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1. Mandelstam variables. (4 points)
Consider any 2 → 2 scattering process, where the two incoming particles have momenta
p1 and p2, and the two outgoing particles have momenta p3 and p4. By momentum
conservation, p1 + p2 = p3 + p4, and p

2
i = m2

i where mi is the mass of particle i. In this
situation, it is often useful to work in terms of the Mandelstam variables

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2. (1)

a) Show that s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

Solution: Just directly using the definitions,

s+ t+ u = p21 + 2p1 · p2 + p22 + p21 − 2p1 · p3 + p23 + p41 − 2p1 · p4 + p24 (S1)

= m2
1 +m2

2 +m2
3 +m2

4 + 2p1 · (p1 + p2 − p3 − p4) (S2)

= m2
1 +m2

2 +m2
3 +m2

4. (S3)

b) In the center of mass frame, the total energy is Ecm and the angle of p1 to p3 is θ.
Write s, t, and u in terms of Ecm and θ, assuming all four particles are massless.

Solution: This is easiest if we use concrete coordinate expressions. Aligning the z-axis with p1,

pµ1 =
Ecm

2
(1, 0, 0, 1), pµ2 =

Ecm

2
(1, 0, 0,−1) (S4)

where the spatial momenta are opposite because we’re working in the center of mass frame, and equal
in magnitude to the energy because the particles are massless. After the scattering, we have

pµ3 =
Ecm

2
(1, 0, sin θ, cos θ), pµ4 =

Ecm

2
(1, 0,− sin θ,− cos θ). (S5)

At this point we can just compute the Mandelstam variables explicitly, giving

s = E2
cm, t = −E2

cm

1− cos θ

2
= −E2

cm sin2
θ

2
, u = −E2

cm

1 + cos θ

2
= −E2

cm cos2
θ

2
. (S6)

Note that they sum to zero, as expected from part (a).

2. Scalar Yukawa amplitudes. (7 points)
Let ϕ be a real scalar field of mass M , and ψ be a complex scalar field of mass m, with

Lint = −g ψ∗ψϕ. (2)

The field ψ can annihilate a particle, or create a particle with opposite U(1) charge;
these particles are conventionally called the ψ and ψ∗, respectively. Similarly, the field
ϕ can create or annihilate a ϕ particle. (That is, particles are named after the field that
annihilates them.) As discussed in section, the Feynman rules are

=
i

p2 −M2 + iϵ
=

i

p2 −m2 + iϵ
= −ig (3)

where a dashed line stands for ϕ and a solid line stands for ψ.
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a) AssumingM > 2m, calculate the decay rate of a ϕ particle to leading order in g. (Start
from equation (4.86) of Peskin and Schroeder, and do the phase space integrals.)

Solution: The Feynman diagram is just one copy of the interaction vertex, so iM = −ig. Let the initial
momentum be kµ = (M,0) and the final momenta be pµ1 and pµ2 . Then

Γ =
1

2M

∫
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2
|−ig|2 (2π)4δ(4)(k − p1 − p2) (S7)

=
g2

32π2M

∫
d3p1

E1

d3p2

E2
δ(4)(k − p1 − p2) (S8)

=
g2

32π2M

∫
d3p1

E2
1

δ(M − 2E1) (S9)

=
g2

8πM

∫ ∞

0

d|p1|
|p1|2

E2
1

δ(M − 2E1) (S10)

=
g2

8πM

∫ ∞

m

dE1
|p1|
E1

δ(M − 2E1) (S11)

=
g2

16πM

√
1− (2m/M)2. (S12)

b) Find the amplitude for ψ(p1)ψ
∗(p2) → ψ(p3)ψ

∗(p4) scattering to leading order in g,
in terms of Mandelstam variables.

Solution: There are two Feynman diagrams, giving amplitude

iM = + (S13)

= (−ig)2
(

i

(p1 + p2)2 −M2 + iϵ
+

i

(p1 − p3)2 −M2 + iϵ

)
(S14)

= −g2
(

i

s−M2 + iϵ
+

i

t−M2 + iϵ

)
. (S15)

c) Suppose the energies we can reach in an experiment are higher than m, but much
lower than M . In this case, we might not know that ϕ particles exist, since we can’t
produce them, so we would have to describe the scattering process in part (b) using
an “effective” field theory in terms of ψ alone. Show that at leading order,

Lint = −λψ∗ψψ∗ψ (4)

will yield the same answer for part (b) for some value of λ, and find that value in
terms of g and M . Assume all elements of the momenta pi are much less than M .

Solution: The Feynman rule for the interaction in the effective theory is just

= −4iλ. (S16)

The factor of 4 comes about because there are 2 ways to choose which copy of ψ contracts with what,
and similarly 2 ways for ψ∗.

This is also the amplitude for the scattering process in the effective theory. On the other hand, we have
s, t ≪ M , so the answer to part (b) becomes 2ig2/M2. Equating these results gives λ = −g2/2M2.
(The fact that λ is suppressed by powers of M is a generic feature of effective field theory.)
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3. Solving a trivial theory. (4 points)
Consider a free real scalar field of mass m, but treat the mass term as the perturbation,

L0 =
1

2
(∂µϕ)(∂

µϕ), Lint = −1

2
m2ϕ2. (5)

a) Write down the Feynman rules for this theory.

Solution: The Feynman rules are that the propagator is

=
i

p2 + iϵ
(S17)

and the interaction vertex is
= −im2. (S18)

b) Evaluate the momentum-space propagator exactly, summing all of the (infinitely
many) connected Feynman diagrams.

Solution: The diagrams are

+ + + . . . (S19)

which correspond to

i

p2 + iϵ
+

i

p2 + iϵ
(−im2)

i

p2 + iϵ
+

i

p2 + iϵ
(−im2)

i

p2 + iϵ
(−im2)

i

p2 + iϵ
+ . . . . (S20)

This is a geometric series where the ratio between terms is m2/(p2 + iϵ), so the sum is

i

p2 + iϵ

1

1− m2

p2+iϵ

=
i

p2 −m2 + iϵ
. (S21)

Of course, this is just the familiar propagator for a free massive scalar field.

4. Pion scattering in the linear sigma model. (25 points)
Consider a theory with N free real scalar fields Φi(x) of equal mass m,

L0 =
N∑
i=1

1

2
∂µΦi∂

µΦi −
m2

2
ΦiΦi. (6)

This Lagrangian is symmetric under rotations of the scalar fields among themselves. We
can show this more clearly by defining an N -element vector Φ with elements of Φi, so

L0 =
1

2
(∂µΦ)2 − m2

2
Φ ·Φ. (7)

This is just shorthand for Eq. (6). Note that the index on Φi is not a spatial index (such
as on ∂i). It is a “flavor” index, meaning it just identifies which field we’re talking about.

a) We quantize the theory by imposing the equal time commutation relations

[Πi(x, 0),Φj(y, 0)] = iδij δ
(3)(x− y), Πi(x) = ∂tΦi(x), (8)

with all other commutators vanishing. Show that the propagator is

⟨0|T{Φi(x)Φj(y)}|0⟩ = Φi(x)Φj(y) = δij DF (x− y). (9)
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where δij is 1 if i = j, and 0 otherwise. The momentum space Feynman rule is

i j =
i δij

p2 −m2 + iϵ
(10)

where the i and j are flavor indices.

Solution: The commutation relations imply that the mode expansion of the field Φi involves a set of
creation and annihilation operators a†i (k) and ai(k), whose commutators vanish for i ̸= j. Therefore,
when i ̸= j, the contraction of two fields vanishes because Φ+

i and Φ−
j automatically commute. When

i = j, the derivation of the propagator is just the same as for a single real scalar field.

b) The linear sigma model additionally contains the interaction

Lint = −λ
4
(Φ ·Φ)2 . (11)

which is also symmetric under rotations of Φ. Show that this interaction corresponds
to the momentum space Feynman rule

i j

k ℓ

= −2iλ (δijδkℓ + δikδjℓ + δiℓδjk) . (12)

(Hint: consider the cases where all four fields have the same flavor, and when two
pairs of fields have the same flavor.)

Solution: Expanding out the interaction explicitly gives

Lint = −λ
4

(∑
i

ΦiΦi

)2

= −λ
4

∑
i,j

ΦiΦiΦjΦj = −λ
4

∑
i

Φ4
i −

λ

2

∑
i<j

Φ2
iΦ

2
j . (S22)

The first term yields a vertex for four fields of the same flavor. Whenever we introduce a copy of this
vertex, we get a factor of 4! = 24 because of the ways to choose how to contract the copies of Φi with
other things, so the overall vertex factor is −6iλ.

The second term yields a vertex for four fields where two pairs have the same flavor. These come with
an extra factor of 2 · 2 = 4 because of the two copies of Φi and two copies of Φj , and thus the overall
vertex factor is −2iλ.

Now let’s check if this is compatible with the provided Feynman rule. When i = j = k = ℓ, all the
Kronecker deltas are equal to 1, so we get −6iλ. When i = j and k = ℓ, but i ̸= k, then only the first
Kronecker delta is equal to 1, and the others are equal to 0, so we get −2iλ.

c) Find the total cross section in the centre of mass frame for the processes

Φ1Φ2 → Φ1Φ2, Φ1Φ1 → Φ2Φ2, Φ1Φ1 → Φ1Φ1 (13)

to leading order in λ, in terms of Ecm. (Hint: start from equation (4.85) of Peskin
and Schroeder, and be careful with factors of 2.)

Solution: The Feynman diagrams for all three of these processes are just one copy of the interaction
vertex, and the amplitudes are just −2iλ, −2iλ, and −6iλ respectively. Because all four masses are
identical, we may use equation (4.85), which states

dσ

dΩ
=

|M|2

64π2E2
cm

. (S23)
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The scattering is isotropic, so the angular integrals are trivial.

For the first process, the angular integral just gives a factor of 4π, so

σ(Φ1Φ2 → Φ1Φ2) =
4πλ2

16π2E2
cm

=
λ2

4πE2
cm

. (S24)

For the second process, the angular integral only gives a factor of 2π because the particles in the final
state are identical. (The state where the first Φ2 exits left and the second exits right is exactly the same
as the state where the first Φ2 exits right and the second exits left. So integrating over all possible
directions for the momentum of the first Φ2 would be double counting.) Thus,

σ(Φ1Φ1 → Φ2Φ2) =
λ2

8πE2
cm

. (S25)

Finally, the last cross section is 9 times bigger, giving

σ(Φ1Φ1 → Φ1Φ1) =
9λ2

8πE2
cm

. (S26)

In the linear sigma model, the potential energy of a uniform classical field is

V (Φ) =
m2

2
Φ ·Φ+

λ

4
(Φ ·Φ)2 . (14)

When we quantize the harmonic oscillator, the usual definition of the creation and an-
nihilation operators in terms of x and p only makes sense if the potential’s minimum is
at x = 0. If the minimum is somewhere else, then many things go wrong. For instance,
a|0⟩ won’t be zero, and more generally a† and a won’t have simple commutation relations
with H, so won’t properly raise and lower the energy. Similarly, it only makes sense to
quantize fields in the usual way about minima of the potential V (Φ).

If m2 > 0 and λ > 0, there is a unique minimum of the potential at Φ = 0, so our
treatment above makes sense. Now suppose that m2 < 0 and λ > 0.

d) Defining µ2 = −m2, show that the minima of the potential are at

|Φ| = v =

√
µ2

λ
. (15)

The quantum theory thus has multiple vacuum states, but all have nonvanishing ⟨Φ⟩.
Solution: Setting dV/d|Φ| to zero gives m2|Φ|+ λ|Φ|3 = 0, which yields the desired result.

By symmetry under rotations of Φ, we can suppose without loss of generality that we are
in a vacuum state where ⟨ΦN⟩ = v, with all others vanishing. Define the new fields

σ(x) = ΦN(x)− v, πi(x) = Φi(x), i ∈ {1, 2, . . . , N − 1} (16)

which all have vanishing expectation values in this vacuum.

e) Show that in terms of these fields, the Lagrangian is

L =
1

2
(∂µπ)

2 +
1

2
(∂µσ)

2 − 1

2
m2

σσ
2

− λ4π
4

(π · π)2 − λ3σσ
3 − λ4σ

4
σ4 − λπσ1(π · π)σ − λπσ2(π · π)σ2 + C. (17)
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and give expressions for mσ, λ4π, λ3σ, λ4σ, λπσ1, λπσ2 and C in terms of µ and λ. We
see that σ is massive, but we have N − 1 massless pion fields πi.

Solution: This is straightforward algebra, and the answers are

mσ =
√
2µ, λ4π = λ, λ3σ = µ

√
λ, λ4σ = λ (S27)

and

λπσ1 = µ
√
λ, λπσ2 =

λ

2
, C = −µ

4

4λ
. (S28)

f) Write the momentum-space Feynman rules in terms of µ and λ. Draw the pions with
a solid line and flavor index i, and the σ particle with a double solid line. (Hint: if
you’ve seen the pattern from the other Feynman rules in the problem set, it should
be possible to write down the answer with some thought, but no explicit calculation.
There is no Feynman rule corresponding to the constant C, which has no effect here.)

Solution: The propagators are

i j =
i δij
p2 + iϵ

=
i

p2 −m2
σ + iϵ

(S29)

and the interaction vertices are

i j

k ℓ

= −2iλ (δijδkℓ + δikδjℓ + δiℓδjk)

i j

= −2iλ δij (S30)

= −6iλ

i

j

= −2iµ
√
λ δij = −6iµ

√
λ (S31)

g) Compute the decay rate of a σ particle to leading order in λ, and give the correspond-
ing lifetime in seconds if λ = 0.1, µ = 10 GeV and N = 3.

Solution: The amplitude to decay to a pair of some species of pion is iM = −2iµ
√
λ, so recycling the

result to problem 2(a) gives the decay rate

Γ =
N − 1

2

(2
√
λµ)2

8πmσ
=

(N − 1)λµ

4
√
2π

. (S32)

where the factor of 1/2 accounts for the two identical particles in the final state, and N−1 is the number
of species of pion. Inverting this and converting back from natural units gives a lifetime 6× 10−24 s.

h) Find the amplitude for πi(p1)πj(p2) → πk(p3)πℓ(p4) scattering to leading order in λ,
in terms of Mandelstam variables. (Hint: there are four Feynman diagrams.)

Solution: The amplitude is

iM =

i

j

k

ℓ

+

i

j

k

ℓ

+

i

j

k

ℓ

+

i j

k ℓ

(S33)

= (−2i
√
λµ)2

(
i δijδkℓ

s−m2
σ + iϵ

+
i δikδjℓ

t−m2
σ + iϵ

+
i δiℓδjk

u−m2
σ + iϵ

)
− 2iλ (δijδkℓ + δikδjℓ + δiℓδjk) (S34)

= (−2iλ)

(
2µ2 δijδkℓ
s− 2µ2 + iϵ

+
2µ2 δikδjℓ
t− 2µ2 + iϵ

+
2µ2 δiℓδjk
u− 2µ2 + iϵ

+ δijδkℓ + δikδjℓ + δiℓδjk

)
. (S35)

(S36)
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i) Show that the amplitude in part (h) vanishes when all spatial momenta pi go to zero.

Solution: In this limit, we have s = t = u = 0, so the denominators all become −2µ2. Then each of
the first three diagrams cancels with one term from the last diagram.

This is another manifestation of Goldstone’s theorem, discussed below. The general statement is that
in the effective theory of pions alone (i.e. without σ), sometimes called the nonlinear sigma model, the
Lagrangian only depends on the spatial derivatives ∂µπ of the pion field. Since acting with a derivative
on a field produces a factor of the particle momentum pµ, the Feynman rules for the interactions always
come with factors of momenta, so scattering amplitudes like the one we computed must vanish at zero
momentum.

The theory above is an example of “spontaneous” symmetry breaking. The original the-
ory has an SO(N) rotational symmetry among the fields Φ. After fixing a vacuum state,
we only have an SO(N − 1) rotational symmetry among the fields π. The symmetries
that rotate ΦN into the πi are still there, but operating with them moves us between
different vacuum states; they tell us that the vacua all have the same energy. Thus, there
is no energy cost for shifting a pion field πi by a small constant, corresponding to the
fact that there is no mass term for the pion fields. This is an example of a Goldstone’s
theorem, which states that each spontaneously broken continuous symmetry corresponds
to a massless boson, called a Goldstone boson.

Pions are the lightest mesons, and mediate interactions between protons and neutrons.
The linear sigma model was a phenomenological model which, among other things, ex-
plained why the pion was so light. The complete picture we have today is that pions
are the Goldstone bosons corresponding to the spontaneous breaking of chiral symmetry,
a symmetry of quantum chromodynamics which appears for massless up and down quarks.

In reality, the up and down quarks have small masses. This additional, “explicit” breaking
of chiral symmetry explains why real pions have nonzero mass. In addition, the quarks
differ in electric charge, which explains why the pions have different masses.

j) We can see a similar phenomenon in the linear sigma model. Show that when we add
a small term aΦN to the Lagrangian, the pion fields get a mass term m2

π proportional
to a, and find this term. (Hint: to keep things from getting messy, work to lowest
order in a as much as possible.)

Solution: The potential now includes −aΦN , which tilts it in the ΦN direction. There is now a unique
vacuum state where only ⟨ΦN ⟩ = v is nonzero. Setting the derivative of the potential to zero gives

−µ2v + λv3 − a = 0 (S37)

which rearranges to

λv2 = µ2 +
a

v
. (S38)

To solve this at leading order in a, we replace the v on the right-hand side with the unperturbed
expectation value v0 =

√
µ2/λ. Solving for v then yields

v =

√
µ2

λ
+

a

µ
√
λ
= v0 +

a

2µ2
+O(a2). (S39)

To find the mass term for the pion, it’s easiest to start with Eq. (17) and do a second shift, defining

σ′ = σ − a

2µ2
. (S40)
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The only term that will produce a pion mass term linear in a is −λπσ1(π · π)σ, giving

L ⊃ −µ
√
λ (π · π) a

2µ2
= −a

√
λ

2µ
π · π. (S41)

In other words, the pion mass is
√
a
√
λ/µ.

5. ⋆ A contrived calculation. (5 points)
This problem is optional. In scalar ϕ3 theory there is a diagram that contributes to the
vacuum correlation function at order λ8, shaped like a cube. Find its symmetry factor.
(This is somewhat involved, and the heuristic rules given in lecture will not be enough.)

Solution: The most reliable way to do this is to simply count all the Wick contractions that yield a cube,
building up the diagram one vertex at a time.

• Consider what the three copies of ϕ in the first vertex can contract with. The first has 7 · 3 choices,
the second has 6 · 3 choices, and the third has 5 · 3 choices.

• Now consider the opposite corner of the cube. There are 4 choices for which remaining uncontracted
vertex is the opposite corner. Its three copies of ϕ have 3 · 3, 2 · 3, and 3 choices for contractions.

• Finally, we attach the two halves of the cube together. There are 6 ways of choosing which vertices
attach to which, and 26 choices for how ϕ fields are contracted to make the joining edges.

Therefore, the symmetry factor is

7 · 3 · 6 · 3 · 5 · 3 · 4 · 3 · 3 · 2 · 3 · 3 · 6 · 26

8! · (3!)8
=

1

48
. (S42)

This makes sense, as the symmetry group of the cube has 48 elements.
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