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The Search For Dark Matter
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New experimental programs can help do both!

Cosmic Visions 1707.04591

In current situation, we would like to both decisively test canonical 
models, and probe broadly into underexplored classes of models
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The Search For Dark Matter
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The Search For Dark Matter
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This talk: a new way to 
decisively probe one of 
the most long-standing, 

well-motivated dark 
matter candidates
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• The QCD axion 

• Axion-induced polarization


• Making a polarization haloscope

Outline
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Explains lack of strong CP violation by 
relaxation over cosmological time


 
 
 

For initial , residual oscillations 
are dark matter if 

θa ∼ 1
ma ∼ (0.5 − 50) μeV

The QCD Axion
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A pseudoscalar field  with defining 
coupling to gluons

a

ℒ ⊃ θa
αs

8π
GμνG̃μν θa =

a
fa

Nonperturbative QCD effects produce 
potential minimum at strong CP-
conserving point, and mass

ma = 5.7 μeV
1012 GeV

fa

Andreas Pargner, PhD Thesis
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Theoretically appealing:


• One of the simplest possible 
couplings to new light fields, 
motivated by effective field theory 


• Simple UV completions in theories 
with spontaneously broken 


• Axions generically produced in string 
compactifications


• QCD axion defined by observable 
interaction!

U(1)PQ

The QCD Axion
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A pseudoscalar field  with defining 
coupling to gluons

a

ℒ ⊃ θa
αs

8π
GμνG̃μν θa =

a
fa

Nonperturbative QCD effects produce 
potential minimum at strong CP-
conserving point, and mass

ma = 5.7 μeV
1012 GeV

fa
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Defined by an observable signature: oscillating CP violating nuclear effects, like

Detecting the QCD Axion
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The QCD axion has small residual oscillations about the CP conserving point

θa(t) ≃
2ρDM

ma fa
cos mat = 4 × 10−19 cos mat

neutron EDM dn = (2.4 × 10−3 e fm) θa ≡ gd a

Tiny effect hard to measure, especially at  axion frequencies ( )GHz ma ∼ μeV
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Detecting the QCD Axion
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QCD axion has definite mass given coupling! 

On the way there, probe non-QCD axions, or 
nonminimal QCD axions where potential cancels
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Detecting the QCD Axion
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Constraints from supernova cooling 
(typical for new light species)

Constraints from 
static EDM experiments 
(much lower frequency)
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Detecting the QCD Axion
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Strong potential reach from setups that 
resonantly amplify spin precession

“Piezoaxionic” effect:  freq. 
mechanical resonance in piezoelectric

≲ MHz
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Detecting the QCD Axion
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No existing or proposed 
probe at  frequencies!GHz

Core reason: the great success 
of cavity haloscopes
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Order-one coefficient  varies within -  orders of magnitude for simple modelsCaγ 1 2

Electromagnetic Axion Detection

13

Leading signature: modifies Ampere’s law to include effective current

Generically, QCD axions have a coupling to electromagnetism

ℒ ⊃ −
1
4

gaγγ a FμνF̃μν, gaγγ =
αCaγ

2πfa

∇ × B = J + Jeff, Jeff = gaγγ
·aB
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Electromagnetic Axion Detection
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Most proposed approaches apply a large  and resonantly amplify B Jeff

Meter-scale 
microwave cavities
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The Cavity Haloscope
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• RF cavity resonantly 
amplifies  
from coupling to photons


• After 35 years, finally 
sensitive to canonical 
QCD axion models


Jeff = gaγγ
·aB

O’Hare, AxionLimits
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Can translate this success to the axion-gluon coupling with polarization haloscopes

• RF cavity resonantly 
amplifies  
from coupling to photons


• After 35 years, finally 
sensitive to canonical 
QCD axion models


• Rapidly growing field, with 
wide international interest

Jeff = gaγγ
·aB
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• The QCD axion


• Axion-induced polarization 

• Making a polarization haloscope

Outline
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For a typical QCD axion, this is  of  in a cavity haloscope! But:10−3 Jeff = gaγγ
·aB

Polarization Currents
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QCD axion produces neutron EDMs  along spin, so we can estimate a 
sample with density  of spin-polarized neutrons carries a real current

dn = gd a
nn

JEDM = ·P = gd
·a nn

• Probes qualitatively new parameter space


• Removes model dependence on photon coupling


• Only known way to verify a cavity haloscope signal is the QCD axion
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Refining the Estimate
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The previous estimate treats neutrons as separate particles, but: 

neutrons are in nuclei nuclei are in atoms atoms are in materials

The estimate turns out to be okay, but only for appropriate nuclei and materials!
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Inducing Atomic EDMs
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• The QCD axion induces a nuclear EDM, both directly through nucleon EDMs and 
indirectly by P and CP violating modifications to internucleon interactions


• But in the nonrelativistic limit, a nuclear EDM is completely shielded by electrons, 
leading to zero overall atomic EDM  (Schiff’s theorem)


• Next most relevant P and CP-violating nuclear moments induced by the axion:


• Electric octupole moment (subdominant)


• Schiff moment (focus of this talk)


• Magnetic quadrupole moment (potentially also competitive)

dA
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Schiff Moments
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• The Schiff moment is a “radius-weighted” dipole moment: 
 
 

• Describes an internal electric field in the nucleus, which acts on electrons by 
 
 

• This P and CP violating contact interaction yields atomic EDM dA ∝ Z2S

S ∼ ∫ d3x ρN(x) r2 x

VS = −
Z

∑
i=1

eS ⋅ ∇δ3(xi)
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• For spherical nuclei, Schiff moments induced by internucleon interaction are 

• Small nuclear size  yields small atomic EDMs except for heavy unstable nuclei


• More promising: octupole-deformed nuclei with intrinsic Schiff moments, 
 
 
 
 


• For strongly deformed nuclei, final result is -enhanced:

R0

Z

Schiff Moments

22

⟨Sz⟩ ∼ ∑
n

⟨n |Va |0⟩⟨0 |Sz |n⟩
En − E0

∼ 10−2 eR2
0

mn
θa

⟨Sz⟩ = Sint ⟨nz⟩, Sint ∝ ZeR3
0 , ⟨nz⟩ ∼ ∑

n

⟨n |Va |0⟩⟨0 |nz |n⟩
En − E0

⟨Sz⟩ ∼ 10−2 ZeR2
0

mn
θa
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• Octupole deformations can exist in rare earth nuclei, which are stable and cheap


• Can produce atomic EDMs of order , validating earlier estimate


• More numeric and experimental work needed to verify octupole deformation


• Can also use magnetic quadrupole moments enhanced by quadrupole 
deformation: well established,  weaker signals

dA ∼ dn

𝒪(1)

Schiff Moments

23
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• The QCD axion


• Axion-induced polarization


• Making a polarization haloscope

Outline
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Signal Power
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Psig ≃ ma ( fp n0 dA)2 V
ϵ̄

η2
i min(Qa, Qi)

Resonant 
enhancement

Geometric form factor

ηi =
∫

Vp
d3x Ei ⋅ p̂

V ∫
V

d3x (ϵ/ϵ̄) E2
i

≲ 1

Polarization density 
(fractional nuclear 
spin polarization )fp

Dielectrics shield 
electric fields

Power in mode with profile  on resonance ( ) isEi ma ≃ ωi
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Optimizing Geometry
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To maximize the geometric form factor, align nuclear spins  with p̂ Ei

z

z

Ez

p̂

p̂

Layers can cover up to , but many other approaches possiblema ∼ 10−5 eV
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Optimizing Material
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Material only has to be insulating, and have high number density of desired nuclei

DyN Dy2O3 DyHO2 EuHCl EuCl2
some simple, stable, commercially available possibilities

We account for the most important material effect: dielectric shielding by  ϵ ∼ 10

(modifications of atomic orbitals inside solid are effect, 
 but require many body simulation to compute)

∼ 25 %
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• Need low dielectric loss tangents 


• Intrinsic losses fall rapidly as  decreases, so 
extrinsic losses dominate at low 


• Losses depend on , , and applied field; 
need dedicated measurements


• But loss tangents far below  observed for 
high quality crystals

tan δ ≲ 10−6

T
T

T ω

10−6

Dielectric Loss

28

Alford et al. (2001)
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Spin Polarization
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Thermal spin polarization depends on , is at typical haloscope conditionsB/T ∼1%

Brute force approach

Apply  at B ≳ 10 T T ∼ 2 mK

But: thermalization time may be 
prohibitively long

Like other approaches, achieving best sensitivity requires order-one fp
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More elaborate instrumentation, but 
meter-scale targets realized at CERN

Spin Polarization

30

Thermal spin polarization depends on , is at typical haloscope conditionsB/T ∼1%

Frozen spin dynamic nuclear polarization

Polarize electron spins, transfer to 
nuclei with microwave radiation, and 

“freeze” result by lowering T

Brute force approach

Apply  at B ≳ 10 T T ∼ 2 mK

But: thermalization time may be 
prohibitively long

Spin Muon Collaboration (1999)

Like other approaches, achieving best sensitivity requires order-one fp
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Sensitivity Estimate
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All noise sources besides thermal and amplifier noise vastly subdominant

SNR ≃
Psig

Tn

tint

Δνs
, Tn = T + Tamp

Assume quantum-limited amplifier, , and usual scanning procedureTamp = ma

Δνs =
ma

2π max(Q, Qa)
, tint =

te
min(Q, Qa)

which implies   (overcoupling enhances by  )SNR ∝ Q Qa te T/ma
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Existing haloscope with dielectric 
probes new parameter space!

Hyperpolarized sample probes 
orders of magnitude further

(Q, V, fp, T) = 105, 0.1 m3, 5 % , 40 mK

(Q, V, fp, T) = 106, 1 m3, 100 % , 40 mK

Mild further upgrade can test 
candidate  QCD axionμeV

(Q, V, fp, T) = 108, 1 m3, 100 % , 10 mK

Potential Reach
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octupole-enhanced 
Schiff moment S

atomic EDM dA

polarization 
current J = nA

·dA

cavity power P ∼ J2VQ/maϵ

Polarization haloscopes are a natural next 
step in the development of cavity haloscopes

In near term, motivates investigation of axion-
induced EDMs and appropriate materials

In long term, only way to test  
if an axion is the QCD axion

33


