear problem here, because θ̂ is a random variable which depends on the unknown

true value θ, and thus σθ̂(θ) is a function of θ. We can avoid this problem by just plugging in

the particular value of θ̂, which yields the estimate σ̂θ̂(θ̂).

• As long as the MLE doesn’t have too high of a spread, this is a reasonable procedure. More

concretely, σ̂θ̂(θ̂) is a random variable, and this procedure makes sense as long as its standard

deviation σσ̂θ̂(θ̂)
(θ) is much smaller than its value.

• For example, if θ were the expected count of a Poisson process and θ = 104, then

σθ̂(θ) =
√
10000 = 100.

Suppose that in a particular run, we got a value within this uncertainty, θ̂ = 104 − 102. Then

our estimate of the MLE standard deviation would be

σ̂θ̂(θ̂) =
√
10000− 100 = 99.5

which is definitely close enough; nobody would care about a small “uncertainty in uncertainty”.

• In practice, we cannot compute σθ̂(θ) analytically. Instead, we can use Monte Carlo simulation to

numerically compute the distribution of θ̂. Again we run into the problem that this distribution

depends on the unknown true value of θ, and we circumvent it by plugging in θ̂. This will not

give an accurate estimate of the distribution of θ̂ (it will be centered on the particular value θ̂

instead of E[θ̂]), but it will usually give a good estimate of the distribution’s width.

• An even quicker way, used in many numeric programs, is to use the Cramer–Rao bound. We

simply note that the MLE is asymptotically efficient, so

var(θ̂) ≈
(
E
[
−∂2 logL(θ)

∂θ2

])−1

where we defined the likelihood L(θ) = f(x|θ).
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• Again, this requires knowledge of the true value θ, so we simply plug it in. Calculating the

expectation value requires a potentially expensive Monte Carlo simulation, so we just replace

it with the observed value. That is, we report

σ̂2
θ̂ =

(
−∂2 logL(θ)

∂θ2

∣∣∣∣
θ=θ̂

)−1

.

More generally, we have the estimated covariance matrix

(V̂ −1)ij = −∂2L(θ)

∂θi∂θj

∣∣∣∣
θ=ˆθ

.

Note that when such approximations apply, the covariance of multiple independent experiments

can be combined in quadrature, using the standard rules of error analysis. The real issue is

disentangling possible correlations between the experiments, a subtlety we won’t discuss here.

• The log-likelihood can be expanded about its maximum in a Taylor series,

logL(θ) = logL(θ̂) +
1

2

∂2 logL

∂θ2

∣∣∣∣
θ=θ̂

(θ − θ̂)2 + . . . .

In the large sample limit, the likelihood becomes a sharply peaked Gaussian, so these terms

are an accurate approximation for the log-likelihood. In this case, the previous estimate for the

variance is equivalent to the estimate

logL(θ̂ ± σ̂θ̂) = logL(θ̂)− 1

2
.

In cases where the likelihood isn’t a Gaussian, we can use this as yet another definition of σ̂θ̂.

This is especially useful when estimating multiple variables, where it allows the straightforward

numeric construction of confidence regions.

Note. The general procedure of estimating parameters directly from the data, and then “plugging

them in” to find a confidence interval, is called a “Wald interval”. (One might also call this the

rules of high school error analysis.) As we’ve seen, this yields a reasonable result if there is a large

amount of good data, but it lacks the theoretical guarantees that genuine confidence intervals do.

The classic pathological example is a rare Poisson process with zero observed counts; in this case

the “plug in” mean and variance are zero, so all confidence intervals are [0, 0], and all other values

are excluded to infinite precision! As such, the Wald interval is generally regarded as obsolete in

the statistical literature.

Next, we return to the frequentist definition of a confidence interval.

• It is useful to generalize our earlier definition of a confidence interval, so that

P(θ < a(X)) = α, P(θ > b(X)) = β.

In this case we say [a(X), b(X)] has coverage or confidence level 1− α− β. Usually, two-sided

confidence intervals are taken to be central confidence intervals, obeying α = β = γ/2.

• When we include an estimator, confidence intervals need not be symmetric about it. In this

case, we write θ̂+d
−c to mean the confidence interval is [θ̂ − c, θ̂ + d].
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• Previously, we considered simple examples of confidence intervals, where the dependence on the

unknown variable θ could be eliminated. In more general situations we can use the Neyman

construction. Let us define the functions uα(θ) and vβ(θ) implicitly by

α = P(θ̂ ≥ uα(θ)), β = P(θ̂ ≤ vβ(θ))

where θ̂ is some estimator. As long as this estimator is reasonable, the functions are monotonic,

so we can invert them. The bounds for the confidence interval are then

a(θ̂) = u−1
α (θ̂), b(θ̂) = v−1

β (θ̂).

Note that this doesn’t work for discrete random variables, because the functions uα(θ) and

vβ(θ) won’t exist.

• The Neyman construction can be visualized graphically as shown.

This method is quite general, but it’s often intractable. In the large-sample limit where θ̂ is

normally distributed, the result coincides with the approximate methods we gave above.

• Confidence intervals are often described as “nσ”. This means that we have a confidence interval

with α = β = γ/2 where

1σ : 1− γ = 0.6827, 2σ : 1− γ = 0.9544, 3σ : 1− γ = 0.9973.

This language is used regardless of whether θ̂ is normally distributed. When a confidence

interval is given without context, it’s usually 1σ.

• One-sided confidence intervals have either α or β equal to zero, and correspond to parameter

limits. For example, suppose we have a particular confidence interval [−∞, b(x)]. Then by our

earlier naive definition of exclusion, this excludes parameters θ > b(x) at the 100(1− β)% level.

Example. Extended maximum likelihood is a tweak on maximum likelihood. In this case, we have

an iid sample x1, . . . , xn, but n itself is also a random variable. It is often the case that n ∼ Pois(ν),

since e.g. n could be the number of events passing cuts. In this case, we have the extended likelihood

function

L(ν,θ) =
e−ν

n!

∏
i

νf(xi|θ).
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If ν is independent of θ, then it is just a nuisance parameter and the MLE gives ν̂ = n, along with

the same θ̂ if we hadn’t thought of n as a random variable at all. However, it is often the case that

ν depends on θ (for example, θ may contain a cross section), in which case including it in the MLE

leads to tighter confidence intervals. Also note that the MLE works just as well with binned data,

though it doesn’t actually require binning at all.

Example. A comparison of several different confidence intervals for the mean of a Poisson distri-

bution. (todo)

Bayesian confidence intervals may have very little coverage, though under typical conditions all

the confidence intervals above will match in the large sample limit. Incidentally, one can show

that the Bayesian confidence interval calculated using Jeffreys’ prior converges to the frequentist

confidence interval the fastest.

Note. Estimators and confidence intervals near a physical limit. Suppose we have some quantity

which is known on physical grounds to be positive, such as m2 = E2 − p2, or the rate or scattering

cross section for a process. If the true value is small, our estimators will often end up negative. For

example, a downward fluctuation may cause us to fit a “valley” into a histogram when the signal

can only look like a bump. If we are unlucky, our entire confidence interval can be negative, which

sounds absurd.

It is tempting in these cases to set the estimator to zero or truncate the confidence interval,

but this will lead to bias if the result is averaged with other experiments. (If we can never report

downward fluctuations, then we’ll only see upward fluctuations, leading to false discovery.)

These issues can also be handled with Bayesian confidence intervals. From the Bayesian perspec-

tive, a physical limit just corresponds to a region where the prior is zero. The Bayesian confidence

interval can be constructed the same way as usual, and the results of multiple experiments can be

combined by multiplying their Bayesian update factors.
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