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Problem Set 7 (due 11/15)
Bernhard Mistlberger, Kevin Zhou

1. Plane wave solutions of the Dirac equation. (10 points)
In the Weyl representation the gamma matrices are given by

γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (12, σ

1, σ2, σ3), σ̄µ = (12,−σ1,−σ2,−σ3). (1)

Here, 1n denotes an n× n identity matrix.

a) Show that (p · σ)(p · σ̄) = p212.

b) Show that the Dirac equation has positive-frequency plane wave solutions

ψ(x) = us(p)e
−ip·x, us(p) =

(√
p · σ ξs√
p · σ̄ ξs

)
(2)

where ξs is a two-component spinor, i.e. a complex vector with two elements. (For-
mally, given a matrix A with a complete basis of eigenvectors, with eigenvalues λi, we
can define a matrix square root

√
A to have the same eigenvectors, with eigenvalues√

λi. But the only thing you need to know to do this problem is
√
A
√
A = A.)

c) Show that if we pick an orthonormal basis of two-component spinors ξs with s ∈ {1, 2},
satisfying (ξr)

†ξs = δrs, then the Dirac spinors satisfy the orthogonality relations

ur(p)
†us(p) = 2p0 δrs, ūr(p)us(p) = 2mδrs. (3)

d) Similarly, the Dirac equation has negative-frequency plane wave solutions

ψ(x) = vs(p)e
ip·x, vs(p) =

( √
p · σ ξs

−
√
p · σ̄ ξs

)
. (4)

Show that these solve the Dirac equation, and satisfy the orthogonality relations

vr(p)
†vs(p) = 2p0 δrs, v̄r(p)vs(p) = −2mδrs. (5)

e) Show the completeness relations for the Dirac spinors,

2∑
s=1

us(p)ūs(p) = /p+m14,

2∑
s=1

vs(p)v̄s(p) = /p−m14. (6)

2. Useful spinor identities. (10 points)

a) Prove the Gordon identity,

ūr(p
′)γµus(p) = ūr(p

′)

(
p′µ + pµ

2m
+
iσµν(p′ν − pν)

2m

)
us(p) (7)

where σµν = i
2
[γµ, γν ]. (Hint: this can be done using only the Dirac equation and the

defining property of the gamma matrices.)
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Combinations of gamma matrices can be used to produce a basis ΓI for the space of 4× 4
matrices, where I ranges from 1 to 16. Concretely, we have

Γ11 = (i/2)[γ0, γ1]

Γ3 = γ0 Γ7 = iγ5γ0 Γ12 = (i/2)[γ0, γ2]

Γ1 = 14 Γ4 = γ1 Γ8 = iγ5γ1 Γ13 = (i/2)[γ0, γ3]

Γ2 = γ5 Γ5 = γ2 Γ9 = iγ5γ2 Γ14 = (i/2)[γ1, γ2]

Γ6 = γ3 Γ10 = iγ5γ3 Γ15 = (i/2)[γ1, γ3]

Γ16 = (i/2)[γ2, γ3]

We define the matrices Γ̃I similarly, but with lowered Lorentz indices; for example, Γ̃4 =
γ1 = −γ1 = −Γ4. (This ensures the equations below won’t have annoying extra signs due
to the signs in the metric.) An inner product for 4× 4 matrices can be defined by

tr(AB) =
∑
ab

AabBba. (8)

Under this inner product, the matrices given above are orthogonal, in the sense that

tr(Γ̃IΓJ) = 4δIJ (9)

which implies they are linearly independent, and thus indeed form a basis. (You don’t
have to check (9), but it follows directly from the results you proved in problem set 6.)

b) Show the completeness relation for the Γ matrices,

δacδdb =
1

4

∑
I

Γ̃IdcΓ
I
ab. (10)

(Hint: it suffices to show that both sides give the same result when multiplied by a
general matrix Mcd.)

c) Using (10), show the Fierz identity

Γ̃IabΓ
J
cd =

1

16

∑
KL

tr
[
Γ̃I Γ̃KΓJΓL

]
Γ̃LadΓ

K
cb. (11)

Contracting both sides of the Fierz identity with four spinors ū1au2bū3cu4d yields

(ū1Γ̃
Iu2)(ū3Γ

Ju4) =
1

16

∑
KL

tr
[
Γ̃I Γ̃KΓJΓL

]
(ū1Γ̃

Lu4)(ū3Γ
Ku2). (12)

In other words, the Fierz identity relates the product of a contraction of ū1 with u2 and a
contraction of ū3 and u4 (with arbitrary gamma matrices in the middle) to a combination
of contractions of ū1 with u4 and ū3 with u2. This “Fierz transformation” rearranges how
the spinors are contracted with each other, which can be useful in calculations.

d) Find the Fierz transformations for (ū1u2)(ū3u4) and (ū1γ
µu2)(ū3γµu4) explicitly. (Your

final result should only contain the spinors and gamma matrices, not the ΓI .)
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3. Electromagnetism in relativistic notation. (20 points)
In electromagnetism, the Lagrangian is a function of the four-potential Aµ = (φ,A),

L = −1

4
FµνF

µν − JµAµ , where Fµν = ∂µAν − ∂νAµ , (13)

and Jµ = (ρ,J) is a classical current density.

a) Show that if the current is conserved, ∂µJ
µ = 0, then the action remains the same

under the gauge symmetry Aµ → Aµ + ∂µα, for any smooth function α.

b) Show that the Euler–Lagrange equation for Aµ is

∂µF
µν = Jν . (14)

c) Defining the electric and magnetic fields by Ei = F i0 and εijkBk = −F ij, show
that (14) is equivalent to two of Maxwell’s equations.

d) The other two of Maxwell’s equations are

εµνρσ∂µFνρ = 0 (15)

which follows directly from the definition of Fµν . Interestingly, all four of Maxwell’s
equations can be written as a single spinor equation. Show that the equation

γνγργσ∂νFρσ = 2γνJν (16)

contains both (14) and (15). (This is just a mathematical trick with no physical
meaning, but it’s a nice application of the properties of gamma matrices.)

e) In the Lagrangian (13), we could have also included a term of the form εµνρσFµνFρσ,
which is Lorentz invariant and gauge invariant. What is it in terms of E and B?
Show that this term is a total derivative, and thus does not contribute to the action.

For the rest of this problem suppose there is no current, Jµ = 0.

f) Construct the stress-energy tensor by directly applying Noether’s theorem.

g) The stress-energy tensor you found in part (e) is conserved, but neither symmetric
nor gauge invariant. However, we can define an “improved” stress-energy tensor,

T̂ µν = T µν + ∂ρ(F
µρAν). (17)

Assuming the equations of motion hold, show that T̂ µν is symmetric, gauge invari-
ant, conserved (∂µT̂

µν = 0), and traceless (ηµνT̂
µν = 0). Furthermore, show that it

contains the familiar electromagnetic energy and momentum densities,

T̂ 00 =
1

2
(|E|2 + |B|2) , T̂ 0i = (E×B)i. (18)

In general, the improved stress-energy tensor considered here is called the Belinfante
tensor; it is this stress-energy tensor that sources gravity in general relativity. We didn’t
see it earlier because the improvement terms are related to the spin angular momentum
of the field, which is zero for scalar fields.
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4. ? Chern–Simons theory. (5 points)
This optional problem presents a way to produce massive gauge fields.

a) The Proca Lagrangian for a massive vector field is

L = −1

4
FµνF

µν +
1

2
m2AµA

µ. (19)

Find the equation of motion for Aµ and show that for m 6= 0, it implies

(∂2 +m2)Aµ = 0, ∂µA
µ = 0. (20)

However, this action does not have a gauge symmetry.

b) On the other hand, in two spatial dimensions it is possible to have massive gauge
fields. We consider a Lagrangian with a “Chern–Simons” term,

L = −1

4
FµνF

µν +
α

4
εµνρFµνAρ (21)

where all indices take the values 0, 1, and 2, and ε012 = 1. (This new term is a relative
of the term we considered in 3(e), but it is not a total derivative.) Show that the
action is gauge invariant, and find the Euler–Lagrange equation for Aµ.

c) The Chern–Simons term is sometimes called a “topological” mass term, because it
doesn’t depend on the metric. Show that the equation of motion implies

(∂2 +m2)F µν = 0 (22)

for some m you should find. Thus the field is massive, yet still has a gauge symmetry.

Since there is no Chern–Simons term in three spatial dimensions, it has little role in parti-
cle physics, but it is important in the description of topological effects in two-dimensional
condensed matter systems.
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