Probing Invisible Vector Meson Decays with NA64 and LDMX

based on: Schuster, Toro, and Zhou, Phys. Rev. D 105, 035036 (2022) arXiv: 2112.02104

APS April Meeting – April 9, 2022

Freeze Out Production

Freeze out is simple and predictive: if dark matter begins in thermal equilibrium and annihilates with itself, the right amount is left over if

 $\langle \sigma v \rangle \sim \frac{1}{M_{\rm pl} T_{\rm e}}$

Kevin Zhou — Invisible Vector Meson Decays

$$\frac{1}{r_{eq}} \sim \left(\frac{1}{10 \,\text{TeV}}\right)^2$$

2

Freeze Out Production

Freeze out is simple and predictive: if dark matter begins in thermal equilibrium and annihilates with itself, the right amount is left over if

 $\langle \sigma v \rangle \sim \frac{1}{M_{\rm nl}T}$

This is automatically realized by weak-scale masses and couplings

Motivates searches for dark matter particles at the GeV to TeV scale

$$\frac{1}{r_{eq}} \sim \left(\frac{1}{10 \,\text{TeV}}\right)^2$$

$$\langle \sigma v \rangle \sim \frac{g_W^4 m_\chi^2}{m_W^4} \quad \text{(for } m_\chi \sim m_W\text{)}$$

But DM could also annihilate through a new mediator:

Kevin Zhou — Invisible Vector Meson Decays

Focus on vector mediators such as the dark photon A' (simplest models compatible with flavor constraints)

But DM could also annihilate through a new mediator:

dark sector masses at the MeV to GeV scale

Kevin Zhou — Invisible Vector Meson Decays

Existing constraints imply $\epsilon \lesssim 10^{-3}$, so if $m_{A'} = (\text{few}) \times m_{\gamma}$, freeze out motivates

Invisible Meson Decay

Vector mesons generically mix with vector mediator A', leaving to decays to DM

Invisible Meson Decay

Existing collider bounds weak...

Kevin Zhou — Invisible Vector Meson Decays

Vector mesons generically mix with vector mediator A', leaving to decays to DM

Invisible Meson Decay

Existing collider bounds weak...

But missing energy/momentum experiments can improve by 10^5 , leading to strong constraints on dark sectors!

Kevin Zhou — Invisible Vector Meson Decays

Vector mesons generically mix with vector mediator A', leaving to decays to DM

Missing Energy/Momentum Experiments

Kevin Zhou — Invisible Vector Meson Decays

Background free electron beam fixed target experiments looking for energy loss by DM production

Future run will increase number of electrons by ~ 1 order of magnitude

2108.04195

Missing Energy/Momentum Experiments

LDMX: proposed at SLAC in late 2020s, DMNI pre-project funding

Another $\sim 1-2$ orders of magnitude more electrons than NA64 "ultimate" run

Kevin Zhou — Invisible Vector Meson Decays

Background free electron beam fixed target experiments looking for energy loss by DM production

Dark Matter Production: A' **Bremsstrahlung**

- 1. Track incoming electrons
- 2. Look for recoiling electrons with missing energy due to A' Bremsstrahlung
- 3. A' decays to DM, leaving no trace in calorimeters

Kevin Zhou — Invisible Vector Meson Decays

11

Dark Matter Production: A' Bremsstrahlung

- 1. Track incoming electrons
- 2. Look for recoiling electrons with missing energy due to A' Bremsstrahlung
- 3. A' decays to DM, leaving no trace in calorimeters

Kevin Zhou — Invisible Vector Meson Decays

To realize target sensitivity: must detect and veto all other sources of electron energy loss

Dark Matter Production: Mesons

- 1. Track incoming electrons
- trace in calorimeters

Kevin Zhou — Invisible Vector Meson Decays

2. Look for recoiling electrons with missing energy due to ordinary Bremsstrahlung

3. Photon converts to vector meson in calorimeter which decays to DM, leaving no

13

Dark Matter Production: Mesons

Kevin Zhou — Invisible Vector Meson Decays

While A' Bremsstrahlung probes couplings to electrons, meson decay channel directly probes couplings to quarks

Estimating Meson Yield

hard Bremsstrahlung photons

$$N_{\gamma} \sim \begin{cases} 10^8 & \text{NA64 (current)} \\ 10^9 & \text{NA64 (future)} \\ 10^{10} & \text{LDMX Phase I} \\ 10^{11} & \text{LDMX Phase II} \end{cases}$$

(depends on electron flux, target geometry)

Estimating Meson Yield

hard Bremsstrahlung photons

 $N_V = N_{\gamma} p_V f_V$

$$N_{\gamma} \sim \begin{cases} 10^8 & \text{NA64 (current)} \\ 10^9 & \text{NA64 (future)} \\ 10^{10} & \text{LDMX Phase I} \\ 10^{11} & \text{LDMX Phase II} \end{cases}$$

(depends on electron flux, target geometry)

Kevin Zhou — Invisible Vector Meson Decays

probability for exclusive V
photoproduction per nucleon
(governed by Pomeron exchange)

$$p_V \sim \begin{cases} 10^{-1} & \rho \\ 10^{-2} & \omega, \phi \end{cases}$$

leads to $\sim 10^9 \, \omega$ and ϕ mesons at LDMX!

Estimating Meson Yield

hard Bremsstrahlung photons

 $N_V = N_{\gamma} p_V f_V$

$$N_{\gamma} \sim \begin{cases} 10^8 & \text{NA64 (current)} \\ 10^9 & \text{NA64 (future)} \\ 10^{10} & \text{LDMX Phase I} \\ 10^{11} & \text{LDMX Phase II} \end{cases}$$

(depends on electron flux, target geometry)

Kevin Zhou — Invisible Vector Meson Decays

 order-one nuclear structure effects,
dominant source of theoretical uncertainty (treated in detail in our paper)

probability for exclusive V
photoproduction per nucleon
(governed by Pomeron exchange)

$$p_V \sim \begin{cases} 10^{-1} & \rho \\ 10^{-2} & \omega, \phi \end{cases}$$

leads to $\sim 10^9 \, \omega$ and ϕ mesons at LDMX!

17

Nuclear Structure Effects

200

- Not well-modeled in Geant!
- Our theoretical modeling based on partial experimental measurements, 25% uncertainty

Nuclear Structure Effects

200

Kevin Zhou — Invisible Vector Meson Decays

- Key subtlety: both coherent and incoherent processes contribute
- Coherent process dominates for heavy nuclei and produces softest nuclear recoils, but absent in semiclassical Monte Carlo!

19

Dark Photon Reach

 $= \epsilon^2 \alpha_D (m_\chi/m_{A\prime})^4$

 \mathcal{T}

Meson decay channel probes 10^{-4} complementary parameter space 10^{-5} to A'-Bremsstrahlung 10^{-6}

- Extends reach to freeze-out target upward in mass
- Resonant at $m_{A'} \approx m_V$
- See LDMX Snowmass white paper for combined projections (2203.08192)

$U(1)_R$ Gauge Boson Reach

 10^{-1} Meson decay channel probes complementary parameter space 10^{-5} to A'-Bremsstrahlung 10^{-6} ,

- Dramatically improves reach to mediators without direct coupling to electrons
- Simple examples: $U(1)_R$ gauge boson, or anomaly-free $U(1)_{B-3L_{\mu}}$ gauge boson

 10^{-12} -

 $= \epsilon_B^2 \alpha_D (m_\chi/m_{A\prime})^4$

5

Potential world-leading invisible meson decay bounds from existing NA64 data!

Kevin Zhou — Invisible Vector Meson Decays

Outlook

Scalar $\bar{q}q$ Pseudoscalar $\bar{q}\gamma^5 q$ Vector $\bar{q}\gamma^{\mu}q$ Axial vector $\bar{q}\gamma^{\mu}\gamma^{5}q$

Kevin Zhou — Invisible Vector Meson Decays

Outlook

Improved meson photoproduction modeling could benefit many other experiments, such as electron beam dumps

Many other potentially interesting invisible (or partially invisible) decay signals, probing a wide range of mediators!

Backup Slides

Coherent Cross Sections

Kevin Zhou — Invisible Vector Meson Decays

- Peaked at very low momentum transfer $|t| \simeq q^2 \leq (1/R_N)^2$
- Nucleus recoils as a whole, with tiny kinetic energy $T_N \simeq |t|/2m_N$
- Glauber formalism for computing coherent cross sections thoroughly tested in 1970s

 10^{0}

Incoherent Cross Sections

- Falls off exponentially in t, scale $\sim 0.2 \ GeV^2$ set by Pomeron
- Nucleon recoils with kinetic energy $T_p \simeq |t|/2m_p$, we impose $T_p \leq 200 \text{ MeV}$
- Less well-measured, but can be predicted at 50% level from coherent process measurements

LDMX Combined Projections

