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1. Plane wave solutions of the Dirac equation. (10 points)
In the Weyl representation the gamma matrices are given by

γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (12, σ

1, σ2, σ3), σ̄µ = (12,−σ1,−σ2,−σ3). (1)

Here, 1n denotes an n× n identity matrix.

a) Show that (p · σ)(p · σ̄) = p212.

Solution: Inserting the definitions and suppressing the factors of the identity, the expression is

(p0 − p · σ)(p0 + p · σ) = (p0)2 − 1

2
pipj{σi, σj} = (p0)2 − |p|2 = p2 (S1)

as desired, where we used {σi, σj} = 2δij .

b) Show that the Dirac equation has positive-frequency plane wave solutions

ψ(x) = us(p)e
−ip·x, us(p) =

(√
p · σ ξs√
p · σ̄ ξs

)
(2)

where ξs is a two-component spinor, i.e. a complex vector with two elements. (For-
mally, given a matrix A with a complete basis of eigenvectors, with eigenvalues λi, we
can define a matrix square root

√
A to have the same eigenvectors, with eigenvalues√

λi. But the only thing you need to know to do this problem is
√
A
√
A = A.)

Solution: By the definition of the matrix square root and the result of part (a), we have

σ · p =
√
σ · p · √σ · p, σ̄ · p =

√
σ̄ · p ·

√
σ̄ · p, m12 =

√
σ · p ·

√
σ̄ · p =

√
σ̄ · p · √σ · p (S2)

where we used p2 = m2. To show the Dirac equation is satisfied, note that the derivative ∂µ just pulls
down a factor of −ipµ. Thus, it suffices to show that

(pµγ
µ −m14)us(p) = 0. (S3)

To show this, we just plug in the definitions, giving

(pµγ
µ −m14)us(p) =

(
−m12

√
p · σ√p · σ√

p · σ̄
√
p · σ̄ −m12

)(√
p · σ ξs√
p · σ̄ ξs

)
(S4)

=

(√
p · σ(−m12 +

√
p · σ

√
p · σ̄)ξs√

p · σ̄(
√
p · σ̄√p · σ −m12)ξs

)
(S5)

=

(√
p · σ(−m12 +

√
p212)ξs√

p · σ̄(
√

p212 −m12)ξs

)
(S6)

= 0 (S7)

where we used p2 = m2 in the last step.

c) Show that if we pick an orthonormal basis of two-component spinors ξs with s ∈ {1, 2},
satisfying (ξr)

†ξs = δrs, then the Dirac spinors satisfy the orthogonality relations

ur(p)
†us(p) = 2p0 δrs, ūr(p)us(p) = 2mδrs. (3)
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Solution: To take the Hermitian conjugate, note that (σµ)† = σµ. Then we simply have

u†
s(p)ur(p) =

(
ξ†s
√
σ · p ξ†s

√
σ̄ · p

)
·
( √

σ · p ξr√
σ̄ · p ξr

)
(S8)

= ξ†s (p · σ + p · σ̄) ξr = 2p0ξ†sξr = 2p0δrs. (S9)

The proof of the second orthogonality relation is similar:

ūs(p)ur(p) = u†
s(p)γ

0ur(p) =
(
ξ†s
√
σ̄ · p ξ†s

√
σ · p

)
·
( √

σ · p ξr√
σ̄ · p ξr

)
(S10)

= 2ξ†s
(√

p · σ
√
p · σ̄

)
ξr = 2mξ†sξr = 2mδrs. (S11)

d) Similarly, the Dirac equation has negative-frequency plane wave solutions

ψ(x) = vs(p)e
ip·x, vs(p) =

( √
p · σ ξs

−
√
p · σ̄ ξs

)
. (4)

Show that these solve the Dirac equation, and satisfy the orthogonality relations

vr(p)
†vs(p) = 2p0 δrs, v̄r(p)vs(p) = −2mδrs. (5)

Solution: The proof that these plane waves solve the Dirac equation is very similar to that of part (b),
except that now the derivative ∂µ pulls down a factor of ipµ, so we want to show

(pµγ
µ +m14)vs(p) = 0. (S12)

This holds because

(pµγ
µ +m14)vs(p) =

(
m12

√
p · σ√p · σ√

p · σ̄
√
p · σ̄ m12

)( √
p · σ ξs

−
√
p · σ̄ ξs

)
(S13)

=

(√
p · σ(m12 −

√
p · σ

√
p · σ̄)ξs√

p · σ̄(
√
p · σ̄√p · σ −m12)ξs

)
(S14)

=

(√
p · σ(m12 −

√
p212)ξs√

p · σ̄(
√
p212 −m12)ξs

)
(S15)

= 0. (S16)

The proofs of the orthogonality relations are very similar to part (c),

v†s(p)vr(p) =
(
ξ†s
√
σ · p −ξ†s

√
σ̄ · p

)
·
( √

σ · p ξr
−
√
σ̄ · p ξr

)
(S17)

= ξ†s (p · σ + p · σ̄) ξr = 2p0ξ†sξr = 2p0δrs (S18)

and

v̄s(p)vr(p) = vs(p)γ
0vr(p) = −

(
ξ†s
√
σ̄ · p ξ†s

√
σ · p

)
·
( √

σ · p ξr√
σ̄ · p ξr

)
(S19)

= −2ξ†s
(√

p · σ
√
p · σ̄

)
ξr = −2mξ†sξr = −2mδrs. (S20)

e) Show the completeness relations for the Dirac spinors,

2∑
s=1

us(p)ūs(p) = /p+m14,
2∑

s=1

vs(p)v̄s(p) = /p−m14. (6)

Solution: This follows straightforwardly from plugging in the definitions,

2∑
s=1

us(p)ūs(p) =

2∑
s=1

(√
p · σ ξs√
p · σ̄ ξs

)(
ξ†s
√
p · σ̄ ξ†s

√
p · σ

)
=

(
m p · σ
p · σ̄ m

)
= pµγ

µ +m14. (S21)
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2∑
s=1

vs(p)v̄s(p) =

2∑
s=1

( √
p · σ ξs

−
√
p · σ̄ ξs

)(
−ξ†s

√
p · σ̄ ξ†s

√
p · σ

)
=

(
−m p · σ
p · σ̄ −m

)
= pµγ

µ −m14. (S22)

In both cases we used the completeness relation for the two-component spinors,
∑2

s=1 ξsξ
†
s = 12.

2. Useful spinor identities. (10 points)

a) Prove the Gordon identity,

ūr(p
′)γµus(p) = ūr(p

′)

(
p′µ + pµ

2m
+
iσµν(p′ν − pν)

2m

)
us(p) (7)

where σµν = i
2
[γµ, γν ]. (Hint: this can be done using only the Dirac equation and the

defining property of the gamma matrices.)

Solution: It’s easiest to start from the second term on the right-hand side. Note that

ūr(p
′)[γµ, γν ](p′ − p)νus(p) = ūr(p

′)(γµγν − γνγµ)(p′ − p)νus(p) (S23)

= ūr(p
′)
[
2(p′ + p)µ − 2(/p

′γµ + γµ
/p)
]
us(p) (S24)

= ūr(p
′)(−4mγµ + 2(p′µ + pµ))us(p) (S25)

where we used the Dirac equation (S3) in the last step. Plugging this into the right hand side of (7)
gives the desired result.

Combinations of gamma matrices can be used to produce a basis ΓI for the space of 4× 4
matrices, where I ranges from 1 to 16. Concretely, we have

Γ11 = (i/2)[γ0, γ1]

Γ3 = γ0 Γ7 = iγ5γ0 Γ12 = (i/2)[γ0, γ2]

Γ1 = 14 Γ4 = γ1 Γ8 = iγ5γ1 Γ13 = (i/2)[γ0, γ3]

Γ2 = γ5 Γ5 = γ2 Γ9 = iγ5γ2 Γ14 = (i/2)[γ1, γ2]

Γ6 = γ3 Γ10 = iγ5γ3 Γ15 = (i/2)[γ1, γ3]

Γ16 = (i/2)[γ2, γ3]

We define the matrices Γ̃I similarly, but with lowered Lorentz indices; for example, Γ̃4 =
γ1 = −γ1 = −Γ4. (This ensures the equations below won’t have annoying extra signs due
to the signs in the metric.) An inner product for 4× 4 matrices can be defined by

tr(AB) =
∑
ab

AabBba. (8)

Under this inner product, the matrices given above are orthogonal, in the sense that

tr(Γ̃IΓJ) = 4δIJ (9)

which implies they are linearly independent, and thus indeed form a basis. (You don’t
have to check (9), but it follows directly from the results you proved in problem set 6.)

b) Show the completeness relation for the Γ matrices,

δacδdb =
1

4

∑
I

Γ̃I
dcΓ

I
ab. (10)
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(Hint: it suffices to show that both sides give the same result when multiplied by a
general matrix Mcd.)

Solution: We consider a general matrix M , where

Mcd =
∑
I

mIΓI
cd. (S26)

Multiplying both sides with Mcd, the left-hand side is just Mab, while the right-hand side is

1

4

∑
I

Γ̃I
dcΓ

I
ab

∑
J

mJΓJ
cd =

∑
IJ

ΓI
abm

J tr(Γ̃IΓJ) =
∑
I

ΓI
abm

I = Mab. (S27)

Since the two sides match for any matrix M , the completeness relation holds.

c) Using (10), show the Fierz identity

Γ̃I
abΓ

J
cd =

1

16

∑
KL

tr
[
Γ̃I Γ̃KΓJΓL

]
Γ̃L
adΓ

K
cb. (11)

Solution: We note that

Γ̃I
abΓ

J
cd = Γ̃I

efΓ
J
ghδaeδfbδcgδhd (S28)

=
1

16
Γ̃I
efΓ

J
gh

∑
KL

Γ̃L
adΓ

L
heΓ̃

K
fgΓ

K
cb (S29)

=
1

16

∑
KL

tr
[
Γ̃I Γ̃KΓJΓL

]
Γ̃L
adΓ

K
cb. (S30)

where we applied the completeness relation twice, and then used the definition of the trace.

Contracting both sides of the Fierz identity with four spinors ū1au2bū3cu4d yields

(ū1Γ̃
Iu2)(ū3Γ

Ju4) =
1

16

∑
KL

tr
[
Γ̃I Γ̃KΓJΓL

]
(ū1Γ̃

Lu4)(ū3Γ
Ku2). (12)

In other words, the Fierz identity relates the product of a contraction of ū1 with u2 and a
contraction of ū3 and u4 (with arbitrary gamma matrices in the middle) to a combination
of contractions of ū1 with u4 and ū3 with u2. This “Fierz transformation” rearranges how
the spinors are contracted with each other, which can be useful in calculations.

d) Find the Fierz transformations for (ū1u2)(ū3u4) and (ū1γ
µu2)(ū3γµu4) explicitly. (Your

final result should only contain the spinors and gamma matrices, not the ΓI .)

Solution: For the first case, we can apply the Fierz identity with Γ̃I = ΓJ = 14. Then the right-hand
side becomes

1

16

∑
KL

tr
[
Γ̃I Γ̃KΓJΓL

]
Γ̃L
adΓ

K
cb =

1

16

∑
KL

tr
[
Γ̃KΓL

]
Γ̃L
adΓ

K
cb (S31)

=
1

4

∑
KL

δKLΓ̃L
adΓ

K
cb (S32)

=
1

4

∑
K

Γ̃K
adΓ

K
cb. (S33)

Contracting both sides with the spinors, we conclude

(ū1u2)(ū3u4) =
1

4

[
(ū1u4)(ū3u2) + (ū1γ

5u4)(ū3γ
5u2) + (ū1γ

µu4)(ū3γµu2) (S34)

− (ū1γ
5γµu4)(ū3γ

5γµu2)−
1

8
(ū1[γ

µ, γν ]u4)(ū3[γµ, γν ]u2)

]
. (S35)
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Note that there is an extra factor of 1/2 in the final term to avoid double counting. This result is
admittedly rather complex, but it’s indeed rearranged as desired.

For the second case, we take Γ̃I = γµ and ΓJ = γµ. Computing the right-hand side requires some
casework, and use of the trace identities derived in problem set 6. The results are

Γ̃K = 14:
∑
L

tr
[
γµγ

µΓL
]
Γ̃L
adδcb = 16δcbδad, (S36)

Γ̃K = γν :
∑
L

tr
[
γµγνγ

µΓL
]
Γ̃L
adγ

ν
cb = −8γνadγ

ν
cb, (S37)

Γ̃K = γ5:
∑
L

tr
[
γµγ

5γµΓL
]
Γ̃L
adγ5cb = −16γ5adγ5cb, (S38)

Γ̃K = iγ5γν : −
∑
L

tr
[
γµγ

5γνγ
µΓL

]
Γ̃L
ad(γ5γ

ν)cb = 8(iγ5γν)ad(iγ5γ
ν)cb, (S39)

Γ̃K =
i

2

∑
L

[γν , γρ]:
i

2
tr
[
γµ[γν , γρ]γ

µΓL
]
Γ̃L
ad

(
i

2
[γν , γρ]

)
cb

= 0. (S40)

Putting this all together yields

(ū1γµu2)(ū3γ
µu4) = (ū1u4)(ū3u2)−

1

2
(ū1γµu4)(ū3γ

µu2) (S41)

− (ū1γ
5u4)(ū3γ

5u2)−
1

2
(ū1γ

5γµu4)(ū3γ
5γµu2). (S42)

3. Electromagnetism in relativistic notation. (20 points)
In electromagnetism, the Lagrangian is a function of the four-potential Aµ = (ϕ,A),

L = −1

4
FµνF

µν − JµAµ , where Fµν = ∂µAν − ∂νAµ , (13)

and Jµ = (ρ,J) is a classical current density.

a) Show that if the current is conserved, ∂µJ
µ = 0, then the action remains the same

under the gauge symmetry Aµ → Aµ + ∂µα, for any smooth function α.

Solution: The kinetic term is gauge invariant because Fµν is,

Fµν = ∂µAν − ∂νAµ → ∂µAν + ∂ν∂µα− ∂νAµ − ∂ν∂µα = ∂µAν − ∂νAµ. (S43)

The interaction term is gauge invariant when the current is conserved because

JµAµ → JµAµ + Jµ∂µα = JµAµ + ∂µ(J
µα) (S44)

where the change is a total derivative term, which does not affect the action.

b) Show that the Euler–Lagrange equation for Aµ is

∂µF
µν = Jν . (14)

Solution: The Euler–Lagrange equation is

∂µ
∂L

∂(∂µAν)
=

∂L
∂Aν

. (S45)

The right-hand side is clearly −Jν . As for the left-hand side, we use the product rule, giving

∂µ
∂L

∂(∂µAν)
= −1

2
∂µ

(
F ρσ ∂Fρσ

∂(∂µAν)

)
(S46)

= −1

2
∂µ

(
F ρσ(δµρ δ

ν
σ − δµσδ

ν
ρ )
)

(S47)

= −1

2
∂µ (F

µν − F νµ) (S48)

= −∂µF
µν . (S49)
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This gives the desired result.

c) Defining the electric and magnetic fields by Ei = F i0 and ϵijkBk = −F ij, show
that (14) is equivalent to two of Maxwell’s equations.

Solution: First set ν = 0. Since F 00 = 0, we have ∂iF
i0 = J0, which in vector calculus notation is

Gauss’s law, ∇ ·E = ρ. Next set ν = j. Here we have

Jj = ∂0F
0j + ∂iF

ij = −Ėj − ∂iϵ
ijkBk (S50)

which in vector calculus notation is
J = −Ė+∇×B (S51)

which is Ampere’s law.

d) The other two of Maxwell’s equations are

ϵµνρσ∂µFνρ = 0 (15)

which follows directly from the definition of Fµν . Interestingly, all four of Maxwell’s
equations can be written as a single spinor equation. Show that the equation

γνγργσ∂νFρσ = 2γνJν (16)

contains both (14) and (15). (This is just a mathematical trick with no physical
meaning, but it’s a nice application of the properties of gamma matrices.)

Solution: To recover (14), we want to get the current by itself on the right-hand side. Thus, multiply
both sides by γµ and take the trace, giving

tr(γµγνγργσ)∂νFρσ = 2 tr(γµγν)Jν = 8Jµ. (S52)

Simplifying the left-hand side, we have

tr(γµγνγργσ)∂νFρσ = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)∂νFρσ (S53)

= 4(−∂νF
µν + ∂νF

νµ) (S54)

= 8 ∂νF
νµ (S55)

where we used the fact that F is antisymmetric, so ηρσFρσ = 0. Equating the two sides and renaming
the indices recovers (14).

To recover (15), we want to get a factor of ϵµνρσ on the left-hand side. Therefore, multiply both sides
by γ5γµ and take the trace. By the results we’ve derived previously, the right-hand side vanishes and the
trace on the left-hand side is proportional to ϵµνρσ, as desired.

e) In the Lagrangian (13), we could have also included a term of the form ϵµνρσFµνFρσ,
which is Lorentz invariant and gauge invariant. What is it in terms of E and B?
Show that this term is a total derivative, and thus does not contribute to the action.

Solution: To write this term in terms of E and B, we just expand out the contractions. There are 24
terms, corresponding to the cases where µ, ν, ρ, and σ are all distinct. However, the antisymmetry of F
means that groups of eight of them all give the same thing, e.g.

ϵ0123F01F23 = ϵ1023F10F23 = ϵ0132F01F32 = ϵ1032F10F32

= ϵ2301F23F01 = ϵ2310F23F10 = ϵ3201F32F01 = ϵ3210F32F10. (S56)

There are thus only three distinct terms to write down. Adjusting the index position for convenience,

ϵµνρσFµνFρσ = 8(ϵ0123F
01F 23 + ϵ0213F

02F 13 + ϵ0312F
03F 12) (S57)

= 8(−F 01F 23 + F 02F 13 − F 03F 12) (S58)

= 8(F 10F 23 + F 20F 31 + F 30F 12) (S59)

= 8(F 10F 23 + F 20F 31 + F 30F 12) (S60)

= −8E ·B. (S61)
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Now, to show the term is a total derivative, we note that

ϵµνρσFµνFρσ = ϵµνρσ [∂µAν∂ρAσ − ∂νAµ∂ρAσ − ∂µAν∂σAρ + ∂νAµ∂σAρ] (S62)

= 4ϵµνρσ∂µAν∂ρAσ (S63)

= 4ϵµνρσ∂µ(Aν∂ρAσ)− 4ϵµνρσAν∂µ(∂ρAσ) (S64)

= ∂µ (4ϵ
µνρσAν∂ρAσ) (S65)

which is a total derivative as desired. Note that the second and third steps in this derivation just follow
from the antisymmetry of ϵµνρσ.

For the rest of this problem suppose there is no current, Jµ = 0.

f) Construct the stress-energy tensor by directly applying Noether’s theorem.

Solution: Applying Noether’s theorem as usual, we have

Tµν =
∂L

∂(∂µAρ)
∂νAρ − ηµνL = −Fµρ∂νAρ +

1

4
ηµνFρσF

ρσ. (S66)

g) The stress-energy tensor you found in part (e) is conserved, but neither symmetric
nor gauge invariant. However, we can define an “improved” stress-energy tensor,

T̂ µν = T µν + ∂ρ(F
µρAν). (17)

Assuming the equations of motion hold, show that T̂ µν is symmetric, gauge invari-
ant, conserved (∂µT̂

µν = 0), and traceless (ηµνT̂
µν = 0). Furthermore, show that it

contains the familiar electromagnetic energy and momentum densities,

T̂ 00 =
1

2
(|E|2 + |B|2) , T̂ 0i = (E×B)i. (18)

Solution: Adding on the new term gives

T̂µν = (∂ρF
µρ)Aν + FµρF ν

ρ +
1

4
ηµνFρσF

ρσ. (S67)

When the equations of motion hold, ∂ρF
µρ = 0, so we may simply drop the first term, giving

T̂µν = −ηρσF
µρF νσ +

1

4
ηµνFρσF

ρσ (S68)

where we cleaned up the indices a bit. In this form, the stress-energy tensor is clearly symmetric, and it
is gauge invariant because it is written in terms of the gauge invariant F alone. To show conservation,
it is easiest to note that

∂µT̂
µν = ∂µT

µν + ∂µ∂ρ(F
µρAν) = 0 (S69)

where the first term vanishes by Noether’s theorem, and the second term vanishes by the antisymmetry
of F . Finally, to show tracelessness, we note that

ηµν T̂
µν = −ηµνηρσF

µρF νσ +
1

4
ηµνη

µνFρσF
ρσ = −FνσF

νσ + FρσF
ρσ = 0. (S70)

Now let’s consider the components. For the energy density, we have

T̂ 00 = −ηρσF
0ρF 0σ +

1

4
η00FρσF

ρσ (S71)

= F 01F 01 + F 02F 02 + F 03F 03 +
1

4
FρσF

ρσ (S72)

= |E|2 + 1

2
(F01F

01 + F02F
02 + F03F

03 + F12F
12 + F23F

23 + F31F
31) (S73)

= |E|2 + 1

2
(−|E|2 + |B|2) (S74)

=
1

2
(|E|2 + |B|2) (S75)
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as desired. For the momentum density, we have

T̂ 0i = −ηρσF
0ρF iσ = F 0jF ij = EjϵijkBk = (E×B)i. (S76)

In general, the improved stress-energy tensor considered here is called the Belinfante
tensor; it is this stress-energy tensor that sources gravity in general relativity. We didn’t
see it earlier because the improvement terms are related to the spin angular momentum
of the field, which is zero for scalar fields.

4. ⋆ Chern–Simons theory. (5 points)
This optional problem presents a way to produce massive gauge fields.

a) The Proca Lagrangian for a massive vector field is

L = −1

4
FµνF

µν +
1

2
m2AµA

µ. (19)

Find the equation of motion for Aµ and show that for m ̸= 0, it implies

(∂2 +m2)Aµ = 0, ∂µA
µ = 0. (20)

However, this action does not have a gauge symmetry.

Solution: The derivation of the equation of motion is similar to problem 3(b), but now a new term
appears on the right-hand side, giving

−∂µF
µν = m2Aν . (S77)

This is the equation of motion. Applying ∂ν to both sides yields

m2∂νA
ν = −∂ν∂µF

µν = 0 (S78)

by the antisymmetry of F , which shows ∂µA
µ = 0 when m is nonzero. Plugging this result back into

the original equation of motion gives

−∂µ(∂
µAν − ∂νAµ) = −∂2Aν = m2Aν (S79)

as desired.

b) On the other hand, in two spatial dimensions it is possible to have massive gauge
fields. We consider a Lagrangian with a “Chern–Simons” term,

L = −1

4
FµνF

µν +
α

4
ϵµνρFµνAρ (21)

where all indices take the values 0, 1, and 2, and ϵ012 = 1. (This new term is a relative
of the term we considered in 3(e), but it is not a total derivative.) Show that the
action is gauge invariant, and find the Euler–Lagrange equation for Aµ.

Solution: The proof that the action is gauge invariant is similar to 3(e). Note that the change in the
Lagrangian under a gauge transformation is

δL =
α

4
ϵµνρFµν∂ρα =

α

2
ϵµνρ(∂µAν)∂ρα = ∂ρ

(α
2
ϵµνρα∂µAν

)
(S80)

which is a total derivative, as desired. As for the Euler–Lagrange equation, starting from our solution to
3(b), we pick up an extra term on both the left-hand and right-hand sides, giving

−∂µF
µν +

α

2
ϵµνρ∂µAρ =

α

4
ϵµρνFµρ. (S81)
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We can clean this up using the antisymmetry of ϵ to give

∂µF
µν =

α

2
ϵµνρFµρ. (S82)

c) The Chern–Simons term is sometimes called a “topological” mass term, because it
doesn’t depend on the metric. Show that the equation of motion implies

(∂2 +m2)F µν = 0 (22)

for some m you should find. Thus the field is massive, yet still has a gauge symmetry.

Solution: This is a bit fiddly. The idea is that we want to use the equation of motion twice. But in its
current form, we can’t really do much to it, because of the factor of ϵ on the right-hand side which already
contracts with most of the indices. However, we can clear factors of ϵ out of the way by contracting with
additional copies of ϵ, and using

ϵµνρϵµαβ = δναδ
ρ
β − δνβδ

ρ
α. (S83)

To get started, we contract both sides of (S82) with ϵναβ , giving

ϵναβ∂µF
µν = αFβα. (S84)

Now we can apply ∂β to both sides and use the equation of motion again, giving

ϵναβ∂
β∂µF

µν =
α2

2
ϵµανF

µν . (S85)

To get rid of the ϵ’s again, we contract both sides with ϵαδσ, giving

∂δ∂µF
µσ − ∂σ∂µF

µδ = α2Fσδ. (S86)

Finally, to get the factor of ∂2 we want, we can apply ∂δ to both sides, giving

∂2∂µF
µσ = α2∂δF

σδ (S87)

where a term vanished due to the antisymmetry of F . Cleaning this up, we have

0 = (∂2 + α2)(∂µF
µν) = (∂2 + α2)

(α
2
ϵµνρFµρ

)
(S88)

where we used the equation of motion a final time. Now we just clear away the factor of ϵ by contracting
with ϵναβ , which finally gives the result with m = α.

Since there is no Chern–Simons term in three spatial dimensions, it has little role in parti-
cle physics, but it is important in the description of topological effects in two-dimensional
condensed matter systems.
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