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This problem set guides you through the calculation of loop diagrams and their application
to the renormalization of QED. Unlike previous problem sets, it is ordered sequentially:
each problem is easiest to approach after completing the previous problems. For reference,
you may find it useful to consult sections 6.3 and 7.5 of Peskin and Schroeder, but this
problem set is self-contained and its results are somewhat more general.

We will use dimensional regularization with d = 4 — 2e. To avoid confusion, we will
rename the i€ in the Feynman propagator to ¢0 in this problem set.

1. ete™ — puTu~ at one loop. (8 points)
In the previous problem set, you considered the leading order (or “tree level”) contribution
to the scattering matrix element for ete™ — u™u™,
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which is proportional to e?. The next-to-leading order contribution MN© is of order e,
and contains Feynman diagrams with one loop.

a) Draw all Feynman diagrams that contribute to MNO,

Solution: The matrix element at next-to-leading order (NLO) is given by
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b) Write down MO using the Feynman rules. You don’t have to evaluate the loop
integrals; this is just to show you examples of their typical form.
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If you collect all factors of i, e and (—1), the common pre-factor is i®(—1)%e* = (47a)?.

2. Feynman parameters. (12 points)

As you saw in problem 1, loop integrals take a few generic forms. For simplicity, let’s
consider a scalar theory, which doesn’t have nontrivial factors in the numerator of the loop
integrand. Then some generic loop integrals are the “tadpole”, “bubble”, and “triangle”,
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named after the kinds of Feynman diagrams in which they appear. Here we have sup-
pressed 70 terms, but you should keep in mind that they’re implicitly there, which will be
important in the last subpart. We regard a, b, and ¢ as general real exponents, though
in practice they will usually be positive integers. The dimension d is also a real parameter.

To compute the bubble and triangle integrals, it is helpful to introduce Feynman param-

eters, which combine the factors into the denominator into a power of a single quantity,
like the tadpole integral. We will first have to build up some mathematical machinery.

a) The gamma function is defined by
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and for positive integer n, satisfies I'(n) = (n — 1)!. Show that for real v,
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b) Show that for general v,
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Here, the z; are called Feynman parameters. (Hint: you should not base your answer
on the derivation in Peskin and Schroeder, which only works for integer v. Instead,
start from the result you proved in part (a).)

Solution: Using the result of part (a) n times yields
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This is already pretty close to the desired answer, so we now introduce an identity
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which converts our result to
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Let us rescale all the x; by y so they sum up to 1, as required in the final answer. The result is
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as desired, where we performed the y integral using .
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c) Apply to Ig(a,b;p?) to get an integrand whose denominator contains a single
quantity raised to the a + b power.
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d) Complete the evaluation of Ig(a,b;p®) by Wick rotating to Euclidean signature and
performing all the remaining integrals. As a hint, the Euclidean integration measure
is d’kp = |kp|?d|kg| dQ4, where the surface area of a unit sphere in d dimensions is

(9)

As a second hint, you can use the result
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To check your answer, if you set d = 4 — 2¢ then you should find
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Solution: Next, we perform the linear shift & — k& — p(1 — 1) and find
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Notice, that we dropped the "+:0" Feynman prescription from the integral at the very beginning. We
could have kept an infinitesimal mass term throughout. To track the infinitesimal imaginary part, we
can simply associate it with the momentum, p? + i0. Next, we perform a Wick rotation k° = ik% and
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Above we used the Euler S-function integral
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3. Passarino—Veltman reduction. (10 points)

More generally, loop integrands will have momenta and other factors in the numerator.
However, we can often use symmetry properties and a technique called Passarino—Veltman
reduction to reduce them to the simpler loop integrands considered in problem 2. For
example, consider the rank 2 tadpole integral
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Because the right-hand side is a Lorentz tensor, the left-hand side must be as well. As
there are no momenta in the integral, the only option is the metric, so we must have
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for some Lorentz scalar A. Contracting both sides with the metric, we find
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a) Apply the same reasoning to the rank 3 and rank 4 tadpole integrals,
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Solution: Again, only combinations of the metric tensor are available to us. There is no combination of
metric tensors that would allow us to write down a tensor with 5 indices, so the first integral vanishes.
(Another way of seeing this is that the integrand is odd under the transformation & — —k and the
integral is consequently equal to minus itself and thus zero.)

The integrand with four Lorentz indices is symmetric under the exchange of any pair of indices, so we
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from which we conclude
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b) Similarly, the rank 1 and 2 bubble integrals can be written as
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Express A, and Bj and C in terms of p? and the scalar bubble integral .
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4. Self-energy corrections in QED. (10 points)

Loop corrections to the two-point correlation function play a key role in renormalization,
and are often referred to as self-energy corrections. The one-loop self-energy corrections
for the electron and photon in QED are given by the diagrams below.

Throughout this problem we will work in massless QED, m, = 0.

a) Using the Feynman rules, write down X(p?) and II*(p?). Since we are viewing these
quantities as corrections to the electron and photon propagators, you should not
include factors for the external legs, such as u,(p) or €,, to get a scalar matrix element.
Instead, ¥ should be a 4 x 4 spinor matrix and II*” a rank 2 Lorentz tensor.
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Solution: Using the Feynman rules, we simply read off the answers,
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Evaluate the resulting loop integrals, expressing your final result in terms of p? and
e. (Hint: once you handle the gamma matrices, all of the integrals you get will be
ones evaluated earlier in the problem set.)

Solution: To compute ¥, we first note that v*(k + p)y, = (2 — d)(k + p). We then find that
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as desired.

d) Using (22)), expand your results from part (b), dropping terms that vanish as € — 0.

Solution: Plugging in the above result and simplifying gives
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5. * The scalar triangle integral. (5 points)

and

In this optional problem, we consider a somewhat more difficult loop integral.

a) Evaluate the scalar triangle integral I (a, b, ¢; py, p2) when p? = p2 = 0, but for general
a, b, ¢, and d, and give your answer in terms of s = (p; + po)>.

Solution: Introducing s = (p; + p2)?, Feynman parameters and shifting the loop momentum &k —
k+ (1 — 21 — x9)pa — xap1 we find
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Next, we perform the transformation z2 = (1 — z1)x2 and subsequently integrate out the parameter
integrals over x; and x5. We find
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b) It turns out there is a simple relation between the triangle and bubble integrals,
In(1,1,15p1, pa) = CIp(1,1; (p1 + p2)*). (23)
pi=p3=0
Find the coefficient C' in terms of d and s.

Solution: By comparing our previous results, we conclude
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