
PHYS-330: QFT I
Stanford University, 2022
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Bernhard Mistlberger, Kevin Zhou

1. Magnetic moments in quantum electrodynamics. (15 points)
The interaction Hamiltonian in quantum electrodynamics for a Dirac field of charge q is

HI = q

∫
d3x Ψ̄γµΨAµ. (1)

To understand the physical meaning of this expression, we can evaluate its matrix elements
in states |p, s⟩ =

√
2Ep a

†
s(p)|0⟩ with a single fermion. We assume the electromagnetic

field is in a quantum state with negligible field uncertainty, so that its field operator Aµ

can be replaced with a time-independent classical expectation value Acl
µ (x).

a) Show that the matrix elements of the Schrodinger picture Hamiltonian are

⟨p, s|HI |p′, s′⟩ = q

∫
d3x e−i(p−p′)·xūs(p)γ

µus′(p
′)Acl

µ (x) (2)

when |p′, s′⟩ ≠ |p, s⟩.
Solution: Plugging in the Schrodinger picture mode expansion of the Dirac field, and using the abbre-
viated notation introduced in the solutions to problem set 2,

⟨p, s|HI |p′, s′⟩ = q
∑
r,r′

∫
dx

d̄q√
2Eq

d̄q′√
2Eq′

√
2Ep2Ep′

×⟨0|as(p)
(
a†r(q)e

−iq·xūr(q) + br(q)e
iq·xv̄r(q)

)
/A
(
ar′(q

′)eiq
′·xur′(q) + b†r′(q

′)e−iq′·xvr′(q
′)
)
a†s′(p

′)|0⟩.
(S1)

Now let’s think about the structure of this matrix element. We can only get nonzero contributions from
the terms a†r(q)ar′(q

′) and br(q)b
†
r′(q

′). On the other hand, the latter term yields

⟨0|as(p)br(q)b†r′(q
′)a†s′(p

′)|0⟩ = δss′δrr′/δ(p− p′)/δ(q− q′) (S2)

and therefore cannot contribute matrix elements with |p′, s′⟩ ≠ |p, s⟩. Discarding this term, we’re left
with

⟨p, s|HI |p′, s′⟩ = q

∫
dxd̄qd̄q′

√
2Ep2Ep′√
2Eq2Eq′

e−i(q−q′)·x
∑
r,r′

ūr(q) /Aur′(q
′)⟨0|as(p)a†r(q)ar′(q′)a†s′(p

′)|0⟩

(S3)

= q

∫
dxd̄q′

√
2Ep′√
2Eq′

e−i(p−q′)·x
∑
r′

ūs(p) /Aur′(q
′)⟨0|ar′(q′)a†s′(p

′)|0⟩ (S4)

= q

∫
dx e−i(p−p′)·xūs(p) /Aus′(p

′). (S5)

This is the desired result. Using the Gordon identity we find

⟨p, s|HI |p′, s′⟩ =
q

2m

∫
dx e−i(p−p′)·xūs(p)

(
p′µ + pµ + iσµν(p

′ν − pν)
)
us′(p

′)Aµ(x) (S6)

In nonrelativistic quantum mechanics, the single-particle states are |p, s⟩. If the particle
has charge q′ and g-factor g, then its magnetic moment is µ = (gq′/2m)S where S is the
spin. In terms of the particle’s position x, the Hamiltonian contains the terms

Hnr
I = q′A0(x)− µ ·B(x). (3)
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To find the values of q′ and g, we equate matrix elements in the nonrelativistic limit,

⟨p, s|HI |p′, s′⟩ = 2m⟨p, s|Hnr
I |p′, s′⟩ when |p|, |p′| ≪ m (4)

where the factor of 2m converts between relativistic and nonrelativistic normalization.
We could evaluate both sides for general Acl

µ (x), but it is easier to consider two special
cases. In both cases it will be helpful to use the Gordon identity from set 7.

b) Evaluate both sides of (4) in a static electric field, corresponding to general A0(x)
and A = 0. Show that they agree when q′ = q, as one would expect.

Solution: If we set A = 0, then the matrix element above reduces to

⟨p, s|HI |p′, s′⟩ =
q

2m

∫
dx e−i(p−p′)·xūs(p)

(
p′0 + p0 + iσ0i(p

′i − pi)
)
us′(p

′)A0(x) (S7)

since σ00 vanishes. In the nonrelativistic limit, p0, p
′
0 ≈ m are much greater than pi, p′i, so we may

simply drop the latter terms, giving

⟨p, s|HI |p′, s′⟩ = q

∫
dx e−i(p−p′)·xūs(p)us′(p

′)A0(x) (S8)

= 2mqδss′

∫
dx e−i(p−p′)·xA0(x). (S9)

On the other hand, in nonrelativistic quantum mechanics we have

2m⟨p, s|q′A0(x̂)|p′, s′⟩ = 2mq′δss′⟨p|A0(x̂)|p′⟩ (S10)

= 2mq′δss′

∫
dydz ⟨p|y⟩⟨y|A0(x̂)|z⟩⟨z|p′⟩ (S11)

= 2mq′δss′

∫
dydz e−ip·yeip

′·zδ(y − z)A0(z) (S12)

= 2mq′δss′

∫
dy e−i(p−p′)·yA0(y) (S13)

= 2mq′δss′

∫
dx e−i(p−p′)·xA0(x). (S14)

The two matrix elements match if q = q′, as desired.

c) Show that if the fermion was a classical spinning ball with uniform mass and charge
density, then its g-factor would be 1. This strongly disagrees with the measured value.

Solution: For simplicity, let’s consider a thin ring of radius r, angular velocity ω, mass m, and charge q.
Then the angular momentum is

S = mvr = mωr2 (S15)

and the magnetic moment is

µ = IA =
q

2π/ω
(πr2) =

qωr2

2
(S16)

Therefore, the ring has µ/S = q/2m, corresponding to a g-factor of 1. Since a ball is just a superposition
of such rings, this shows that g = 1 for a ball, or more generally any spinning object with axial symmetry.

d) Evaluate both sides of (4) in a static magnetic field, corresponding to A0 = 0 and
∇ × A = B(x), and infer the value of g. (Hint: to relate spin in the Dirac theory
to spin in the nonrelativistic theory, recall that in the nonrelativistic theory, spinors
ξs have two components and the spin operator is S = σ/2. You already showed in
problem set 7 how the Dirac spinors us(p) are built from ξs. You will have to integrate
by parts, so assume A and B vanish at infinity.)
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Solution: In this case, since A0 vanishes, we have

⟨p, s|HI |p′, s′⟩ =
q

2m

∫
dx e−i(p−p′)·xūs(p) (p

′
i + pi + iσiν(p

′ν − pν))us′(p
′)Ai(x). (S17)

This might look more complicated than what we had before using the Gordon identity, but this form is
useful because it lets us isolate the physically distinct effects of different terms, and figure out which to
keep in the nonrelativistic limit. (Though of course you could also do the problem without using the
Gordon identity too.) Now, we need to choose which term to keep within the parentheses.

• The pi and p′i terms are order mv.

• The term σi0(p
′0 − p0) is not order m, since the m’s cancel. Instead, it’s order mv2.

• The term σij(p
′j − pj) is order mv.

The second contribution is therefore negligible in the nonrelativistic limit. The first contribution is not
negligible, but it also has nothing to do with spin: it will just yield the p ·A term in the nonrelativistic
Hamiltonian that physically corresponds to the magnetic force on a charged particle. (Considering it
won’t tell us anything new, because we already know that q′ = q from part (b).) We therefore focus on
the third term, giving

⟨p, s|HI |p′, s′⟩ ⊃
q

2m

∫
dx e−i(p−p′)·xūs(p)

(
iσij(p

′j − pj)
)
us′(p

′)Ai(x) (S18)

=
q

2m

∫
dx e−i(p−p′)·x(pj − p′j)(ūs(p)

[γi, γj ]

2
us′(p

′))Ai(x). (S19)

To make further progress, we use the results we derived in the Weyl representation in problem set 7.
First, because we’re only considering the leading term in the nonrelativistic limit, it suffices to expand
the spinor solutions to lowest order in m,

us(p) =

(√
p · σ ξs√
p · σ̄ ξs

)
≈

√
m

(
ξs
ξs

)
(S20)

We can also explicitly evaluate the commutators. For example, we have

[γ1, γ2] = −2i

(
σ3

σ3

)
(S21)

from which we conclude in general that

[γi, γj ] = −2iϵijk
(
σk

σk

)
. (S22)

Plugging these results in and simplifying, we find

⟨p, s|HI |p′, s′⟩ ⊃ q

∫
dx e−i(p−p′)·x(−i)(pj − p′j) (ϵijkξ†sσ

kξs′)A
i(x). (S23)

To handle the pj − p′j , we write it as a derivative and integrate by parts, dropping a boundary term,

⟨p, s|HI |p′, s′⟩ ⊃ q

∫
dx

∂

∂xj

(
e−i(p−p′)·x

)
(ϵijkξ†sσ

kξs′)A
i(x) (S24)

= q ξ†sσ
kξs′

∫
dx e−i(p−p′)·xϵijk∂jAi(x) (S25)

= −q ξ†sσ
kξs′

∫
dx e−i(p−p′)·xBk. (S26)

We can now compare this to the nonrelativistic result,

2m⟨p, s|(−µ ·B)|p′, s′⟩ = −gq′ ξ†sS
kξs′

∫
dx e−i(p−p′)·xBk (S27)

by the same logic as in part (b). Since q′ = q and S = σ/2, we conclude that g = 2.

3



The agreement of this value you found in part (d) with the experimentally measured value
for the electron was one of the early triumphs of the Dirac equation.

2. Decays of the Higgs boson. (10 points)
The Standard Model contains three charged leptons, the electron e, muon µ, and tau τ ,
which are described by Dirac fields and differ only by their mass. It also contains a spinless
particle called the Higgs boson, described by a real scalar field h. The free Lagrangian is

L0 =
1

2
(∂µh)(∂

µh)− 1

2
m2

h h
2 +

∑
i

Ψ̄i(i/∂ −mi)Ψi (5)

where i ∈ {e, µ, τ}, and the numeric values of the masses are

mh = 125GeV, me = 511 keV, mµ = 105.7MeV, mτ = 1777MeV. (6)

The Higgs field couples to the charged leptons by a Yukawa coupling proportional to mass,

Lint = −
∑
i

mi

v
hΨ̄iΨi (7)

Here, v is a constant associated with the breaking of electroweak symmetry, but for this
problem you will only need its value, v = 246GeV. For this problem, all of your final
answers should be numeric, and given to at least two significant figures.

a) Compute the partial decay rate for a Higgs boson to an electron-positron pair ΓH→e+e−

at leading non-vanishing order in perturbation theory, giving your answer in eV.
(Hint: sum over final spin states, and reuse results from problem set 5.)

Solution: There is one Feynman diagram, giving matrix element

Mh→e+e− =
<latexit sha1_base64="xxJg5fTqVacfrBry1jnOHtJpe0s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPRH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFVyo3Y</latexit>ph

<latexit sha1_base64="wXxB21KYz0kEQo+JHGjWRCjX0Nc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRS1GPRi8cK9gPaWDbbSbt0kyy7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvkIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6iRVDBssEYlqB1Sj4DE2DDcC21IhjQKBrWB0O/VbT6g0T+IHM5boR3QQ85AzaqzUkr0MH88nvVLZrbgzkGXi5aQMOeq90le3n7A0wtgwQbXueK40fkaV4UzgpNhNNUrKRnSAHUtjGqH2s9m5E3JqlT4JE2UrNmSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPeCxTgzGbLwpTQUxCpr+TPlfIjBhbQpni9lbChlRRZmxCRRuCt/jyMmleVLzLSvW+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm+OdF6cd+dj3rri5DNH8AfO5w8244+A</latexit>pe�

<latexit sha1_base64="rPaxHytJIEqUeICAcRggNNr6DpI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqMeiF48V7Ae0sWy2k3bpJll2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZeIAXXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1EmqGDZYIhLVDqhGwWNsGG4EtqVCGgUCW8Hoduq3nlBpnsQPZizRj+gg5iFn1FipJXsZPp5PeqWyW3FnIMvEy0kZctR7pa9uP2FphLFhgmrd8Vxp/Iwqw5nASbGbapSUjegAO5bGNELtZ7NzJ+TUKn0SJspWbMhM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWf8VimBmM2XxSmgpiETH8nfa6QGTG2hDLF7a2EDamizNiEijYEb/HlZdK8qHiXlep9tVy7yeMowDGcwBl4cAU1uIM6NIDBCJ7hFd4c6bw4787HvHXFyWeO4A+czx8z2Y9+</latexit>pe+

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s

<latexit sha1_base64="dNaRbtHUcByh+nWByrC7ShFQ0BQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4A+M/w==</latexit>r

= ūs(pe−)
(
−i

me

v

)
vr(pe+). (S28)

Squaring the matrix element and summing over final spin states gives

|M̄h→e+e− |2 =
m2

e

v2

∑
r,s

ūs(pe−)vr(pe+)v̄r(pe+)us(pe−) (S29)

=
m2

e

v2
tr
[
(/pe− +me)(/pe+ −me)

]
(S30)

=
m2

e

v2

(
tr
[
/pe−/pe+

]
− 4m2

e

)
(S31)

= 2
m2

e

v2
(
2pe− · pe+ − 2m2

e

)
(S32)

= 2
m2

e

v2
(
m2

h − 4m2
e

)
. (S33)

In the last line we used the fact that

m2
h = p2h = (pe− + pe+)

2 = 2m2
e + 2pe+ · pe− . (S34)

The decay width of a Higgs to leptons l+l− is defined by

Γh→l+l− =
1

2mh

∫
d4pl−

(2π)4
(2π)δ+(p

2
l− −m2

l )
d4pl+

(2π)4
(2π)δ+(p

2
l+ −m2

l ) (S35)

× (2π)4δ(4)(ph − pl− − pl+)|M̄h→e+e− |2. (S36)
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By reusing results from problem set 5, we immediately find

Γh→l+l− =
1

16πm2
h

√
m2

h − 4m2
e|M̄h→e+e− |2 =

m2
emh

8πv2
(
1− 4m2

e/m
2
h

)3/2
= 0.021eV. (S37)

b) Find the ratios ΓH→µ+µ−/ΓH→e+e− and ΓH→τ+τ−/ΓH→e+e− .

Solution: Note that since me, mµ, and mτ are all much less than mh, we have

Γh→l+l− ≈ m2
lmh

8πv2
(S38)

for each charged lepton. That is, the decay rate is proportional to the mass squared, so the Higgs boson
is much more likely to decay to heavier leptons,

ΓH→µ+µ−

ΓH→e+e−
≈

m2
µ

m2
e

= 4.3× 104,
ΓH→τ+τ−

ΓH→e+e−
≈ m2

τ

m2
e

= 1.2× 107. (S39)

c) Find the probability a Higgs boson decays to τ+τ−, also known as the branching ratio

BRH→τ+τ− =
ΓH→τ+τ−∑

X ΓH→X

. (8)

The denominator is the total decay rate of the Higgs boson, equal to 4.1MeV. (To
check your answer, you can consult the so-called Yellow Report.)

Solution: Plugging in the numbers gives BRH→τ+τ− = 6.3%. (The Yellow Report gives a slightly
different value because it accounts for higher-order corrections.)

The decay of Higgs bosons to taus was confirmed experimentally only recently [1,2], and
first evidence for the Higgs coupling to muons has been detected [3,4]. Establishing the
coupling of the Higgs to electrons remains a monumental experimental challenge.

3. Electron-positron annihilation to muons. (15 points)
One of the key successes of quantum electrodynamics is its description of particle creation
and annihilation processes at relativistic energies. In this exercise we will consider the
process e+e− → µ+µ−, where the electron and muon are Dirac fields of charge e, and
mass me and mµ respectively.

a) Let the initial momenta be pµe+ and pµe− and the final momenta be pµµ+ and pµµ− . Find
the scattering matrix element M for this process, to leading nonvanishing order in e.

Solution: There is one relevant Feynman diagram, which gives

Me+e−→µ+µ− =

<latexit sha1_base64="d1BR46/Za9R1SauxFPE0I218dgk=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8aNiVoB6DXjxGMA9J1jA76SRDZnaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uIBZcG9f9dpaWV1bX1nMb+c2t7Z3dwt5+XUeJYlhjkYhUM6AaBQ+xZrgR2IwVUhkIbATDm4nfeEKleRTem1GMvqT9kPc4o8ZKD3Enxcez8anuFIpuyZ2CLBIvI0XIUO0UvtrdiCUSQ8ME1brlubHxU6oMZwLH+XaiMaZsSPvYsjSkErWfTg8ek2OrdEkvUrZCQ6bq74mUSq1HMrCdkpqBnvcm4n9eKzG9Kz/lYZwYDNlsUS8RxERk8j3pcoXMiJEllClubyVsQBVlxmaUtyF48y8vkvp5ybsole/Kxcp1FkcODuEITsCDS6jALVShBgwkPMMrvDnKeXHenY9Z65KTzRzAHzifP3dqkDM=</latexit>pe� , s

<latexit sha1_base64="Q2/Jf/mLkL4st1LQ8zj+FAlJ69E=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBAEJexKUI9BLx4jmIcka5iddJIhM7vLzKwQlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXEAuujet+O0vLK6tr67mN/ObW9s5uYW+/rqNEMayxSESqGVCNgodYM9wIbMYKqQwENoLhzcRvPKHSPArvzShGX9J+yHucUWOlh7iT4uPp+Ex1CkW35E5BFomXkSJkqHYKX+1uxBKJoWGCat3y3Nj4KVWGM4HjfDvRGFM2pH1sWRpSidpPpwePybFVuqQXKVuhIVP190RKpdYjGdhOSc1Az3sT8T+vlZjelZ/yME4Mhmy2qJcIYiIy+Z50uUJmxMgSyhS3txI2oIoyYzPK2xC8+ZcXSf285F2UynflYuU6iyMHh3AEJ+DBJVTgFqpQAwYSnuEV3hzlvDjvzsesdcnJZg7gD5zPH3LYkDA=</latexit>pe+ , r

<latexit sha1_base64="sG/TQ4ghfi1QRdDXqnuzGlzVwDQ=">AAAB8nicbVDJSgNBEO2JW4xb1KOXxiAISpiRoB6DXjxGMAtMxtDT6Uma9DL0IoQhn+HFgyJe/Rpv/o2dZA6a+KDg8V4VVfXilFFtfP/bK6ysrq1vFDdLW9s7u3vl/YOWllZh0sSSSdWJkSaMCtI01DDSSRVBPGakHY9up377iShNpXgw45REHA0ETShGxklh2su63D6eTc5tr1zxq/4McJkEOamAHI1e+avbl9hyIgxmSOsw8FMTZUgZihmZlLpWkxThERqQ0FGBONFRNjt5Ak+c0oeJVK6EgTP190SGuNZjHrtOjsxQL3pT8T8vtCa5jjIqUmuIwPNFiWXQSDj9H/apItiwsSMIK+puhXiIFMLGpVRyIQSLLy+T1kU1uKzW7muV+k0eRxEcgWNwCgJwBergDjRAE2AgwTN4BW+e8V68d+9j3lrw8plD8Afe5w8SRpEg</latexit>pµ+ , u

<latexit sha1_base64="crrivdP8xKDFHWduq7SYkC/Hptg=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgQcuuFPVY9OKxgv2A7VqyabYNzSZLMiuUpT/DiwdFvPprvPlvTNs9aOuDgcd7M8zMCxPBDbjut1NYWV1b3yhulra2d3b3yvsHLaNSTVmTKqF0JySGCS5ZEzgI1kk0I3EoWDsc3U799hPThiv5AOOEBTEZSB5xSsBKftLLunH6eD45g1654lbdGfAy8XJSQTkavfJXt69oGjMJVBBjfM9NIMiIBk4Fm5S6qWEJoSMyYL6lksTMBNns5Ak+sUofR0rbkoBn6u+JjMTGjOPQdsYEhmbRm4r/eX4K0XWQcZmkwCSdL4pSgUHh6f+4zzWjIMaWEKq5vRXTIdGEgk2pZEPwFl9eJq2LqndZrd3XKvWbPI4iOkLH6BR56ArV0R1qoCaiSKFn9IreHHBenHfnY95acPKZQ/QHzucPE9CRIQ==</latexit>

pµ� , t

<latexit sha1_base64="wplLSeZG7rOgHUVcPa+dCJtP3Xo=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0rqoBpfV2n2tUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPidmPHg==</latexit>�
(S40)

(S41)

(S42)

= ūt(p
−
µ )(−ieγµ

tu)vu(pµ+)

(
−iηµν

(pe+ + pe−)2

)
v̄r(pe+)(−ieγν

rs)us(pe−). (S43)

b) Let |M̄|2 be the square of the matrix element, summed over final spin states and
averaged over initial spin states. Compute |M̄|2 in terms of e, me, mµ, and the
Mandelstam variables s and t, where

s = (pe+ + pe−)
2, t = (pe− − pµ−)2, u = (pe− − pµ+)2. (9)
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Solution: Before starting, we note that the Mandelstam variables are simply related to inner products,

s

2
= m2

e + pe+ · pe− = mµ2 + pµ+ · pµ− (S44)

and

t = m2
e +m2

µ − pe− · pµ− = m2
e +m2

µ − pe+ · pµ+ (S45)

u = m2
e +m2

µ − pe− · pµ+ = m2
e +m2

µ − pe+ · pµ− (S46)

Now, squaring, summing over final spins and averaging over initial spins yields

|M̄|2 =
e4

s2
1

4

∑
spins

ūt(p
−
µ )γ

µ
tuvu(pµ+)v̄u′(p+µ )γ

ν
u′t′ut′(pµ−)

× v̄r(pe+)(γµ)rsus(pe−)ūs′(pe−)(γν)s′r′vr′(pe+) (S47)

=
e4

s2
1

4
tr
[
(/pµ− +mµ)γ

µ(/pµ+ −mµ)γ
ν
]
tr
[
(/pe− +me)γµ(/pe+ −me)γν

]
. (S48)

Both traces have the same form, and can be evaluated using the results from problem set 6,

tr
[
(/p1 +m)γµ(/p2 −m)γν

]
= tr[/p1γ

µ
/p2γ

ν ]−m2 tr[γµγν ] (S49)

= 4(pµ1p
ν
2 + pν1p

µ
2 − (p1 · p2)ηµν)− 4m2ηµν (S50)

= 4(pµ1p
ν
2 + pν1p

µ
2 − s

2
ηµν) (S51)

where in the last step we used (S44). Inserting this result twice above, we have

|M̄|2 =
4e4

s2

(
pµe+p

ν
e− + pµe−p

ν
e+ − s

2
ηµν

)(
pµ+,µpµ−,ν + pµ−,µpµ+,ν − s

2
ηµν

)
(S52)

=
4e4

s2
(
s2 − s(pµ+ · pµ− + pe+ · pe−) + 2(pe+ · pµ+)(pe− · pµ−) + 2(pe+ · pµ−)(pe− · pµ+)

)
. (S53)

We can then write the inner products in terms of s, t, and u using (S44) and (S45). There are many
possible forms for the answer, since

s+ t+ u = 2m2
e + 2m2

µ. (S54)

If we eliminate u, then we get

|M̄|2 =
2e4

s2
[
(s+ t)2 + t2 − 4t(m2

e +m2
µ) + 2(m2

e +m2
µ)

2
]
. (S55)

Alternatively, if we eliminate s inside the brackets, then we get

|M̄|2 =
2e4

s2
[
(u− 2(m2

e +m2
µ))

2 + (t− 2(m2
e +m2

µ))
2 − 2(m2

e +m2
µ)

2
]
. (S56)

For the rest of this problem, we specialize to the center of mass frame.

c) Rewrite |M̄|2 in terms of e, me, mµ, s, and the angle θ between pe− and pµ− .

Solution: In the centre-of-mass frame we have

Ee− = Ee+ , Eµ− = Eµ+ , pe− = −pe+ , pµ− = −pµ+ (S57)

which implies that
s = 4E2

e− = 4E2
µ− . (S58)

Furthermore, we have E2
e± = |pe± |2 +m2

e and E2
µ± = |pµ± |2 +m2

µ.
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Starting from (S55), we need to eliminate t in favor of θ. Starting from the definition of t,

t = m2
e +m2

µ − 2Ee−Eµ− + 2|pe− ||pµ− | cos θ (S59)

=
1

2

(
2m2

e + 2m2
µ − s+

√
s− 4m2

e

√
s− 4m2

µ cos θ
)
. (S60)

Plugging this into (S55) and simplifying gives

|M̄|2 = e4

[
1 +

4(m2
e +m2

µ)

s
+ (1− 4m2

e/s)(1− 4m2
µ/s) cos

2 θ

]
(S61)

Also note that solving (S60) for cos θ gives

cos θ = 2
t−m2

e −m2
µ + s

2√
s− 4m2

e

√
s− 4m2

µ

. (S62)

d) Starting from equation (4.84) of Peskin and Schroeder, compute the differential cross
section dσ/dΩ and the total cross section.

Solution: Equation (4.84) of Peskin and Schroeder is

dσ

dΩ
=

1

2Ee− 2Ee+ |ve− − ve+ |
|pµ− |

(2π)2 4Ecm
|M̄|2. (S63)

Our first task is to write the phase space factors in the same variables we’ve been using above. We note
that

√
s = Ecm = 2Ee− = 2Ee+ in the center of mass frame. Furthermore,

|ve− − ve+ | = 2|ve− | = 2
|pe− |
Ee−

= 2

√
E2

e− −m2
e−

Ee−
= 2

√
1− 4m2

e/s (S64)

and similarly

|pµ− | =
√
s

2

√
1− 4m2

µ/s. (S65)

Plugging these results in and simplifying gives

dσ

dΩ
=

1

64π2s

√
1− 4m2

µ/s√
1− 4m2

e/s
|M̄|2. (S66)

To find the total cross section, we integrate over solid angle, noting that∫
dΩ = 4π,

∫
cos2 θ dΩ =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ cos2 θ =
4π

3
. (S67)

The final result is

σ =
e4

16πs

√
1− 4m2

µ/s√
1− 4m2

e/s

[
1 +

4(m2
e +m2

µ)

s
+

(1− 4m2
e/s)(1− 4m2

µ/s)

3

]
(S68)

=
e4

12πs

√
1− 4m2

µ/s√
1− 4m2

e/s
(1 + 2m2

e/s)(1 + 2m2
µ/s). (S69)

As a check, we recover the expected result in the ultrarelativistic limit,

σ ≈ e4

12πs
=

4πα2

3s
(S70)

which matches the result in Peskin and Schroeder.
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You can see section 5.1 of Peskin and Schroeder to get started or check your answer. But
note that the book neglects the mass of the electron, while here we account for it.

4. ⋆ Nonminimal couplings. (5 points)
In problem 1, you found the charge and g-factor for a Dirac fermion minimally coupled
to the electromagnetic field, i.e. via the simplest possible interaction (1). However, if the
fermion is composite, or interacts with heavier particles, we might need additional terms
to describe the coupling. For all parts of this problem, you should adopt the formalism
of problem 1 and work in the nonrelativistic limit. Detailed calculations are not needed;
qualitative final answers (with justification) are sufficient.

a) The g-factors of the proton and neutron are not given by the result you found in
problem 1. When the Dirac equation was invented, physicists explained this by adding
an additional term to HI , proportional to iΨ̄[γµ, γν ]ΨFµν . Show that the physical
effect of such a term is indeed to shift the magnetic dipole moment.

Solution: If we follow the exact same logic as in problem 1, we’ll end up with a term in ⟨p, s|HI |p′, s′⟩
proportional to ∫

dx e−i(p−p′)·xūs(p)[γ
µ, γν ]us′(p

′)Fµν(x). (S71)

In the presence of a uniform magnetic field, this becomes∫
dx e−i(p−p′)·xūs(p)[γ

i, γj ]us′(p
′)Fij(x) ∝

∫
dx e−i(p−p′)·xϵijkξ†sσ

kξs′Fij (S72)

∝ /δ(p− p′)ξ†s(σ ·B)ξs′ (S73)

which, as we already saw, is precisely what you would get from a magnetic dipole moment.

You might be concerned that this term also causes an interaction with electric fields, as it contains∫
dx e−i(p−p′)·xūs(p)[γ

0, γi]us′(p
′)F0i(x). (S74)

However, we have

[γ0, γi] = −2

(
σi

−σi

)
(S75)

so that when we do the spinor contractions in the nonrelativistic limit, we get two terms that cancel in
the nonrelativistic limit. So the only effect of this term is a magnetic dipole moment.

b) What is the physical effect of a term proportional to Ψ̄[γµ, γν ]γ5ΨFµν?

Solution: By the same logic as before, we’ll get a term in the matrix element like∫
dx e−i(p−p′)·xūs(p)[γ

µ, γν ]γ5us′(p
′)Fµν(x) (S76)

where

γ5 =

(
−12

12

)
(S77)

in the Weyl representation. Recall that both [γi, γj ] and [γi, γ0] have Pauli matrices on the diagonal, but
the latter has them with opposite signs. The presence of the γ5 essentially exchanges the two. It is now
the [γi, γ0] that contribute in the nonrelativistic limit, giving a term proportional to /δ(p−p′)ξ†s(σ ·E)ξs′ .
Physically, this corresponds to giving the particle an electric dipole moment.

The presence of an electric dipole moment implies the violation of CP symmetry. Many past and ongoing
experiments search for the electric dipole moment of the electron, which could arise from physics beyond
the Standard Model, but so far none has been detected. The Standard Model generically predicts a
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sizable electric dipole moment for the neutron, which should have been easily detected decades ago, but
mysteriously none has been found.

The above two are the only terms with dimension 5, and are therefore the simplest non-
minimal couplings one could consider. Next, let’s consider some dimension 6 terms.

c) What is the physical effect of a term proportional to Ψ̄γµΨ ∂νFµν?

Solution: This is just like the coupling in problem 1, but we have replaced Aµ with ∂νFµν = −Jµ. In
the nonrelativistic limit, the leading effect is the one we found in problem 1(b), as this is the only one not
suppressed by powers of v. By the same logic, the result is a term in Hnr

I proportional to J0(x) = ρ(x),
where ρ is the external charge density. That is, it has no effect, regardless of the fields at the particle’s
location, unless the particle is sitting right on top of some other charge.

This might seem rather mysterious, but it’s perfectly comprehensible within classical electromagnetism.
Consider a tiny spherical capacitor with places of charge ±q. This charge configuration produces exactly
zero electromagnetic field everywhere outside it, which means that it does not interact with external
charges until they are right inside the capacitor, in which case they feel the potential inside.

If the particle already has a net charge, then superposing the above configuration spreads the charge
out in space. For this reason, this term is said to produce a “charge radius”. The charge radius is one
way to quantify the size of particles like the proton. (The “proton radius puzzle” is the fact that two
independent measurements of this quantity seemed to give different results.) When we say the electron
is a pointlike particle, we mean that it has no charge radius, as far as we’ve detected.

d) What is the physical effect of a term proportional to Ψ̄γµγ5Ψ ∂νFµν?

Solution: In this case the leading term in the nonrelativistic limit is that of 1(d), but with B replaced
with J, corresponding to an interaction of the form S ·J(x). In other words, we have an interaction with
currents directly on top of the particle.

To physically interpret this, imagine the particle is a tiny toroidal solenoid with its axis of symmetry
aligned with S. Such a configuration produces zero magnetic field outside itself, but the magnetic field
affects currents that pass right over the toroid. When the current flows parallel to S, it gets pushed
directly towards (or away from) the toroid’s axis, while a current flowing perpendicular to S experiences
no net force; this therefore reproduces the S · J potential.

Depending on the field of physics, such a current configuration is called an anapole moment, or a
polar toroidal dipole moment. You have probably not seen such a thing in electromagnetism classes,
because it doesn’t show up in the multipole expansion – it is a near field effect, not a far field effect. But
anapole moments are important observables in nuclear physics.

One can keep going. The anapole moment produces a localized parity-violating magnetic field, while the
so-called Schiff moment, also important in nuclear physics, produces a localized parity-violating electric
field. It corresponds to a term in Hnr

I proportional to S · ∇ρ.
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