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1. Tensor survival skills.
A key prerequisite for quantum field theory is comfort manipulating tensors. In previous
courses, you should have seen the four-vectors for momentum, potential, and current

pµ = (E,p), Aµ = (φ,A), Jµ = (ρ,J). (1)

In this course, the metric tensor ηµν has elements

η00 = 1, η11 = η22 = η33 = −1. (2)

There is also an inverse metric tensor ηµν , which has elements

η00 = 1, η11 = η22 = η33 = −1. (3)

Indices can be raised and lowered using the metric or inverse metric, e.g.

pµ =
3∑

ν=0

ηµνp
ν (4)

which implies
p0 = p0, p1 = −p1, p2 = −p2, p3 = −p3 (5)

Here, the sum over ν is called a contraction. Contractions always involve one upper and
one lower spacetime index, and throughout this course we’ll use the Einstein summation
convention, i.e. we won’t explicitly write the summation sign for contractions. Note that
while the position of a spacetime index is very important (pµ is not the same thing as pµ),
names of contracted indices are arbitrary (ηµνp

ν means exactly the same thing as ηµρp
ρ).

a) Show that ηµνηνρ = δµρ , where

δµν =

{
1 µ = ν

0 otherwise
. (6)

This shows that δ is the identity tensor. (It is also sometimes written as ηµρ .)

Solution: Note that ηµν is only nonzero when µ = ν, and likewise ηνρ is only nonzero when ν = ρ.
Thus, when µ 6= ρ, the contraction has to be zero. When µ = ρ = 0, the contraction gives 12 = 1, while
when µ = ρ 6= 0, the contraction gives (−1)2 = 1, establishing the result.

b) Find the numeric value of ηµνηµν .

Solution: Summing over µ and ν, the only terms that contribute are those with µ = ν, giving

η00η
00 + η11η

11 + η22η
22 + η33η

33 = 4. (1)

c) A simple example of a covector (an object with one lower index) is the four-derivative

∂µ =

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (7)

Explicitly write out ∂ · A = ∂µA
µ and p · A = pµA

µ in terms of components.
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Solution: Note the difference in signs:

∂ ·A = ∂tφ+ ∂xA
x + ∂yA

y + ∂zA
z, p ·A = Eφ− pxAx − pyAy − pzAz. (2)

The metric tensor is special because it is the unique 2-index (“rank 2”) tensor whose
elements stay the same under Lorentz transformations. There is only one other tensor
with these properties, the rank 4 Levi–Civita tensor ε, whose components are

εµνρσ =

{
±1 µ, ν, ρ, σ all distinct

0 otherwise
. (8)

Here, ε0123 = 1 and the Levi–Civita tensor is totally antisymmetric, meaning that the
values of its components flips sign whenever two indices are exchanged, e.g. ε2103 = −1.

d) Find the numeric values of ε3210 and ε0123.

Solution: The first requires two exchanges, so it is +1. The second is

η0µη1νη2ρη3σε
0123 = η00η11η22η33ε

0123 = (−1)3 = −1. (3)

e) Show that gµνε
µνρσ is zero for any ρ and σ.

Solution: A contraction of an antisymmetric and symmetric pair of indices always vanishes, as

gµνε
µνρσ = −gνµενµρσ = −gµνεµνρσ (4)

where in the first step we used symmetry of g and antisymmetry of ε, and in the second step we exchanged
the names of the indices µ and ν. The only quantity which is equal to its own negative is zero.

f) It turns out that

εµνρσε
µνδγ = c1(δ

δ
ρδ

γ
σ − δγρδδσ), (9)

εµνρσε
µνρδ = c2 δ

δ
σ, (10)

εµνρσε
µνρσ = c3. (11)

You don’t have to prove these expressions, though it’s worth thinking about why they
must be true. Using any method, find the numeric values of c1, c2, and c3.

Solution: To prove the first identity, let’s take the concrete case ρ = δ = 2 and σ = γ = 3, where

εµν23ε
µν23 = c1. (5)

The terms that contribute are (µ, ν) = (0, 1) and (ν, µ) = (1, 0). They’re equal, and the first one is
ε0123ε

0123 = −1, so we conclude c1 = −2.
To get c2, we simply contract δ and ρ on both sides of the first identity. The result is

εµνρσε
µνργ = −2(δρρδγσ − δγρ δρσ) = −2(4δγσ − δγσ) = −6δγσ (6)

so that c2 = −6. Finally, contracting σ and γ here gives c3 = −24.
Alternatively, we could have started with c3 = −24 by counting permutations, then reverse engineered
c2 and c1 by running the above reasoning in reverse.

This problem contains all the tensor manipulation skills you’ll need for the entire course.
By the way, the fact that the metric tensor and Levi–Civita tensor are the only two
“invariant tensors” has a geometric meaning. Contracting the metric tensor with two
vectors gives their spacetime inner product, while contracting the Levi–Civita tensor
with four vectors gives the signed spacetime volume of the parallelepiped they span.
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2. Using Lorentz symmetry.
The fact that the metric and the Levi–Civita tensor are the only invariant tensors severely
constrains the forms that results can take in relativistic theories.

For example, suppose the answer to a physical question is a four-vector, but doesn’t
depend on any physical quantities besides Lorentz scalars (e.g. particle masses). Then
the answer has to be built out of ηµν and εµνρσ alone, but there’s no way to contract
copies of them to get a four-vector, so the answer must be zero. On the other hand, if
the answer is a tensor with 2 upper indices, the only possible answer is f ηµν where f is
a Lorentz scalar. (We showed previously that you can’t get anything else by using ε.)

a) What is the most general form if the answer is a tensor with 3 upper indices?

Solution: Because only pairs of indices can be contracted, any answer has to have an even number of
indices, so the answer here has to be zero.

b) What if the answer is a tensor with 4 upper indices?

Solution: The general form is

f1η
µνηρσ + f2η

µρηνσ + f3η
µσηνρ + f4ε

µνρσ. (7)

Now suppose the question involves some four-vector, such as the four-momentum pµ of a
particle. In this case, pµ can show up in the answer, which permits more general forms.
If the answer is a four-vector, it can be f pµ, and if the answer is a tensor with two upper
indices, it can be

f1 p
µpν + f2 η

µν (12)

where f1 and f2 are Lorentz scalars. This really is the general answer: it already includes
any more complicated expression you can write. For example,

pµpνpρpσηρδη
δγηγσ = pµpνpρpσδγρηγσ (13)

= pµpνpρpσηρσ (14)

= (p · p) pµpν (15)

which corresponds to f1 = p · p and f2 = 0. And there’s no term involving ε, because
contracting two copies of p with it yields zero.

c) What is the most general form if the answer is a tensor with 3 upper indices, which
can involve pµ?

Solution: To do this systematically, consider casework. With zero copies of p, we get nothing. With one
copy, we have two or four indices left over, which has to be an η or ε. With two copies, we again get
nothing, and with three copies we have one term, giving

f1η
µνpρ + f2η

µρpν + f3η
νρpµ + f4ε

µνρσpσ + f5p
µpνpρ. (8)

Be careful to avoid writing terms that are always zero, or equivalent to other terms. Once
you get the hang of this, you’ll be able to check answers at a glance by looking at their
tensor structure, just as you’ve learned to check answers by dimensional analysis.
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