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1. The Lorentz algebra. (10 points)
You previously showed the rotation and boost generators obey commutation relations

[J i, J j] = iϵijkJk, [J i, Kj] = iϵijkKk, [Ki, Kj] = −iϵijkJk. (1)

These are Euclidean indices, which is why pairs of upstairs indices can be contracted.

a) Defining J i
± = (J i ± iKi)/2, show that

[J i
+, J

j
−] = 0, [J i

±, J
j
±] = iϵijkJk

±, (2)

so that the Lorentz algebra is just two copies of the algebra of the rotation group.

Solution: In general, for any numbers a and b,

1

4

[
J i + iaKi, Jj + ibKj

]
=

1

4

(
[J i, Jj ] + ia[Ki, Jj ] + ib[J i,Kj ]− ab[Ki,Kj ]

)
(S1)

=
i

4
ϵijk

(
(1 + ab)Jk + i(a+ b)Kk

)
. (S2)

For a = −b = 1 we find
[J i

+, J
j
−] = 0 (S3)

as desired. For a = b = ±1 we find

[J i
±, J

j
±] = iϵijkJk

± (S4)

also as desired.

The commutation relations can be expressed more concisely if we collect all six generators
into the antisymmetric Lorentz tensor Jµν , where

J ij = ϵijkJk, J0i = Ki (3)

The commutation relations (1) can then all be written together as

[Jµν , Jρσ] = i (ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ). (4)

By definition, a representation of the Lorentz algebra is a choice of Jµν that satisfies these
commutation relations. The simplest example is the trivial representation Jµν = 0, which
describes the action of Lorentz transformations on scalars.

b) In the vector representation, each generator Jµν is a 4× 4 matrix, with elements

(Jµν)αβ = i (δµαδ
ν
β − δναδ

µ
β). (5)

This describes the action of Lorentz transformations on four-vectors V β, as you’ve
already seen. Starting from (5), verify the generators satisfy the Lorentz algebra (4).
(Hint: upper and lower indices should be contracted in pairs to perform matrix mul-
tiplication. For example, (J01J23)αβ = (J01) γ

α (J23)γβ. If you get confused, start by
plugging in specific values for the indices and doing the sums explicitly.)

Solution: We just directly evaluate the commutator,

[Jµν , Jρσ]αδ = ηβγ
[
−(δµαδ

ν
β − δναδ

µ
β )(δ

ρ
γδ

σ
δ − δσγ δ

ρ
δ ) + δραδ

σ
β − δσαδ

ρ
β)(δ

µ
γ δ

ν
δ − δνγδ

µ
δ )
]
. (S5)
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There are 8 terms in total, each of which has the form ηβγ times a product of four delta functions.
For each one, we can apply the identity δµαδ

ν
βη

αβ = ηµν to reduce the term to a product of two delta
functions times a metric tensor. Collecting the terms in four pairs yields the desired result.

This is tedious to write out. An easier way is to note that (S5) is antisymmetric in µ and ν, and in ρ and
σ, which means the result also has to be antisymmetric in these pairs of indices. In this way, you can
reduce the amount of algebra needed by a factor of 4, though you have to be a bit careful with signs.

c) The gamma matrices are 4× 4 matrices defined to satisfy

{γµ, γν} = 2 ηµν . (6)

Show that

[γµγν , γργσ] = 2 (ηνργµγσ − ηµργνγσ + ηνσγργµ − ηµσγργν). (7)

Solution: We just directly use the definition of the commutator, and then use (6) repeatedly to get the
two terms in the same form, picking up factors of the metric with each anticommutation:

[γµγν , γργσ] = γµγνγργσ − γργσγµγν (S6)

= γµ{γν , γρ}γσ − γµγργνγσ − γργσγµγν (S7)

= 2ηνργµγσ − γµγρ{γν , γσ}+ γµγργσγν − γργσγµγν (S8)

= 2ηνργµγσ − 2ηνσγµγρ + {γµ, γρ}γσγν − γργµγσγν − γργσγµγν (S9)

= 2ηνργµγσ − 2ηνσγµγρ + 2ηµργσγν − γρ{γµ, γσ}γν (S10)

= 2ηνργµγσ − 2ηνσγµγρ + 2ηµργσγν − 2ηµσγρ γν (S11)

= 2ηνργµγσ + 2ηνσγργµ − 2ηµργνγσ − 2ηµσγρ γν . (S12)

Note that in the last step, we used the anticommutation relation on each of the middle two terms; the
factors of ηνσηµρ cancel between the two terms.

d) In the Dirac spinor representation, the generators are the 4× 4 matrices

Sµν =
i

4
[γµ, γν ]. (8)

This describes the action of Lorentz transformations on Dirac spinors. Show that
these generators satisfy the Lorentz algebra (4).

Solution: Plugging in the definitions, we have

[Sµν , Sρσ] = − 1

16
[γµγν − γνγµ, γργσ − γσγρ] (S13)

= − 1

16
([γµγν , γργσ]− [γνγµ, γργσ]− [γµγν , γσγρ] + [γνγµ, γσγρ]) (S14)

= −1

4
[γµγν , γργσ] (S15)

= −1

2
(ηνργµγσ + ηνσγργµ − ηµργνγσ − ηµσγργν) . (S16)

In the third step, we used the anticommutation relations on the last three terms, and in the fourth step
we used the result of part (c). To finish the problem, we note that

γµγν =
1

2
[γµ, γν ] +

1

2
{γµ, γν} = −2iSµν + ηµν . (S17)

Applying this to all four terms, the factors of the metric all cancel out, leaving the desired result

[Sµν , Sρσ] = iηνρSµσ + iηνσSρµ − iηµρSνσ − iηµσSρν . (S18)
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2. Properties of gamma matrices. (15 points)
In this problem, you should only use the defining property (6) of the gamma matrices.
Below, 14 denotes a 4× 4 identity matrix.

a) Show that contractions of gamma matrices satisfy

γµγµ = 414 (9)

γµγνγµ = −2 γν (10)

γµγνγργµ = 4 ηνρ 14 (11)

γµγνγργσγµ = −2 γσγργν (12)

Solution: Since γµ and γµ commute, we have

γµγµ =
1

2
(γµγµ + γµγ

µ) =
1

2
{γµ, γµ} = ηµµ = 4 (S19)

where the right-hand side has an implicit 4× 4 spinor identity matrix. Now, the proofs of the other three
statements are very similar, but we use the defining anticommutation relation (6) to get the γµ and γµ
next to each other, so we can use (9). The results are:

γµγνγµ = γµ{γν , γµ} − γµγµγ
ν (S20)

= 2γµηνµ − 4γν (S21)

= −2γν . (S22)

γµγνγργµ = γµγν{γρ, γµ} − γµγνγµγ
ρ (S23)

= 2ηρµγ
µγν − γµ{γν , γµ}γρ + γµγµ, γ

νγρ (S24)

= 2γργν − 2γνγρ + 4γνγρ (S25)

= 4ηρν . (S26)

γµγνγργσγµ = 2ησµγ
µγνγρ − γµγνγργµγ

σ (S27)

= 2γσγνγρ − 2ηρµγ
µγνγσ + γµγνγµγ

ργσ (S28)

= 2γσγνγρ − 2γργνγσ + 2ηνµγ
µγργσ − γµγµγ

νγργσ (S29)

= 2γσγνγρ − 2γργνγσ − 2γνγργσ (S30)

= 2γσ{γν , γρ} − 2γσγργν − 2γργνγσ − 2{γν , γρ}γσ (S31)

= 2γσ{γν , γρ} − 2γσγργν − 2γργνγσ − 2{γν , γρ}γσ + 2γργνγσ (S32)

= −2γσγργν (S33)

b) Show that the traces of products of gamma matrices obey

tr γµ = 0 (13)

tr γµγν = 4 ηµν (14)

tr γµγνγρ = 0 (15)

tr γµγνγργσ = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ). (16)

Solution: We use the cyclic property of the trace,

trABC . . .XY Z = trBC . . .XY ZA (S34)

as well as the results we proved in part (a). For example, we have

tr γµ = tr

[
1

4
γµγνγν

]
= tr

[
1

4
γνγ

µγν
]
= −1

2
tr γµ (S35)

3



where we used (9), the cyclic property of the trace, and (10). The only way this equation can be satisfied
is if tr γµ = 0, as desired. A similar idea works for the trace of three gamma matrices,

tr γµγνγρ =
1

4
tr γµγνγργσγσ =

1

4
tr γσγ

µγνγργσ = −1

2
tr γργνγµ = −1

2
tr γµγργν . (S36)

We can bring the right-hand side to the same form as the left-hand side using the anticommutation
relation,

−1

2
tr γµγργν = −1

2
tr γµ{γρ, γν}+ 1

2
tr γµγνγρ =

1

2
tr γµγνγρ (S37)

where the second step uses (13). We thus conclude tr γµγνγρ = 0. One can generalize this argu-
ment to show that the trace of an odd number of gamma matrices always vanishes. (Of course, there
are multiple ways to show this; you could also have done it by inserting factors of (γ5)2 = 1, as in Peskin.)

Now let’s consider the equations with an even number of gamma matrices. For two gamma matrices, we
can use the cyclic property of the trace to produce an anticommutator, giving

tr γµγν =
1

2
tr [γµγν + γνγµ] = tr[ηµν ] = 4ηµν . (S38)

For four gamma matrices, we can use a similar idea, repeatedly using the anticommutation relations to
bring γµ to the right and then moving it back to the left using the cyclic property of the trace,

tr γµγνγργσ = tr{γµ, γν}γργσ − tr γνγµγργσ (S39)

= 8ηµνηρσ − tr γν{γµ, γρ}γσ − tr γνγργµγσ (S40)

= 8ηµνηρσ − 8ηµρηνσ + tr γνγρ{γµ, γσ} − tr γµγνγργσ (S41)

= 8ηµνηρσ − 8ηµρηνσ + 8ηµσηρν − tr γµγνγργσ. (S42)

Adding tr γµγνγργσ to both sides and dividing by two gives the result.

While these relations might seem random, there’s a very simple way to summarize what they mean.
Consider an arbitrarily long product of arbitrary gamma matrices,

tr(γ1γ3γ0γ0γ2γ3γ2γ1 · · · ). (S43)

The defining anticommutation relations tells us that we pick up a minus sign when we swap the order of
any two adjacent, distinct gamma matrices. So such a trace can always be rewritten in the form

± tr((γ0)n0(γ1)n1(γ2)n2(γ3)n3) (S44)

where n0 through n3 are nonnegative integers. The anticommutation relations also tell us that γ0γ0 = 1
and γ1γ1 = γ2γ2 = γ3γ3 = −1, which reduces the trace above (up to a sign) to

± tr((γ0)m0(γ1)m1(γ2)m2(γ3)m3) (S45)

where the mi are 0 or 1, depending on the parity of the ni. Looking back at what we’ve just proven, (13)
says the trace of any single gamma matrix is zero, (14) says the trace of the product of any two distinct
gamma matrices is zero, and (15) and (16) say the analogous results for three and four gamma matrices.
Therefore, the trace (S45) is automatically zero unless all of the mi are equal to zero. The punchline is
that the only way to get a nonzero trace is to multiply an even number of copies of each type of gamma
matrix.

c) It will be useful to introduce the matrix γ5 = iγ0γ1γ2γ3. Show that

{γ5, γµ} = 0 (17)

(γ5)2 = 14 (18)

tr γ5 = 0 (19)

tr γµγνγ5 = 0 (20)

tr γµγνγργσγ5 = −4i ϵµνρσ. (21)
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Solution: We can check the first statement for each value of µ. For example, for µ = 0 we have

{γ5, γ0} = iγ0γ1γ2γ3γ0 + iγ0γ0γ1γ2γ3 (S46)

The second term can be brought to the first term by performing three anticommutations, each of which flips
the sign. Thus, the sum of the two terms is zero. The logic for µ = 1, 2, 3 is similar.

To prove the second statement, we note that

(γ5)2 = −γ0γ1γ2γ3γ0γ1γ2γ3 (S47)

= γ1γ2γ3γ1γ2γ3 (S48)

= −γ2γ3γ2γ3 (S49)

= −γ3γ3 (S50)

= 1 (S51)

where we just used the anticommutation relations, which imply γ0γ0 = 1 and γ1γ1 = γ2γ2 = γ3γ3 = −1.

To prove the third statement, we can simply use (16),

tr γ5 = i tr γ0γ1γ2γ3 = 4i(η01η23 − η02η13 + η03η12) = 0. (S52)

For the fourth statement, we can do some casework on the values of µ and ν. If µ = ν, then the γµ and
γν multiply to give ±1, leaving us with tr γ5 = 0. On the other hand, suppose µ ̸= ν, then we can bring
the factors of γµ and γν within γ5 to the left, by performing anticommutations. Multiplying them with γµγν

yields ±1 and leaves the trace of a product of two different gamma matrices, which is zero.

Finally, for the last statement, let’s first show that the left-hand side is totally antisymmetric in its four indices.
For the µ and ν indices, note that

tr γµγνγργσγ5 = 2ηµν tr γργσγ5 − tr γνγµγργσγ5 = − tr γνγµγργσγ5. (S53)

By similar reasoning, we get a sign flip when we exchange the ν and ρ indices, and the ρ and σ indices, which
suffices to show that the left-hand side is antisymmetric in all four indices. Thus, it must be equal to Aϵµνρσ

for some constant A. To find the constant, we just consider a special case,

tr γ0γ1γ2γ3γ5 = Aϵ0123 = A. (S54)

The left-hand side is just
−i tr(γ5)2 = −4i (S55)

which yields the desired result.

3. Invariance of the Dirac Lagrangian. (15 points)
The Dirac Lagrangian is

L = Ψ̄(i/∂ −m14)Ψ (22)

where Ψ̄ = Ψ†γ0 and /∂ = γµ∂µ. The four-component spinor Ψ is acted on by the gamma
matrices. In general, a Lorentz transformation Λ will change a spinor according to

Ψ(x) → Ψ′(x′) = U(Λ)Ψ(x) (23)

where U(Λ) is some 4× 4 matrix, not necessarily unitary.

a) Show that the Dirac Lagrangian is invariant under Lorentz transformations if

U−1(Λ) = γ0U †(Λ)γ0, U−1(Λ)γµU(Λ) = Λµ
νγ

ν . (24)

5



Solution: From basic special relativity, we know that under a Lorentz transformation,

xµ → x′µ = Λµ
νx

ν ,
∂

∂xµ
→ ∂

∂x′µ
= Λµ

ν

∂

∂xν
. (S56)

Now let’s show that each term in the Dirac Lagrangian is invariant. The mass term is invariant because

Ψ̄Ψ = Ψ†γ0Ψ → Ψ†U†γ0UΨ = Ψ†γ0U−1UΨ = Ψ̄Ψ. (S57)

To show the kinetic term is invariant, note that

Ψ̄/∂Ψ → Ψ†U†γ0γµΛ
µ
ν∂

νUΨ (S58)

= Ψ†γ0U−1γµΛ
µ
νU∂

νΨ (S59)

= Ψ̄Λµργ
ρΛµ

ν∂
νΨ (S60)

= Ψ̄ηνργ
ρ∂νΨ (S61)

= Ψ̄/∂Ψ. (S62)

b) Show that for an infinitesimal Lorentz transformation Λµν = ηµν + ωµν the above
relations are satisfied for

U(Λ) = 14 −
i

2
ωµνSµν , (25)

where Sµν is the Lorentz generator defined by (8). (Hint: use γ0γµγ0 = (γµ)†, which
holds in every representation of the gamma matrices.)

Solution: Expanding out the definitions, we have

U = 1+
1

8
[γµ, γν ]ωµν (S63)

which implies

U−1 = 1− 1

8
[γµ, γν ]ωµν (S64)

since we’re considering infinitesimal translations. To prove the first result note that

γ0U†γ0 = 1+
1

8
γ0[(γν)†, (γµ)†]γ0 ωµν (S65)

= 1+
1

8
γ0[γ0γνγ0, γ0γµγ0]γ0 ωµν (S66)

= 1− 1

8
[γµ, γν ]ωµν (S67)

= U−1. (S68)

In the first step, we used the fact that [A,B]† = [B†, A†], in the second step we used γ†µ = γ0γµγ
0, and

in the third step we used γ0γ0 = 1.

For the second relation, note that

γµ[γρ, γσ] = 4(ηµργσ − ηµσγρ) + [γρ, γσ]γµ. (S69)

Next,

γµU = γµ(1+
1

8
[γρ, γσ]ω

ρσ) = Uγµ +
1

2
(ωµσγσ − ωσµγσ) = Uγµ + ωµσγσ. (S70)

Finally, we find

U−1γµU = U−1(Uγµ + ωµσγ
σ) = (ηµν + ωµν)γ

ν = Λµνγ
ν (S71)

as desired. Note that in the penultimate step, we dropped a term of order ω2 since the Lorentz transfor-
mation is infinitesimal.
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c) A finite Lorentz transformation is given by exponentiating a generator,

U(Λ) = exp

(
− i

2
ωµνSµν

)
. (26)

Explicitly write down the 4 × 4 matrix U(Λ) for a rotation about the x-axis by an
angle θ, and a boost along the z axis with rapidity ϕ. Use the Dirac representation
of the gamma matrices, as this will yield simple results in the nonrelativistic limit.

Solution: For rotations around the x-axis by an angle θ we have ω23 = −ω32 = θ and all other entries
zero. In the Dirac representation, we find

[γ2, γ3] =

[(
0 σ2

−σ2 0

)
,

(
0 σ2

−σ2 0

)]
= −

(
[σ2, σ3] 0

0 [σ2, σ3]

)
= 2i

(
σ1 0
0 σ1

)
(S72)

Consequently,

U(Λ(θ)) = exp

{
iθ

2

(
σ1 0
0 σ1

)}
= cos

θ

2
1+ i sin

θ

2

(
σ1 0
0 σ1

)
. (S73)

This makes sense, because it just says that both of the two-component spinors that make up a Dirac
spinor transform like spin 1/2 particles in ordinary quantum mechanics.

For boosts along the z direction we have ω03 = −ω30 = ϕ and all other entries zero, and

[γ0, γ3] =

[(
1 0
0 −1

)
,

(
0 σ3

−σ3 0

)]
= 2

(
0 σ3
σ3 0

)
. (S74)

Consequently,

U(Λ(ϕ)) = exp

{
ϕ

2

(
0 σ3
σ3 0

)}
= cosh

ϕ

2
1+

(
0 σ3
σ3 0

)
sinh

ϕ

2
. (S75)

In other words, boosts mix the two two-component spinors, while keeping the spin state the same.

d) Show that the Dirac Lagrangian is invariant under Ψ → e−iαΨ, and find the associated
conserved current Jµ

V . Then show explicitly that ∂µJ
µ
V = 0 using the Dirac equation.

Solution: The Lagrangian is invariant because we also have Ψ̄ → eiαΨ̄, so the phases cancel out. Now,
to avoid confusion when applying Noether’s theorem, let’s explicitly write out the spinor indices. The
changes in the spinors are

(δΨ)a = −iΨa, (δΨ̄)a = (iΨ̄)a (S76)

and Noether’s theorem states

Jµ
V =

∂L
∂(∂µΨ)a

(δΨ)a +
∂L

∂(∂µΨ̄)a
(δΨ̄)a (S77)

where there is an implicit sum over the spinor index a. (It ranges from 0 to 3, covering the four elements
of the spinor, but it is not a Lorentz index.) The second term is just zero, so we get

Jµ
V = (iΨ̄γµ)a(−iΨ)a. (S78)

We can rewrite this without explicit spinor indices as

Jµ
V = Ψ̄γµΨ (S79)

where there are now implicit spinor matrix multiplications. To check this is conserved, note that

∂µJ
µ
V = (∂µΨ̄)γµΨ+ Ψ̄γµ∂µΨ = imΨ̄Ψ− imΨ̄Ψ = 0. (S80)

e) Show that when m = 0, the Dirac Lagrangian is also invariant under Ψ → e−iαγ5
Ψ,

and find the associated conserved current Jµ
A. What is ∂µJ

µ
A when m is nonzero?
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Solution: Using the fact that γ5 anticommutes with all gamma matrices, we have

Ψ̄ = Ψ†γ0 → Ψ†eiαγ
5

γ0 = Ψ†γ0e−iαγ5

= Ψ̄e−iαγ5

. (S81)

Thus, the Lagrangian becomes

Ψ†e−iαγ5
/∂e−iαγ5

Ψ. (S82)

Moving the e−iαγ5

past the /∂ flips the sign of the exponential, so we end up with a factor of eiαγ
5

e−iαγ5

=
1. Now, the changes in the spinors per α, for infinitesimal α, are

δΨ = −iγ5Ψ, δΨ̄ = −iΨ̄γ5 (S83)

which means the Noether current is
Jµ
A = Ψ̄γµγ5Ψ. (S84)

For nonzero m, the divergence of the current is

∂µJ
µ
A = (∂µΨ̄)γµγ5Ψ+ Ψ̄γµγ5∂µΨ (S85)

= (∂µΨ̄)γµγ5Ψ− Ψ̄γ5γµ∂µΨ (S86)

= imΨ̄γ5Ψ+ imΨ̄γ5Ψ (S87)

= 2imΨ̄γ5Ψ. (S88)

4. ⋆ Spinors in three dimensions. (5 points)
In this course, we focus on spinors in four dimensions for good reason. In this optional
problem, you’ll see how the same mathematical structures appear in three dimensions.

a) Consider spinors in three spacetime dimensions. What are the smallest nonzero ma-
trices that can satisfy (6)? Write down three such matrices γ0, γ1, and γ2 explicitly.

Solution: The minimum size is 2× 2, and one example set is

γ0 = σ2, γ1 = iσ1, γ2 = iσ3 (S89)

where the σi are the Pauli matrices.

b) We define the spinor Lorentz generators by (8) in any dimension. Since there are now
only two spatial dimensions, there is only one rotation generator S12. What phase
does a spinor pick up after a 2π rotation?

Solution: We have

S12 =
i

4
[iσ1, iσ3] = −σ

2

2
. (S90)

Then a 2π rotation yields
exp

(
−πσ2

)
= −I (S91)

and therefore a phase of π, just like in 4 dimensions.

c) How does the tensor product of two spinor representations decompose into irreducible
representations of the Lorentz group?

Solution: By the exact same logic as in 4 dimensions, we can extract a Lorentz scalar by ψ̄ψ, and a
Lorentz vector (which only has three components) by ψ̄γµψ. Since spinors have 2 components, the tensor
product has 4 components, so this decomposition is complete: there isn’t anything else. For instance,
you might consider putting [γµ, γν ] in the middle, but in three dimensions the commutator of two gamma
matrices is just another gamma matrix, so you don’t get anything new. Similarly, you can’t use γ5 to
get anything new, as its analogue here, iγ0γ1γ2, is just proportional to the identity.

In two spatial dimensions there are exotic particles called anyons, which can pick up an
arbitrary phase after a 2π rotation. However, they can’t be described by the conventional
quantum fields covered in this course.
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