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1. The Lorentz algebra. (10 points)
You previously showed the rotation and boost generators obey commutation relations

[J i, J j] = iεijkJk, [J i, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk. (1)

These are Euclidean indices, which is why pairs of upstairs indices can be contracted.

a) Defining J i± = (J i ± iKi)/2, show that

[J i+, J
j
−] = 0, [J i±, J

j
±] = iεijkJk±, (2)

so that the Lorentz algebra is just two copies of the algebra of the rotation group.

The commutation relations can be expressed more concisely if we collect all six generators
into the antisymmetric Lorentz tensor Jµν , where

J ij = εijkJk, J0i = Ki (3)

The commutation relations (1) can then all be written together as

[Jµν , Jρσ] = i (ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ). (4)

By definition, a representation of the Lorentz algebra is a choice of Jµν that satisfies these
commutation relations. The simplest example is the trivial representation Jµν = 0, which
describes the action of Lorentz transformations on scalars.

b) In the vector representation, each generator Jµν is a 4× 4 matrix, with elements

(Jµν)αβ = i (δµαδ
ν
β − δναδ

µ
β). (5)

This describes the action of Lorentz transformations on four-vectors V β, as you’ve
already seen. Starting from (5), verify the generators satisfy the Lorentz algebra (4).
(Hint: upper and lower indices should be contracted in pairs to perform matrix mul-
tiplication. For example, (J01J23)αβ = (J01) γ

α (J23)γβ. If you get confused, start by
plugging in specific values for the indices and doing the sums explicitly.)

c) The gamma matrices are 4× 4 matrices defined to satisfy

{γµ, γν} = 2 ηµν . (6)

Show that

[γµγν , γργσ] = 2 (ηνργµγσ − ηµργνγσ + ηνσγργµ − ηµσγργν). (7)

d) In the Dirac spinor representation, the generators are the 4× 4 matrices

Sµν =
i

4
[γµ, γν ]. (8)

This describes the action of Lorentz transformations on Dirac spinors. Show that
these generators satisfy the Lorentz algebra (4).
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2. Properties of gamma matrices. (15 points)
In this problem, you should only use the defining property (6) of the gamma matrices.
Below, 14 denotes a 4× 4 identity matrix.

a) Show that contractions of gamma matrices satisfy

γµγµ = 414 (9)

γµγνγµ = −2 γν (10)

γµγνγργµ = 4 ηνρ 14 (11)

γµγνγργσγµ = −2 γσγργν (12)

b) Show that the traces of products of gamma matrices obey

tr γµ = 0 (13)

tr γµγν = 4 ηµν (14)

tr γµγνγρ = 0 (15)

tr γµγνγργσ = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ). (16)

c) It will be useful to introduce the matrix γ5 = iγ0γ1γ2γ3. Show that

{γ5, γµ} = 0 (17)

(γ5)2 = 14 (18)

tr γ5 = 0 (19)

tr γµγνγ5 = 0 (20)

tr γµγνγργσγ5 = −4i εµνρσ. (21)

3. Invariance of the Dirac Lagrangian. (15 points)
The Dirac Lagrangian is

L = Ψ̄(i/∂ −m14)Ψ (22)

where Ψ̄ = Ψ†γ0 and /∂ = γµ∂µ. The four-component spinor Ψ is acted on by the gamma
matrices. In general, a Lorentz transformation Λ will change a spinor according to

Ψ(x)→ Ψ′(x′) = U(Λ)Ψ(x) (23)

where U(Λ) is some 4× 4 matrix, not necessarily unitary.

a) Show that the Dirac Lagrangian is invariant under Lorentz transformations if

U−1(Λ) = γ0U †(Λ)γ0, U−1(Λ)γµU(Λ) = Λµ
νγ

ν . (24)

b) Show that for an infinitesimal Lorentz transformation Λµν = ηµν + ωµν the above
relations are satisfied for

U(Λ) = 14 −
i

2
ωµνSµν , (25)

where Sµν is the Lorentz generator defined by (8). (Hint: use γ0γµγ0 = (γµ)†, which
holds in every representation of the gamma matrices.)
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c) A finite Lorentz transformation is given by exponentiating a generator,

U(Λ) = exp

(
− i

2
ωµνSµν

)
. (26)

Explicitly write down the 4 × 4 matrix U(Λ) for a rotation about the x-axis by an
angle θ, and a boost along the z axis with rapidity φ. Use the Dirac representation
of the gamma matrices, as this will yield simple results in the nonrelativistic limit.

d) Show that the Dirac Lagrangian is invariant under Ψ→ e−iαΨ, and find the associated
conserved current JµV . Then show explicitly that ∂µJ

µ
V = 0 using the Dirac equation.

e) Show that when m = 0, the Dirac Lagrangian is also invariant under Ψ → e−iαγ
5
Ψ,

and find the associated conserved current JµA. What is ∂µJ
µ
A when m is nonzero?

4. ? Spinors in three dimensions. (5 points)
In this course, we focus on spinors in four dimensions for good reason. In this optional
problem, you’ll see how the same mathematical structures appear in three dimensions.

a) Consider spinors in three spacetime dimensions. What are the smallest nonzero ma-
trices that can satisfy (6)? Write down three such matrices γ0, γ1, and γ2 explicitly.

b) We define the spinor Lorentz generators by (8) in any dimension. Since there are now
only two spatial dimensions, there is only one rotation generator S12. What phase
does a spinor pick up after a 2π rotation?

c) How does the tensor product of two spinor representations decompose into irreducible
representations of the Lorentz group?

In two spatial dimensions there are exotic particles called anyons, which can pick up an
arbitrary phase after a 2π rotation. However, they can’t be described by the conventional
quantum fields covered in this course.
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