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1. Using natural units. (8 points)
In this course, we will work in “natural” units, where ~ = kB = c = µ0 = ε0 = 1. As a
result, any physical quantity A has the same dimensions as (1 eV)n for some n, which we
write as [A] = n. For example, we have

[energy] = [momentum] = [mass] = [temperature] = 1 (1)

and
[length] = [time] = −1. (2)

These results immediately imply, e.g., [frequency] = 1, [speed] = 0, and [volume] = −3.

If the mass of a particle in natural units is m = 1 eV, that means its mass in SI units is

m =
1 eV

c2
= 1.8× 10−36 kg. (3)

One physical interpretation is that a particle of this mass has rest energy 1 eV.

a) Find the wavelength and period of a photon of energy 1 eV in SI units.

b) Express the temperature T = 1 eV in SI units.

If you commit the above results to memory, you should always be able to recover numeric
values in SI units. The other skill you need is going from SI units to natural units.

c) Find [G], where G is Newton’s constant.

d) Find [n], [P ], and [ρ], where n is number density, P is pressure, and ρ is mass density.

e) Find [φ], where φ is a real scalar field.

f) Find [q], [A], [E] and [B], where q is electric charge, A is vector potential, and E and
B are electric and magnetic fields.

Once you’re comfortable with natural units, they’ll be an incredibly convenient tool for
making rough estimates. For example, the mass of the proton is mp ∼ GeV, and every-
thing in nuclear physics is roughly governed by this scale. From this, we can immediately
conclude that the radius of the proton is roughly r ∼ GeV−1, in natural units.

g) Write down rough expressions for the density and electric field within a nucleus, and
the temperature above which nuclei melt into quark-gluon plasma, in natural units.

Technically, all of the estimates here will be a bit off, because some of these quantities
are actually determined by the pion mass mπ ∼ 10−1 GeV, as the pion governs the forces
between nucleons. For a more careful treatment, see Astronomical reach of fundamental
physics by Burrows and Ostriker.

2. The harmonic oscillator in quantum mechanics. (15 points)
This exercise reviews the quantum harmonic oscillator, which has Hamiltonian

H =
p2

2m
+
mω2x2

2
. (4)
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a) Write the Hamiltonian in terms of the ladder operators a and a†, where

a =
1√
2

(√
mω x+ i

p√
mω

)
. (5)

b) The normalized vacuum state |0〉 is defined to satisfy a|0〉 = 0. The number states
are then defined by a†|n〉 =

√
n+ 1 |n + 1〉 for any integer n. Show that [a, a†] = 1,

and use this fact alone to show that the number states are properly normalized.

c) Calculate the expectation values of x, p, and the number operator N = a†a in the
number state |n〉.

d) Calculate the standard deviations ∆x, ∆p and ∆N in the number state |n〉. For what
n is the Heisenberg uncertainty product ∆x∆p minimal?

e) Suppose the particle begins in the vacuum state |0〉, and at time t = 0, we apply
an impulse α. This can be modeled by a Hamiltonian term −αxδ(t), and the state
immediately after the impulse is

|α〉 = eiαx|0〉. (6)

Show that |α〉 is an eigenvector of a, and find the eigenvalue.

f) Find the expectation values of x, p, and N , and their standard deviations, for all
t > 0. (Hint: after you find the answers for the initial state |α〉, it is easiest to
generalize to arbitrary t using Heisenberg picture.)

Your result in part (e) shows that |α〉 is a so-called coherent state. You might have
heard that they are important because they are the “most classical” states. A more
important reason is that they are the states you automatically get when you drive a
quantum system. As you can see from your results, in the limit of strong driving, ∆x and
∆p become negligible compared to x and p, and we recover classical physics. Later we
will see how a similar result allows quantum fields to behave like classical fields.

3. The relativistic classical point particle. (12 points)
The spacetime trajectory of a relativistic point particle is xµ(τ) = (x0(τ),x(τ)), where
τ is an arbitrary parameter. The corresponding action is proportional to the relativistic
“length” of the trajectory, where the relativistic line element is

ds2 = ηµν dx
µdxν = dt2 − dx2 − dy2 − dz2. (7)

The action is therefore

S = −α
∫
P
ds = −α

∫ τ2

τ1

dτ

√
ηµν

dxµ

dτ

dxν

dτ
(8)

where α is a constant, and τ1 and τ2 are the initial and final values of the parameter.

a) The easiest way to understand the nonrelativistic limit |∂txi| � 1 is to set τ = t. By
demanding that the action reduces to that of a free nonrelativistic particle of mass m
(plus a constant), determine the value of the constant α.
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If we don’t just set τ = t, there are four Euler–Lagrange equations and canonical momenta,

dpµ

dτ
=

∂L

∂xµ
, pµ =

∂L

∂(dxµ/dτ)
. (9)

b) Find the Euler–Lagrange equations for a general parameter τ , then show that they
are equivalent to the conservation of the physical four-momentum of the particle.

c) A simple local, Lorentz invariant way to include a force on the particle is to add

Sint = −q
∫
P
Aµ(xµ) dxµ = −q

∫ τ2

τ1

Aµ(xµ)
dxµ

dτ
dτ (10)

to the action, where Aµ(xµ) is a given four-vector field. Calculate pµ and ∂L/∂xµ,
continuing to assume general τ .

d) Now set τ to be the proper time s experienced by the particle (so that ds = dτ) and
evaluate the Euler–Lagrange equations, simplifying as much as possible.

A warning: if you set τ to proper time before doing part (c), and apply the Euler–Lagrange
equations anyway, you’ll get nonsense. The reason is that the derivation of the Euler–
Lagrange equation assumes all the variables xµ(τ) can be varied independently, but when
dτ = ds we automatically have the constraint

√
ηµν(dxµ/dτ)(dxν/dτ) = 1. Lagrangians

with constraints are subtle and important, but beyond the scope of this course. For much
more about them, see Quantization of Gauge Systems by Henneaux and Teitelboim.

4. The complex scalar field. (5 points)
The Lagrangian density for a canonically normalized free real scalar field of mass m is

L =
1

2
(∂µφ) (∂µφ)− 1

2
m2φ2. (11)

Now consider a theory of two free real scalar fields φ1 and φ2, both with mass m.

a) Write their Lagrangian density in terms of the complex scalar field Φ = (φ1+ iφ2)/
√

2
and its complex conjugate Φ∗.

Complex fields are always equivalent to a pair of equal mass real fields, and are useful
because such pairs occur frequently in nature, for reasons we’ll see later. (At low energies,
we actually don’t know of any complex scalar fields, but the electron is described by a
Dirac field, which is a complex fermion field built from two equal mass real fermion fields.)

Complex fields are convenient once you get to know them, but they come with an annoying
problem: it is not obvious how to vary the action with respect to Φ, because any change
in Φ also changes Φ∗. It turns out that you will always get the right results (i.e. results
that are equivalent to what you’d get working in terms of the two real fields) by treating
Φ and Φ∗ as if they were independent real fields, even though they clearly aren’t. (For an
explanation why, see page 56 of Sidney Coleman’s lecture notes.)

b) Compute the conjugate momenta Π and Π∗ of Φ and Φ∗, and the Euler–Lagrange
equations for Φ and Φ∗.

c) Show that the action is invariant under the transformation Φ→ eiαΦ, for any real α.
What is the equivalent symmetry in terms of the real scalar fields φ1 and φ2?
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