Quantum Field Theory |

Final Examination
Stanford University, Autumn 2022

This is a take-home final exam, worth 30% of the course grade. Submit your solu-
tions on Gradescope by 4 PM (Pacific time) on Thursday, December 15.

The exam is graded out of 40 points; the starred question is extra credit.

No late submissions will be accepted, except for extreme circumstances such as med-
ical emergencies; please email us as early as possible if these arise.

If you have questions about the problems, email both of us. If we find there is an
error or omission in the problems, we will send an announcement to the entire class.

You are allowed to use the course textbook, by Peskin and Schroeder, and all course
materials, including lecture notes, section notes, problem sets, and their solutions.

You may use Mathematica or other computer programs to perform algebra, but you
cannot use external packages and must include a copy of your source code.

Collaboration with other students, or use of other sources or the internet in gen-
eral, is prohibited. By submitting this exam, you affirm that you have received no
unauthorized aid and engaged in no academic dishonesty.

The exam is comparable in length to a problem set, so we encourage you to start early.
Note that using online sources is both against the rules and likely not actually helpful.
Legitimate sources such as review papers are usually too sophisticated to understand
given background at the level of this course. Unvetted sources such as internet forums
won’t answer the same questions, are frequently wrong, and differ widely in conventions.
All of the problems can be solved by mildly extending calculations you have done in the
problem sets earlier in the quarter, and none require any knowledge from outside the
course. Good luck!

Not only God knows, I know, and by the end of the semester, you will know.
— Sidney Coleman, in a Harvard QFT I lecture



1. Field uncertainties. (10 points)

Quantum field theories have states with definite numbers of particles, in analogy with
the number states |n) of a quantum harmonic oscillator. However, there also exist states
with definite field profiles, in analogy with the position states |r). A general state is a
superposition of such field eigenstates, and thus can have an uncertain field value.

a) Consider a free real scalar field ¢ of mass m in the vacuum state. The variance of the
field value at x is

03 = (016(3)%]0) — ((0]6(x)(0))*. (1)
Show that this quantity is infinite.

b) There’s nothing wrong with the result in part (a), because in practice we can never
measure the field value at a point. We only measure “smeared” field values averaged
over some length scale a, such as
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Write O'ia (x) 1 the form of an integral over a single variable.

¢) The standard deviation of the smeared field is finite. Find expressions for aia(x) in
the limits a < 1/m and a > 1/m. (Hint: in each regime, your answer should have
the form aa” for some values of a and 3. If you're having trouble doing the final
integral in one of these cases, you can start from the result ffooo e dr = V)

d) Consider a cubical copper microwave cavity of volume V' = 1m3. The electric field
in the cavity does not have a definite value, due to the quantization of the electro-
magnetic field. Find a rough, order of magnitude estimate for the standard deviation
of the average electric field in the cavity in its ground state, and evaluate it in volts
per meter. (Hint: you will need to go from natural units back to SI units using
h=10"3Js, ¢c=3x10®m/s, and e = 1.6 x 10719 C.)

2. Forces on external currents. (5 points)

In problem set 7, you considered the “improved” electromagnetic stress-energy tensor,
. 1
™" = _npoF#pFVU + ZTIHVFPUFPU (3)

and showed that it was conserved, 6MT“” = 0, when no current was present.

a) When there is a nonzero current J* = (p, J), the stress-energy tensor defined in
has divergence 0,7"" = —K". Find K".

b) The vector K#* = (K° K) is the four-momentum delivered to the current by the field,
per unit space and unit time. Explicitly write K° and K in terms of p, J, E, and B.

3. Pseudoscalar and vector decays. (10 points)

In this problem we will consider decays of particles to pairs of electrons. As usual, the
electron is described by a Dirac field ¥ of mass m.. All decay rates should be computed
in the rest frame of the decaying particle, and you can reuse results from problem sets.



a) Consider a pseudoscalar particle, described by a real scalar field ¢ of mass M, where
M > 2m,. Write down the Feynman rule for the interaction

Liny = igp V0. (4)
Then find the decay rate for ¢ — ete™ to leading nontrivial order in g.

b) Now consider a vector particle, described by a massive vector field A, of mass M,
where M > 2m,.. Write down the Feynman rule for the interaction

Lii =g @7“14”\11. (5)

Then find the decay rate for A, — eTe™ to leading nontrivial order in g. (Hint: the
Feynman rule for an incoming massive vector is €,(p), where €, is its polarization.
The polarization satisfies € - € = —1 and p - € = 0, since 9,A* = 0. By rotational
symmetry, the decay rate doesn’t depend on the vector’s polarization, so you can
compute it by either averaging over possible polarizations using

> e(p, e (p, A) = i + 2L 6
e \p, )6 (p7 )_ 77 + M2 ( )
A

or by picking any specific polarization.)

4. Higgs boson production at a muon collider. (15 points)

The high energy physics community is currently debating how to best study the Higgs
boson with future particle accelerators. One idea is to build a machine that collides muons
and anti-muons at very high energies and produces Higgs bosons in their annihilation.

You should treat the muon, Higgs, and photon in the same way as in problem set 8, and
neglect any other particles or interactions. That is, consider the free Lagrangian

1 1 _ 1
Lo = 5(0h)° = Smi 1>+ V(i = m, )V — L F, (7)
with interactions m. _
Ling = ——L hUW — DAV, (8)
(

We first consider the case where a muon and anti-muon annihilate to produce a Higgs
boson, p*(p1)u (p2) = hipn).
a) Compute the scattering amplitude M,, j,—p, for this process at lowest nontrivial

order in perturbation theory, by explicitly using Wick’s theorem. Then show that
you get the same answer if you simply apply the Feynman rules, where the vertex is




The scattering cross section of particles a and b with masses m, and m; to produce N
final state particles is

dqz

a. = 2 — m2 6 0 —m,; )
Pa Pb—41 ---gN 2\/(2papb 4m2mb /H < (qz z) (qz )
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where | M., py—sa1 ..an|? 15 the modulus squared of the scattering amplitude, summed over
final state spins and averaged over initial state spins.

b) Compute |M,, p,—p,|? and write it in terms of the constants defined in (7)) and (g).

c¢) Using this result and ., compute the total cross section for this process. Your
result should contain distributions — what is their interpretation?

It is also possible to produce additional particles in the final state. For the rest of this
problem, we consider the process p*(p1) p~(p2) — v(ps3) h(pn) at leading nontrivial order
in perturbation theory.

d) Draw all the relevant Feynman diagrams and use the Feynman rules to write down
the corresponding amplitude M., p,—psp, -

e) Since a muon collider would operate at a center-of-mass energy much higher than the
muon mass, we can treat my, as a small quantity. Compute | My, p,—spsp, |> to leading
nontrivial order in m,,, and write it in terms of the Mandelstam invariants

s=(p1 +p2)2, t=(p —Ph)Q» u = (p1 —p3)2 (11)

and the constants defined in (7)) and (8). (Hint: your expression will contain a sum
over photon polarizations of the form

S et (pa, e (ps. N) (12)

)
which you can simply replace with —nt*.)

f) Using this result and (10)), compute the differential cross section do/dcos@ for this
process in the center-of-mass frame, where 6 is the angle between the three-momenta
of the muon and the photon. You may again work to leading nontrivial order in m,,.
Express your result in terms of s, #, and the constants defined in and .

5. x Kaluza—Klein theory. (5 points)

Some theories of physics beyond the Standard Model involve compactified extra space-
time dimensions. In this problem, you will see why this generically gives rise to many
new particles, and why the extra dimensions are hard to detect when they are very small.

Consider a massless real scalar field on a five-dimensional spacetime, where the extra
dimension is compactified on a circle of radius R. That is, points are labeled by (z,w)
where x = (t,z, vy, z) is the usual four-dimensional spacetime coordinate, and w € [0, 27 R],
with the points w = 0 and w = 27 R identified. The metric on this spacetime is still mostly
negative, so n°® = 1 with the other diagonal elements negative. The action is

5= / iy /0 ' dw%(ﬁMQﬁ(x,w))(aMgb(x,w)) (13)
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where the index M ranges from 0 to 4.
a) Using Fourier series, the w-dependence of the field can be written as

o, w) = 3 6 () e (14)

n

where the sum is over integer n. What are the k,,, and how is ¢ related to ¢(~?

b) Plug this decomposition into the action and perform the w integral to yield an ordi-
nary four-dimensional action, written in terms of the fields ¢™(z) for n > 0. What
are the physical masses m,, of these fields? (Hint: you should rescale the fields to give
the kinetic terms the usual normalizations.)

Now consider the case of a massless vector field, which can be decomposed as
Au(w,w) =Y A (z)ekn. (15)
The action is the five-dimensional analogue of the usual electromagnetic action,

1 2R
S = —Z/d‘lx/o dw Fyyn FMY (16)

and we have the five-dimensional analogue of the usual gauge symmetry, Ay; — Ap+0ya.

c) Show that we can use a gauge transformation to set AE[Z) = 0 when n # 0, and explain
why this is not possible when n = 0.

d) Using this gauge, find all the resulting four-dimensional fields and their masses.



