
PHYS-330: QFT I
Stanford University, 2022
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1. Locality in relativistic quantum field theory. (20 points)
The vacuum two-point correlation function of a real scalar field is

D(x− y) = ⟨0|ϕ(x)ϕ(y)|0⟩. (1)

It only depends on the difference of positions z = x− y, by translational invariance, and
it quantifies correlations between the field values at x and y in the vacuum state.

a) Show that

D(z) =

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) e−ip·z (2)

where the Heaviside step function θ is 1 if the argument is positive and 0 otherwise.

Solution: Using the same d̄ and /δ notation as in the solutions to the second problem set,

⟨0|ϕ(x)ϕ(y)|0⟩ =

∫
d̄p d̄q√

2ωp

√
2ωq

eip·xe−iωpx
0

e−iq·yeiωqy
0⟨0|a(q)a†(p)|0⟩ (S1)

=

∫
d̄p d̄q√

2ωp

√
2ωq

eip·xe−iωpx
0

e−iq·yeiωqy
0
/δ(p− q) (S2)

=

∫
d̄p

2ωp
e−iωpz

0

eip·z. (S3)

On the other hand, starting from the desired expression, we have

D(z) =

∫
d̄p eip·z

∫ ∞

0

dp0

2π
(2π)δ(p2 −m2)e−ip0z0

(S4)

=

∫
d̄p

2ωp
e−iωpz

0

eip·z (S5)

which matches.

b) Show that if z′µ = Λµ
νz

ν for a proper orthochronous Lorentz transformation Λ, then
D(z′) = D(z). (Hint: show that d4p and δ(p2−m2) θ(p0) are each Lorentz invariant.)

Solution: For D(z′), let’s change the integration variable from p to p′µ = Λµ
νp

ν . Then

D(z′) =

∫
d4p′

(2π)4
(2π)δ(p′2 −m2)θ(p′0)e−ip′·z′

(S6)

=

∫
d4p′

(2π)4
(2π)δ(p′2 −m2)θ(p′0)e−ip·z (S7)

which is precisely the same thing as D(z) provided that

d4p′ δ(p′2 −m2) θ(p′0) = d4p δ(p2 −m2) θ(p0). (S8)

Lorentz transformations always preserve inner products, p2 = p′2, so the two delta functions are the
same. Furthermore, for timelike momenta (which are the only ones that contribute to the integral, be-
cause of the presence of the delta functions), orthochronous Lorentz transformations always preserve the
sign of the time component, by definition. Physically this corresponds to the fact that you can’t boost a
particle from positive energy to negative energy, and you can check it by explicitly computing the effects
of Lorentz boosts. (Of course, Lorentz boosts certainly can change the sign of the time component of
spacelike vectors.)
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The tricky part is to show that proper orthochronous Lorentz transformations preserve spacetime volume,
d4p′ = d4p. There are a few different ways to show this. The most formal way is to just compute the
Jacobian determinant. The Jacobian matrix for the transformations between the variables is just

∂p′µ

∂pν
= Λµ

ν (S9)

and its determinant is

J = − 1

24
ϵµνρσΛ

µ
µ′Λ

ν
ν′Λ

ρ
ρ′Λ

σ
σ′ϵµ

′ν′ρ′σ′
(S10)

as you can show by expanding out the definition of the determinant and using the antisymmetry of ϵ.
On the other hand, we know the Levi–Civita symbol is an invariant tensor, so we just get

J = − 1

24
ϵµνρσϵ

µνρσ = 1. (S11)

Another method is to note that in terms of matrix multiplications, η = ΛT ηΛ, which implies

det η = (detΛT )(det η)(detΛ) (S12)

and therefore J = detΛ = ±1. Since the proper orthochronous Lorentz transformations are connected
to the identity, we must have J = 1. Finally, you could just manually show that J = 1 when Λµ

ν is a
rotation or a boost, i.e. by showing that the matrices

Λµ
ν =


cosh γ sinh γ
sinh γ cosh γ

1
1

 , Λµ
ν =


1

1
cos θ sin θ
− sin θ cos θ

 (S13)

have unit determinant. This is sufficient, since any proper orthochronous Lorentz transformation can be
built out of rotations and boosts.

c) Show that for spacelike separation, z2 < 0, the correlation function is exponentially
decaying but nonzero. You can do this in two ways. First, you can show that

D(z) =
m

4π2
√
−z2

K1(
√
−z2m) (3)

where K1 is a modified Bessel function of the second kind. Alternatively, you may
numerically integrate D(z) and graph the result. In both cases you may use any books
or computer programs needed, such as Mathematica or Abramowitz and Stegun.

Solution: By our result from part (b), we can choose a frame where zµ = (0, z), and set up spherical
coordinates with the axis aligned with z. Defining r =

√
−z2 = |z| and p = |p|, we have

D(z) =

∫
d̄p

2ωp
eip·z (S14)

=
1

(2π)3

∫ ∞

0

dp

∫ 1

−1

d cos θ

∫ 2π

0

dϕ
p2

2
√
p2 +m2

eipr cos θ (S15)

=
1

(2π)2

∫ ∞

0

dp
p√

p2 +m2

sin(pr)

r
. (S16)

At this point we can straightforwardly evaluate the integral numerically, e.g. in Mathematica.

2



Alternatively, if we want to stay analytic to the end, a little more work is necessary. First, we replace the
integral with an equivalent complex integral over the entire real axis,

D(z) = − i

8π2r

∫ ∞

−∞
dp

p eipr√
p2 +m2

. (S17)

To evaluate the integral, we deform the contour so that it wraps around the vertical branch cut that
starts at p = im. Across this branch cut, the square root flips sign, so the contour integral going down
the left end of the branch cut is equal to the contour integral going up the right end, giving

D(z) =
1

4π2r

∫ ∞

m

dx
x e−xr

√
x2 −m2

(S18)

where p = ix. Finally, looking up this integral in a book or Mathematica yields the final result,

D(z) =
m

4π2r
K1(mr). (S19)

A key requirement for a relativistic theory is that it is local, meaning that effects don’t
propagate faster than the speed of light. That means any change applied to the field at x
should only affect observable results at y if x and y aren’t spacelike separated, (y−x)2 ≥ 0.

You might thus be concerned about part (c), which implies a field in the vacuum “knows”
about the values of the field at spacelike separation. But there’s nothing wrong with this.
For example, to define a reference frame in special relativity, one synchronizes the clocks
by sending light pulses throughout all space. After synchronization, all the clocks “know”
about the values on the other clocks, even at spacelike separation. But that doesn’t mean
that changes propagate faster than light; it’s just a consequence of how we set up the
system. Similarly, ensuring a field is in the vacuum state requires absorbing all particles
throughout all space, and this process sets up correlations between field values.

To test if our theory is local, we must see whether changes in the state propagate faster
than light; that is the subject of the rest of the question.

d) One way to interact with a quantum field is to measure its value at a point, a process
which changes the state. From quantum mechanics, we know that measurements of
two operators O1 and O2 do not affect each other if [O1,O2] = 0. Show that

⟨0|[ϕ(x), ϕ(y)]|0⟩ = 0 (4)
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for spacelike separation, (x− y)2 < 0, as expected from locality.

Solution: We have
⟨0|[ϕ(x), ϕ(y)]|0⟩ = D(z)−D(−z). (S20)

On the other hand, when z is spacelike, it can always be transformed into −z by a Lorentz transformation.
(A simple way to see this is to note that both z and −z can be transformed into a standard four-vector
like (0, 0, 0,

√
−z2), by first boosting to get rid of the time component, and rotating to get the spatial

component pointing the right way.) Therefore, D(z) = D(−z), so the commutator vanishes.

Note that when z is timelike, you can’t Lorentz transform it into −z, so the argument thatD(z) = D(−z)
fails. That makes sense because the commutator should be nonzero for timelike separations; if it was
zero for all separations, then the theory would be trivial, as no measurements would ever affect anything.

e) Another way to interact with a field is to couple it to a classical source J(x), which
for a real scalar field corresponds to taking the Lagrangian

L =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 + ϕ(x)J(x). (5)

This is the scalar analogue of driving the electromagnetic field with a current Jµ(x).
For simplicity, we’ll treat ϕ(x) as a classical field for now, though similar conclusions
will hold when it is a quantum field. Show that the classical equation of motion is

(∂µ∂
µ +m2)ϕ(x) = J(x). (6)

Solution: The Euler–Lagrange equations are

∂µ
∂L

∂(∂µϕ)
− ∂L
∂ϕ

= 0 (S21)

where we now have

∂µ
∂L

∂(∂µϕ)
= ∂µ∂

µϕ,
∂L
∂ϕ

= −m2ϕ+ J (S22)

which together give the desired result.

f) Show that the equation of motion is solved by

ϕ(x) = i

∫
d4y G(x− y)J(y) (7)

where G is a Green’s function of the Klein–Gordan operator, which means

(∂µ∂
µ +m2)G(z) = −i δ(4)(z). (8)

The factors of −i here are purely conventional, and will simplify results later.

Solution: We have

(∂2 +m2)ϕ(x) = i(∂2 +m2)

∫
d4y G(x− y)J(y) (S23)

= i

∫
d4y (−iδ(4)(x− y))J(y) (S24)

= J(x) (S25)

as desired. Note that there is no term from the derivatives acting on the current because the derivatives
are with respect to x, while J is a function of y.

4



g) By taking Fourier transforms, we may heuristically write the Green’s function as

G(z) =

∫
d4p

(2π)4
i e−ip·z

p2 −m2
(9)

which formally obeys Eq. (8). However, this expression is not mathematically well-
defined because the integral blows up when p2 = m2. To get a definite result, we must
add “iϵ” terms to the denominator to keep it from vanishing. There are multiple ways
to do this, which physically corresponds to the fact that there are multiple possible
Green’s functions, depending on the field’s boundary conditions. Three key examples
are the retarded, advanced, and Feynman Green’s functions,

GR(z) = lim
ϵ→0+

∫
d4p

(2π)4
i e−ip·z

(p0 + iϵ)2 − |p|2 −m2
(10)

GA(z) = lim
ϵ→0+

∫
d4p

(2π)4
i e−ip·z

(p0 − iϵ)2 − |p|2 −m2
(11)

GF (z) = lim
ϵ→0+

∫
d4p

(2π)4
i e−ip·z

p2 −m2 + iϵ
(12)

where the limit notation means ϵ approaches zero from the positive end. By using
the residue theorem to perform the integral over p0, show that

GR(z) = θ(z0)(D(z)−D(−z)) (13)

GA(z) = θ(−z0)(D(−z)−D(z)) (14)

GF (z) = θ(z0)D(z) + θ(−z0)D(−z) (15)

Solution: Applying partial fractions, we have

GR(z) = i

∫
d3p dp0

(2π)4
1

2ωp

[
1

(p0 − ωp + iϵ)
− 1

(p0 + ωp + iϵ)

]
e−ip·z (S26)

which implies both poles are shifted below the real p0 axis. Now we perform the integral over p0. When
z0 > 0, the integrand is exponentially damped below the real p0 axis, so it makes no difference if we
replace the contour over the real line with a closed contour which additionally includes a semicircle (of
infinite radius) below the real axis, as shown.
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Figure 1: Contour for the retarded propagator for z0 > 0.

This closed contour integral can be calculated using the residue theorem. Each pole contributes −2πi
times its residue (where the minus sign is because the contour goes around the poles clockwise), giving

GR(z) =

∫
d3p

(2π)3

[
1

2ωp
e−iωpz

0+ip·z − 1

2ωp
eiωpz

0+ip·z
]

(S27)
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Reindexing p → −p in the second term gives

GR(z) =

∫
d3p

(2π)3
1

2ωp

[
e−iωpz

0+ip·z − eiωpz
0−ip·z

]
(S28)

=

∫
d3p

(2π)3
1

2ωp

[
e−ip·z − eip·z

]
= D(z)−D(−z) (S29)

where here we are defining p = (ωp,p). On the other hand, when z0 < 0, the integral is exponentially
damped above the real p0 axis. We can thus close the contour above the real axis, and it encircles no
poles, so the integral vanishes. Thus,

GR(z) = θ(z0)(D(z)−D(−z)) (S30)

as desired. The proof for GA(z) is extremely similar, but now with both poles above the real axis.

Finally, the Feynman propagator is

GF (z) = i

∫
d4p

(2π)4

[
1

(p0 − ωp + iϵ)(p0 + ωp − iϵ)

]
e−ip·z (S31)

= i

∫
d3pdp0

(2π)4
1

2ωp

[
1

(p0 − ωp + iϵ)
− 1

(p0 + ωp − iϵ)

]
e−ip·z (S32)

which has one pole above the real axis, and one pole below. In figure 2 we show the contours of integration
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!p � i✏
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Figure 2: Contour for the Feynman propagator.

for the p0 integral. If z0 > 0 the dashed, orange line in fig. 2 represents a contour of a semi-circle with
infinite radius in the lower half of the complex plane and does not contribute to the integral. The integral
along the the real p0 axis consequently yields minus one times the residue at p0 = ωp + iϵ and the
other residue does not contribute. Conversely, if z0 < 0, the purple dashed contour in the positive
imaginary half-plane contributes zero to the integral and the integral along the real axis yields the residue
at p0 = −ωp + iϵ. We thus conclude

GF (z) =

∫
d4p

(2π)4
1

2ωp

[
θ(z0)e−ipz + θ(−z0)eipz

]
(S33)

= θ(z0)D(z) + θ(−z0)D(−z). (S34)

h) The retarded Greens function applies when the field is zero before the source acts.
Show that GR(x− y) vanishes for spacelike separation, as expected from locality.

Solution: When z0 is negative, GR(z) is just zero by the definition of the step function. When z0

is positive, GR(z) is just the same thing as ⟨0|[ϕ(x), ϕ(y)]|0⟩, which we showed was zero for spacelike
separation in part (d).

i) The Feynman propagator will play a crucial role when we introduce Feynman dia-
grams because it is equal to ⟨0|Tϕ(x)ϕ(y)|0⟩. Does it vanish for spacelike separation?
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Solution: It doesn’t vanish for spacelike separation. For example, when z0 is positive, the Feynman
propagator is just D(z), and we already showed in part (c) that this can be nonzero for spacelike sepa-
rations. For this reason, the Feynman propagator has little use in classical field theory (which is why it
doesn’t show up in electromagnetism classes, while the retarded and advanced propagators do). But it
will be useful when we set up perturbation theory.

Some students tried to solve this problem by setting z0 = 0, but this is a bit tricky because the step
functions are discontinuous there. There’s no need to do this, because we already showed that D(z) can
be nonzero for general spacelike separation, not just when z0 = 0.

2. Recovering classical field theory. (10 points)
If an operator O is time-independent in Schrodinger picture, then in Heisenberg picture,

dO(t)

dt
= i [H(t),O(t)]. (16)

In quantum field theory, working in the Heisenberg picture allows fields to depend on
spacetime, making results look more Lorentz invariant. For example, we saw that in
Heisenberg picture, a real scalar field obeys the Klein–Gordan equation (∂2 +m2)ϕ = 0.
Now consider the Lagrangian of Eq. (5), which additionally includes a source term J(x).
In this case, the Hamiltonian is explicitly time-dependent,

H(t) = H0 −
∫
d3xϕ(x, t)J(x, t) (17)

where H0 is the free Hamiltonian.

a) Show that in Heisenberg picture, the field ϕ(x) obeys Eq. (6). (Thus, by the logic of
problem 1, expectation values of a quantum field ϕ(x) respond locally to sources.)

Solution: Note that the new term in the Hamiltonian commutes with ϕ(y, t) for any y. Therefore, the
Heisenberg equation of motion for ϕ is exactly the same as before,

ϕ̇(x) = π(x) (S35)

As for the canonical momentum, we have

π̇(x) = ∇2ϕ(x)−m2ϕ(x) + i

[
−

∫
d3y ϕ(y, t)J(y, t), π(x, t)

]
(S36)

= ∇2ϕ(x)−m2ϕ(x) + (−i)(i)
∫
d3y δ(3)(y − x)J(y, t) (S37)

= ∇2ϕ(x)−m2ϕ(x) + J(x). (S38)

Combining these two equations gives the result.

With the source, quantum fields can evolve in time nontrivially. Suppose we start in the
vacuum state |0⟩, and at time t = 0 apply an impulse to the field via

J(x) = δ(t) j(x). (18)

This is the scalar analogue of suddenly turning an electric current on and off in electro-
magnetism. It is also closely related to the last half of problem 2 of problem set 1.

b) The impulse causes operators to instantaneously shift in value at t = 0. Show that

ϕ(x, 0+) = ϕ(x, 0−), π(x, 0+) = π(x, 0−) + j(x). (19)
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Here, 0+ means a time right after t = 0, and 0− means a time right before, i.e.

f(0+)− f(0−) = lim
ϵ→0+

∫ ϵ

−ϵ

df(t)

dt
dt (20)

for any function of time.

Solution: Integrating the Heisenberg equation of motion for an infinitesimal time centered at t = 0,

ϕ(x, 0+)− ϕ(x, 0−) = −i
[ ∫

d3y ϕ(y, 0)j(y), ϕ(x, 0)

]
= 0. (S39)

On the other hand, we have

π(x, 0+)− π(x, 0−) = −i
[ ∫

d3y ϕ(y, 0)j(y), π(x, 0)

]
(S40)

= −i
∫
d3y iδ(y − x)j(y) (S41)

= j(x). (S42)

c) Show that this is equivalent to the annihilation operators shifting by

a(p, 0+) = a(p, 0−) +
i√
2ωp

j̃(p) (21)

where j̃ is the Fourier transform of j.

Solution: First, note that

a†(p, 0+) = a†(p, 0−)− i√
2ωp

j̃∗(p) (S43)

Furthermore, because j(x) is real, we have

j̃∗(p) =

(∫
dx j(x)e−ip·x

)∗

=

∫
dx j(x)eip·x = j̃(−p). (S44)

The change in the field operator is

ϕ(x, 0+)− ϕ(x, 0−) =

∫
d̄k√
2ωk

(
i j̃(k)√
2ωk

eik·x − i j̃∗(k)√
2ωk

e−ik·x
)
. (S45)

Substituting k′ = −k in the second term and renaming k′ to k gives

ϕ(x, 0+)− ϕ(x, 0−) = i

∫
d̄k√
2ωk

(
j̃(k)√
2ωk

eik·x − j̃∗(−k)√
2ωk

eik·x
)

= 0. (S46)

On the other hand, we have

π(x, 0+)− π(x, 0−) = −i
∫
d̄k

√
ωk

2

(
i j̃(k)√
2ωk

eik·x − −i j̃∗(k)√
2ωk

e−ik·x
)

(S47)

=
1

2

∫
d̄k

(
j̃(k)eik·x + j̃∗(k)e−ik·x) (S48)

=
1

2

∫
d̄k (j̃(k) + j̃∗(−k))eik·x (S49)

= j(x) (S50)

as desired.
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d) Show that the field is in a coherent state after the impulse, in the sense that the state
is an eigenvector of a(p, 0+). Then evaluate ⟨0|a†(p, 0+)a(p, 0+)|0⟩, which gives the
number of particles of momentum p produced, per unit volume of momentum space.

Solution: Because we are in the vacuum state before the impulse, a(p, 0−)|0⟩ = 0, we have

a(p, 0+)|0⟩ = i√
2ωp

j̃(p)|0⟩ (S51)

which implies the field is in a coherent state after the impulse. Then we have

⟨0|a†(p, 0+)a(p, 0+)|0⟩ = ⟨0| (−i) j̃
∗(p)√

2ωp

i j̃(p)√
2ωp

|0⟩ = |j̃(p)|2
2ωp

. (S52)

Incidentally, the fact that the field is in a coherent state implies that the number of particles in a given
range of momenta is Poisson distributed.

As you saw in problem set 1, coherent states of the quantum harmonic oscillator have the
same position and momentum uncertainties as the vacuum state. Similarly, in quantum
field theory, coherent states of the field have the same ϕ and π uncertainties as the
vacuum, while their expectation values behave classically. When the driving is strong,
the uncertainties become negligible compared to the expectation values, and the number
of particles becomes large so that we can no longer see their discreteness. We therefore
recover a classical field.

3. Practice with time-ordered exponentials. (10 points)
Suppose the Hamiltonian is H = H0 +Hint, where H0 is a time-independent free Hamil-
tonian, and Hint is an interaction which could be time-dependent. In interaction picture,
operators evolve under the free Hamiltonian H0 alone, and the states are |ψ(t)⟩I . Let’s
first review some results derived in lecture.

a) Show that
i ∂t|ψ(t)⟩I = Hint,I(t)|ψ(t)⟩I . (22)

where Hint,I(t) is the interaction Hamiltonian in the interaction picture.

Solution: By definition, matrix elements of operators are the same in all pictures, so for any states |ψ⟩
and |ψ′⟩, and any operator O, we have

I⟨ψ′(t)|OI(t)|ψ(t)⟩I = S⟨ψ′(t)|OS |ψ(t)⟩S . (S53)

On the other hand, we know that

OI(t) = eiH0tOSe
−iH0t (S54)

so comparing the expressions gives

|ψ(t)⟩I = eiH0t|ψ(t)⟩S . (S55)

Applying i ∂t to both sides gives

i ∂t|ψ(t)⟩I = −H0e
iH0t|ψ(t)⟩S + ieiH0t∂t|ψ(t)⟩S (S56)

= −H0|ψ(t)⟩I + eiH0tHS |ψ(t)⟩S (S57)

= −eiH0tH0e
−iH0t|ψ(t)⟩I + eiH0tHSe

−iH0t|ψ(t)⟩I (S58)

= Hint,I(t)|ψ(t)⟩I (S59)

as desired.
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b) Show that if the interaction picture time evolution operator is defined as

|ψ(tf )⟩I = U(tf , ti)|ψ(ti)⟩I (23)

for tf > ti, then it is given by Dyson’s formula,

U(tf , ti) = T exp

(
−i

∫ tf

ti

dtHint,I(t)

)
(24)

where T denotes time ordering.

Solution: Abbreviating Hint,I(t) as H(t), note that the time-ordered exponential is

U(tf , ti) =

∞∑
n=0

(−i)n
n!

∫ tf

ti

dtn

∫ tf

ti

dtn−1 · · ·
∫ tf

ti

dt1 T (H(tn)H(tn−1) · · ·H(t1)). (S60)

We can incorporate the effect of the time ordering by changing the integration bounds,

U(tf , ti) =

∞∑
n=0

(−i)n
∫ tf

ti

dtn

∫ tn

ti

dtn−1 · · ·
∫ t2

ti

dt1H(tn)H(tn−1) · · ·H(t1) (S61)

where the factor of 1/n! cancelled because the new integration region has 1/n! times the volume of the
original one. Now, part (a) tells us that we want to prove

i∂tfU(tf , ti) = H(tf )U(tf , ti). (S62)

When we differentiating Eq. (S61) with respect to tf , we only pick up one term from the upper bound
of the outer integral, giving

i∂tfU(tf , ti) = H(tf )

∞∑
n=1

(−i)n−1

∫ tf

ti

dtn−1 · · ·
∫ t2

ti

dt1H(tn−1) · · ·H(t1). (S63)

Shifting the sum in n downward by one recovers U(tf , ti), as desired.

Now let’s do some concrete calculations with the time evolution operator.

c) Suppose the interaction is only turned on for two moments, i.e. it has the form

Hint,I(t) = g (h1 δ(t− t1) + h2 δ(t− t2)). (25)

Write out U(tf , ti) up to and including terms of order g2, assuming ti < t1 < t2 < tf .

Solution: We have ∫ tf

ti

dtHint,I(t) = g(h1 + h2) (S64)

so the exponential without the time-ordering would be

1− ig(h1 + h2)−
g2

2
(h1 + h2)

2 +O(g3). (S65)

The time-ordering puts contributions that occur later on the left, which means all the h2 terms are to
the left of the h1 terms, giving

1− ig(h1 + h2)−
g2

2
(h21 + 2h2h1 + h22) +O(g3). (S66)

d) Now consider a general Hint,I(t) which is proportional to a coupling g. It is generally
true that U(t3, t2)U(t2, t1) = U(t3, t1). Explicitly show that this result is true, up to
and including terms of order g2, in the case t1 < t2 < t3.
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Solution: The desired right-hand side is

U(t3, t1) = 1− ig

∫ t3

t1

dtH(t)− g2
∫ t3

t1

dt

∫ t

t1

dt′H(t)H(t′) +O(g3). (S67)

On the left-hand side, expanding the product of the two terms gives

U(t3, t2)U(t2, t1) = 1− ig

∫ t2

t1

dtH(t)− ig

∫ t3

t2

dtH(t)

− g2
∫ t2

t1

dt

∫ t3

t2

dt′H(t)H(t′)− g2
∫ t2

t1

dt

∫ t

t1

dt′H(t)H(t′)− g2
∫ t3

t2

dt

∫ t

t2

dt′H(t)H(t′) +O(g3). (S68)

Clearly, the constant and O(g) terms agree, so the tricky part is showing the equality of the O(g2) terms,∫ t3

t1

dt

∫ t

t1

dt′H(t)H(t′) =

∫ t2

t1

dt

∫ t3

t2

dt′H(t)H(t′)

+

∫ t2

t1

dt

∫ t

t1

dt′H(t)H(t′) +

∫ t3

t2

dt

∫ t

t2

dt′H(t)H(t′) (S69)

The left-hand side integrates over all t1 < t′ < t < t3, and t2 is between t1 and t3. All terms on the
right-hand side enforce t′ < t. The second term includes the region where both t and t′ are less than
t2, the third term includes the regions where both are greater than t2, and the first term corresponds to
when t2 is between t and t′.

11


