
Quantum Field Theory I
Final Examination

Stanford University, Autumn 2022

• This is a take-home final exam, worth 30% of the course grade. Submit your solu-
tions on Gradescope by 4 PM (Pacific time) on Thursday, December 15.

• The exam is graded out of 40 points; the starred question is extra credit.

• No late submissions will be accepted, except for extreme circumstances such as med-
ical emergencies; please email us as early as possible if these arise.

• If you have questions about the problems, email both of us. If we find there is an
error or omission in the problems, we will send an announcement to the entire class.

• You are allowed to use the course textbook, by Peskin and Schroeder, and all course
materials, including lecture notes, section notes, problem sets, and their solutions.

• You may use Mathematica or other computer programs to perform algebra, but you
cannot use external packages and must include a copy of your source code.

• Collaboration with other students, or use of other sources or the internet in gen-
eral, is prohibited. By submitting this exam, you affirm that you have received no
unauthorized aid and engaged in no academic dishonesty.

The exam is comparable in length to a problem set, so we encourage you to start early.
Note that using online sources is both against the rules and likely not actually helpful.
Legitimate sources such as review papers are usually too sophisticated to understand
given background at the level of this course. Unvetted sources such as internet forums
won’t answer the same questions, are frequently wrong, and differ widely in conventions.
All of the problems can be solved by mildly extending calculations you have done in the
problem sets earlier in the quarter, and none require any knowledge from outside the
course. Good luck!

Not only God knows, I know, and by the end of the semester, you will know.
— Sidney Coleman, in a Harvard QFT I lecture
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1. Field uncertainties. (10 points)
Quantum field theories have states with definite numbers of particles, in analogy with
the number states |n〉 of a quantum harmonic oscillator. However, there also exist states
with definite field profiles, in analogy with the position states |x〉. A general state is a
superposition of such field eigenstates, and thus can have an uncertain field value.

a) Consider a free real scalar field φ of mass m in the vacuum state. The variance of the
field value at x is

σ2
φ(x) = 〈0|φ(x)2|0〉 − (〈0|φ(x)|0〉)2 . (1)

Show that this quantity is infinite.

Solution: The expectation value is
〈0|φ(x)|0〉 = 0 (S1)

while the expectation value of the square is

〈0|φ(x)2|0〉 =

∫
dp

(2π)3
dq

(2π)3
1√

2E(p)
√

2E(q)

× 〈0|
(
a(p)eix·p + a†(p)e−ix·p

) (
a(q)eix·q + a†(q)e−ix·q

)
(S2)

=

∫
dp

(2π)3
dq

(2π)3
1√

2E(p)
√

2E(q)
〈0|a(p)a†(q)eix·(p−q)|0〉 (S3)

=

∫
dp

(2π)3
dq

(2π)3
1√

2E(p)
√

2E(q)
(2π)3δ(3)(p− q)eix·(p−q) (S4)

=

∫
dp

(2π)3
1

2E(p)
(S5)

=
1

2π2

∫ ∞
0

d|p| |p|2√
|p|2 +m2

(S6)

which is infinite.

b) There’s nothing wrong with the result in part (a), because in practice we can never
measure the field value at a point. We only measure “smeared” field values averaged
over some length scale a, such as

φa(x) =
1

a3π3/2

∫
d3y φ(y)e−|x−y|

2/a2 . (2)

Write σ2
φa(x)

in the form of an integral over a single variable.

Solution: The expectation value still vanishes, but now we have

〈0|φa(x)2|0〉 =
1

a6π3

∫
dydz e−

|x−y|2

a2 e−
|x−z|2

a2 〈0|φ(y)φ(z)|0〉 (S7)

=
1

a6π3

∫
dydz

dp

(2π)3
1

2E(~p)
eip(y−z)e−

|x−y|2

a2 e−
|x−z|2

a2 . (S8)

Next, we perform the shifts z→ z + x and y→ y + x. Then the integral∫
dy eip(y)e−

|y|2

a2 =

∫
dy ei|p||y| cos θe−

|y|2

a2 (S9)

= (2π)

∫ ∞
0

d|y||y|2
∫ 1

−1
d cos θ|y|ei|p| cos θe−

|y|2

a2 (S10)

=
(4π)

|p|

∫ ∞
0

d|y||y| sin(|y||p|)e−
|y|2

a2 (S11)

= a3π3/2e−
|p|2a2

4 . (S12)

2



Inserting this above, we find

〈0|φa(x)2|0〉 =

∫
dp

(2π)3
1

2E(~p)
e−
|p|2a2

2 . (S13)

Simplifying, we thus conclude that

σ2
φa(x)

= 〈0|φa(x)2|0〉 =
1

4π2

∫ ∞
0

d|p| |p|2√
|p|2 +m2

e−
|p|2a2

2 . (S14)

c) The standard deviation of the smeared field is finite. Find expressions for σ2
φa(x)

in

the limits a � 1/m and a � 1/m. (Hint: in each regime, your answer should have
the form α aβ for some values of α and β. If you’re having trouble doing the final
integral in one of these cases, you can start from the result

∫∞
−∞ e

−x2 dx =
√
π.)

Solution: Changing to the variable t = a|p|, we have

σ2
φa(x)

=
1

4π2a2

∫ ∞
0

dt
t2√

t2 + a2m2
e−

t2

2 . (S15)

Expanding around ma� 1, we find

lim
ma→0

σ2
φa(x)

=
1

4π2a2

∫ ∞
0

dt te−
t2

2 =
1

4π2a2
. (S16)

Expanding around ma� 1, we find

lim
1/(ma)→0

σ2
φa(x)

=
1

4π2a3m

∫ ∞
0

dt t2e−
t2

2 =
1

4π3/2a3m
√

2
. (S17)

d) Consider a cubical copper microwave cavity of volume V = 1 m3. The electric field
in the cavity does not have a definite value, due to the quantization of the electro-
magnetic field. Find a rough, order of magnitude estimate for the standard deviation
of the average electric field in the cavity in its ground state, and evaluate it in volts
per meter. (Hint: you will need to go from natural units back to SI units using
~ = 10−34 J s, c = 3× 108 m/s, and e = 1.6× 10−19 C.)

Solution: In part (c), we showed that for a massless vector field, the standard deviation of the field
average over a region of size a is σ ∼ 1/a. The same logic applies to a massless vector field Aµ. The
electric field in the cavity is related to Aµ by one spatial or temporal derivative, which by dimensional
analysis also gives a factor of 1/a. Thus, we expect σE ∼ 1/a2 ∼ 1/V 2/3. (We could also have jumped
directly to this result. We already know [E] = 2 from problem set 1, and part (c) tells us the answer is
neither zero nor infinity, so by dimensional analysis, 1/a2 is the only possible answer.)

Going from natural units back to SI units, we have

σE ∼
~c
ea2
∼ 10−7 V/m. (S18)

This might be surprisingly large if you haven’t seen it before, but it lines up with typical “quantum noise”
scales in precision electronics. Any answer within a few orders of magnitude of this is acceptable.

2. Forces on external currents. (5 points)
In problem set 7, you considered the “improved” electromagnetic stress-energy tensor,

T̂ µν = −ηρσF µρF νσ +
1

4
ηµνFρσF

ρσ (3)
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and showed that it was conserved, ∂µT̂
µν = 0, when no current was present.

a) When there is a nonzero current Jµ = (ρ,J), the stress-energy tensor defined in (3)
has divergence ∂µT̂

µν = −Kν . Find Kν .

Solution: The only difference is that the equation of motion is now ∂µF
µν = Jν . We already know

that when ∂µF
µν = 0, the stress-energy is conserved, so to compute Kν we only need to consider what

terms appear which are proportional to Jµ. This can only occur when the derivative ∂µ hits the factor
of Fµρ in the first term, so

∂µT̂
µν = −ηρσ(∂µF

µρ)F νσ = −ηρσJρF νσ. (S19)

Thus, the answer is Kν = JσF
νσ.

You might be wondering why we are allowed to use the original expression for the stress-energy tensor,
as rerunning the Noether/Belinfante procedure will give additional terms when Jµ is nonzero. The point
is that we’re trying to find the change in the energy-momentum of the electromagnetic field alone, so we
shouldn’t include those extra terms, which represent something like potential energy-momentum.

b) The vector Kµ = (K0,K) is the four-momentum delivered to the current by the field,
per unit space and unit time. Explicitly write K0 and K in terms of ρ, J, E, and B.

Solution: Expanding the components out, we have

Ki = JσF
iσ = J0F

i0 + JjF
ij = J0E

i − JjεijkBk. (S20)

Noting that J0 = J0 = ρ and Ji = −J i, we conclude

K = ρE + J×B (S21)

which of course is just the continuous version of the Lorentz force law. Similarly, we have

K0 = JiF
0i = (−J i)(−F i0) = J ·E (S22)

which is the rate at which the electric field does work on the charges.

3. Pseudoscalar and vector decays. (10 points)
In this problem we will consider decays of particles to pairs of electrons. As usual, the
electron is described by a Dirac field Ψ of mass me. All decay rates should be computed
in the rest frame of the decaying particle, and you can reuse results from problem sets.

a) Consider a pseudoscalar particle, described by a real scalar field φ of mass M , where
M > 2me. Write down the Feynman rule for the interaction

Lint = igφ Ψ̄γ5Ψ. (4)

Then find the decay rate for φ→ e+e− to leading nontrivial order in g.

Solution: As usual, the Feynman rule comes from −iHint = iLint, so the vertex factor is −gγ5. (This
looks unusual, but it’s correct: there had to be an i in Lint to ensure the action is real when g is.) Then

M = −gūr(p1)γ5vs(p2). (S23)

Squaring and summing over final spin states gives

|M̄|2 = g2
∑
r,s

ūr(p1)γ5vs(p2)v†s(p2)(γ5)†(γ0)†ur(p1) (S24)

= −g2 tr((/p1 +me)γ
5(/p2 −me)γ

5) (S25)

= g2 tr((/p1 +m2)(/p2 +me)γ
5γ5) (S26)

= 4g2(p1 · p2 +m2
e) (S27)

= 2g2M2. (S28)

4



Plugging this into the decay rate result derived in problem set 5 gives

Γ =
g2

8π

√
M2 − 4m2

e. (S29)

b) Now consider a vector particle, described by a massive vector field Aµ of mass M ,
where M > 2me. Write down the Feynman rule for the interaction

Lint = g Ψ̄γµAµΨ. (5)

Then find the decay rate for Aµ → e+e− to leading nontrivial order in g. (Hint: the
Feynman rule for an incoming massive vector is εµ(p), where εµ is its polarization.
The polarization satisfies ε · ε = −1 and p · ε = 0, since ∂µA

µ = 0. By rotational
symmetry, the decay rate doesn’t depend on the vector’s polarization, so you can
compute it by either averaging over possible polarizations using∑

λ

εµ(p, λ)ε∗ν(p, λ) = −ηµν +
pµpν

M2
(6)

or by picking any specific polarization.)

Solution: The Feynman rule for the vertex is igγµ, as in ordinary QED, so

M = igελµūr(p1)γµvs(p2). (S30)

Summing over final spin states and averaging over the initial three spin states, we have

|M̄|2 =
g2

3

(
−ηµν +

pµpν
M2

)∑
rs

ūr(p1)γµvs(p2)v̄2(p2)γνur(p1). (S31)

Note that the pµpν terms won’t contribute anything, as by the Dirac equation,

ūr(p1)/pvs(p2) = ūr(p1)(/p1 + /p2)vs(p2) = ūr(p1)(me −me)vs(p2) = 0. (S32)

Thus, keeping just the metric term and rewriting the spinor sum as a trace,

|M̄|2 = −g
2

3
ηµν tr((/p1 +me)γ

µ(/p2 −me)γ
ν) (S33)

= −4g2

3
ηµν(pµ1p

ν
2 + pµ2p

ν
1 − (p1 · p2 −m2

e)η
µν) (S34)

=
8g2

3
(p1 · p2 + 2m2

e) (S35)

=
4g2M2

3

(
1 +

2m2
e

M2

)
. (S36)

Plugging this into our decay rate result gives

Γ =
g2

12π

(
1 +

2m2
e

M2

)√
M2 − 4m2

e. (S37)

4. Higgs boson production at a muon collider. (15 points)
The high energy physics community is currently debating how to best study the Higgs
boson with future particle accelerators. One idea is to build a machine that collides muons
and anti-muons at very high energies and produces Higgs bosons in their annihilation.
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You should treat the muon, Higgs, and photon in the same way as in problem set 8, and
neglect any other particles or interactions. That is, consider the free Lagrangian

L0 =
1

2
(∂µh)2 − 1

2
m2
h h

2 + Ψ̄(i/∂ −mµ)Ψ− 1

4
FµνF

µν (7)

with interactions
Lint = −mµ

v
hΨ̄Ψ− eΨ̄ /AΨ. (8)

We first consider the case where a muon and anti-muon annihilate to produce a Higgs
boson, µ+(p1)µ

−(p2)→ h(ph).

a) Compute the scattering amplitude Mp1 p2→ph for this process at lowest nontrivial
order in perturbation theory, by explicitly using Wick’s theorem. Then show that
you get the same answer if you simply apply the Feynman rules, where the vertex is

<latexit sha1_base64="f5pWRfWNtcSMrAXnosxytPP0gaw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xSLCQEWys1I6qySA6H5Qrbs2dA60SLycVyNEclL/6Q0nSmApDONa657mJ8TOsDCOcTkv9VNMEkzEe0Z6lAsdU+9n82ik6s8oQhVLZEgbN1d8TGY61nsSB7YyxifSyNxP/83qpCa/9jIkkNVSQxaIw5chINHsdDZmixPCJJZgoZm9FJMIKE2MDKtkQvOWXV0n7ouZd1ur39UrjJo+jCCdwClXw4AoacAdNaAGBR3iGV3hzpPPivDsfi9aCk88cwx84nz/g2o6v</latexit>

h(ph)

<latexit sha1_base64="A91KwWkSK+ntbIj18J8jVnDr2aw=">AAAB83icbVDLSgMxFM3UV62vqks3wSJUlDIjRV0W3bisYB/QGUsmzbShSSbkIZShv+HGhSJu/Rl3/o3pY6GtBy4czrmXe++JJaPa+P63l1tZXVvfyG8WtrZ3dveK+wdNnVqFSQOnLFXtGGnCqCANQw0jbakI4jEjrXh4O/FbT0RpmooHM5Ik4qgvaEIxMk4KQ24fz8qyG5zr026x5Ff8KeAyCeakBOaod4tfYS/FlhNhMENadwJfmihDylDMyLgQWk0kwkPUJx1HBeJER9n05jE8cUoPJqlyJQycqr8nMsS1HvHYdXJkBnrRm4j/eR1rkusoo0JaQwSeLUosgyaFkwBgjyqCDRs5grCi7laIB0ghbFxMBRdCsPjyMmleVILLSvW+WqrdzOPIgyNwDMogAFegBu5AHTQABhI8g1fw5lnvxXv3PmatOW8+cwj+wPv8AYGwkLI=</latexit>

µ+(p1, s)

<latexit sha1_base64="edszNSddpTFLNQRcykqPP0j12F4=">AAAB83icbVDLSgMxFM3UV62vqks3wSJU0DJTirosunFZwT6gM5ZMmmlDk0zIQyhDf8ONC0Xc+jPu/BvTx0KrBy4czrmXe++JJaPa+P6Xl1tZXVvfyG8WtrZ3dveK+wctnVqFSROnLFWdGGnCqCBNQw0jHakI4jEj7Xh0M/Xbj0Rpmop7M5Yk4mggaEIxMk4KQ24fzsuyVz0zp71iya/4M8C/JFiQElig0St+hv0UW06EwQxp3Q18aaIMKUMxI5NCaDWRCI/QgHQdFYgTHWWzmyfwxCl9mKTKlTBwpv6cyBDXesxj18mRGeplbyr+53WtSa6ijAppDRF4viixDJoUTgOAfaoINmzsCMKKulshHiKFsHExFVwIwfLLf0mrWgkuKrW7Wql+vYgjD47AMSiDAFyCOrgFDdAEGEjwBF7Aq2e9Z+/Ne5+35rzFzCH4Be/jG4fSkLY=</latexit>

µ�(p2, t)

= −imµ

v
. (9)

Solution: The initial and final states are

|µ+(p1, s), µ
−(p2, t)〉 =

√
2E(~p1)

√
2E(~p2)b†s(p1)a†t(p2)|0〉, (S38)

|h〉 =
√

2E( ~ph)a†(ph)|0〉. (S39)

We can then compute for example the S-matrix element

〈µ+(p1, s), µ
−(p2, t)|

∫
d4xiLint|h〉 = 〈µ+(p1, s), µ

−(p2, t)|
∫
d4xi

mh

v
h(x)Ψ̄i(x)Ψi(x)|h〉

=
−imµ

v

√
8E(ph)E(p1)E(p2)〈0|

∫
d4xbs(p1)at(p2)h(x)Ψ̄i(x)Ψi(x)a†(ph)|0〉.

(S40)

We find for example for

h(x)a†(ph) =

∫
dp

(2π)3
1√

2E(p)

[
a(p)e−ipx + a†(p)eipx

]
a†(ph)

= a†(ph)h(x) +

∫
dp

(2π)3
1√

2E(p)
[a(p), a†(ph)]e−ipx

= a†(ph)h(x) +

∫
dp

(2π)3
1√

2E(p)
(2π)3δ(3)(~p− ~ph)e−ipx

= a†(ph)h(x) +
1√

2E(ph)
e−iphx (S41)

In our vacuum expectation value of (S40), the creation operator of the scalar field then acts directly on
the vacuum state on the left and annihilates it and only the commutator term remains. Similarly, we find

at(p2)Ψi(x) = uti(p2)
eip2x√
2E(p2)

−Ψi(x)at(p2).

bs(p1)Ψ̄i(x) = v̄si (p1)
eip1x√
2E(p1)

− Ψ̄i(x)bs(p1). (S42)
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As
{b†s(p1),Ψ(x)} = {Ψ̄i(x), a†t(p2)} = 0, (S43)

only the anti-commutator terms survive. We find

〈µ+(p1, s), µ
−(p2, t)|

∫
d4xiLint|h〉 = − imµ

v

∫
d4xe−ix(ph−p1−p2)v̄si (p1)δiju

t
j(p2)

= (2π)4δ(4)(ph − p1 − p2)v̄si (p1)

(
− imµ

v
δij

)
utj(p2). (S44)

The scattering matrix elements are defined by

Sfi = δfi + (2π)4δ(pf − pi)M, (S45)

and we associate uti(p2) with an ingoing muon and v̄sj (p1) with an ingoing anti-muon. We thus conclude

Mp1 p2→ph = v̄si (p1)
(
−imµ

v

)
uti(p2) (S46)

which is clearly also what we get from the Feynman rules.

The scattering cross section of particles a and b with masses ma and mb to produce N
final state particles is

σpa pb→q1 ...qN =
1

2
√

(2papb)2 − 4m2
am

2
b

∫ N∏
i=1

(
d4qi

(2π)4
(2π)δ(q2i −m2

i )θ(q
0
i −mi)

)
× (2π)4δ(4)(pa + pb − q1 − · · · − qN)|M̄pa pb→q1 ...qN |2 (10)

where |M̄pa pb→q1 ...qN |2 is the modulus squared of the scattering amplitude, summed over
final state spins and averaged over initial state spins.

b) Compute |M̄p1 p2→ph|2 and write it in terms of the constants defined in (7) and (8).

Solution: Using the result of part (a), we have

|M̄p1 p2→ph |2 =
1

4

∑
s,t

ūti(p2)
(
i
mµ

v

)
vsi (p1)v̄sj (p1)

(
−imµ

v

)
utj(p2) (S47)

=
m2
µ

4v2
tr[(/p1 −mµ)(/p2 +mµ)] (S48)

=
m2
µ

4v2
tr[/p1/p2]− 4m2

µ (S49)

=
m2
µ

2v2
(m2

h − 4m2
µ). (S50)

The factor of 1/4 arises due to averaging over 2 spin states per initial state fermion.

c) Using this result and (10), compute the total cross section for this process. Your
result should contain distributions – what is their interpretation?

Solution: Introducing s = (p1 + p2)2, we find

σp1 p2→ph =
π√

s(s− 4m2
µ)

∫
d4phδ(p

2
h −m2

h)θ(p0h −mh)δ(4)(p1 + p2 − ph)|M̄p1 p2→ph |2 (S51)

=
π√

s(s− 4m2
µ)
δ(s−m2

h)θ(p01 + p02 −mh)|M̄p1 p2→ph |2 (S52)

=
πm2

µ

2v2

√
1−

4m2
µ

m2
h

δ(s−m2
h)θ(p01 + p02 −mh). (S53)
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The distributions forces the center-of-mass energy s to be exactly equal to the Higgs boson mass, which
makes sense by energy-momentum conservation. (There is something weird about this result, though:
in physics you can never have two things be exactly equal to each other, so this would suggest Higgs
bosons are never produced this way at all. The resolution is that all unstable particles actually have a
slightly indefinite mass (heuristically due to the energy-time uncertainty principle applied to their finite
decay time) so the delta function is replaced with a narrow peak.)

It is also possible to produce additional particles in the final state. For the rest of this
problem, we consider the process µ+(p1)µ

−(p2)→ γ(p3)h(ph) at leading nontrivial order
in perturbation theory.

d) Draw all the relevant Feynman diagrams and use the Feynman rules to write down
the corresponding amplitude Mp1p2→p3ph .

Solution: There are two relevant diagrams:

D1 =

<latexit sha1_base64="f5pWRfWNtcSMrAXnosxytPP0gaw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xSLCQEWys1I6qySA6H5Qrbs2dA60SLycVyNEclL/6Q0nSmApDONa657mJ8TOsDCOcTkv9VNMEkzEe0Z6lAsdU+9n82ik6s8oQhVLZEgbN1d8TGY61nsSB7YyxifSyNxP/83qpCa/9jIkkNVSQxaIw5chINHsdDZmixPCJJZgoZm9FJMIKE2MDKtkQvOWXV0n7ouZd1ur39UrjJo+jCCdwClXw4AoacAdNaAGBR3iGV3hzpPPivDsfi9aCk88cwx84nz/g2o6v</latexit>

h(ph)

<latexit sha1_base64="A91KwWkSK+ntbIj18J8jVnDr2aw=">AAAB83icbVDLSgMxFM3UV62vqks3wSJUlDIjRV0W3bisYB/QGUsmzbShSSbkIZShv+HGhSJu/Rl3/o3pY6GtBy4czrmXe++JJaPa+P63l1tZXVvfyG8WtrZ3dveK+wdNnVqFSQOnLFXtGGnCqCANQw0jbakI4jEjrXh4O/FbT0RpmooHM5Ik4qgvaEIxMk4KQ24fz8qyG5zr026x5Ff8KeAyCeakBOaod4tfYS/FlhNhMENadwJfmihDylDMyLgQWk0kwkPUJx1HBeJER9n05jE8cUoPJqlyJQycqr8nMsS1HvHYdXJkBnrRm4j/eR1rkusoo0JaQwSeLUosgyaFkwBgjyqCDRs5grCi7laIB0ghbFxMBRdCsPjyMmleVILLSvW+WqrdzOPIgyNwDMogAFegBu5AHTQABhI8g1fw5lnvxXv3PmatOW8+cwj+wPv8AYGwkLI=</latexit>

µ+(p1, s)

<latexit sha1_base64="edszNSddpTFLNQRcykqPP0j12F4=">AAAB83icbVDLSgMxFM3UV62vqks3wSJU0DJTirosunFZwT6gM5ZMmmlDk0zIQyhDf8ONC0Xc+jPu/BvTx0KrBy4czrmXe++JJaPa+P6Xl1tZXVvfyG8WtrZ3dveK+wctnVqFSROnLFWdGGnCqCBNQw0jHakI4jEj7Xh0M/Xbj0Rpmop7M5Yk4mggaEIxMk4KQ24fzsuyVz0zp71iya/4M8C/JFiQElig0St+hv0UW06EwQxp3Q18aaIMKUMxI5NCaDWRCI/QgHQdFYgTHWWzmyfwxCl9mKTKlTBwpv6cyBDXesxj18mRGeplbyr+53WtSa6ijAppDRF4viixDJoUTgOAfaoINmzsCMKKulshHiKFsHExFVwIwfLLf0mrWgkuKrW7Wql+vYgjD47AMSiDAFyCOrgFDdAEGEjwBF7Aq2e9Z+/Ne5+35rzFzCH4Be/jG4fSkLY=</latexit>

µ�(p2, t)

<latexit sha1_base64="Nque+Dio5/lhkDMGYyKS5QaME8I=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgVpCRa1GXRjcsK9gFNCDeTSTt0JgkzEyGE+ituXCji1g9x5984fSy09cDA4Zx7uHdOkDIqlW1/Gyura+sbm6Wt8vbO7t6+eXDYkUkmMGnjhCWiF4AkjMakrahipJcKAjxgpBuMbid+95EISZP4QeUp8TgMYhpRDEpLvllxB8A51FL/4sxlOhfCqW9W7bo9hbVMnDmpojlavvnlhgnOOIkVZiBl37FT5RUgFMWMjMtuJkkKeAQD0tc0Bk6kV0yPH1snWgmtKBH6xcqaqr8TBXApcx7oSQ5qKBe9ifif189UdO0VNE4zRWI8WxRlzFKJNWnCCqkgWLFcE8CC6lstPAQBWOm+yroEZ/HLy6RzXncu6437RrV5M6+jhI7QMaohB12hJrpDLdRGGOXoGb2iN+PJeDHejY/Z6Ioxz1TQHxifP4WLlA0=</latexit>

�(p3,�)

= v̄s(p1)
(
−imµ

v

) i(/p1 − /ph +mµ)

(p1 − ph)2 −m2
µ

(−ieγµ)ut(p2)εµ(p3, λ). (S54)

D2 =

<latexit sha1_base64="f5pWRfWNtcSMrAXnosxytPP0gaw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xSLCQEWys1I6qySA6H5Qrbs2dA60SLycVyNEclL/6Q0nSmApDONa657mJ8TOsDCOcTkv9VNMEkzEe0Z6lAsdU+9n82ik6s8oQhVLZEgbN1d8TGY61nsSB7YyxifSyNxP/83qpCa/9jIkkNVSQxaIw5chINHsdDZmixPCJJZgoZm9FJMIKE2MDKtkQvOWXV0n7ouZd1ur39UrjJo+jCCdwClXw4AoacAdNaAGBR3iGV3hzpPPivDsfi9aCk88cwx84nz/g2o6v</latexit>

h(ph)

<latexit sha1_base64="A91KwWkSK+ntbIj18J8jVnDr2aw=">AAAB83icbVDLSgMxFM3UV62vqks3wSJUlDIjRV0W3bisYB/QGUsmzbShSSbkIZShv+HGhSJu/Rl3/o3pY6GtBy4czrmXe++JJaPa+P63l1tZXVvfyG8WtrZ3dveK+wdNnVqFSQOnLFXtGGnCqCANQw0jbakI4jEjrXh4O/FbT0RpmooHM5Ik4qgvaEIxMk4KQ24fz8qyG5zr026x5Ff8KeAyCeakBOaod4tfYS/FlhNhMENadwJfmihDylDMyLgQWk0kwkPUJx1HBeJER9n05jE8cUoPJqlyJQycqr8nMsS1HvHYdXJkBnrRm4j/eR1rkusoo0JaQwSeLUosgyaFkwBgjyqCDRs5grCi7laIB0ghbFxMBRdCsPjyMmleVILLSvW+WqrdzOPIgyNwDMogAFegBu5AHTQABhI8g1fw5lnvxXv3PmatOW8+cwj+wPv8AYGwkLI=</latexit>

µ+(p1, s)

<latexit sha1_base64="edszNSddpTFLNQRcykqPP0j12F4=">AAAB83icbVDLSgMxFM3UV62vqks3wSJU0DJTirosunFZwT6gM5ZMmmlDk0zIQyhDf8ONC0Xc+jPu/BvTx0KrBy4czrmXe++JJaPa+P6Xl1tZXVvfyG8WtrZ3dveK+wctnVqFSROnLFWdGGnCqCBNQw0jHakI4jEj7Xh0M/Xbj0Rpmop7M5Yk4mggaEIxMk4KQ24fzsuyVz0zp71iya/4M8C/JFiQElig0St+hv0UW06EwQxp3Q18aaIMKUMxI5NCaDWRCI/QgHQdFYgTHWWzmyfwxCl9mKTKlTBwpv6cyBDXesxj18mRGeplbyr+53WtSa6ijAppDRF4viixDJoUTgOAfaoINmzsCMKKulshHiKFsHExFVwIwfLLf0mrWgkuKrW7Wql+vYgjD47AMSiDAFyCOrgFDdAEGEjwBF7Aq2e9Z+/Ne5+35rzFzCH4Be/jG4fSkLY=</latexit>

µ�(p2, t)

<latexit sha1_base64="Nque+Dio5/lhkDMGYyKS5QaME8I=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgVpCRa1GXRjcsK9gFNCDeTSTt0JgkzEyGE+ituXCji1g9x5984fSy09cDA4Zx7uHdOkDIqlW1/Gyura+sbm6Wt8vbO7t6+eXDYkUkmMGnjhCWiF4AkjMakrahipJcKAjxgpBuMbid+95EISZP4QeUp8TgMYhpRDEpLvllxB8A51FL/4sxlOhfCqW9W7bo9hbVMnDmpojlavvnlhgnOOIkVZiBl37FT5RUgFMWMjMtuJkkKeAQD0tc0Bk6kV0yPH1snWgmtKBH6xcqaqr8TBXApcx7oSQ5qKBe9ifif189UdO0VNE4zRWI8WxRlzFKJNWnCCqkgWLFcE8CC6lstPAQBWOm+yroEZ/HLy6RzXncu6437RrV5M6+jhI7QMaohB12hJrpDLdRGGOXoGb2iN+PJeDHejY/Z6Ioxz1TQHxifP4WLlA0=</latexit>

�(p3,�)

= v̄s(p1)(−ieγµ)
i(/p1 − /p3 +mµ)

(p1 − p3)2 −m2
µ

(
−imµ

v

)
ut(p2)εµ(p3, λ). (S55)

The amplitude is D1 +D2. All other diagrams are suppressed by more powers of mµ/v, or more powers
of e, or both.

e) Since a muon collider would operate at a center-of-mass energy much higher than the
muon mass, we can treat mµ as a small quantity. Compute |M̄p1 p2→p3 ph|2 to leading
nontrivial order in mµ, and write it in terms of the Mandelstam invariants

s = (p1 + p2)
2, t = (p1 − ph)2, u = (p1 − p3)2 (11)

and the constants defined in (7) and (8). (Hint: your expression will contain a sum
over photon polarizations of the form∑

λ

εµ(p3, λ)ε∗ν(p3, λ) (12)

which you can simply replace with −ηµν .)
Solution: First, we find the leading term in mµ for our diagrams:

D1 =
−iemµ

vt
v̄s(p1)(/p1 − /ph)γµut(p2)εµ(p3, λ), (S56)

D2 =
−iemµ

vu
v̄s(p1)γµ(/ph − /p2)ut(p2)εµ(p3, λ). (S57)
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Since these quantities already have a factor of mµ in front, and we only want the lowest order in
mµ, we can set mµ to zero when evaluating what’s left. The Dirac equation for the spinors becomes
v̄s(p1)/p1 = 0 = /p2ut(p2), from which we find

D1 =
iemµ

vt
v̄s(p1)/phγ

µut(p2)εµ(p3, λ), (S58)

D2 =
−iemµ

vu
v̄s(p1)γµ/phut(p2)εµ(p3, λ). (S59)

Next, we compute the terms in the square of the total amplitude,

1

4

∑
s,t,λ

D1D
†
1 = −

e2m2
µ

4v2t2
tr[/p1/p4γµ/p2γ

µ
/p4] =

e2m2
µ

2v2t2
tr[/p1/p4/p2/p4] =

e2m2
µu

v2t
. (S60)

1

4

∑
s,t,λ

D1D
†
2 =

e2m2
µ

4v2tu
tr[/p1/p4γµ/p2/p4γ

µ] =
4e2m2

µ

v2tu
(p1p4)(p2p4) =

e2m2
µ

v2tu
(m2

h − t)(m2
h − u). (S61)

1

4

∑
s,t,λ

D2D
†
2 = −

e2m2
µ

4v2u2
tr[/p1γµ/p4/p2/p4γ

µ] =
e2m2

µ

2v2u2
tr[/p1/p4/p2/p4] =

e2m2
µt

v2u
. (S62)

Above, we used the identities

γµ/pγµ = −2/p, (S63)

γµ/p/qγµ = 4pq, (S64)

tr[/p/q] = 4pq, (S65)

p1p4 =
m2
h − t
2

, (S66)

p2p4 =
m2
h − u
2

, (S67)

m2
h = s+ t+ u, (S68)

tr[/p1/p4/p2/p4] = 4
[
2(p1p4)(p2p4)− (p1p2)p24

]
= 2tu (S69)

several of which follow from neglecting mµ. After some algebra, we find

|M̄p1 p2→p3 ph |2 =
1

4

∑
s,t,λ

[
D1D

†
1 + 2 Re

(
D1D

†
2

)
+D2D

†
2

]
=
e2m2

µ

v2tu

(
s2 +m4

h

)
. (S70)

f) Using this result and (10), compute the differential cross section dσ/d cos θ for this
process in the center-of-mass frame, where θ is the angle between the three-momenta
of the muon and the photon. You may again work to leading nontrivial order in mµ.
Express your result in terms of s, θ, and the constants defined in (7) and (8).

Solution: Starting from (10), we have

σp1 p2→p3 ph =
1

2(2π)2s

∫
d4p3d

4phδ(p
2
3)δ(p2h −m2

h)θ(p03)θ(p0h −mh)

× δ(4)(p1 + p2 − p3 − ph)|M̄p1 p2→p3 ph |2. (S71)

We work in the center-of-mass frame where s = E2
CM and do the ph integral, giving

σp1 p2→p3 ph =
1

2(2π)2s

∫
d4p3δ(p

2
3)δ(E2

CM−2ECMp
0
3−m2

h)θ(p03)θ(ECM−p03−mh)|M̄p1 p2→p3 ph |2. (S72)

We parametrize the p3 integral by writing∫
d4p3δ(p

2
3) =

∫ ∞
0

dp03
d|~p3|2

2
|~p3|

∫
d cos θ dφ δ((p03)2 − |~p3|2) (S73)

= π

∫ ∞
0

dp03 p
0
3

∫
d cos θ. (S74)
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We can integrate over p03 using the remaining delta function,

δ(E2
CM − 2ECMp

0
3 −m2

h) =
1

2ECM
δ

(
p03 −

1

2
(ECM −

m2
h

ECM
)

)
. (S75)

Since we want a differential cross section, we simply drop the last integral over cos θ. Using

t = (p2 − p3)2 = −2p2p3 = −ECMp03(1− cos θ) (S76)

u = (p1 − p3)2 = −2p1p3 = −ECMp03(1 + cos θ) (S77)

we find

dσp1 p2→p3 ph
d cos θ

=
s−m2

h

32s2π
|M̄p1 p2→p3 ph |2 =

e2m2
µ

8πv2s2
s2 +m4

h

(s−m2
h)(1− cos2 θ)

. (S78)

5. ? Kaluza–Klein theory. (5 points)
Some theories of physics beyond the Standard Model involve compactified extra space-
time dimensions. In this problem, you will see why this generically gives rise to many
new particles, and why the extra dimensions are hard to detect when they are very small.

Consider a massless real scalar field on a five-dimensional spacetime, where the extra
dimension is compactified on a circle of radius R. That is, points are labeled by (x,w)
where x = (t, x, y, z) is the usual four-dimensional spacetime coordinate, and w ∈ [0, 2πR],
with the points w = 0 and w = 2πR identified. The metric on this spacetime is still mostly
negative, so η00 = 1 with the other diagonal elements negative. The action is

S =

∫
d4x

∫ 2πR

0

dw
1

2
(∂Mφ(x,w))(∂Mφ(x,w)) (13)

where the index M ranges from 0 to 4.

a) Using Fourier series, the w-dependence of the field can be written as

φ(x,w) =
∑
n

φ(n)(x) eiknw (14)

where the sum is over integer n. What are the kn, and how is φ(n) related to φ(−n)?

Solution: Because the function is periodic in w with period 2πR, we must have kn = n/R. Since the
field is real, we must have (φ(n))∗ = φ(−n).

b) Plug this decomposition into the action and perform the w integral to yield an ordi-
nary four-dimensional action, written in terms of the fields φ(n)(x) for n ≥ 0. What
are the physical masses mn of these fields? (Hint: you should rescale the fields to give
the kinetic terms the usual normalizations.)

Solution: The result is

S =

∫
d4x

∑
n,n′

∫ 2πR

0

dw
1

2
∂M (φ(n)einw/R)∂M (φ(n

′)ein
′w/R) (S79)

=

∫
d4x

∑
n,n′

∫ 2πR

0

dw
1

2

(
∂µφ

(n)∂µφ(n
′) − in

R

in′

R
φ(n)φ(n

′)

)
einw/Rein

′w/R (S80)

=

∫
d4x

∑
n,n′

1

2

(
∂µφ

(n)∂µφ(n
′) − in

R

in′

R
φ(n)φ(n

′)

)
2πRδn,−n′ (S81)

=

∫
d4x

∑
n

1

2

(
∂µφ

(n)∂µφ(−n) − n2

R2
φ(n)φ(−n)

)
2πR. (S82)
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Pairing up terms with positive and negative n, we get

S = 2πR

∫
d4x

1

2
∂µφ

(0)∂µφ(0) +
∑
n>0

(
|∂µφ(n)|2 −

n2

R2
|φ(n)|2

)
. (S83)

This is almost the action for a real scalar field and a bunch of complex scalar fields, but we need to
rescale to get the right kinetic terms. Defining ϕ(n) =

√
2πRφ(n), we conclude

S =

∫
d4x

1

2
∂µϕ

(0)∂µϕ(0) +
∑
n>0

(
|∂µϕ(n)|2 − n2

R2
|ϕ(n)|2

)
(S84)

from which we see m0 = 0 and mn = n/R. We get an infinite tower of increasingly massive particles,
whose masses are very high if R is very small.

Now consider the case of a massless vector field, which can be decomposed as

AM(x,w) =
∑
n

A
(n)
M (x)eiknw. (15)

The action is the five-dimensional analogue of the usual electromagnetic action,

S = −1

4

∫
d4x

∫ 2πR

0

dw FMNF
MN (16)

and we have the five-dimensional analogue of the usual gauge symmetry, AM → AM+∂Mα.

c) Show that we can use a gauge transformation to set A
(n)
4 = 0 when n 6= 0, and explain

why this is not possible when n = 0.

Solution: We can set A
(n)
4 = 0 for all n 6= 0 by taking

α = −
∑
n6=0

A
(n)
M (x)

eiknw

ikn
. (S85)

This doesn’t work for n = 0 because it would result in division by zero. Or, in gratuitously fancy language,

A
(0)
4 corresponds to the constant function on the circle, which has zero derivative, yet itself is not the

derivative of anything; such a function exists because of the nontrivial cohomology of the circle.

d) Using this gauge, find all the resulting four-dimensional fields and their masses.

Solution: Since we’re going to have to rescale the fields later anyway, let’s preemptively define

Aµ(x,w) =
√

2πR
∑
n

A(n)
µ (x)eiknw, φ =

√
2πRA

(0)
4 . (S86)

The action becomes

S =

∫
d4x

∫ 2πR

0

dw

(
−1

4
FµνF

µν − 1

2
Fµ4F

µ4

)
. (S87)

The first term is

S1 =

∫
d4x

∫ 2πR

0

dw

2πR

−1

4

∑
n,n′

ei(n+n
′)w/RF (n)

µν F
µν (n′)

 (S88)

= −1

4

∫
d4xF (0)

µν F
µν (0) − 1

2

∑
n>0

∫
d4x (F (n)

µν )∗Fµν (n) (S89)
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which is just the kinetic term for a real vector field A
(0)
µ and a tower of complex vector fields A

(n)
µ for

n > 0. Next, the second term is

S = −1

2

∫
d4x

∫ 2πR

0

dw

2πR

(
∂µφ−

∑
n

∂4(A(n)
µ einw/R)

)(
−∂µφ−

∑
n′

∂4(Aµ (n′)ein
′w/R)

)
(S90)

=

∫
d4x

1

2
∂µφ∂

µφ− 1

2

∫
d4x

∫ 2πR

0

dw

2πR

∑
n,n′

ei(n+n
′)w/Rnn

′

R2
A(n)
µ Aµ (n′) (S91)

=

∫
d4x

1

2
∂µφ∂

µφ+
∑
n>0

∫
d4x

n2

R2
(A(n)

µ )∗Aµ (n). (S92)

From this we conclude we have:

• One massless real scalar field φ.

• One massless real vector field A
(0)
µ .

• A tower of massive complex vector fields A
(n)
µ with masses n/R.

By the way, if you do the analogous calculation starting with a five-dimensional metric, the massless
degrees of freedom you’ll get are a real scalar, a real vector, and a four-dimensional metric, suggesting a
unification between electromagnetism and gravity; that’s why Einstein was a big fan of this theory.
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