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1. Lorentz transformations. (10 points)
Lorentz transformations xµ → x′µ = Λµ

νx
ν are linear transformations that leave inner

products invariant, meaning that xµyµ = x′µy′µ for any four-vectors x and y.

a) Show that this implies
ηµν = ηρσΛρ

µΛσ
ν . (1)

b) All proper, orthochronous Lorentz transformations (i.e. all those which preserve the
orientation of space and the direction of time) can be decomposed into infinitesimal
Lorentz transformations. These take the form

xµ → x′µ = xµ + ε ωµνx
ν (2)

where ε is infinitesimal. Show that ωµν = −ωνµ.

c) The elements of any infinitesimal Lorentz transformation ωµν can be written as a 4×4
matrix, where µ and ν index the row and column, respectively. For an infinitesimal
rotation ε = dθ about the z-axis, write out this matrix, and denote it by iJ3 for later.
What exponential of J3 corresponds to a finite rotation by an angle θ?

d) Write down the matrix iK1 corresponding to an infinitesimal boost by ε = dv about
the x-axis. What exponential of K1 corresponds to a finite boost by a velocity v?

e) Defining J1, J2, K2, and K3 similarly, the generators obey commutation relations

[J i, J j] = iεijkJk, [J i, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk. (3)

This is the Lie algebra of the Lorentz group. Physically, these results tells us that
infinitesimal rotations and boosts are vectors (i.e. angular velocity and velocity are
vectors), and that composing boosts can yield a rotation. Prove these results for the
cases (i, j) = (1, 1) and (i, j) = (1, 2). (The proofs for other cases are similar.)

2. Quantization of the complex scalar field. (30 points)
This will be an involved problem, but it will teach you everything there is to know about
free field mode expansions. (You don’t have to write every detail; when it’s clear other
computations will go the same way as one you just did, it’s fine to just say so and move
on.) In problem set 1 we considered a complex scalar field Φ with Lagrangian density

L = (∂µΦ∗)(∂µΦ)−m2Φ∗Φ, (4)

and found the canonical fields Φ and Φ∗ and momenta Π and Π∗. Letting ωk =
√
|k|2 +m2,

introduce the following mode expansion for the canonical fields and momenta:

Φ(x) =

∫
d3k

(2π)3
1√
2ωk

[
a(k)eik·x + b†(k)e−ik·x

]
, (5)

Φ∗(x) =

∫
d3k

(2π)3
1√
2ωk

[
b(k)eik·x + a†(k)e−ik·x

]
, (6)

Π(x) = −i
∫

d3k

(2π)3

√
ωk

2

[
b(k)eik·x − a†(k)e−ik·x

]
, (7)

Π∗(x) = −i
∫

d3k

(2π)3

√
ωk

2

[
a(k)eik·x − b†(k)e−ik·x

]
. (8)
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We quantize the fields by imposing the canonical commutation relations

[Φ(x),Π(y)] = [Φ∗(x),Π∗(y)] = iδ(3)(x− y), (9)

with all other commutators between these fields vanishing. (Technically, we should write
Hermitian conjugates Φ† and Π† here, since Φ and Π are now operators, but we’ll continue
to use stars to emphasize the links between the classical and quantum theories.)

a) Show that the operators a(k), a†(k), b(k) and b†(k) obey[
a(k), a†(p)

]
=
[
b(k), b†(p)

]
= (2π)3δ(3)(k− p), (10)

with all other commutators between these operators vanishing. This implies that we
have two sets of independent creation and annihilation operators for each k.

The vacuum state |0〉 is defined to be the unique state where a(k)|0〉 = b(k)|0〉 = 0
for all k. The states a†(k)|0〉 and b†(k)|0〉 each contain one particle, while the state
a†(k1)a

†(k2)|0〉 contains two particles, and so on.

b) In problem set 1, you showed that the complex scalar field Lagrangian had the sym-
metry Φ → eiαΦ, Φ∗ → e−iαΦ∗. Compute the Noether current Jµ and conserved
charge Q associated with the symmetry.

c) Write Q in terms of the creation and annihilation operators. You should find the
result is indeterminate up to a constant; resolve this by defining the vacuum to have
zero charge, Q|0〉 = 0. What is the charge in the three other states mentioned above?

d) To check that this is the same symmetry operation that we started out with, we can
see how it acts on the operators of the theory. Quantum mechanically, symmetries
act on operators by conjugation, and we expect to have

eiαQ Φ(x) e−iαQ = eiα Φ(x), eiαQ Φ∗(x) e−iαQ = e−iα Φ∗(x). (11)

Show that this implies the commutation relations

[Q,Φ(x)] = Φ(x), [Q,Φ∗(x)] = −Φ∗(x) (12)

and show that these relations hold. Thus, Q generates phase rotations of the field.

e) Use Noether’s theorem to find the stress-energy tensor T µν and the associated con-
served total four-momentum P µ.

f) Write the Hamiltonian H = P 0 and the spatial momenta P in terms of the creation
and annihilation operators, again defining the vacuum to have zero four-momentum.
What is the four-momentum in the three other states mentioned above?

g) By definition, the operator H generates time translations of the field – this is the con-
tent of the Schrodinger equation, i∂t|Ψ〉 = H|Ψ〉, which holds unchanged in quantum
field theory. As for the momenta P, we expect

eia·P Φ(x) e−ia·P = Φ(x− a) (13)

for any vector a, with a similar result for all the other fields. Show that this implies

[P i,Φ(x)] = −i∂iΦ(x) (14)
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and show that this relation holds. Thus, P generates spatial translations.

3. ? Conserved currents of Lorentz transformations. (10 points)
This somewhat tricky problem combines the ideas of the first two. It is completely op-
tional: the problem set will be graded out of 40 points, so that you will receive up to
100% credit if you don’t do this problem, and up to 125% credit if you do.

Under a Lorentz transformation, a scalar field profile φ gets mapped to φ′, so that φ′(x′) =
φ(x). This implies that

φ′(x) = φ(Λ−1x). (15)

For an infinitesimal Lorentz transformation (2), this corresponds to

φ′(x) = φ(x)− ε ωµνxν∂µφ(x) (16)

to first order in ε. Because an infinitesimal Lorentz transformation is parametrized by a
rank 2 tensor ωµν , the corresponding Noether current will be a rank 3 tensor Jµνρ, where
the first index is the usual index that comes from Noether’s theorem, and the last two
describe the Lorentz transformation. For simplicity, you can do the entire problem for a
real scalar field. (This corresponds to a complex scalar field with a(k) = b(k), which in
turn implies Φ = Φ∗ and Π = Π∗.)

a) Show that for a scalar field,

Jµνρ = xνT µρ − xρT µν (17)

where T µν is the stress-energy tensor. Let the associated conserved charges be Mµν .

b) Since Mµν is antisymmetric, there are six independent conserved charges. The three
independent M ij physically correspond to the angular momentum of the field. What
is the physical meaning of the other three conserved quantities M0i?

c) Show that after normal ordering, the angular momentum is

M ij = i

∫
d3k

(2π)3
a(k)†

(
kj

∂

∂ki
− ki ∂

∂kj

)
a(k) (18)

The form of this answer implies that the particles created and annihilated by scalar
fields do not carry any intrinsic angular momentum (i.e. spin).
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